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We present the first quantum computation of a total decay rate in high-energy physics at second order in
perturbative quantum field theory. This work underscores the confluence of two recent cutting-edge advances.
On the one hand, the quantum integration algorithm Quantum Fourier Iterative Amplitude Estimation (QFIAE),
which efficiently decomposes the target function into its Fourier series through a quantum neural network be-
fore quantumly integrating the corresponding Fourier components. On the other hand, causal unitary in the
loop-tree duality (LTD), which exploits the causal properties of vacuum amplitudes in LTD to coherently gen-
erate all contributions with different numbers of final-state particles to a scattering or decay process, leading to
singularity-free integrands that are well suited for Fourier decomposition. We test the performance of the quan-
tum algorithm with benchmark decay rates in a quantum simulator and in quantum hardware, and find accurate
theoretical predictions in both settings.

I. INTRODUCTION

The interplay between high-energy physics and quantum
computing represents a promising frontier for advancing our
understanding of fundamental concepts and improving com-
putational techniques. High-energy physics requires complex
theoretical calculations to predict with high accuracy cross
sections and decay rates, which are essential for understand-
ing the behavior of elementary particles at quantum scales
and for validating theoretical models in quantum field the-
ory [1]. These complex calculations often challenge classi-
cal computational methods. Quantum computing, with its in-
herent ability to leverage the principles of quantum mechan-
ics, offers a novel approach to successfully addressing these
challenges [2–4]. The applications of quantum computing in
this field include jet identification and clustering [5–9], parton
density determination and integration [10, 11], parton shower
simulation [12], anomaly detection [13–16], integration of el-
ementary particle process [17], data classification [18–24]
and the analysis of the causal structure of multiloop Feynman
diagrams [25, 26].

In particle physics, Feynman diagrams and scattering am-
plitudes from perturbative quantum field theory are essential
tools for predicting the transition probabilities between parti-
cle states at high-energy colliders, such as the CERN’s Large
Hadron Collider. Loop Feynman diagrams represent interac-
tions between particles that involve virtual quantum fluctua-
tions, making them inherently complex. On the other hand,
tree-level Feynman diagrams represent direct interactions be-
tween particles, and although they are apparently easier to
evaluate, they are not exempt from difficulties. Traditional
methods for evaluating Feynman diagrams and scattering am-
plitudes, and combining them to extract accurate theoretical
predictions, while effective, are limited by their computational
complexity and the resources required to perform, for exam-
ple, numerical integrations over the loop momenta and the
phase space of the final states.

∗ Corresponding author: jormard@ific.uv.es

The loop-tree duality (LTD) framework [27–32] facilitates
the evaluation of multiloop Feynman diagrams by decom-
posing them into tree-like objects, providing a structured ap-
proach to these computations where the fundamental physi-
cal principle of causality is manifest in the integrand repre-
sentation [33–40]. We have recently proposed a novel ap-
proach based on LTD to efficiently recast perturbative theo-
retical predictions at high-energy colliders, the LTD causal
unitary [41, 42], where differential observables, cross sections
and decay rates are assembled from the LTD representation of
vacuum amplitudes, i.e. scattering amplitudes without exter-
nal particles.

In Ref. [43, 44], we have also proposed a quantum integra-
tion algorithm, dubbed Quantum Fourier Iterative Amplitude
Estimation (QFIAE), and in Ref. [45] we have applied this
quantum integrator to the evaluation of infrared-safe scalar
one-loop Feynman integrals.

By integrating quantum computing techniques into the LTD
framework and harnessing the power of quantum integration,
we expect a transformative approach that could lead to new
insights and more efficient methodologies. Therefore, the aim
of this work is going one step further and test the perfor-
mance of QFIAE with physical decay rates at second order
in perturbation theory or next-to-leading order (NLO). This
requires the combination of one-loop with tree-level contribu-
tions, where each of the contributions is individually singular
and therefore numerically challenging, although the final pre-
diction is finite. We base our approach on the LTD causal uni-
tary framework because the unified treatment of loop and tree-
level contributions leads to rather flat integrands, and therefore
integrands that are more suitable for numerical integration, in
particular, by Fourier decomposition.

