EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2024-230 12 September 2024

Measurement of the effective leptonic weak mixing angle

LHCb collaboration[†]

Abstract

Using pp collision data at $\sqrt{s} = 13$ TeV, recorded by the LHCb experiment between 2016 and 2018 and corresponding to an integrated luminosity of 5.4 fb⁻¹, the forward-backward asymmetry in the $pp \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$ process is measured. The measurement is carried out in ten intervals of the difference between the muon pseudorapidities, within a fiducial region covering dimuon masses between 66 and 116 GeV, muon pseudorapidities between 2.0 and 4.5 and muon transverse momenta above 20 GeV. These forward-backward asymmetries are compared with predictions, at next-to-leading order in the strong and electroweak couplings. The measured effective leptonic weak mixing angle is

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23147 \pm 0.00044 \pm 0.00005 \pm 0.00023,$

where the first uncertainty is statistical, the second arises from systematic uncertainties associated with the asymmetry measurement, and the third arises from uncertainties in the fit model used to extract $\sin^2 \theta_{\text{eff}}^{\ell}$ from the asymmetry measurement. This result is based on an arithmetic average of results using the CT18, MSHT20, and NNPDF31 parameterisations of the proton internal structure, and is consistent with previous measurements and with predictions from the global electroweak fit.

To be submitted to JHEP

C 2024 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.

[†]Authors are listed at the end of this paper.

1 **Introduction**

² The weak mixing angle θ_W is one of the fundamental parameters of the Standard Model; ³ at lowest order it relates the values of the U(1) and SU(2) gauge couplings. Consequently, ⁴ it controls the couplings of the Z boson: the tree-level vector coupling to an elementary ⁵ fermion of charge Q and third weak-isospin component T_3 is $T_3 - 2Q \sin^2 \theta_W$. Higher-order ⁶ corrections to the couplings are then included by defining an effective angle, which for ⁷ leptons can be written via

$$\sin^2 \theta_{\rm eff}^{\ell} \equiv \kappa_{\rm lept} \sin^2 \theta_W,\tag{1}$$

⁸ where the factor κ_{lept} contains both universal and flavour-specific terms [1]. The weak ⁹ mixing angle is scale dependent; we define $\sin^2 \theta_{\text{eff}}^{\ell}$ to be evaluated at a renormalisation ¹⁰ scale equal to the mass of the Z boson. The value of $\sin^2 \theta_{\text{eff}}^{\ell}$ can be predicted by global ¹¹ electroweak fits [2,3], and a comparison of these predictions to direct measurements is ¹² sensitive to possible corrections involving fields beyond those present in the Standard ¹³ Model. This article reports a measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ using data collected with the LHCb ¹⁴ detector at the Large Hadron Collider (LHC).

The two most precise measurements of $\sin^2 \theta_{\text{eff}}^{\ell}$ are from the forward-backward asymmetry in $e^+e^- \rightarrow Z \rightarrow b\bar{b}$ processes at LEP [1] and the leptonic coupling asymmetry at the SLD experiment [4]. These two results are in tension at the level of 3.2 standard deviations. Additional measurements have also been combined by the LEP experiments [1]. Measurements at hadron colliders have also been reported by the ATLAS [5], CMS [6] and LHCb [7] experiments at the LHC, and by the CDF and D0 experiments at the Tevatron [8].

At hadron colliders $\sin^2 \theta_{\text{eff}}^{\ell}$ can be determined from $Z \to \ell^+ \ell^-$ production,¹ where ℓ is an electron or muon. The differential cross-section follows [9,10]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} \propto 1 + \cos^2\theta^* + \alpha\cos\theta^*,\tag{2}$$

where θ^* is the polar angle in a suitable frame. In the Collins–Soper frame [9], θ^* can be calculated from variables in the laboratory frame via

$$\cos \theta^* = \frac{2(P_1^+ P_2^- - P_1^- P_2^+)}{\sqrt{m_{\ell\ell}^2 (m_{\ell\ell}^2 + p_{\mathrm{T},\ell\ell}^2)}} \frac{p_{z,\ell\ell}}{|p_{z,\ell\ell}|},\tag{3}$$

where $p_{T,\ell\ell}$, $p_{z,\ell\ell}$ and $m_{\ell\ell}$ are the transverse momentum, longitudinal momentum and mass of the dilepton system, respectively. The $P_i^{\pm} \equiv \frac{1}{\sqrt{2}}(E_i \pm p_{z,i})$ terms are calculated from the energies (*E*) and longitudinal momenta (p_z) of the lepton and antilepton, which are labelled with *i* values of 1 and 2, respectively. The final factor in Eq. 3, corresponding to the sign of $p_{z,\ell\ell}$, is required in proton-proton (*pp*) collisions given the symmetry of the initial state.

The coefficient α in Eq. 2 arises through terms involving products of vector and axial-vector couplings and can therefore be directly related to the weak mixing angle. In addition, since the relevant term in Eq. 2 is linear in $\cos \theta^*$ it also directly causes a

forward-backward asymmetry in $Z \to \ell^+ \ell^-$ production; measurements of this asymmetry

¹For brevity we use Z to refer to the physical process including amplitudes with Z and virtual photon propagators.

³⁶ can then be used to determine $\sin^2 \theta_{\text{eff}}^{\ell}$. The forward-backward asymmetry is typically ³⁷ defined as

$$A_{\rm FB} \equiv \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}},\tag{4}$$

where $\sigma_{\rm F,B}$ are the cross-sections integrated over the ranges $0 < \cos \theta^* < 1$ (forward, F) 38 and $-1 < \cos \theta^* < 0$ (backward, B). Since events with the largest values of $|\cos \theta^*|$ are 39 most sensitive to the linear term in Eq. 2, these events also provide the greatest sensitivity 40 to the weak mixing angle. Therefore, in some previous analyses [5, 6], the weak mixing 41 angle has been extracted from an angular analysis or by measuring $A_{\rm FB}$ using a per-event 42 weighting that depends on $\cos \theta^*$ [11]. In this paper we follow a related approach, by 43 considering $A_{\rm FB}$ in intervals of the absolute difference between the pseudorapidities of 44 the two muons produced in the Z boson decay, $|\Delta \eta|$. Since $\cos \theta^* \sim \tanh(\Delta \eta/2)$ [12] this 45 choice enables us to separate the events with the greatest sensitivity to the weak mixing 46 angle. In simulation this binning improves sensitivity to the weak mixing angle by 14%47 when compared to an approach with no binning in $|\Delta \eta|$. For simplicity, following this 48 binning choice, we also define 'forward' and 'backward' labels based on the sign of the 49 difference in pseudorapidity of the muons. This is of negligible consequence: the assigned 50 'forward' or 'backward' label is different with this choice to that using the Collins–Soper 51 angle for only one candidate Z decay in the analysis reported in this article. In summary, 52 this analysis measures 53

$$A_{\rm FB} \equiv \frac{N(\eta^- > \eta^+) - N(\eta^- < \eta^+)}{N(\eta^- > \eta^+) + N(\eta^- < \eta^+)},\tag{5}$$

as a function of $|\Delta\eta|$, where N denotes a yield of events passing the requirements in parentheses corrected for detector effects, and η^- and η^+ are the pseudorapidities of the negatively and positively charged leptons, respectively.

This analysis uses pp collision data at a center-of-mass energy of 13 TeV, recorded 57 with the LHCb detector during 2016, 2017 and 2018, and corresponding to an integrated 58 luminosity of 5.4 fb⁻¹. The analysis is carried out in two parts. In the first stage $A_{\rm FB}$ 59 is measured in ten intervals of $|\Delta \eta|$ up to $|\Delta \eta| = 2.5$, using $Z \to \mu^+ \mu^-$ decays. The 60 asymmetries are measured in the fiducial region corresponding to dimuon masses in the 61 range 66 < M < 116 GeV, and with individual muon pseudorapidities in the range 62 $2.0 < \eta < 4.5$ and transverse momenta $p_{\rm T} > 20$ GeV.² The second stage of the analysis 63 compares the measurement with theoretical templates to determine $\sin^2 \theta_{\text{eff}}^{\ell}$. In order to 64 prevent human bias, the analysis has been carried out by introducing an unknown offset 65 in the $\sin^2 \theta_{\text{eff}}^{\ell}$ value until the analysis methodology was finalised. 66

67 2 Dataset

The LHCb detector [13, 14] is a single-arm forward spectrometer, which covers the pseudorapidity range $2 < \eta < 5$. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the *pp* interaction region [15], a large-area silicon-strip detector (the TT) located upstream of a dipole magnet with a bending power of about 4 T m, and three stations of silicon-strip detectors and straw drift

²Throughout this paper we use natural units, where c = 1. We also define $p_{\rm T}$, η and the dimuon invariant mass based on the stable final-state particles (commonly referred to as being measured at bare level).

tubes [16] placed downstream of the magnet. Roughly half of the data were recorded with 73 the magnet in each of the two polarity configurations. The tracking system provides a 74 measurement of the momentum, p, of charged particles with a relative uncertainty that 75 varies from 0.5% at low momentum to 1.0% at 200 GeV. The minimum distance of a track 76 to a primary pp collision vertex (PV) is referred to as the impact parameter (IP), which 77 is precisely determined by the vertex detector. Different types of charged hadrons are 78 distinguished using information from two ring-imaging Cherenkov detectors [17]. Photons, 79 electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad 80 and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. 81 Muons are identified by a system composed of alternating layers of iron and multiwire 82 proportional chambers [18]. 83

This analysis uses events selected by the hardware trigger based on the presence of a muon with a high transverse momentum. The software trigger performs a full event reconstruction, and this analysis selects events based on the presence of high-transversemomentum muon candidates [19].

Simulation is required to model and correct for the effects of the detection efficiency and resolution, and backgrounds. In the simulation, *pp* collisions are generated using PYTHIA [20] with a specific LHCb configuration [21]. Decays of heavy particles such as weak bosons, and top quarks, are modelled directly with PYTHIA, while decays of lighter particles are described by EVTGEN [22], in which final-state radiation is generated using PHOTOS [23]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [24] as described in Ref. [25].

