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In the CERN Large Hadron Collider (LHC), bent crystals are used to efficiently deflect beam halo
particles toward secondary collimators used as absorbers. In this crystal collimation scheme, a crystal with
a length of a few millimeters can produce a deflection equivalent to a magnetic field of hundreds of Tesla at
LHC top energies, improving the cleaning performance of the machine. However, crystals must be in
optimal alignment with respect to the circulating beam to maximize the efficiency of the channeling
process. A newly developed machine learning model automatically classifies the channeling condition of
crystals using beam loss monitor signals during slow rotation of the crystal. This advancement represents a
crucial step toward refining the process of identifying the optimal channeling orientation. The algorithm
has been tested for the fist time in operation with Pb ion beams at the record energy of 6.8 Z TeV
demonstrating its reliability.
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I. INTRODUCTION

At the European Organization for Nuclear Research
(CERN) Large Hadron Collider (LHC) [1], proton and
heavy ion beams are brought into collision to conduct high-
energy physics experiments. Due to several processes,
some particles inevitably stray from the central beam
(forming the so-called “halo”), resulting in unavoidable
losses as the beam circulates in the accelerator. Therefore, a
robust collimation system is needed to intercept particles
that deviate from the desired trajectory and safely dispose
of these losses [2]. CERN is currently engaged in a
major upgrade project of the LHC, known as the High-
Luminosity LHC (HL-LHC) [3], with the goal to achieve
an integrated luminosity of 250 fb−1 per year [4].
Enhancements to the collimation system are essential,
particularly during heavy ion operations, to address the
heightened operational challenges posed by the Hi-Lumi
LHC project [5].
One of the upgrades will rely on the use of crystal

collimation. The concept utilizes the highly ordered atomic
structure of crystals to channel charged particles into
potential wells formed by adjacent crystal planes [6].
Particles that deviate from the intended trajectory of the
beamare forced to follow the curvature of the bent crystal [7],

and crystals as short as 4 mm in length with 50 μrad bending
angle can generate equivalent bending fields of 300 Tesla at
LHC top energy, directing halo particles toward specific
locations where secondary collimators are used as absorbers
[8] (see Fig. 1). This technique has clear implications for
beam collimation. The upgrade was tested during the LHC
Run 3 operations (2022 to 2025), to deliver higher ion
luminosity to the experiments.
Achieving optimal performance requires angular align-

ment with μrad precision of the crystal with respect to the
beam envelope, a highly challenging task. Previously, the
angular alignment of the crystal with the circulating beam
was achieved “manually,” using visual human feedback to
determine when the channeling signature is found based on
signals from beam loss monitors during crystal rotational
scans. However, this manual alignment procedure is time-
consuming, taking hours of valuable machine time away
from physics experiments. To address this challenge, the
aim of this work is to enhance the alignment process by
automating the classification of channeling signatures

FIG. 1. Illustrative view of the crystal channeling primary halo
particles onto secondary collimator. The optimal channeling
orientation can be found by observing losses on the crystal
and secondary collimator.
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using deep learning. This work can improve the efficiency
and accuracy of identifying the optimal channeling ori-
entation in an automated way compared to the manual
approach.
This paper presents a deep learning framework based on

a 1D-convolutional neural networks (CNN) to optimize the
search for the crystalline planes. The problem under study
is a time-series classification, therefore, this falls under the
category of supervised learning [9]. Additionally, in this
work, an algorithm to deploy the developed machine
learning model has been engineered.

II. CONVENTIONAL AND CRYSTAL
COLLIMATORS SCHEMES

The current LHC collimation system is composed of 110
collimators, each with two movable blocks referred to as
“jaws.” They are placed symmetrically around the circu-
lating beams in a multistage hierarchy that ensures an
optimal cleaning performance. In the LHC a three-stage
hierarchy is used. This consists of primary collimators
(TCP), which are closest to the beam and intercept the
primary halo particles, secondary collimators (TCSG), that
intercept secondary halo particles and the hadronic shower
and finally absorber collimators (TCLA), made of tungsten
alloy, that absorb the hadronic showers developed in the
first two collimation stages [3]. The simplified structure of
the collimation system is depicted in Fig. 2, while a more
exhaustive description of the collimation system can be
found in [2,10,11].
The multistage collimation system used in the LHC is