II. QUANTUM FOURIER ITERATIVE AMPLITUDE
ESTIMATION

Quantum Fourier Iterative Amplitude Estima-
tion (QFIAE) [43–45] is a quantum algorithm designed
to efficiently integrate multidimensional functions. Its
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FIG. 1. Workflow of QFIAE. The input consists of the target function
f(x⃗), the probability distribution ρ(x⃗), and the integration domain
{x⃗min, x⃗max}. The QNN fits f(x⃗) and extracts its Fourier series
from the quantum circuit. Next, IQAE estimates the integral for each
trigonometric term in the Fourier series. Finally, these integrals are
added with their corresponding coefficients to obtain the final integral
result.

workflow is depicted in Fig. 1. QFIAE first decomposes the
target function into its Fourier series using a Quantum Neural
Network (QNN) via a data re-uploading approach [46–
48]. Previous studies [46, 49] have demonstrated that an
exponential data encoding results in the quantum model
representing a truncated Fourier series. Following this first
step, each trigonometric term of the Fourier series undergoes
quantum integration using Iterative Quantum Amplitude
Estimation (IQAE) [50], which is an efficient variant of
Quantum Amplitude Estimation (QAE) [51].

The Fourier decomposition enables encoding the target
function with minimal quantum arithmetic operations and also
capitalizes on the quantum-friendly nature of the sine func-
tion for integration purposes. At the core of QFIAE lies the
QNN, which provides a practical approach to preserving the
potential quadratic speedup in the number of queries to the
probability distribution function, which will be encoded into
the amplification operator, offered by the Amplitude Ampli-
fication algorithm underlying in QAE, compared to other re-
cently proposed quantum integration algorithms like Fourier
Quantum Monte Carlo Integration (FQMCI) [52]. FQMCI,
also employs Fourier decomposition to approximate the inte-
grand and then individually estimate each component using
QAE. However, FQMCI relies on assumptions about acquir-
ing the Fourier coefficients, which may not always hold. Fail-
ure to meet these assumptions can nullify the potential quan-
tum speedup. The QNN, on the other hand, ensures a reli-
able quantum extraction of the Fourier coefficients. A detailed
comparison of the performance of both FQMCI and QFIAE
can be found in [44].

The second critical aspect of QFIAE involves exploiting
the advantages of IQAE over QAE. QAE estimates quantum

state amplitudes using amplitude amplification, an extension
of Grover’s algorithm [53], to enhance the likelihood of mea-
suring the desired state over undesired states. However, QAE
is constrained by its dependence on the resource-intensive
Quantum Phase Estimation (QPE) subroutine [54], which en-
tails operations deemed computationally expensive for current
Noisy Intermediate Scale Quantum (NISQ) devices. This lim-
itation threatens the anticipated quadratic advantage promised
by QAE. IQAE addresses this challenge by replacing QPE
with a classically efficient post-processing method, reducing
the demands on qubits and quantum gates while preserving
the asymptotic quadratic speedup.

III. LTD CAUSAL UNITARY AND DECAY RATES AT NLO

A vacuum amplitude in LTD, A(Λ)
D , where Λ is the number

of primitive loop four-momenta, is obtained from its Feyn-
man representation by integrating out through the Cauchy
residue theorem one component of each primitive loop mo-
menta [27, 28], typically the energy components, which re-
sults in replacing the Feynman propagators by causal propa-
gators of the form [33]

1

λi1···im
=

(
m∑
s=1

q
(+)
is,0

)−1

, (1)

where q
(+)
is,0

=
√

q2
is
+m2

is
− ı0 are the on-shell energies of

the internal propagators, with qis the spatial components of
the four-momenta and mis their masses. The numerator of
the vacuum amplitude in LTD is also a function of the on-
shell energies and additionally of the internal masses. The
factor ı0 in the on-shell energies stems from the original in-
finitesimal complex prescription of the Feynman propagators.
Loop vacuum amplitudes in the customary Feynman repre-
sentations are functions in the Minkowski space of the loop
four-momenta, while the integration domain of loop vacuum
amplitudes in LTD is the Euclidean space of the loop three-
momenta.