Candidate $Z \to \mu^+ \mu^-$ decays are formed from combinations of oppositely charged and 95 positively identified muons, with $p_{\rm T} > 20$ GeV and $2 < \eta < 4.5$, and with dimuon invariant 96 masses between 66 and 116 GeV. After this initial selection the level of background is 97 already very low, but several additional requirements are imposed to further improve the 98 sample purity, with minimal reduction in the detection efficiency for the signal. Both 99 muons are required to have a small IP with respect to the relevant PV in order to suppress 100 background from heavy-flavour-hadron decays, and their corresponding track fits must 101 have χ^2 values below 2.5 to suppress hadronic backgrounds. The sum of the transverse 102 momenta of particles within $(\Delta \eta)^2 + (\Delta \phi)^2 < 0.4^2$ of each muon must be less than 40 GeV 103 (where ϕ denotes the azimuthal angle). This requirement suppresses hadronic backgrounds 104 since they typically have increased activity close to the muons. In order to precisely define 105 the trigger efficiency, each candidate is required to have at least one muon that satisfies 106 the requirements of the hardware and software triggers. After all these requirements 107 around 860 000 events are selected. 108

The decays $J/\psi \to \mu^+\mu^-$ and $\Upsilon(1S) \to \mu^+\mu^-$ are used to calibrate the detection efficiency (discussed in detail in Sec. 3) and the muon momentum measurement. Candidates for both decays are formed from combinations of oppositely charged tracks identified as muons with $p_T > 3$ GeV. The $J/\psi \to \mu^+\mu^-$ candidates are required to form a vertex that is significantly displaced from any PV; this implies that the signal originates from decays of *b* hadrons.

Two calibrations are applied to the muon momenta in the data. The first is to correct for gradual variations of the momentum scale with time, known to be at the $\mathcal{O}(10^{-4})$ level [26]. Multiplicative correction factors are determined from the observed variation of the $\Upsilon(1S) \rightarrow \mu^+\mu^-$ peak position in intervals of the data-taking period. The second correction addresses charge-dependent curvature biases using the pseudomass method [27,28]. The pseudomass is an estimate of the mass of two-particle final states, in which the magnitude of one of the momenta is ignored. Considering the decay $Z \to \mu^+ \mu^$ we define the two pseudomasses:

$$\mathcal{M}^{\pm} \equiv \sqrt{2p^{\pm}p_{\mathrm{T}}^{\pm}\frac{p^{\mp}}{p_{\mathrm{T}}^{\mp}}\left(1-\cos\vartheta\right)},\tag{6}$$

where p^+ and p^- denote the magnitudes of the μ^+ and μ^- momenta (and similarly 123 for the transverse momenta $p_{\rm T}^{\pm}$), and ϑ is the opening angle between the two muons. 124 Effectively, the pseudomass estimates the dimuon invariant mass under the assumption 125 that Z bosons are produced with transverse momenta much smaller than their mass. For a 126 perfectly aligned detector, we expect to a very good approximation that the \mathcal{M}^+ and \mathcal{M}^- 127 distributions should agree. However, unlike the dimuon invariant mass, in which charge-128 dependent curvature biases strongly cancel, the pseudomasses have first-order sensitivity 129 to these biases, thereby allowing these effects to be easily determined. In intervals of η , ϕ , 130 year and magnet polarity, a simultaneous fit of the positive and negative pseudomass is 131 performed to find the pseudomass asymmetry. This is then directly translated to provide 132 corrections for biases in measurements of the charge-over-momentum, q/p. The difference 133 between the q/p biases found in data and simulation is then applied as a correction to 134 data; this approach eliminates a small bias due to the presence of vector and axial-vector 135 couplings in the physics process. It is shown comprehensively in Ref. [28] that this effect is 136 both small, and has minimal dependence on the value of $\sin^2 \theta_{\text{eff}}^{\ell}$ assumed in the simulation. 137

¹³⁸ 3 Corrections to the simulation and background mod ¹³⁹ elling

The simulation is used to model the detection efficiency and backgrounds, and subsequently to correct the data for these contributions. Corrections to the simulation are required to improve the accuracy of this modelling, with systematic uncertainties then associated with these corrections.

Some of the effects contributing to the momentum resolution are underestimated in the simulation; smearing of the momenta in the simulation is therefore required. The approach taken here closely follows that in the LHCb measurement of the W boson mass [29], using selected J/ψ , $\Upsilon(1S)$ and Z-boson events. The information provided by each of these three resonances is complementary, due to the different average momenta of the muons produced. The impact of this smearing on the final result is negligible.

The detection efficiency for the $Z \to \mu^+ \mu^-$ signal is roughly 85%, with the main 150 contributors to the inefficiency being the trigger, track reconstruction and muon iden-151 tification. Corrections are applied to the simulation in order to improve the accuracy 152 with which the detection efficiency is modelled. The trigger efficiency is measured in 153 both data and simulation using a combination of $Z \to \mu^+ \mu^-$ candidates, which provide 154 constraints at high $p_{\rm T}$, and $\Upsilon(1S) \to \mu^+ \mu^-$ candidates, which provide constraints at lower 155 $p_{\rm T}$. Candidates are required to have one muon that satisfies the requirements of the 156 trigger; the other muon is therefore not required to trigger the recording of the event. In 157 intervals of the direction of the other muon, the efficiency is estimated by the fraction of 158 these candidates in which both muons satisfy the trigger requirements. Nine and four 159

¹⁶⁰ intervals are simultaneously used in η and ϕ , respectively, and the efficiency estimates ¹⁶¹ are further divided into intervals of $p_{\rm T}$. In each angular interval, the $p_{\rm T}$ dependence of ¹⁶² the efficiency in the simulation is modelled with an error function, while the ratio of the ¹⁶³ efficiency in data to that in simulation is modelled with a linear function. These functions ¹⁶⁴ are used to assign a weight to each simulated event, depending on whether one or both ¹⁶⁵ muons satisfy the trigger requirement.

The muon identification efficiency is determined in a similar way, using only $Z \to \mu^+ \mu^$ candidates. A dedicated sample of $Z \to \mu^+ \mu^-$ candidates is selected with one muon allowed to fail the muon identification requirements, while the other must match the standard requirement. The fraction of these candidates in which both muons satisfy the requirements provides an estimate of the efficiency. By comparing these estimates for the data and simulation, weights are assigned to the simulated events based on parametric functions of $p_{\rm T}$, determined in intervals of η and ϕ .

The track reconstruction efficiency is also determined with a dedicated sample of $Z \rightarrow \mu^+ \mu^-$ candidates in which one muon is reconstructed using only information from the TT and the muon subdetectors. The fraction of events in which the muon is also found by the standard track-reconstruction algorithms [30] provides an estimate of the efficiency. Corresponding weights are assigned to the simulated events. Unlike the trigger and muon identification, the tracking efficiency corrections have no significant $p_{\rm T}$ dependence for the high $p_{\rm T}$ muons studied.

The backgrounds in the $Z \to \mu^+ \mu^-$ samples are modelled using simulation. The total 180 background fraction, within the kinematic region in which $A_{\rm FB}$ is measured, is only 2×10^{-3} . 181 Most backgrounds have steeply falling mass distributions, and are therefore relatively small 182 in the region 66 < M < 116 GeV. The two largest background contributions arise from 183 $Z \to \tau^+ \tau^-$ decays and from the decays of heavy-flavour hadrons. Both these contribute 184 to the sample with fractions of around 5×10^{-4} . Contributions from rarer processes are 185 also considered, including weak-boson pair production, top-quark pair production, single-186 top-quark production, the production of W bosons associated with hadrons misidentified 187 as muons, and events with two hadrons misidentified as muons. 188

Figure 1 compares the dimuon invariant mass and $\Delta \eta$ distributions of the selected candidates in data to simulation that includes both signal and background contributions. Both distributions are well described by the simulation, and it can be seen that the background level is extremely low.

¹⁹³ 4 Measurement of the forward-backward asymmetry

The measurement of the forward-backward asymmetry proceeds by measuring the forward 194 and backward yields in ten intervals of $|\Delta \eta|$ and finding $A_{\rm FB}$ following Eq. 5. Corrections 195 are necessary to account for the presence of background and detector effects such as 196 inefficiencies. Figure 2 shows the numerical effect of these two corrections. The background 197 is modelled as described above, with the background yields directly subtracted from the 198 forward and backward yields. This correction is seen to have a very small effect on the 199 measured $A_{\rm FB}$ values. The correction for detector effects is typically at the $\mathcal{O}(10^{-4})$ level. 200 Systematic effects of a few $\times 10^{-3}$ are seen in some intervals, though these are subject to 201 larger statistical uncertainties due to the finite simulation sample sizes. We discuss the 202 correction for detector effects in more detail below. 203

Figure 1: Distributions of (top) dimuon invariant mass and (bottom) $\Delta \eta$ for the selected signal candidates compared to simulation. The dark blue solid line corresponds to the sum of the expected signal and background contributions.

204 4.1 Detector effects

The measured value of $A_{\rm FB}$ in each $|\Delta \eta|$ interval is corrected using a term determined in simulation, $A_{\rm FB}^{\rm true} - A_{\rm FB}^{\rm reco}$. The value of $A_{\rm FB}^{\rm true}$ is defined using truth information and all events in the fiducial acceptance, while $A_{\rm FB}^{\rm reco}$ is defined using reconstruction-level information and only the events which pass the analysis selection requirements. This therefore corrects for:

1. events missed due to detection and selection inefficiencies;

Figure 2: Effects of the detection efficiency correction and background subtraction on the measured $A_{\rm FB}$ in ten intervals of $|\Delta \eta|$, shown in terms of the shift they introduce $(\Delta A_{\rm FB})$. All intervals are defined within the volume $|\Delta \eta| < 2.5$ and 66 < M < 116 GeV. The error bars on the efficiency correction represent statistical uncertainties only, while the statistical uncertainties on the background subtraction are negligible.

211 2. events missed due to (net) migration across boundaries in $p_{\rm T}$, η and dimuon mass, 212 and moving in and out of the acceptance;

3. events reconstructed in the wrong interval of $|\Delta \eta|$.

This last effect is negligible since the detector resolution on $|\Delta\eta|$ is excellent. An additional cross-check is performed incorporating this specific effect as a separate correction, which finds a negligible change in the final results. The overall correction could depend on the size of the weak mixing angle assumed in simulation. Both the correction and the final result are stable with respect to large changes in the assumed value of the weak mixing angle.

220 4.2 Systematic uncertainties

Figure 3 shows the sizes of the systematic uncertainties on $A_{\rm FB}$ in the $|\Delta \eta|$ intervals. These uncertainties are defined as follows.

Detection efficiency: The statistical uncertainties on the trigger, muon identification 223 and tracking efficiency corrections are propagated by randomly varying the estimated 224 efficiencies within their uncertainties and then redetermining the parameters of the 225 $p_{\rm T}$ -dependent functions. This is then propagated through the measurement of 226 $A_{\rm FB}$. For each efficiency factor, the uncertainty is defined by the root mean square 227 of the resulting distribution of $A_{\rm FB}$ values after the random variations. Discrete 228 variations in the efficiency correction method are also considered. Tighter and looser 229 requirements on the dimuon invariant mass and on the muon selection criteria are 230

considered as an additional source of uncertainty in the determination of the muon efficiencies. Since the efficiencies are studied in intervals covering detector regions, the number of intervals is varied. The variation that induces the largest change in $A_{\rm FB}$ is then used to set an uncertainty. In addition, three alternative functional forms for the $p_{\rm T}$ -dependence of the efficiency corrections are also considered in the same way. Each contribution is then combined in quadrature to set an overall detection efficiency uncertainty.