less efficient for ion beams compared to protons. This is
because when ions interact with conventional collimator
materials, nuclear fragmentation processes occur. These
processes generate ion fragments with different magnetic
rigidities but fail to provide enough transverse kicks to steer
these fragments toward the secondary collimators. As a
result, these fragments pass through the “betatron” colli-
mation system area (responsible for safely handling trans-
verse beam losses). Consequently, due to a local rise in
temperature, there is an elevated risk of quenching in the
superconductive magnets [12,13]. Given that the losses
generated by high-intensity ion beams were already
approaching the quench limits of the superconducting

magnets during Run 2 (operations from 2015 to 2018)
[14], to achieve the goals set by the Hi-Lumi LHC project
an upgrade of the present collimation system is needed.
As noted in Ref. [5], the LHC upgrade also involves the

adoption of crystal collimation. This method utilizes bent
crystals to guide halo particles, channeling them toward a
single absorber in either the vertical or horizontal plane.
The principle of crystal planar channeling is leveraged to
accomplish this task efficiently. Ideally, a single crystal per
plane suffices, paired with an absorber designed to capture
the channeled particles.
Crystal collimation provides two primary benefits. First,

the likelihood of inelastic interactions within a crystal
collimator is significantly lower than that for a standard
collimator. This is because channeled particles travel
through the relatively empty space between lattice planes,
resulting in fewer losses caused by interactions with the
atomic nuclei; second, crystal collimation presents a
notable decrease in the impedance budget within particle
accelerators. Impedance denotes the collective effect of the
electromagnetic interactions between the circulating par-
ticle beam and the surrounding accelerator structure. In
contrast to conventional primary collimators, crystal colli-
mators feature a considerably more condensed structure,
thereby driving down impedance levels. Additionally,
during operations with crystals, the secondary collimator
used as an absorber is more distant from the circulating
beam, further mitigating impedance effects [15]. These
advantages make crystal collimation an attractive option for
beam collimation in high-energy particle colliders [15,16].
The angular orientation of the crystal must be finely

adjusted with a precision below 1μrad to ensure that the
channeling conditions are respected. This is due to the
“critical angle”—the maximum angle of incidence (with
respect to the crystalline planes) at which particles can be
channeled by the crystal lattice. It represents the threshold
angle beyond which the channeling effect becomes inef-
fective, and particles are more likely to undergo other
coherent phenomena rather than being channeled along a
specific crystal plane. For example, as reported in [17], at
7 TeV the critical angle is 2.4 μrad. One extra challenge
that occurs during the alignment of a crystal collimator is
the existence of additional symmetries referred to as skew
planes (SK), which appear diagonally in relation to the
planes utilized for channeling. SK can trap charged
particles, but with a lower efficiency (because of the lower
potential well they can generate) and with a lower deflec-
tion angle compared to channeling, reducing the channel-
ing efficiency of the crystal collimation concept [18].
Therefore, it is crucial to avoid these planes when aligning
the device with the circulating beam.

III. ANGULAR SCAN

The optimal channeling orientation can be identified
using beam loss monitors (BLMs) [19,20] positioned

FIG. 2. Illustrative and simplified view of the three stage
collimation system. Primary collimators intercept primary halo
particles, secondary collimators intercept secondary halo par-
ticles, and absorber collimator absorbs the hadronic showers
developed in the first two collimation stages.
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adjacent to both the crystal and the secondary collimator.
They are designed to detect beam losses in particle
accelerators by measuring the ionization produced when
beam particles interact with the surrounding material at
specific locations along the beamline. This ionization
process detected by the BLM generates a signal that can
be measured in units of Gy/s.
The crystals are installed on precise goniometers, which

include both a linear and rotational stage. The linear stage
enables the crystal to be inserted in the beam line until it
makes contact with the beam halo, while the rotational
stage allows for accurate angular positioning to locate the
channeling orientation. The goniometers provide excep-
tional angular resolution, with a precision level below
0.1 μrad [21]. The main steps to find the channeling
orientation of a crystal collimator are movement of the
crystal collimator toward the beam until it touches the beam
halo, followed by slow rotation of the crystal until the
channeling signature is observed [18].
During this procedure, called angular scan, the BLM