Each causal propagator, Eq. (1), involves a set of internal
particles that divide the vacuum amplitude into two subam-
plitudes, with the momentum flow of all particles in the set
aligned in the same direction, and each term in the vacuum
amplitude is proportional to a product of causal propagators
in which the momentum flow of the shared particles are also
aligned in the same direction [34–39]. This picture is also
analogous to selecting the acyclic configurations of a directed
graph in graph theory [25, 26, 55]. In the limit where a causal
propagator becomes singular, all the particles involved are set
on shell. Therefore a natural procedure to generate all the in-
terferences of scattering amplitudes with different numbers of
final-state particles and loops that are considered in the state-
of-the-art approaches is to take residues on the causal propa-
gators. This is the central idea of LTD causal unitary [41, 42].
The vacuum amplitude in LTD thus acts as a kernel amplitude,
which generates all the final states contributing to a scattering
or decay process from all possible residues on causal propa-
gators.
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FIG. 2. Three-loop vacuum diagrams contributing to the decay γ∗ →
qq̄(g) at NLO. The gray dashed lines represent phase-space residues,
i.e. different final states. Similar diagrams contribute to the decays
H → qq̄(g) and Φ → ϕϕ(ϕ) by substituting the photon labeled 6
by a Higgs boson or a heavy scalar Φ; for the heavy scalar decay
particles 1 to 5 are substituted by light scalars.

As benchmark decay rates at NLO, we consider the decay
of a heavy scalar into lighter scalars, and the decay of a Higgs
boson or an off-shell photon into a pair of massive quarks
and antiquarks. These processes have been implemented for
a proof of concept of LTD causal unitary in Ref. [42], where
classical integration methods were used to predict the total de-
cay rates. We refer to Ref. [42] for a detailed presentation of
the expressions used in the numerical implementation. The
vacuum diagrams that contribute to the decay γ∗ → qq̄(g) are
shown in Fig. 2. Similar vacuum diagrams describe the other
two decay processes considered.

The vacuum diagrams in Fig. 2 contribute to a vacuum am-
plitude that in LTD depends on three loop three-momenta,
{ℓ1, ℓ2, ℓ3}. The three-momenta of the internal propagators
read

q1 = ℓ1 + ℓ2 , q2 = ℓ1 + ℓ3 , q3 = ℓ1 ,

q4 = ℓ2 , q5 = ℓ2 − ℓ3 , q6 = ℓ3 , (2)

and the corresponding on-shell energies are given by q
(+)
i,0 =√

q2
i +m2

i − ı0. We work in the rest frame of the decaying
particle, where ℓ3 = 0. Therefore, the unintegrated decay
rate is a function of the remaining three-momenta, ℓ1 and ℓ2,
through the on-shell energies.

The differential decay rate of a particle a at NLO takes the
form

dΓ(1)
a =

dΦℓ1ℓ2

2
√
s

[(
A(3,a)

D (456) ∆̃456̄ +A(3,a)
D (1356) ∆̃1356̄

)
+ (5 ↔ 2, 4 ↔ 3)

]
, (3)

where A(3,a)
D (456) and A(3,a)

D (1356) are the phase-space
residues of the vacuum amplitude in LTD, i.e. they are ob-
tained from the residue on the corresponding causal propaga-
tors, at λ456 → 0 and λ1356 → 0, respectively. They rep-
resent the perturbative quantum fluctuations at one-loop with
two final-state particles, and at tree-level with three final-state
particles, respectively. For example, for the decay of a heavy

scalar Φ into lighter scalars, the phase-space residues are

A(3,Φ)
D (456) =

g
(1)
Φ m2

Φ

x12345

(
L134̄
234̄5̄,125 + L125̄

234̄5̄,134 + L2345
134,125

)
,

A(3,Φ)
D (1356) =

g
(1)
Φ m2

Φ

x135

(
1

λ134̄λ134λ12̄5λ125

)
, (4)

where g
(1)
Φ encodes the interaction couplings, the factor

xi1···in =
∏n

s=1 2q
(+)
is,0

is the product of the corresponding
on-shell energies and Li

j,k = λ−1
i

(
λ−1
j + λ−1

k

)
, with

λi1···ir īr+1···̄in = λi1···ir − λir+1···in . (5)