Backgrounds: The cross-section assumed for the heavy-flavour-hadron background is varied up and down by 50% with the resulting shifts in the measured $A_{\rm FB}$ is defined as the associated uncertainty. The contribution from $Z \rightarrow \tau^+ \tau^-$ decays occurs at a similar rate to the heavy-flavour-hadron background, but is known to far better precision, and consequently the uncertainty associated with this process is negligible. No uncertainty is assigned for other, smaller backgrounds.

Physics modelling: Weights are assigned to the signal events such that the kinematic 244 distributions match the predictions of the DYTURBO program [31], which has 245 a higher formal accuracy than PYTHIA 8. The cross-section is predicted using 246 DYTURBO in intervals of boson $p_{\rm T}$, mass and rapidity, with logarithms in $p_{\rm T}/M$ 247 resummed to next-to-next-to-leading order (NNLO), while the angular coefficients 248 are predicted at NLO in the strong coupling. These weights primarily affect the 249 $A_{\rm FB}$ measurement via changes in the detection efficiency correction. The shift in 250 the $A_{\rm FB}$ measurement sets the uncertainty. 251

The statistical uncertainties on the pseudomass calibrations and the momentum smearing are propagated through the $A_{\rm FB}$ measurement, but their effect is found to be negligible, which is expected since the measurement only has a single wide interval in mass. The total uncertainty is found by combining the contributions from these different sources in quadrature.

257 4.3 Results

Table 1 and Fig. 4 report the measured $A_{\rm FB}$ values in the ten intervals of $|\Delta \eta|$. There are no correlations between the statistical uncertainties. The correlation matrix of the systematic uncertainties is presented in Table 2.

²⁶¹ 5 Determination of the effective leptonic weak mixing ²⁶² angle

In order to determine the value of $\sin^2 \theta_{\text{eff}}^{\ell}$ that best describes the measured A_{FB} distribution, predictions of A_{FB} are produced using the POWHEG-BOX program [32–34], using different configurations.

The baseline prediction, hereafter referred to as 'POWHEG-ewnlo', takes NLO accuracy for both QCD and electroweak interactions [35,36], using the scheme described in Ref. [37], that takes G_{μ} , m_Z and $\sin^2 \theta_{\text{eff}}^{\ell}$ as inputs. The events produced are then processed with PHOTOS [38] for modelling of additional QED radiation and with PYTHIA 8 [20] for simulating the rest of the event.

Figure 3: Systematic uncertainties on the $A_{\rm FB}$ measurement in $|\Delta \eta|$ intervals.

Table 1: Results of the $A_{\rm FB}$ me	easurement. The first	uncertainty is statistic	cal and the second is
systematic.			

Interval number	Interval	$A_{ m FB}$
0	$0.00 < \Delta\eta \le 0.25$	$0.0036 \pm 0.0025 \pm 0.0001$
1	$0.25 < \Delta \eta \le 0.50$	$0.0204 \pm 0.0027 \pm 0.0002$
2	$0.50 < \Delta\eta \le 0.75$	$0.0303 \pm 0.0028 \pm 0.0002$
3	$0.75 < \Delta\eta \le 1.00$	$0.0406 \pm 0.0031 \pm 0.0003$
4	$1.00 < \Delta\eta \le 1.25$	$0.0466 \pm 0.0034 \pm 0.0002$
5	$1.25 < \Delta \eta \le 1.50$	$0.0528 \pm 0.0039 \pm 0.0004$
6	$1.50 < \Delta\eta \le 1.75$	$0.0622 \pm 0.0047 \pm 0.0003$
7	$1.75 < \Delta \eta \le 2.00$	$0.0545 \pm 0.0060 \pm 0.0004$
8	$2.00 < \Delta \eta \le 2.25$	$0.0603 \pm 0.0088 \pm 0.0010$
9	$2.25 < \Delta \eta \le 2.50$	$0.0622 \pm 0.0190 \pm 0.0008$

Further predictions are produced to study modelling variations. Events are generated 271 using the configuration described above but with the electroweak interactions simulated at 272 LO accuracy; this is referred to as 'POWHEG-ewlo'. Predictions are also produced using 273 an alternative calculation of the single-boson process in POWHEG-BOX [39] where QCD 274 interactions are simulated at NLO accuracy and electroweak interactions are simulated at 275 LO accuracy. For this prediction both additional QED radiation and additional simulation 276 of the rest of the event are performed using PYTHIA 8. This configuration is labelled 277 'POWHEG-plain'. These predictions are validated by producing an additional set of 278 theoretical predictions using the G_{μ} input scheme [37] using both POWHEG-BOX and 279 DYTURBO [31]. The two predicted $A_{\rm FB}$ distributions show excellent agreement. 280

The baseline description of the proton internal structure in all predictions uses the parton distributions from the central NNPDF3.1 PDF set at NLO [40]. Event weights are then used to recast the POWHEG-plain predictions to alternative parton distributions functions [41]. In this analysis predictions at NLO accuracy using the CT18 [42] and MSHT [43] descriptions of the proton internal structure are also considered and treated equally to those from NNPDF3.1. These three descriptions all use broadly comparable global datasets and do not include the LHCb data studied here in their global fits. Other descriptions of the proton are also considered (NNPDF 4.0 [44], CT18Z [42]).

In addition, events are generated using the POWHEG-plain configuration with variations 289 in the QCD modelling. Events are generated with the factorisation and renormalisation 290 scales varied by a factor of two around their baseline values in line with the seven-point 291 variation approach [45], in order to assess the impact of missing higher-order effects 292 on the theoretical predictions. Events are also generated with two values of the strong 293 coupling α_s , 0.118 (the baseline) and 0.125. While this is a large variation with respect to 294 the uncertainty on the world average value, this shift was observed to best describe the 295 vector-boson $p_{\rm T}$ distribution in the LHCb measurement of the W-boson mass [29], and is 296 again considered as a variation that mimics the effects of higher-order contributions in 297 the predictions. 298

In order to determine the values of the weak mixing angle that best describe the data, predictions of $A_{\rm FB}$ are made using events generated with different values of the weak mixing angle. Predictions for $A_{\rm FB}$ at intermediate values are then found by interpolating between the generated base predictions. As a cross-check, the effect of including additional base predictions is also studied.

The analysis proceeds through a χ^2 comparison of the measured $A_{\rm FB}$ distribution to the theoretical predictions with different values of $\sin^2 \theta_{\rm eff}^{\ell}$, where the minimum of the χ^2 comparison is used to determine the value of $\sin^2 \theta_{\rm eff}^{\ell}$, and the width of the χ^2 parabola is used to determine the uncertainty. Figure 4 shows the measured $A_{\rm FB}$ values compared to the predictions with two different $\sin^2 \theta_{\rm eff}^{\ell}$ values and the baseline-fit result. The best fit point has a χ^2 of 8.1 for nine degrees of freedom (ndof), and results in

$$\sin^2 \theta_{\rm eff}^{\ell} = 0.23148 \pm 0.00044 \pm 0.00005,$$

where the first uncertainty is statistical and the second results from propagating the systematic uncertainties on the $A_{\rm FB}$ measurement.

	0	1	2	3	4	5	6	7	8	9
0	+1.00	-0.57	-0.66	-0.62	-0.16	-0.66	-0.83	-0.90	+0.31	+0.76
1	-0.57	+1.00	+0.92	+0.63	-0.09	+0.91	+0.45	+0.33	-0.68	-0.50
2	-0.66	+0.92	+1.00	+0.44	+0.22	+0.77	+0.41	+0.37	-0.82	-0.40
3	-0.62	+0.63	+0.44	+1.00	-0.62	+0.86	+0.60	+0.59	-0.15	-0.89
4	-0.16	-0.09	+0.22	-0.62	+1.00	-0.33	+0.08	+0.12	-0.18	+0.47
5	-0.66	+0.91	+0.77	+0.86	-0.33	+1.00	+0.63	+0.52	-0.47	-0.74
6	-0.83	+0.45	+0.41	+0.60	+0.08	+0.63	+1.00	+0.93	+0.11	-0.67
7	-0.90	+0.33	+0.37	+0.59	+0.12	+0.52	+0.93	+1.00	+0.07	-0.70
8	+0.31	-0.68	-0.82	-0.15	-0.18	-0.47	+0.11	+0.07	+1.00	+0.13
9	+0.76	-0.50	-0.40	-0.89	+0.47	-0.74	-0.67	-0.70	+0.13	+1.00

Table 2: Correlation coefficients for the experimental systematic uncertainties on the $A_{\rm FB}$ measurement in ten intervals of $|\Delta \eta|$, with the interval numbers indicated as defined in Table 1.

Figure 4: Measured $A_{\rm FB}$ in ten intervals of $|\Delta \eta|$, with the results of the $\sin^2 \theta_{\rm eff}^{\ell}$ fit. The grey band shows the fit result and the associated statistical uncertainty.

Several variations in the fit model are considered. Some of these variations are used to determine shifts to this result, while others set uncertainties or define cross-checks.

The default analysis uses two base templates for the $A_{\rm FB}$ predictions at different values 314 of $\sin^2 \theta_{\text{eff}}^{\ell}$, with linear interpolation used to find predictions for A_{FB} between these values. 315 However, the impact of using a third base template is studied, applying cubic spline 316 interpolation. A shift to the extracted result corresponding to the difference between 317 these two approaches is applied, so that the final result is based on the cubic approach.³ 318 This provides a shift of $+2.0 \times 10^{-5}$, consistent with the uncertainty associated with 319 the number of generated events used to find the theoretical predictions. The resulting 320 measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ is then found to be stable at the 1×10^{-5} level when the number 321 of base templates is further increased to seven, confirming that the use of a small number 322 of templates for the baseline result is reasonable. 323

An electroweak uncertainty of 7.4×10^{-5} is assigned based on the difference between the result found using the POWHEG-ewnlo and POWHEG-plain predictions. A cross-check is made using the POWHEG-ewlo predictions, which are found to give results in agreement with POWHEG-plain, as expected.