signals at the location of the crystal and of the secondary
collimator that intercepts the deflected beam are monitored.
As seen in Fig. 3, the channeling signature is composed of
three main patterns: (i) amorphous plateaus, where the
orientation is so far away from optimal channeling that the
crystal behaves like any amorphous scatterer; (ii) channel-
ing well, minimum in the loss pattern observed at the
crystal location due to reduced inelastic interaction rate and
increase of losses in correspondence of the secondary
collimator that intercepts the channelled particles
(Fig. 1); and (iii) volume reflection plateau, where particles
bounce off of the crystalline planes instead of being
channeled [22]. It is important to note that to better observe
the characteristic signature of channeling from the BLM
signal, white noise is introduced into the beam using the
active transverse damper [23]. This increases the diffusion
speed of the halo, causing intentional but controlled beam
losses during the scan. Nevertheless considering the angu-
lar range of the goniometer of 20 mrad and the average scan

step size of 1 μrad=s, finding the channeling orientation is a
nontrivial operation that can take hours of machine time.
The objective of this work is to tackle this task improving

the alignment procedure through automatic categorization
of channeling patterns using deep learning techniques.

IV. DATASET OVERVIEW: COMPOSITION
AND CHARACTERISTICS

The quality and amount of data used to train a machine
learning model can greatly affect its performance and
generalization ability, and therefore, careful data collection
has been performed to ensure the reliability of the results.
Hence, in this study, the dataset employed for training and
evaluating the machine learning model comprises 1689 sets
labeled from hundreds of angular scans by collimation
experts. To enhance the dataset variability and its capacity
to generalize effectively across diverse scenarios, a tech-
nique known as data augmentation was implemented. This
process involved the integration of signals derived from
multiple beam loss monitors strategically situated around
the ring during angular scans. The incorporation of these
signals facilitated the development of detection patterns
that are compatible with the problem under investigation.
The scans were performed on both beams in the horizontal
and vertical planes at different beam energies. These sets
consist of 1 Hz BLM signals gathered during machine
development studies with proton and Pb ion beams from
2015 to 2022. Each set is comprised of two time-series
signals: one registered in correspondence of the crystal and
one in correspondence of the secondary collimator.
The BLM signals have been distributed into a main

dataset used for training and a validation set (which
corresponds to roughly 20% of the main dataset) used
for testing the model on randomly chosen and unseen data.
Both have been divided in three classes. Table I presents a
detailed overview of the dataset composition utilized in the
study. This table illustrates the distribution of signal counts
across various classes within both the main dataset and the
validation set.
A signal belonging to the channeling well class (Fig. 3)

is a BLM signal that exhibits the channeling signature
described in Sec. III. In contrast, a signal categorized as no
channeling (Fig. 4) lacks a discernible channeling pattern,
while a signal classified as “partial well” (or “anomalous

FIG. 3. BLM signal as a function of time while crystal is
rotating identified as a “channeling well” (dark blue line). BLM
signal as a function of time observed in correspondence of the
secondary collimator, while crystal is rotating (light blue line).

TABLE I. Composition of datasets.

Class Dataset Signal counts

Channeling well Main dataset 530
Validation set 125

No channeling Main dataset 354
Validation set 61

Partial well Main dataset 509
Validation set 110
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channeling”) can be seen in Fig. 5 and it displays the
channeling pattern but not the volume reflection pattern.
One of the objectives of this work was to prevent the
incorrect identification of a partial well and differentiate it
from a channeling well, as a partial well may lead to
decreased particle deflection, resulting in reduced
efficiency.