The integration measure is written in terms of two loop
three-momenta

dΦℓ1ℓ2 =

2∏
j=1

d3ℓj
(2π)3

, (6)

i.e. six integration variables. However, each term in Eq. (3)
must satisfy energy conservation, which is encoded in

∆̃i1···inā = 2π δ(λi1···inā) , (7)

and the decay is isotropic in the rest frame of the decaying
particle. As a result, the decay rate depends on two inde-
pendent integration variables, given the constraints imposed
by the Dirac delta functions in Eq. (7); a polar angle, which
is the angle between the two loop three-momenta, usually
parametrized as cos θ = 1− 2v, with v ∈ [0, 1], and the mod-
ulus of one of the loop three-momenta, mapped from [0,∞)
to the finite interval [0, 1) in the numerical implementation.
Explicitly,

dΦℓ1ℓ2 → 1

4π4

∫ ∞

0

ℓ21d|ℓ1|
∫ ∞

0

ℓ22d|ℓ2|
∫ 1

0

dv , (8)

with

∆̃456̄ = 2π δ

(√
ℓ22 +m2 −√

s

)
, (9)

and

∆̃1356̄ = 2π δ

(
|ℓ1 + ℓ2|

+
√
ℓ21 +m2 +

√
ℓ22 +m2 −√

s

)
, (10)

where |ℓ1 + ℓ2| =
√

ℓ21 + ℓ22 + 2(1− 2v)|ℓ1||ℓ2| and |ℓi| =√
ℓ2i . The two Dirac delta functions in Eq. (9) and Eq. (10)

allow to express one of the integration variables in Eq. (8)
in terms of the other two, which we solve analytically in the
numerical implementation.

The most important feature of Eq. (3) is that loop and tree-
level contributions, i.e. contributions with different numbers
of final-state particles, are treated simultaneously under the
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FIG. 3. Quantum-integrated decay rates in a quantum simulator for
the three decay processes H → qq̄(g), γ∗ → qq̄(g) and Φ → ϕϕ(ϕ)
at NLO as a function of the final state mass, using QFIAE and LTD
causal unitary. The dashed lines are the theoretical predictions in
dimensional regularization. The parameters used in the quantum
implementation are: max steps = 15000, step size = 0.001,
layers = nFourier = 20, nqubits = 6 for the QNN and nqubits =
5, nshots = 103,ϵ = 0.01, α = 0.05 for the IQAE module.

same integration measure. This property guarantees the lo-
cal cancellation of singularities arising in the state-of-the-art
approach, and thus avoids having to perform intermediate cal-
culations in arbitrary spacetime dimensions [56, 57]. In addi-
tion, the resulting integrand is flatter than in other approaches,
allowing for a much faster and more efficient numerical im-
plementation.

IV. QUANTUM INTEGRATION OF NLO DECAY RATES

In this section, we apply the quantum integration algorithm
QFIAE to estimate the total decay rate at NLO of the decay
processes presented in Section III. The main challenge of this
quantum implementation is in making the QNN to fit well the
differential decay rate function. To address this problem we
present a QNN with a general-purpose Ansatz, see Fig. 5,
which contains enough entanglement and free parameters to
permit a high expressibility that enables the correct solution
of the regression problem.