³²⁸ A QCD uncertainty is assigned based on changing the value of α_s used in the POWHEG-³²⁹ plain predictions to the value best describing the data in the LHCb *W*-boson mass ³³⁰ measurement [29]. Since the change in the final result is smaller than the uncertainty on ³³¹ this shift from the number of generated events, the latter is assigned as the uncertainty on ³³² $\sin^2 \theta_{\text{eff}}^{\ell}$, 5.8×10^{-5} . The number is consistent with an alternative estimate of the QCD ³³³ uncertainty using predictions generated with the factorisation and renomalisation scales ³³⁴ varied using the seven-point-variation method [45].

The CT18, MSHT20 and NNPDF3.1 PDF parameterisations are treated equally. The

³The application of this shift is equivalent to using three templates to find the central result, but only using two templates to evaluate uncertainties.

Table 3: Fit results, using POWHEG-plain, for different PDF sets. The best-fit $\sin^2 \theta_{\text{eff}}^{\ell}$ values are listed, as are the PDF uncertainties and the shifts in the $\sin^2 \theta_{\text{eff}}^{\ell}$ values with respect to the first row. The final row shows the shift that would be applied to the baseline result in order to emulate an arithmetic average of the three PDF sets, and the corresponding PDF uncertainty. The numbers presented in this table do not include the shift associated with changing from two base templates to three base templates. The PDF sets are labeled using the appropriate strings that fully define the set. [46]

PDF set	Value	PDF uncertainty	Shift
NNPDF31_nlo_as0118	0.23155	0.00023	_
CT18NLO	0.23165	0.00022	+0.00010
$MSHT20nlo_{as}118$	0.23137	0.00017	-0.00018
Arithmetic average	—	0.00021	-0.00003

final result quoted is therefore defined as the arithmetic average of the results from the 336 three parameterisations. The impact of changing the PDF parameterisation is studied 337 using POWHEG-plain events. The PDF uncertainties are determined for each PDF set 338 using the prescription provided by each PDF-fitting group, by weighting the baseline events 339 generated using the central NNPDF3.1 parameterisation. The CT18 uncertainties are 340 divided by a factor 1.645 in order to provide 68% coverage. It is found that changing from 341 the baseline NNPDF3.1 result to the arithmetic average results in a shift of -3×10^{-5} . The 342 PDF parameterisations are treated as fully correlated since they consider the same global 343 data, and therefore the individual PDF uncertainties from the three parameterisations are 344 averaged in order to set the overall PDF uncertainty on the measurement. The results 345 from the different PDF sets are reported in Table 3. 346

The impact of recasting the result to other PDF sets is also studied. The use of the NNPDF4.0 PDF parameterisation leads to the extracted value of $\sin^2 \theta_{\text{eff}}^{\ell}$ changing by -14×10^{-5} relative to the result found using the NNPDF3.1 parameterisation, while the CT18Z PDF parameterisation changes the result by -8×10^{-5} , again relative to the NNPDF3.1 result.

Having applied the relevant shifts and uncertainties defined above which account for: using a larger number of base templates; averaging the three different PDF parameterisations; and the theoretical uncertainties, the final result is

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.23147 \pm 0.00044 \pm 0.00005 \pm 0.00023,$$

where the first uncertainty is statistical, the second is associated with systematic uncer-355 tainties on the $A_{\rm FB}$ measurement, and the third is associated with theoretical uncertainties 356 on the model used to determine the weak mixing angle. Figure 5 compares this result with 357 other measurements and with the Standard Model predictions. The LHCb measurement 358 is in excellent agreement with previous measurements and with indirect determinations of 359 the weak mixing angle from the global electroweak fit. It is also notable that while the 360 theoretical uncertainty on the result is dominated by the PDF uncertainty, this uncer-361 tainty is also significantly smaller than the statistical uncertainty on the measurement. 362 Consequently this analysis does not need to make use of profiling techniques to control 363 and reduce the PDF uncertainty [47, 48]. 364

Figure 5: Direct measurements and indirect determinations of $\sin^2 \theta_{\text{eff}}^{\ell}$. For the measurements from LEP and SLD only the total uncertainty is shown. The indirect determinations shown here include the LEP and SLD measurements as separate inputs while predicting the measurement at hadron colliders.

365 6 Cross-checks

Various cross-checks are performed to confirm the robustness of the data analysis. In these checks the baseline fit is performed. No shifts are applied to account for the change from two to three base templates, and no average is taken across the different PDF sets. In addition, no systematic uncertainties are considered when performing these checks.

Table 4 shows $\sin^2 \theta_{\text{eff}}^{\ell}$ fit results with the data divided into statistically independent subsets according to the year of data taking, the polarity of the magnet and the orientation of the decay with respect to the magnetic field, which is characterised by the angle ϕ_d .⁴ All three sets of results are self-consistent within their statistical uncertainties.

⁴See, for example, Eq. 5 of Ref. [28].

Table 4: Fit results with different subsets of the data. For each subset, the first line is treated as the reference for the calculation of the pull. Each row has the same number of intervals and a ndof of 9.

Subset	$\sin^2 heta_{ ext{eff}}^\ell$	Fit χ^2	Pull
2016	0.23014 ± 0.00082	2.0	—
2017	0.23155 ± 0.00085	13.4	+1.2 σ
2018	0.23242 ± 0.00077	10.5	+2.0 σ
Down polarity	0.23087 ± 0.00065	8.2	_
Up polarity	0.23211 ± 0.00065	12.1	1.4 σ
$0 \le \phi_d < \frac{\pi}{2}$	0.23136 ± 0.00065	10.1	—
$\frac{\pi}{2} \le \phi_d < \pi$	0.23161 ± 0.00065	6.5	+0.3 σ

Table 5: Fit results with different numbers of $|\Delta \eta|$ intervals. The first row is the reference for the shift, and the uncertainties are statistical only.

Number of intervals	$\sin^2 heta_{ ext{eff}}^\ell$	Shift	Fit $\chi^2/ndof$
1	0.23151 ± 0.00050	_	—
4	0.23167 ± 0.00045	+0.00016	3.1/3
6	0.23145 ± 0.00044	-0.00004	3.2/5
8	0.23146 ± 0.00044	-0.00003	11.7/7
10	0.23148 ± 0.00044	-0.00003	8.1/9

Table 5 presents $\sin^2 \theta_{\text{eff}}^{\ell}$ fit results with different numbers of intervals in $|\Delta \eta|$, varying between one and ten. Compared to the result with a single interval, a relative improvement in the statistical precision of around 14%, as already discussed, is seen in the result with ten intervals. The χ^2 values are reasonable in all cases, and the shifts in the central values are small, considering the statistical uncertainty on the shift between the result with one interval and those with multiple intervals.

As an alternative approach, the analysis is performed with a single $|\Delta\eta|$ interval but with seven bins in the dimuon invariant mass. Since the mass is measured with a resolution of $\mathcal{O}(1 \text{ GeV})$, the migration is corrected for using iterative Bayesian unfolding [49]. This leads to a measurement of $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23130 \pm 0.00050$, with a χ^2/ndof of 14.6/6. The statistical precision of this check is poorer, by 14%, compared to our preferred approach of measuring A_{FB} in intervals of $|\Delta\eta|$. The results remain stable when the number of intervals in the dimuon invariant mass is varied.

³⁸⁷ The following additional checks are also performed:

• In the $A_{\rm FB}$ measurement, weights are assigned to the simulated signal events that shift the assumed $\sin^2 \theta_{\rm eff}^{\ell}$ value. A shift corresponding to three times the uncertainty on the current world average causes a change in our measured $\sin^2 \theta_{\rm eff}^{\ell}$ value below 2×10^{-5} , which is considered negligible.

- In addition to the results presented in Table 4, measurements of $A_{\rm FB}$ are performed with six orthogonal combinations of the year and magnet polarity. The resulting $\sin^2 \theta_{\rm eff}^{\ell}$ results are statistically consistent.
- Variations in the $\Upsilon(1S)$ and J/ψ masses, within the uncertainties on their world

averages, are propagated through the momentum calibrations; the effect on the measured $A_{\rm FB}$ is negligibly small.

• An alternative functional form is used in the momentum smearing which has a negligible effect on the results quoted.

• Shifting the muon energies in the simulation, according to the uncertainties in the material budget of the detector, has a negligible effect on the results.

402 7 Conclusion

The effective leptonic weak mixing angle, $\sin^2 \theta_{\text{eff}}^{\ell}$, is precisely predicted in the global 403 electroweak fit. Direct measurements of this predicted quantity are sensitive to physics 404 beyond the Standard Model. A measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ is reported, based on pp collision 405 data at $\sqrt{s} = 13$ TeV, recorded between 2016 and 2018 by the LHCb experiment and 406 corresponding to an integrated luminosity of 5.4 $\rm fb^{-1}$. The forward-backward asymmetry 407 $A_{\rm FB}$ in the $pp \to Z/\gamma^* \to \mu^+\mu^-$ process is measured in ten intervals of the difference of 408 the muon pseudorapidities, within a fiducial region covering dimuon masses between 66 409 and 116 GeV, muon pseudorapidities between 2.0 and 4.5 and muon transverse momenta 410 above 20 GeV. Comparing these forward-backward asymmetries with predictions at next-411 to-leading-order in the strong and electroweak couplings results in a determination of the 412 effective leptonic weak mixing angle 413

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.23147 \pm 0.00044 \pm 0.00005 \pm 0.00023$$

where the first uncertainty is statistical, the second is due to systematic uncertainties on the $A_{\rm FB}$ measurement, and the third is due to theoretical uncertainties associated with the model used to determine the weak mixing angle. This result is based on an arithmetic average of results obtained using the CT18, MSHT20, and NNPDF3.1 parameterisations of the proton internal structure. The result is consistent with other direct measurements and with predictions from the global electroweak fit, and improves on the precision of the previous LHCb determination by more than a factor two.