V. CONVOLUTIONAL NEURAL NETWORK
MODEL DESIGN

According to [24], 1D-convolutional neural networks
have recently been proposed and immediately achieved
state-of-the-art performance levels in several applications,
such as personalized biomedical data classification and
early diagnosis, structural health monitoring, anomaly
detection and identification in power electronics, and
electrical motor fault detection. Other endeavors at various
facilities, focusing on distinct machine subsystems and
employing diverse methodologies, demonstrate the encour-
aging prospects of machine learning [25,26]. An additional
significant benefit is the feasibility of implementing real-
time and cost-effective hardware due to the simple and
compact nature of 1D CNNs, which solely perform 1D
convolutions. Therefore, the chosen machine learning
model trained to classify channeling conditions of a crystal

collimator is a feature-less 1D CNN. This is a type of neural
network architecture that does not require manual feature
engineering, as it automatically extracts relevant features
from the input data.
In signal classification, 1D CNNs are commonly used to

classify time-series data by learning the underlying patterns
and relationships in the data. This approach can be
particularly effective when working with unprocessed
BLM data, as the model can learn to recognize meaningful
features in the data without the need for preprocessing or
feature extraction. The model engineered in this work has
been developed using the deep learning library KERAS [27]
with a TensorFlow [28] backend.
Before feeding the data into the first CNN layer, a Z-

score normalization at each signal is applied such that they
have the properties of a standard normal distribution with
mean μ ¼ 0 and standard deviation σ ¼ 1 [29]. Standard
scores of the samples x are calculated as follows:

z ¼ x − μ

σ
: ð1Þ

The detailed network design of the 1D CNN shown in
Table II presents the architecture layers and corresponding
output shapes. The first column in this table represents the
sequence of layers composing the architecture, while the
“output shape” column encapsulates the batch size (number
of training examples utilized in one iteration of the training
process), the length of the signal that is being processed by
the neural network, and channel dimensions of the data
produced by the layers. The dimensions are presented in a
tuple format, where each element in the tuple corresponds
to a specific dimension. The placeholders “batch size” and
“signal length” in the tuple signify that these dimensions
vary during the training process based on the characteristics
of the dataset being used.
The developed model consists of two 1D convolutional

layers followed by batch normalization layers, rectified
linear unit activation functions, and dropout layers, with
respective frequency rates of 0.75 and 0.6, adopted to
reduce overfitting. In a classification problem, the output of

FIG. 4. BLM signals registered in correspondence of crystal
and secondary collimators during angular scan identified as “no
channeling”.

FIG. 5. BLM signals registered in correspondence of crystal
and secondary collimators during angular scan identified as
partial well.

TABLE II. Network architecture layers and output shapes.

Layer(s) Output shape

Conv1D (Batch size, signal length, 256)
Batch normalization (Batch size, signal length, 256)
ReLu (Batch size, signal length, 256)
Dropout (Batch size, signal length, 256)
Conv1D (Batch size, signal length, 160)
Batch normalization (Batch size, signal length, 160)
ReLu (Batch size, signal length, 160)
Dropout (Batch size, signal length, 160)
Global average pooling (Batch size, 160)
Dense (Batch size, 3)
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a neural network commonly comprises a vector of scores.
Each element within this vector indicates the level of
confidence exhibited by the network regarding the input’s
association with a specific class. To achieve this, the CNN
architecture aforementioned is closed by a 1D global
average pooling layer and a dense layer with three output
nodes, accompanied by a softmax activation function. The
softmax function normalizes the vector of scores ensuring
that their summation results in unity. Consequently, the
network’s output can be interpreted as a probability
distributions. In other words, the choice of the activation
function allows the output of three different probabilities,
precisely the probabilities that the time series analyzed
shows a pattern compatible with Figs. 3, 4, or 5.
To achieve optimal performance on the given classifi-

cation task, two key techniques have been used: early
stopping [30] and random search for hyperparameter tuning
[31]. The early stopping technique was implemented to
monitor the validation performance of the model during the
training process and halt the training when the validation
performance plateaued, thereby preventing overfitting.
Additionally, the model underwent fine tuning. In particu-
lar, 50 sets of hyperparameters from a predefined search
space have been sampled, and the CNN has been trained for
each set of hyperparameters. The performances have been
evaluated on a held-out validation set, and the hyper-
parameters that resulted in the best performance have been
selected.