We utilize Pennylane [58] to construct and train the QNN.
The QNN architecture, which is displayed in Fig. 5, con-
sists of a 6-qubit quantum circuit with a specific Ansatz re-
peated nlayers times within the circuit. This Ansatz comprises
two key components: a variational part with trainable param-
eters built using qml.StronglyEntanglingLayers,
and an encoding block for two variables. Each variable is
encoded three times in parallel across the 6 qubits using
qml.AngleEmbedding. Building on previous studies of
regression with variational quantum circuits [44, 45], the en-
coding has been performed using rotations Rx, and the mea-
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FIG. 4. Quantum-integrated decay rates in quantum simulator (hard-
ware) for the QNN (IQAE) module of the QFIAE, for the three de-
cay processes H → qq̄(g), γ∗ → qq̄(g) and Φ → ϕϕ(ϕ) at NLO
as a function of the final state mass, using QFIAE and LTD causal
unitary. The dashed lines are the theoretical predictions in dimen-
sional regularization. The parameters used in the quantum imple-
mentation are: max steps = 15000, step size = 0.001, layers =
nFourier = 20, nqubits = 6 for the QNN and nqubits = 5,
nshots = 103,ϵ = 0.01, α = 0.05 for the IQAE module.

initial layer

× Layers

Encoding Trainable block

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩ R(θ0,0,0, θ0,0,1, θ0,0,2) Rx(x1) R(θ1,0,0, θ1,0,1, θ1,0,2) ⟨Z⟩

|0⟩ R(θ0,1,0, θ0,1,1, θ0,1,2) Rx(x2) R(θ1,1,0, θ1,1,1, θ1,1,2) ⟨Z⟩

|0⟩ R(θ0,2,0, θ0,2,1, θ0,2,2) Rx(x1) R(θ1,2,0, θ1,2,1, θ1,2,2) ⟨Z⟩

|0⟩ R(θ0,3,0, θ0,3,1, θ0,3,2) Rx(x2) R(θ1,3,0, θ1,3,1, θ1,3,2) ⟨Z⟩

|0⟩ R(θ0,4,0, θ0,4,1, θ0,4,2) Rx(x1) R(θ1,4,0, θ1,4,1, θ1,4,2) ⟨Z⟩

|0⟩ R(θ0,5,0, θ0,5,1, θ0,5,2) Rx(x2) R(θ1,5,0, θ1,5,1, θ1,5,2) ⟨Z⟩

FIG. 5. Architecture of the QNN employed to fit a 2-dimensional
function.

surements are performed on the Pauli-Z basis, as depicted in
Fig. 5. Regarding the complexity of the QNN, each layer
presents a quantum depth of 7, including one step of encod-
ing, one of variational gates and five of entangling two-qubit
gates. For the integrated decay rates shown in Figs. 3 and
4, 20 layers of the QNN architecture have been employed,
which means that the total quantum depth of the variational
quantum circuit is 140. To assess the feasibility of such vari-
ational circuit in current devices, we refer to two recent IonQ
studies [59, 60], where various quantum algorithms were eval-
uated using QED-C benchmarks. The findings show that our
algorithm, which requires a quantum depth of 140 and a low
qubit count (≤ 6), would achieve a high success probability
on IonQ and Quantinuum devices.

After making our QNN to accurately mimic the target func-
tion, we extract the Fourier series and feed the IQAE sub-
routine with it. For the IQAE module, we design a quantum
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circuit with a relatively low quantum depth and low number
of qubits that opens up the possibility to be executed on cur-
rent quantum computers. The IQAE module is implemented
with Qibo [61] on quantum simulators, Fig. 3, and with
Qiskit [62] on a real hardware, Fig. 4. In particular, the
IQAE module is executed on the 27-qubit IBMQ supercon-
ducting device ibmq mumbai. Only 5 qubits are needed for
the implementation of the IQAE algorithm, which integrates
the Fourier terms in sequential order.

We also implement error mitigation techniques to obtain the
desirable results. In particular, to mitigate quantum noise dur-
ing execution, we utilize a pulse-efficient transpilation tech-
nique [63], which effectively reduces the number of two-qubit
gates by leveraging the hardware-native cross-resonance in-
teraction. Additionally, we apply the error suppression tech-
nique Dynamical Decoupling (DD) within the circuit execu-
tion and the error mitigation technique Zero Noise Extrapola-
tion (ZNE) to the output, using the Qiskit Runtime Estima-
tor primitive [64].