421 Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the 422 excellent performance of the LHC. We thank the technical and administrative staff at the 423 LHCb institutes. We acknowledge support from CERN and from the national agencies: 424 CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 425 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW 426 and NCN (Poland); MCID/IFA (Romania); MICIU and AEI (Spain); SNSF and SER 427 (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We 428 acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT 429 and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United 430 Kingdom), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), and Polish WLCG 431 (Poland). We are indebted to the communities behind the multiple open-source software 432 packages on which we depend. Individual groups or members have received support from 433

ARC and ARDC (Australia); Key Research Program of Frontier Sciences of CAS, CAS 434 PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. 435 & Tech. Program of Guangzhou (China); Minciencias (Colombia); EPLANET, Marie 436 Skłodowska-Curie Actions, ERC and NextGenerationEU (European Union); A*MIDEX, 437 ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); AvH Founda-438 tion (Germany); ICSC (Italy); Severo Ochoa and María de Maeztu Units of Excellence, 439 GVA, XuntaGal, GENCAT, InTalent-Inditex and Prog. Atracción Talento CM (Spain); 440 SRC (Sweden); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom). 441

$_{442}$ References

- [1] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael *et al.*, *Precision electroweak measurements on the Z resonance*, Phys. Rept. **427** (2006) 257, arXiv:hep-ex/0509008.
- [2] J. Haller et al., Update of the global electroweak fit and constraints on two-Higgs doublet models, Eur. Phys. J. C78 (2018) 675, arXiv:1803.01853.
- [3] J. de Blas et al., Global analysis of electroweak data in the standard model, Phys. Rev.
 D106 (2022) 033003, arXiv:2112.07274.
- [4] SLD collaboration, K. Abe et al., An improved direct measurement of leptonic
 coupling asymmetries with polarized Z bosons, Phys. Rev. Lett. 86 (2001) 1162,
 arXiv:hep-ex/0010015.
- [5] ATLAS collaboration, Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z-boson decay in the ATLAS experiment at $\sqrt{s} = 8$ TeV, ATLAS-CONF-2018-037 (2018).
- [6] CMS collaboration, A. Hayrapetyan *et al.*, Measurement of the Drell-Yan forwardbackward asymmetry and of the effective leptonic weak mixing angle in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:2408.07622.
- [7] LHCb collaboration, R. Aaij *et al.*, Measurement of the forward-backward asymmetry in $Z/\gamma^* \rightarrow \mu^+\mu^-$ decays and determination of the effective weak mixing angle, JHEP 11 (2015) 190, arXiv:1509.07645.
- [8] CDF, D0 collaboration, T. A. Aaltonen et al., Tevatron Run II combination of
 the effective leptonic electroweak mixing angle, Phys. Rev. D97 (2018) 112007,
 arXiv:1801.06283.
- [9] J. C. Collins and D. E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D16 (1977) 2219.
- [10] J. G. Korner and E. Mirkes, Polarization density matrix of high q_T gauge bosons in high-energy proton-antiproton collisions, Nucl. Phys. B Proc. Suppl. 23 (1991) 9.
- [11] A. Bodek, A simple event weighting technique for optimizing the measurement of the
 forward-backward asymmetry of Drell-Yan dilepton pairs at hadron colliders, Eur.
 Phys. J. C67 (2010) 321, arXiv:0911.2850.

- [12] A. Banfi et al., Optimisation of variables for studying dilepton transverse momentum
 distributions at hadron colliders, Eur. Phys. J. C71 (2011) 1600, arXiv:1009.1580.
- ⁴⁷⁴ [13] LHCb collaboration, A. A. Alves Jr. *et al.*, *The LHCb detector at the LHC*, JINST **3** ⁴⁷⁵ (2008) S08005.
- [14] LHCb collaboration, R. Aaij *et al.*, *LHCb detector performance*, Int. J. Mod. Phys.
 A30 (2015) 1530022, arXiv:1412.6352.
- [15] R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007,
 arXiv:1405.7808.
- [16] P. d'Argent et al., Improved performance of the LHCb Outer Tracker in LHC Run 2,
 JINST 12 (2017) P11016, arXiv:1708.00819.
- [17] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys.
 J. C73 (2013) 2431, arXiv:1211.6759.
- ⁴⁸⁴ [18] A. A. Alves Jr. *et al.*, *Performance of the LHCb muon system*, JINST 8 (2013) ⁴⁸⁵ P02022, arXiv:1211.1346.
- [19] R. Aaij et al., Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC, JINST 14 (2019) P04013, arXiv:1812.10790.
- [20] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA
 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820; T. Sjöstrand,
 S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026,
 arXiv:hep-ph/0603175.
- ⁴⁹² [21] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb ⁴⁹³ simulation framework, J. Phys. Conf. Ser. **331** (2011) 032047.
- ⁴⁹⁴ [22] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.
 ⁴⁹⁵ A462 (2001) 152.
- ⁴⁹⁶ [23] N. Davidson, T. Przedzinski, and Z. Was, PHOTOS interface in C++: Technical
 ⁴⁹⁷ and physics documentation, Comp. Phys. Comm. 199 (2016) 86, arXiv:1011.0937.
- [24] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE
 Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4:
 A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
- ⁵⁰¹ [25] M. Clemencic *et al.*, *The LHCb simulation application, Gauss: Design, evolution and* ⁵⁰² *experience*, J. Phys. Conf. Ser. **331** (2011) 032023.
- ⁵⁰³ [26] LHCb collaboration, R. Aaij *et al.*, Momentum scale calibration of the LHCb spec-⁵⁰⁴ trometer, JINST **19** (2024) P02008, arXiv:2312.01772.
- [27] W. Barter, M. Pili, and M. Vesterinen, A simple method to determine curvature biases
 in track reconstruction in hadron collider experiments, Eur. Phys. J. C81 (2021) 251,
 arXiv:2101.05675.

- ⁵⁰⁸ [28] LHCb collaboration, R. Aaij *et al.*, *Charge-dependent curvature-bias corrections using* ⁵⁰⁹ *a pseudomass method*, JINST **19** (2024) P03010, arXiv:2311.04670.
- [29] LHCb collaboration, R. Aaij et al., Measurement of the W boson mass, JHEP 01
 (2022) 036, arXiv:2109.01113.
- [30] LHCb collaboration, R. Aaij et al., Measurement of the track reconstruction efficiency
 at LHCb, JINST 10 (2015) P02007, arXiv:1408.1251.
- ⁵¹⁴ [31] S. Camarda *et al.*, *DYTurbo: fast predictions for Drell-Yan processes*, Eur. Phys. J. ⁵¹⁵ **C80** (2020) 251, Erratum ibid. **C80** (2020) 440, arXiv:1910.07049.
- ⁵¹⁶ [32] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algo-⁵¹⁷ rithms, JHEP **11** (2004) 040, arXiv:hep-ph/0409146.
- ⁵¹⁸ [33] S. Frixione, P. Nason, and C. Oleari, *Matching NLO QCD computations with parton* ⁵¹⁹ shower simulations: the POWHEG method, JHEP **11** (2007) 070, arXiv:0709.2092.
- [34] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing
 NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06
 (2010) 043, arXiv:1002.2581.
- ⁵²³ [35] L. Barze et al., Neutral current Drell-Yan with combined QCD and electroweak ⁵²⁴ corrections in the POWHEG BOX, Eur. Phys. J. C73 (2013) 2474, arXiv:1302.4606.
- ⁵²⁵ [36] M. Chiesa, C. L. Del Pio, and F. Piccinini, On electroweak corrections to neu-⁵²⁶ tral current Drell-Yan with the POWHEG BOX, Eur. Phys. J. C84 (2024) 539, ⁵²⁷ arXiv:2402.14659.
- ⁵²⁸ [37] M. Chiesa, F. Piccinini, and A. Vicini, *Direct determination of* $\sin^2 \theta_{\text{eff}}^{\ell}$ at hadron ⁵²⁹ colliders, Phys. Rev. **D100** (2019) 071302, arXiv:1906.11569.
- [38] E. Barberio, B. van Eijk, and Z. Was, PHOTOS: A Universal Monte Carlo for QED radiative corrections in decays, Comput. Phys. Commun. 66 (1991) 115.
- [39] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO vector-boson production matched with
 shower in POWHEG, JHEP 07 (2008) 060, arXiv:0805.4802.
- [40] NNPDF collaboration, R. D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C77 (2017) 663, arXiv:1706.00428.
- [41] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur.
 Phys. J. C75 (2015) 132, arXiv:1412.7420.
- ⁵³⁸ [42] T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with highprecision data from the LHC, Phys. Rev. **D103** (2021) 014013, arXiv:1912.10053.
- [43] S. Bailey et al., Parton distributions from LHC, HERA, Tevatron and fixed target
 data: MSHT20 PDFs, Eur. Phys. J. C81 (2021) 341, arXiv:2012.04684.
- [44] NNPDF collaboration, R. D. Ball *et al.*, *The path to proton structure at 1% accuracy*,
 Eur. Phys. J. C82 (2022) 428, arXiv:2109.02653.

- [45] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, NNLOPS simulation of Higgs
 boson production, JHEP 10 (2013) 222, arXiv:1309.0017.
- [46] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur.
 Phys. J. C75 (2015) 132, arXiv:1412.7420.
- [47] A. Bodek, J. Han, A. Khukhunaishvili, and W. Sakumoto, Using Drell-Yan for ward-backward asymmetry to reduce PDF uncertainties in the measurement of elec troweak parameters, Eur. Phys. J. C76 (2016) 115, arXiv:1507.02470.
- ⁵⁵¹ [48] P. Azzi et al., Report from Working Group 1: Standard Model Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 1, arXiv:1902.04070.
- [49] G. D'Agostini, Improved iterative Bayesian unfolding, in Alliance Workshop on
 Unfolding and Data Correction, 2010, arXiv:1010.0632.