VI. MODEL EVALUATION

The performance of the model has been evaluated with
the use of the precision metric:

Precision ¼ TP
TPþ FP

; ð2Þ

where true positives (TP) indicate the number of signals of
the class that are correctly predicted by the algorithm, and
false positives (FP) indicate the number of signals not
belonging to the class that are mistakenly classified.
The 1D CNN model achieved an average precision of

93% on the unseen validation set BLM signals with proton
and ion beams, which served as a benchmark for the
conducted experiment. The confusion matrix depicted in
Fig. 6 offers a comprehensive breakdown of the model’s
performance, facilitating precision assessment. In instances
where a CNN incorrectly labels a channeling well as a
partial well, it may necessitate rescanning the crystal within
the previously examined range, at a reduced rotational
speed to enhance the patterns detection in the BLMs
signals. Despite this, such results are promising, indicating
the reliability of convolutional neural networks in identify-
ing main planar channeling, showcasing their potential for
practical applications.

Figure 7 depicts the predicted probability distributions of
the CNN applied to the validation set signals, regarding the
three targeted classes. These outcomes reveal that the
model presents high levels of confidence in its classifica-
tion performance on previously unseen validation data.

VII. PROPOSED IMPLEMENTATION
APPROACH

In this section, a framework to deploy the developed
machine learning model into operational settings is pre-
sented. The machine learning model has been implemented
into a software application [32] designed to streamline and
consolidate all major operational requirements for crystal
collimation, one of which is the identification of the correct
channeling orientation. The application enables the control
of the rotational stage of the goniometer, and the online
classification of beam loss monitors signals. In particular,
the tool allows the definitions of the settings of the angular
scan, such as start scan position, stop scan position, and
scan speed. During the rotation of the crystal, the BLM
signals of fixed length are fed into the machine learning
model. The classification window (W) is determined with
the following formula:

FIG. 6. Confusion matrix obtained by classifying validation set
signals.

FIG. 7. Classification probabilities distributions of validation
set signals with respect to the target classes. The average
classification probability is indicated by a red cross within the
boxplot.
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W½s� ¼ 4
θðμradÞ
θ̇ðμrad=sÞ ; ð3Þ

where θ is the crystal bending angle (defined as θ ¼ l
R,

where l is the crystal length in the beam direction and R its
bending radius), and θ̇ is the speed with which the angular
motion is performed.
The division of the continuous time-series data into

fixed-size windows is performed by updating the data in
the classification window continuously, while the crystal
rotates and the signals are acquired from the BLMs. The
segmented time-series are normalized and fed into the
trained 1D CNN model to predict the class probabilities in
real time. At the conclusion of the scan, a feedback
mechanism is employed based on the predicted class
probabilities to initiate the movement of the crystal to
its channeling orientation (which corresponds to the
minimum of losses registered at the crystal location during
the scan), pending confirmation by the user. This con-
firmation step by the user serves as a pivotal secondary
classification stage conducted by the human operator,
given the critical importance of accurately identifying
the crystal’s channeling orientation. As such, the machine
learning algorithm serves as an assistant to the operator,
automating the detection of channeling well patterns while
awaiting confirmation from the human operator through a
double-check process. A flowchart that graphically repre-
sents this concept is depicted in Fig. 8. The application
with the embedded deep learning model was successfully
used in operation with Pb ion beams for the first time
in 2022.
Figure 9 depicts the CNN signals during an angular scan.

Two distinct BLMS signals, obtained from sensors located
in proximity of the crystal and secondary collimator, are fed
into the CNN through a translating classification window
(depicted as vertical solid lines). The plot shows three
output probabilities of the CNN as a function of time during
the angular scan. The probability of the analyzed signals
representing a channeling well (green line) is initially
below 10% during the first half of the scan. However, as
the second amorphous plateau is processed by the model
and the classification window is updated, the probability of
channeling increases and reaches its maximum value. As
the scan continues and the pattern of channeling well exits
the classification window the no channeling probability
rises again.
In Fig. 10, the application of the CNN in another angular

scan is depicted. Initially, the probability of a partial well
(represented by the black line) is below 10% in the early
stages of the scan. However, as the pattern enters in the
classification window, the probability of partial well
gradually increases, approaching its maximum value. As
the scan progresses and the pattern of partial well exits the
classification window, the probability of no channeling
rises again.