The hyperparameters used to train the QNN are
max steps, which sets the number of iterations for the
ADAM optimizer [65], step size, which represents the
optimizer’s learning rate, layers, which specifies the number
of circuit layers, nFourier, indicating the number of Fourier
coefficients we are truncating the Fourier representation of
the circuit, and nqubits, which defines the number of qubits
used in the variational circuit. The IQAE parameters include
nqubits, specifying the qubits for the IQAE circuit, nshots, for
the number of measurement samples per circuit run, ϵ, which
controls the error tolerance of each individual integral, and α,
which defines the confidence interval for the integral results.

The results presented in Figs. 3 and 4 show a relatively
small deviation with respect to their corresponding analytical
values in the standard dimensional regularization (DREG). In
particular, in Fig. 4, one can notice that in comparison to Fig. 3
there is a systematic deviation in the value of the integrals in-
troduced by the hardware noise that is still not alleviated by
the currently available error mitigation techniques applied. In
Table I, we provide the explicit numerical results and uncer-
tainties corresponding to Figs. 3 and 4.

Table I shows that the uncertainties from executing IQAE
on quantum hardware are approximately an order of magni-
tude higher than those obtained on a quantum simulator. This
difference is expected, as the inherent quantum noise on phys-
ical hardware adds to the statistical uncertainty in the IQAE
method. Nevertheless, most of the values are in agreement
within the uncertainty bands with the expected values, so we
consider that the results are quite satisfactory, taking into ac-
count the current limitations of real quantum hardware.

V. CONCLUSIONS

We have presented the first quantum computation of a total
decay rate at second order in perturbative quantum field the-
ory. Leveraging the loop-tree duality (LTD) framework, we
have successfully combined loop and tree-level Feynman dia-
grams with a quantum algorithm on a quantum computer. This

Decay 2m/
√
s Hardware Simulator DREG

Φ → ϕϕ(ϕ) 0.0 −0.0061(28) 0.0023(5) 0.0000
0.1 −0.0055(31) 0.0040(6) 0.0018
0.2 −0.0016(30) 0.0011(6) 0.0065
0.3 0.0101(56) 0.0205(11) 0.0167
0.4 0.0333(85) 0.0439(15) 0.0459

H → qq̄(g) 0.0 0.0911(61) 0.1034(13) 0.1077
0.1 0.1009(83) 0.1169(14) 0.1204
0.2 0.1288(85) 0.1455(14) 0.1486
0.3 0.1847(135) 0.1941(20) 0.1928
0.4 0.2431(104) 0.2513(30) 0.2730

γ∗ → qq̄(g) 0.0 0.0029(96) 0.0161(14) 0.0190
0.1 0.0068(74) 0.0205(13) 0.0215
0.2 0.0191(50) 0.0293(13) 0.0313
0.3 0.0535(103) 0.0609(20) 0.0547
0.4 0.0971(171) 0.0979(30) 0.1140

TABLE I. Quantum-integrated decay rates for the three decay pro-
cesses H → qq̄(g), γ∗ → qq̄(g) and Φ → ϕϕ(ϕ) at NLO as a
function of the final state mass, using QFIAE and LTD causal uni-
tary. The column “HARDWARE” contains the results obtained with
the QNN on a quantum simulator and the IQAE on quantum hard-
ware, whereas the column “SIMULATOR” contains the results ob-
tained when both the QNN and the IQAE are executed on quantum
simulators. The DREG column contains the exact analytic results at
NLO accuracy.

methodological advancement is significant from the high-
energy physics perspective, as it allows us to integrate a real
process with potential for quantum speedup. While we do
not claim to have achieved quantum advantage in this work,
our results lay the groundwork for future explorations in this
direction. From the perspective of quantum computing, our
study marks a noteworthy achievement. By solving a rela-
tively complicated regression problem using a Quantum Neu-
ral Network (QNN) on a realistic dataset, we found a good
compromise between trainability and expressibility, a com-
mon challenge in quantum neural networks. Most of the
results presented are in agreement with the expected values
within the uncertainty bands. This demonstrates the potential
of quantum computing to address complex, real-world prob-
lems and highlights the importance of continuing to push the
boundaries of what quantum technology can achieve.
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