LHCb collaboration

R. Aaij³⁷ , A.S.W. Abdelmotteleb⁵⁶ , C. Abellan Beteta⁵⁰, F. Abudinén⁵⁶ 555 T. Ackernley⁶⁰, A. A. Adefisoye⁶⁸, B. Adeva⁴⁶, M. Adinolfi⁵⁴, P. Adlarson⁸¹, 556 C. Agapopoulou¹⁴, C.A. Aidala⁸², Z. Ajaltouni¹¹, S. Akar⁶⁵, K. Akiba³⁷, 557 P. Albicocco²⁷ , J. Albrecht¹⁹, F. Alessio⁴⁸, M. Alexander⁵⁹, Z. Aliouche⁶², 558 P. Alvarez Cartelle⁵⁵, R. Amalric¹⁶, S. Amato³, J.L. Amey⁵⁴, Y. Amhis^{14,48}, 559 L. An⁶ (D), L. Anderlini²⁶ (D), M. Andersson⁵⁰ (D), A. Andreianov⁴³ (D), P. Andreola⁵⁰ (D), 560 M. Andreotti²⁵ (D), D. Andreou⁶⁸ (D), A. Anelli^{30,n} (D), D. Ao⁷ (D), F. Archilli^{36,t} (D), 561 M. Argenton²⁵ (\bigcirc , S. Arguedas Cuendis^{9,48} (\bigcirc , A. Artamonov⁴³ (\bigcirc , M. Artuso⁶⁸ (\bigcirc , 562 E. Aslanides¹³ , R. Ataíde Da Silva⁴⁹ , M. Atzeni⁶⁴ , B. Audurier¹² , D. Bacher⁶³ 563 I. Bachiller Perea¹⁰, S. Bachmann²¹, M. Bachmayer⁴⁹, J.J. Back⁵⁶, 564 P. Baladron Rodriguez⁴⁶ , V. Balagura¹⁵ , W. Baldini²⁵ , L. Balzani¹⁹ , H. Bao⁷ 565 J. Baptista de Souza Leite⁶⁰ , C. Barbero Pretel^{46,12} , M. Barbetti²⁶ , I. R. Barbosa⁶⁹ 566 R.J. Barlow⁶², M. Barnyakov²⁴, S. Barsuk¹⁴, W. Barter⁵⁸, M. Bartolini⁵⁵, 567 J. Bartz⁶⁸ D, J.M. Basels¹⁷ D, S. Bashir³⁹ D, G. Bassi^{34,q} D, B. Batsukh⁵ D, P. B. Battista¹⁴, 568 A. Bay⁴⁹ , A. Beck⁵⁶ , M. Becker¹⁹ , F. Bedeschi³⁴ , I.B. Bediaga² , N. A. 569 Behling¹⁹ $(D, S. Belin⁴⁶ <math>(D, V. Bellee^{50} (D, K. Belous^{43} (D, I. Belov^{28} (D, I. Belyaev^{35} (D, I. Belyaev^{35$ 570 G. Benane¹³, G. Bencivenni²⁷, E. Ben-Haim¹⁶, A. Berezhnoy⁴³, R. Bernet⁵⁰, 571 S. Bernet Andres⁴⁴, A. Bertolin³², C. Betancourt⁵⁰, F. Betti⁵⁸, J. Bex⁵⁵, 572 Ia. Bezshyiko⁵⁰ (D), J. Bhom⁴⁰ (D), M.S. Bieker¹⁹ (D), N.V. Biesuz²⁵ (D), P. Billoir¹⁶ (D), 573 A. Biolchini³⁷ , M. Birch⁶¹ , F.C.R. Bishop¹⁰ , A. Bitadze⁶² , A. Bizzeti , T. Blake⁵⁶ , 574 F. Blanc⁴⁹, J.E. Blank¹⁹, S. Blusk⁶⁸, V. Bocharnikov⁴³, J.A. Boelhauve¹⁹, 575 O. Boente Garcia¹⁵, T. Boettcher⁶⁵, A. Bohare⁵⁸, A. Boldyrev⁴³, C.S. Bolognani⁷⁸, 576 R. Bolzonella^{25,k}, N. Bondar⁴³, A. Bordelius⁴⁸, F. Borgato^{32,o}, S. Borghi⁶², 577 578 A. Boyer⁴⁸ , C. Bozzi²⁵ , A. Brea Rodriguez⁴⁹ , N. Breer¹⁹ , J. Brodzicka⁴⁰ , 579 A. Brossa Gonzalo^{46,56,45,†} [D], J. Brown⁶⁰ (D), D. Brundu³¹ (D), E. Buchanan⁵⁸, A. Buonaura⁵⁰ (D), 580 L. Buonincontri^{32,0}, A.T. Burke⁶², C. Burr⁴⁸, J.S. Butter⁵⁵, J. Buytaert⁴⁸, 581 W. Byczynski⁴⁸ (D), S. Cadeddu³¹ (D), H. Cai⁷³, A. C. Caillet¹⁶, R. Calabrese^{25,k} (D), 582 S. Calderon Ramirez⁹, L. Calefice⁴⁵, S. Cali²⁷, M. Calvi^{30,n}, M. Calvo Gomez⁴⁴, 583 P. Camargo Magalhaes^{2,x} \bigcirc , J. I. Cambon Bouzas⁴⁶ \bigcirc , P. Campana²⁷ \bigcirc , 584 D.H. Campora Perez⁷⁸, A.F. Campoverde Quezada⁷, S. Capelli³⁰, L. Capriotti²⁵, 585 R. Caravaca-Mora⁹ (D), A. Carbone^{24,i} (D), L. Carcedo Salgado⁴⁶ (D), R. Cardinale^{28,l} (D), 586 A. Cardini³¹, P. Carniti^{30,n}, L. Carus²¹, A. Casais Vidal⁶⁴, R. Caspary²¹, 587 G. Casse⁶⁰ (D), J. Castro Godinez⁹ (D), M. Cattaneo⁴⁸ (D), G. Cavallero^{25,48} (D), V. Cavallini^{25,k} (D), 588 S. Celani²¹ D. Cervenkov⁶³ D. S. Cesare^{29,m} A.J. Chadwick⁶⁰ D. I. Chahrour⁸² D. 589 M. Charles¹⁶ D, Ph. Charpentier⁴⁸ D, E. Chatzianagnostou³⁷ D, M. Chefdeville¹⁰ D, 590 C. Chen¹³, S. Chen⁵, Z. Chen⁷, A. Chernov⁴⁰, S. Chernyshenko⁵², X. 591 Chiotopoulos⁷⁸ (D, V. Chobanova⁸⁰ (D, S. Cholak⁴⁹ (D, M. Chrzaszcz⁴⁰ (D, A. Chubykin⁴³ (D, 592 V. Chulikov⁴³ , P. Ciambrone²⁷ , X. Cid Vidal⁴⁶ , G. Ciezarek⁴⁸ , P. Cifra⁴⁸ 593 P.E.L. Clarke⁵⁸, M. Clemencic⁴⁸, H.V. Cliff⁵⁵, J. Closier⁴⁸, C. Cocha Toapaxi²¹, 594 V. Coco^{48} , J. $\operatorname{Cogan}^{13}$, E. $\operatorname{Cogneras}^{11}$, L. $\operatorname{Cojocariu}^{42}$, P. $\operatorname{Collins}^{48}$, 595 T. Colombo⁴⁸ D, M. C. Colonna¹⁹ D, A. Comerma-Montells⁴⁵ D, L. Congedo²³ D, 596 A. Contu³¹ , N. Cooke⁵⁹ , I. Corredoira ⁴⁶ , A. Correia¹⁶ , G. Corti⁴⁸ 597 J.J. Cottee Meldrum⁵⁴, B. Couturier⁴⁸, D.C. Craik⁵⁰, M. Cruz Torres^{2,f}, 598 E. Curras Rivera⁴⁹ , R. Currie⁵⁸ , C.L. Da Silva⁶⁷ , S. Dadabaev⁴³ , L. Dai⁷⁰ , 599 X. Dai⁶ (\mathbb{D} , E. Dall'Occo¹⁹ (\mathbb{D} , J. Dalseno⁴⁶ (\mathbb{D} , C. D'Ambrosio⁴⁸ (\mathbb{D} , J. Daniel¹¹ (\mathbb{D} , 600 A. Danilina⁴³, P. d'Argent²³, A. Davidson⁵⁶, J.E. Davies⁶², A. Davis⁶² 601