FIG. 8. Flowchart that represents the CNN in use.

FIG. 9. Top: time-series of BLM signals recorded at the crystal
and secondary collimator positions, indicating a channeling well,
with vertical solid lines marking the classification window. The
input signals for the machine learning model are continually
updated as the crystal rotates, causing the classification window
to shift over time. Bottom: output probabilities generated by the
CNN as a function of time. The CNN output follows the
conclusion of the classification window (marked by the right
vertical solid line).
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VIII. CONCLUSIONS

This study explores the feasibility of using machine
learning to automate the process of identifying the main
planar channeling conditions of crystal collimators during
angular scans. Operational efficiency is crucial for the
HL-LHC, and therefore, this work represents a significant
step toward automating the angular scans of crystals, which
could have a substantial impact on the setup efficiency of
future particle accelerators. By integrating machine learn-
ing tools into machine operations, our aim is to advance
particle accelerator technology, particularly by streamlining
the collimator setup process at the LHC. This approach
leverages AI-driven tools to enhance automation and
improve performance in particle technology, thereby push-
ing the boundaries of accelerator capabilities.
In this work, the application of a 1D CNN to automatize

the process of finding main planar channeling conditions of
crystal collimators during an angular scan was studied. The
developed model achieved a precision of 93% on unseen
validation sets of beam loss monitor signals, confirming the
reliability of convolutional networks in classifying time
series. Furthermore, a continuous classification scheme has
been engineered to integrate the model into an operational
tool deployed to effectively achieve its intended purpose
online, simplifying the operator task.
This work provides a solid background to future

improvements, which will aim at implementing the clas-
sification of higher frequency BLM signals. This will
potentially provide a 25 Hz online feedback, as opposed
to the present 1 Hz, thus allowing the identification of the
channeling signature during fast rotations of the crystal,
further reducing the time needed for angular scans. This can
prove particularly useful in the absence of a previous

reference of the optimal channeling angle (i.e., after a
new installation of the crystal), where a large scan of the
available rotational range is required.
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[3] I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L.
Rossi, L. Tavian, and M. Zerlauth, High-Luminosity Large
Hadron Collider (HL-LHC): Technical design report,
CERN Yellow Reports: Monographs, CERN, Geneva,
2020, 10.23731/CYRM-2020-0010.

[4] O. Brüning and L. Rossi, The High-Luminosity Large
Hadron Collider, Nat. Rev. Phys., 1, 241 (2019).

[5] S. Redaelli, R. Bruce, A. Lechner, and A. Mereghetti,
Chapter 5: Collimation system, 2020, pp. 87–114,
10.23731/CYRM-2020-0010.87.

[6] J. Lindhard, Influence of crystal lattice on motion of
energetic charged particles, Mat. Fys. Medd. K. Dan.
Vidensk. Selsk 34, 14 (1965), https://books.google.ch/
books?id=b5-LtgAACAAJ.

[7] V. M. Biryukov, Y. A. Chesnokov, and V. I. Kotov, Crystal
Channeling and Its Application at High-Energy Acceler-
ators, 1st ed. (Springer, Berlin, Heidelberg, 2013).

[8] C. Bahamonde, A. Lechner, and R. Rossi, Crystal chan-
neling of ions on different TCSG materials, in presented at
LHC Collimation Upgrade Specification Meeting (CERN,
Geneva, 2018).

[9] H. Belyadi and A. Haghighat, Chapter 5: Supervised
learning, in Machine Learning Guide for Oil and Gas
Using Python, edited by H. Belyadi and A. Haghighat,
(Gulf Professional Publishing, 2021), pp. 169–295,
10.1016/B978-0-12-821929-4.00004-4.

[10] S. Redaelli, Beam cleaning and collimation systems,
CERN Yellow Reports, Vol. 2 (2016): Proceedings of
the 2014 Joint International Accelerator School: Beam
Loss and Accelerator Protection, 2016.

[11] R. W. Assmann, O. Aberle, G. Bellodi, A. Bertarelli, C.
Bracco, H. Braun, M. Brugger, S. Calatroni, R. Chamizo,
A. Dallocchio, B. Dehning, A. Ferrari, P. Gander et al., The
final collimation system for the LHC, in Proceedings of
10th European Particle Accelerator Conference, EPAC-
2006, Edinburgh, Scotland (EPS-AG, Edinburgh, Scot-
land, 2006).

[12] N. Fuster-Martinez, R. Bruce, F. Cerutti, R. D. Maria, P.
Hermes, A. Lechner, A. Mereghetti, J. Molson, S. Redaelli,
E. Skordis, A. Abramov, and L. Nevay, Simulations of
heavy-ion halo collimation at the CERN large hadron
collider: Benchmark with measurements and cleaning
performance evaluation, Phys. Rev. Accel. Beams 23,
111002 (2020).

FIG. 10. Top: time-series of BLM signals recorded at the crystal
and secondary collimator positions, indicating a channeling well,
with vertical solid lines marking the classification window. The
input signals for the machine learning model are continually
updated as the crystal rotates, causing the classification window
to shift over time. Bottom: output probabilities generated by the
CNN as a function of time. The CNN output follows the
conclusion of the classification window (marked by the right
vertical solid line).

MACHINE LEARNING BASED CRYSTAL … PHYS. REV. ACCEL. BEAMS 27, 093001 (2024)

093001-7

https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.1038/s42254-019-0050-6
https://doi.org/10.23731/CYRM-2020-0010.87
https://books.google.ch/books?id=b5-LtgAACAAJ
https://books.google.ch/books?id=b5-LtgAACAAJ
https://books.google.ch/books?id=b5-LtgAACAAJ
https://books.google.ch/books?id=b5-LtgAACAAJ
https://doi.org/10.1016/B978-0-12-821929-4.00004-4
https://doi.org/10.1103/PhysRevAccelBeams.23.111002
https://doi.org/10.1103/PhysRevAccelBeams.23.111002


[13] P. D. Hermes, Heavy-ion collimation at the Large Hadron
Collider: Simulations and measurements, Ph.D. thesis,
Munster U., 2016, https://cds.cern.ch/record/2241364.

[14] N. Fuster Martinez, A. Abramov, G. Azzopardi, E. Belli, C.
Boscolo-Meneguolo, R. Bruce, M. D’Andrea, M. Di
Castro, M. Fiascari, A. Fomin, H. Garcia-Morales, A.
Gorzawski, P. D. Hermes, R. Kwee-Hinzmann, D.
Kodjaandreev, A. Mereghetti, D. Mirarchi et al., Run 2
collimation overview, in Proceedings of the 9th Evian
Workshop on LHC Beam Operations, Evian Les Bains,
France (2019), pp. 149–164, https://cds.cern.ch/record/
2750291.

[15] W. Scandale, G. Arduini, R. Assmann, C. Bracco, M.
Butcher, F. Cerutti, M. D’Andrea, L. S. Esposito, M.
Garattini, S. Gilardoni, E. Laface, L. Lari, R. Losito, A.
Masi, E. Metral, D. Mirarchi et al., Feasibility of crystal-
assisted collimation in the CERN accelerator complex, Int.
J. Mod. Phys. A 37, 5 (2022).

[16] S. Redaelli, M. Butcher, C. Barreto, R. Losito, A. Masi, D.
Mirarchi, S. Montesano, R. Rossi, W. Scandale, P. S.
Galvez, G. Valentino, and F. Galluccio, First observation
of ion beam channeling in bent crystals at multi-TeV
energies, Euro. Phys. J. C 81, 142 (2021).

[17] M. D’Andrea, Applications of crystal collimation to the
CERN Large Hadron Collider (LHC) and its High Lumi-
nosity Upgrade Project (HL-LHC), Ph.D. thesis, Padua U.,
2021, https://cds.cern.ch/record/2758839.

[18] R. Rossi, S. Redaelli, and W. Scandale, Experimental
assessment of crystal collimation at the large hadron
collider, Ph.D. thesis, Università 'La Sapienza' di Roma,
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