602 O. De Aguiar Francisco⁶² (D), C. De Angelis^{31,j} (D), F. De Benedetti⁴⁸ (D), J. de Boer³⁷ (D),

K. De Bruyn⁷⁷ , S. De Capua⁶² , M. De Cian^{21,48} , U. De Freitas Carneiro Da Graca^{2,a} 603 E. De Lucia²⁷ (D, J.M. De Miranda² (D, L. De Paula³ (D, M. De Serio^{23,g} (D, P. De Simone²⁷ (D, 604 F. De Vellis¹⁹, J.A. de Vries⁷⁸, F. Debernardis²³, D. Decamp¹⁰, V. Dedu¹³, S. 605 Dekkers¹ D, L. Del Buono¹⁶ D, B. Delaney⁶⁴ D, H.-P. Dembinski¹⁹ D, J. Deng⁸ D, 606 V. Denysenko⁵⁰, O. Deschamps¹¹, F. Dettori^{31,j}, B. Dey⁷⁶, P. Di Nezza²⁷, 607 I. Diachkov⁴³, S. Didenko⁴³, S. Ding⁶⁸, L. Dittmann²¹, V. Dobishuk⁵², A. D. 608 Docheva⁵⁹ $(D, C, Dong^{4,b})$, A.M. Donohoe²² $(D, F, Dordei^{31})$, A.C. dos Reis² (D, A, D). 609 Dowling⁶⁸ \bigcirc , W. Duan⁷¹ \bigcirc , P. Duda⁷⁹ \bigcirc , M.W. Dudek⁴⁰ \bigcirc , L. Dufour⁴⁸ \bigcirc , V. Duk³³ \bigcirc , 610 P. Durante⁴⁸ \bigcirc , M. M. Duras⁷⁹ \bigcirc , J.M. Durham⁶⁷ \bigcirc , O. D. Durmus⁷⁶ \bigcirc , A. Dziurda⁴⁰ \bigcirc , 611 A. Dzyuba⁴³, S. Easo⁵⁷, E. Eckstein¹⁸, U. Egede¹, A. Egorychev⁴³, 612 V. Egorychev⁴³, S. Eisenhardt⁵⁸, E. Ejopu⁶², L. Eklund⁸¹, M. Elashri⁶⁵, 613 J. Ellbracht¹⁹ , S. Ely⁶¹ , A. Ene⁴² , E. Epple⁶⁵ , J. Eschle⁶⁸ , S. Esen²¹ 614 T. Evans⁶² (D), F. Fabiano^{31,j} (D), L.N. Falcao² (D), Y. Fan⁷ (D), B. Fang⁷³ (D), L. Fantini^{33,p,48} (D), 615 M. Faria⁴⁹ (D), K. Farmer⁵⁸ (D), S. Farry⁶⁰ (D), D. Fazzini^{30,n} (D), L. Felkowski⁷⁹ (D), M. Feng^{5,7} (D), 616 M. Feo^{19,48} , A. Fernandez Casani⁴⁷ , M. Fernandez Gomez⁴⁶ , A.D. Fernez⁶⁶ 617 F. Ferrari²⁴, F. Ferreira Rodrigues³, M. Ferrillo⁵⁰, M. Ferro-Luzzi⁴⁸, S. Filippov⁴³, 618 R.A. Fini²³ (D), M. Fiorini^{25,k} (D), M. Firlej³⁹ (D), K.L. Fischer⁶³ (D), D.S. Fitzgerald⁸² (D), 619 C. Fitzpatrick⁶², T. Fiutowski³⁹, F. Fleuret¹⁵, M. Fontana²⁴, L. F. Foreman⁶², 620 R. Forty⁴⁸, D. Foulds-Holt⁵⁵, V. Franco Lima³, M. Franco Sevilla⁶⁶, M. Frank⁴⁸, 621 E. Franzoso^{25,k}, G. Frau⁶², C. Frei⁴⁸, D.A. Friday⁶², J. Fu⁷, Q. Fuehring^{19,55}, 622 Y. Fujii¹ , T. Fulghesu¹⁶ , E. Gabriel³⁷ , G. Galati²³ , M.D. Galati³⁷ 623 A. Gallas Torreira⁴⁶ , D. Galli^{24,i}, S. Gambetta⁵⁸, M. Gandelman³, P. Gandini²⁹, B. 624 Ganie⁶² (D), H. Gao⁷ (D), R. Gao⁶³ (D), T.Q. Gao⁵⁵ (D), Y. Gao⁸ (D), Y. Gao⁶ (D), Y. Gao⁸, 625 M. Garau^{31,j} , L.M. Garcia Martin⁴⁹ , P. Garcia Moreno⁴⁵ , J. García Pardiñas⁴⁸ , K. G. 626 Garg⁸ , L. Garrido⁴⁵ , C. Gaspar⁴⁸ , R.E. Geertsema³⁷ , L.L. Gerken¹⁹ 627 E. Gersabeck⁶² (D), M. Gersabeck⁶² (D), T. Gershon⁵⁶ (D), S. G. Ghizzo^{28,l}, 628 Z. Ghorbanimoghaddam⁵⁴, L. Giambastiani^{32,0}, F. I. Giasemis^{16,e}, V. Gibson⁵⁵, 629 H.K. Giemza⁴¹ (D, A.L. Gilman⁶³ (D, M. Giovannetti²⁷ (D, A. Gioventù⁴⁵ (D, L. Girardey⁶² (D, 630 P. Gironella Gironell⁴⁵ , C. Giugliano^{25,k}, M.A. Giza⁴⁰, E.L. Gkougkousis⁶¹, 631 F.C. Glaser^{14,21} , V.V. Gligorov^{16,48} , C. Göbel⁶⁹ , E. Golobardes⁴⁴ , D. Golubkov⁴³ , 632 A. Golutvin^{61,43,48} , S. Gomez Fernandez⁴⁵, F. Goncalves Abrantes⁶³, M. Goncerz⁴⁰, 633 G. Gong^{4,b} (D), J. A. Gooding¹⁹ (D), I.V. Gorelov⁴³ (D), C. Gotti³⁰ (D), J.P. Grabowski¹⁸ (D), 634 L.A. Granado Cardoso⁴⁸ (D), E. Graugés⁴⁵ (D), E. Graverini^{49,r} (D), L. Grazette⁵⁶ (D), 635 G. Graziani (D), A. T. Grecu⁴² (D), L.M. Greeven³⁷ (D), N.A. Grieser⁶⁵ (D), L. Grillo⁵⁹ (D), 636 S. Gromov⁴³ \bigcirc , C. Gu¹⁵ \bigcirc , M. Guarise²⁵ \bigcirc , L. Guerry¹¹ \bigcirc , M. Guittiere¹⁴ \bigcirc , 637 V. Guliaeva⁴³ , P. A. Günther²¹ , A.-K. Guseinov⁴⁹ , E. Gushchin⁴³ , Y. Guz^{6,43,48} , 638 T. Gys⁴⁸ , K. Habermann¹⁸ , T. Hadavizadeh¹ , C. Hadjivasiliou⁶⁶ , G. Haefeli⁴⁹ , 639 C. Haen⁴⁸ (D), J. Haimberger⁴⁸ (D), M. Hajheidari⁴⁸, G. Hallett⁵⁶ (D), M.M. Halvorsen⁴⁸ (D), 640 P.M. Hamilton⁶⁶, J. Hammerich⁶⁰, Q. Han⁸, X. Han²¹, S. Hansmann-Menzemer²¹, 641 L. Hao⁷ D, N. Harnew⁶³ D, M. Hartmann¹⁴ D, S. Hashmi³⁹ D, J. He^{7,c} D, F. Hemmer⁴⁸ D, 642 C. Henderson⁶⁵ D, R.D.L. Henderson^{1,56} D, A.M. Hennequin⁴⁸ D, K. Hennessy⁶⁰ D, 643 L. Henry⁴⁹, J. Herd⁶¹, P. Herrero Gascon²¹, J. Heuel¹⁷, A. Hicheur³, 644 G. Hijano Mendizabal⁵⁰, D. Hill⁴⁹, S.E. Hollitt¹⁹, J. Horswill⁶², R. Hou⁸, Y. Hou¹¹, 645 N. Howarth⁶⁰, J. Hu²¹, J. Hu⁷¹, W. Hu⁶, X. Hu^{4,b}, W. Huang⁷, W. Hulsbergen³⁷, 646 R.J. Hunter⁵⁶ (D, M. Hushchyn⁴³ (D, D. Hutchcroft⁶⁰ (D, M. Idzik³⁹ (D, D. Ilin⁴³ (D, P. Ilten⁶⁵ (D, 647 A. Inglessi⁴³ D, A. Iniukhin⁴³ D, A. Ishteev⁴³ D, K. Ivshin⁴³ D, R. Jacobsson⁴⁸ D, H. Jage¹⁷ D, 648 S.J. Jaimes Elles^{47,74} \bigcirc , S. Jakobsen⁴⁸ \bigcirc , E. Jans³⁷ \bigcirc , B.K. Jashal⁴⁷ \bigcirc , A. Jawahery^{66,48} \bigcirc , 649 V. Jevtic¹⁹ (b), E. Jiang⁶⁶ (b), X. Jiang^{5,7} (b), Y. Jiang⁷ (b), Y. J. Jiang⁶ (b), M. John⁶³ (b), A. John Rubesh Rajan²² (b), D. Johnson⁵³ (b), C.R. Jones⁵⁵ (b), T.P. Jones⁵⁶ (b), S. Joshi⁴¹ (b), 650 651

652 B. Jost⁴⁸ (b), J. Juan Castella⁵⁵ (b), N. Jurik⁴⁸ (b), I. Juszczak⁴⁰ (b), D. Kaminaris⁴⁹ (b),

S. Kandybei⁵¹ \bigcirc , M. Kane⁵⁸ \bigcirc , Y. Kang^{4,b} \bigcirc , C. Kar¹¹ \bigcirc , M. Karacson⁴⁸ \bigcirc , 653 D. Karpenkov⁴³, A. Kauniskangas⁴⁹, J.W. Kautz⁶⁵, M.K. Kazanecki⁴⁰, F. Keizer⁴⁸, 654 M. Kenzie⁵⁵ D, T. Ketel³⁷ D, B. Khanji⁶⁸ D, A. Kharisova⁴³ D, S. Kholodenko^{34,48} D, 655 G. Khreich¹⁴ $(D, T. Kirn^{17} (D, V.S. Kirsebom^{30,n} (D, O. Kitouni^{64} (D, S. Klaver^{38} (D, C. Kirsebom^{30,n} (D, O. Kitouni)))$ 656 N. Kleijne^{34,q} (\bigcirc , K. Klimaszewski⁴¹ (\bigcirc , M.R. Kmiec⁴¹ (\bigcirc , S. Koliiev⁵² (\bigcirc , L. Kolk¹⁹ (\bigcirc , 657 A. Konoplyannikov⁴³, P. Kopciewicz^{39,48}, P. Koppenburg³⁷, M. Korolev⁴³, 658 I. Kostiuk³⁷ (D, O. Kot⁵², S. Kotriakhova (D, A. Kozachuk⁴³ (D, P. Kravchenko⁴³ (D, 659 L. Kravchuk⁴³, M. Kreps⁵⁶, P. Krokovny⁴³, W. Krupa⁶⁸, W. Krzemien⁴¹, 660 O.K. Kshyvanskyi⁵², S. Kubis⁷⁹, M. Kucharczyk⁴⁰, V. Kudryavtsev⁴³, E. Kulikova⁴³, 661 A. Kupsc⁸¹, B. K. Kutsenko¹³, D. Lacarrere⁴⁸, P. Laguarta Gonzalez⁴⁵, A. Lai³¹, A. Lai³¹, 662 A. Lampis³¹ D. Lancierini⁵⁵ D, C. Landesa Gomez⁴⁶ D, J.J. Lane¹ D, R. Lane⁵⁴ D, 663 G. Lanfranchi²⁷ , C. Langenbruch²¹ , J. Langer¹⁹ , O. Lantwin⁴³ , T. Latham⁵⁶ , 664 F. Lazzari^{34,r} (D, C. Lazzeroni⁵³ (D, R. Le Gac¹³ (D, H. Lee⁶⁰ (D, R. Lefèvre¹¹ (D, A. Leflat⁴³ (D, 665 S. Legotin⁴³ \bigcirc , M. Lehuraux⁵⁶ \bigcirc , E. Lemos Cid⁴⁸ \bigcirc , O. Leroy¹³ \bigcirc , T. Lesiak⁴⁰ \bigcirc , E. Lesser⁴⁸, 666 B. Leverington²¹ (D), A. Li^{4,b} (D), C. Li¹³ (D), H. Li⁷¹ (D), K. Li⁸ (D), L. Li⁶² (D), M. Li⁸, P. Li⁷ (D), 667 P.-R. Li⁷² D, Q. Li^{5,7} D, S. Li⁸ D, T. Li^{5,d} D, T. Li⁷¹ D, Y. Li⁸, Y. Li⁵ D, Z. Lian^{4,b} D, 668 X. Liang⁶⁸ (b), S. Libralon⁴⁷ (b), C. Lin⁷ (b), T. Lin⁵⁷ (b), R. Lindner⁴⁸ (b), V. Lisovskyi⁴⁹ (b), 669 R. Litvinov^{31,48} , F. L. Liu¹ , G. Liu⁷¹ , K. Liu⁷² , S. Liu^{5,7} , W. Liu⁸, Y. Liu⁵⁸ , 670 Y. Liu⁷², Y. L. Liu⁶¹ (D), A. Lobo Salvia⁴⁵ (D), A. Loi³¹ (D), J. Lomba Castro⁴⁶ (D), T. Long⁵⁵ (D), 671 J.H. Lopes³ , A. Lopez Huertas⁴⁵ , S. López Soliño⁴⁶ , Q. Lu¹⁵ , C. Lucarelli²⁶ 672 D. Lucchesi^{32,o}, M. Lucio Martinez⁷⁸, V. Lukashenko^{37,52}, Y. Luo⁶, A. Lupato^{32,h}, M. 673 E. Luppi^{25,k} (b, K. Lynch²² (b, X.-R. Lyu⁷ (b, G. M. Ma^{4,b} (b, R. Ma⁷ (b, S. Maccolini¹⁹ (b, 674 F. Machefert¹⁴ , F. Maciuc⁴² , B. Mack⁶⁸ , I. Mackav⁶³ , L. M. Mackev⁶⁸ , 675 L.R. Madhan Mohan⁵⁵, M. J. Madurai⁵³, A. Maevskiy⁴³, D. Magdalinski³⁷, 676 D. Maisuzenko⁴³, M.W. Majewski³⁹, J.J. Malczewski⁴⁰, S. Malde⁶³, L. Malentacca⁴⁸, 677 A. Malinin⁴³ (D, T. Maltsev⁴³ (D, G. Manca^{31,j} (D, G. Mancinelli¹³ (D, C. Mancuso^{29,14,m} (D, 678 R. Manera Escalero⁴⁵ (D, D. Manuzzi²⁴ (D, D. Marangotto^{29,m} (D, J.F. Marchand¹⁰ (D, 679 R. Marchevski⁴⁹ D. U. Marconi²⁴ D. E. Mariani¹⁶, S. Mariani⁴⁸ D. C. Marin Benito⁴⁵ D. 680 J. Marks²¹ D, A.M. Marshall⁵⁴ D, L. Martel⁶³ D, G. Martelli^{33,p} D, G. Martellotti³⁵ D, 681 L. Martinazzoli⁴⁸ \bigcirc , M. Martinelli^{30,n} \bigcirc , D. Martinez Santos⁴⁶ \bigcirc , F. Martinez Vidal⁴⁷ \bigcirc , 682 A. Massafferri² , R. Matev⁴⁸ , A. Mathad⁴⁸ , V. Matiunin⁴³ , C. Matteuzzi⁶⁸ , 683 K.R. Mattioli¹⁵, A. Mauri⁶¹, E. Maurice¹⁵, J. Mauricio⁴⁵, P. Mayencourt⁴⁹, 684 J. Mazorra de Cos⁴⁷ D, M. Mazurek⁴¹ D, M. McCann⁶¹ D, L. Mcconnell²² D, 685 T.H. McGrath⁶² , N.T. McHugh⁵⁹ , A. McNab⁶² , R. McNulty²² , B. Meadows⁶⁵ , 686 G. Meier¹⁹, D. Melnychuk⁴¹, F. M. Meng^{4,b}, M. Merk^{37,78}, A. Merli⁴⁹, 687 L. Meyer Garcia⁶⁶ (D, D. Miao^{5,7} (D, H. Miao⁷ (D, M. Mikhasenko⁷⁵ (D, D.A. Milanes⁷⁴ (D, 688 A. Minotti^{30,n} (D, E. Minucci⁶⁸ (D, T. Miralles¹¹ (D, B. Mitreska¹⁹ (D, D.S. Mitzel¹⁹ (D, 689 A. Modak⁵⁷ (D, R.A. Mohammed⁶³ (D, R.D. Moise¹⁷ (D, S. Mokhnenko⁴³ (D, E. 690 F. Molina Cardenas⁸², T. Mombächer⁴⁸, M. Monk^{56,1}, S. Monteil¹¹, 691 A. Morcillo Gomez⁴⁶ \bigcirc , G. Morello²⁷ \bigcirc , M.J. Morello^{34,q} \bigcirc , M.P. Morgenthaler²¹ \bigcirc , 692 J. Moron³⁹ D, A.B. Morris⁴⁸ D, A.G. Morris¹³ D, R. Mountain⁶⁸ D, H. Mu^{4,b} D, Z. M. Mu⁶ D, 693 E. Muhammad⁵⁶, F. Muheim⁵⁸, M. Mulder⁷⁷, K. Müller⁵⁰, F. Muñoz-Rojas⁹, 694 R. Murta⁶¹ , P. Naik⁶⁰ , T. Nakada⁴⁹ , R. Nandakumar⁵⁷ , T. Nanut⁴⁸ , I. Nasteva³ 695 M. Needham⁵⁸, N. Neri^{29,m}, S. Neubert¹⁸, N. Neufeld⁴⁸, P. Neustroev⁴³, 696 J. Nicolini^{19,14} D. Nicotra⁷⁸ D. E.M. Niel⁴⁹ D. N. Nikitin⁴³ D. P. Nogarolli³ D. 697 P. Nogga¹⁸ \bigcirc , C. Normand⁵⁴ \bigcirc , J. Novoa Fernandez⁴⁶ \bigcirc , G. Nowak⁶⁵ \bigcirc , C. Nunez⁸² \bigcirc , H. N. 698 Nur⁵⁹ D, A. Oblakowska-Mucha³⁹ D, V. Obraztsov⁴³ D, T. Oeser¹⁷ D, S. Okamura^{25,k} D, 699 A. Okhotnikov⁴³, O. Okhrimenko⁵², R. Oldeman^{31,j}, F. Oliva⁵⁸, M. Olocco¹⁹, 700 C.J.G. Onderwater⁷⁸ , R.H. O'Neil⁵⁸ , D. Osthues¹⁹, J.M. Otalora Goicochea³ , 701

P. Owen⁵⁰ (D), A. Oyanguren⁴⁷ (D), O. Ozcelik⁵⁸ (D), F. Paciolla^{34,u} (D), A. Padee⁴¹ (D), 702

K.O. Padeken¹⁸ , B. Pagare⁵⁶ , P.R. Pais²¹ , T. Pajero⁴⁸ , A. Palano²³ , 703 M. Palutan²⁷ D, G. Panshin⁴³ D, L. Paolucci⁵⁶ D, A. Papanestis^{57,48} D, M. Pappagallo^{23,g} D, 704 L.L. Pappalardo^{25,k} (\mathbb{D} , C. Pappenheimer⁶⁵ (\mathbb{D} , C. Parkes⁶² (\mathbb{D} , B. Passalacqua²⁵ (\mathbb{D} , 705 G. Passaleva²⁶ (D), D. Passaro^{34,q} (D), A. Pastore²³ (D), M. Patel⁶¹ (D), J. Patoc⁶³ (D), 706 C. Patrignani^{24,i} (D), A. Paul⁶⁸ (D), C.J. Pawley⁷⁸ (D), A. Pellegrino³⁷ (D), J. Peng^{5,7} (D), 707 M. Pepe Altarelli²⁷ \bigcirc , S. Perazzini²⁴ \bigcirc , D. Pereima⁴³ \bigcirc , H. Pereira Da Costa⁶⁷ \bigcirc , 708 A. Pereiro Castro⁴⁶ , P. Perret¹¹ , A. Perro⁴⁸ , K. Petridis⁵⁴ , A. Petrolini^{28,l} , J. P. 709 Pfaller⁶⁵, H. Pham⁶⁸, L. Pica^{34,q}, M. Piccini³³, L. Piccolo³¹, B. Pietrzyk¹⁰, 710 G. Pietrzyk¹⁴, D. Pinci³⁵, F. Pisani⁴⁸, M. Pizzichemi^{30,n,48}, V. Placinta⁴², 711 M. Plo Casasus⁴⁶, T. Poeschl⁴⁸, F. Polci^{16,48}, M. Poli Lener²⁷, A. Poluektov¹³, 712 N. Polukhina⁴³ D, I. Polyakov⁴³ D, E. Polycarpo³ D, S. Ponce⁴⁸ D, D. Popov⁷ D, 713 S. Poslavskii⁴³, K. Prasanth⁵⁸, C. Prouve⁴⁶, D. Provenzano^{31,j}, V. Pugatch⁵², 714 G. Punzi^{34,r} [b], S. Qasim⁵⁰ [b], Q. Q. Qian⁶ [b], W. Qian⁷ [b], N. Qin^{4,b} [b], S. Qu^{4,b} [b], 715 R. Quagliani⁴⁸, R.I. Rabadan Trejo⁵⁶, J.H. Rademacker⁵⁴, M. Rama³⁴, M. 716 Ramírez García⁸², V. Ramos De Oliveira⁶⁹, M. Ramos Pernas⁵⁶, M.S. Rangel³, 717 F. Ratnikov⁴³, G. Raven³⁸, M. Rebollo De Miguel⁴⁷, F. Redi^{29,h}, J. Reich⁵⁴, J. 718 F. Reiss⁶², Z. Ren⁷, P.K. Resmi⁶³, R. Ribatti⁴⁹, G. R. Ricart^{15,12}, 719 D. Riccardi^{34,q}, S. Ricciardi⁵⁷, K. Richardson⁶⁴, M. Richardson-Slipper⁵⁸, 720 K. Rinnert⁶⁰ , P. Robbe¹⁴ , G. Robertson⁵⁹ , E. Rodrigues⁶⁰ , 721 E. Rodriguez Fernandez⁴⁶ \bigcirc , J.A. Rodriguez Lopez⁷⁴ \bigcirc , E. Rodriguez Rodriguez⁴⁶ \bigcirc , 722 J. Roensch¹⁹, A. Rogachev⁴³, A. Rogovskiy⁵⁷, D.L. Rolf⁴⁸, P. Roloff⁴⁸, P. Roloff⁴⁸, 723 V. Romanovskiy⁶⁵ , M. Romero Lamas⁴⁶ , A. Romero Vidal⁴⁶ , G. Romolini²⁵ , 724 F. Ronchetti⁴⁹, T. Rong⁶, M. Rotondo²⁷, S. R. Roy²¹, M.S. Rudolph⁶⁸, 725 M. Ruiz Diaz²¹ \square , R.A. Ruiz Fernandez⁴⁶ \square , J. Ruiz Vidal^{81,y} \square , A. Ryzhikov⁴³ \square , 726 J. Ryzka³⁹ , J. J. Saavedra-Arias⁹ , J.J. Saborido Silva⁴⁶ , R. Sadek¹⁵ , N. Sagidova⁴³ , 727 D. Sahoo⁷⁶ (D), N. Sahoo⁵³ (D), B. Saitta^{31,j} (D), M. Salomoni^{30,48,n} (D), I. Sanderswood⁴⁷ (D), 728 R. Santacesaria³⁵ D, C. Santamarina Rios⁴⁶ D, M. Santimaria^{27,48} D, L. Santoro² D, 729 E. Santovetti³⁶ (D, A. Saputi^{25,48} (D, D. Saranin⁴³ (D, A. Sarnatskiv⁷⁷ (D, G. Sarpis⁵⁸ (D, 730 M. Sarpis⁶², C. Satriano^{35,s}, A. Satta³⁶, M. Saur⁶, D. Savrina⁴³, H. Sazak¹⁷, 731 F. Sborzacchi^{48,27}, L.G. Scantlebury Smead⁶³, A. Scarabotto¹⁹, S. Schael¹⁷, 732 S. Scherl⁶⁰ , M. Schiller⁵⁹ , H. Schindler⁴⁸ , M. Schmelling²⁰ , B. Schmidt⁴⁸ , 733 S. Schmitt¹⁷, H. Schmitz¹⁸, O. Schneider⁴⁹, A. Schopper⁴⁸, N. Schulte¹⁹, 734 S. Schulte⁴⁹ , M.H. Schune¹⁴ , R. Schwemmer⁴⁸ , G. Schwering¹⁷ , B. Sciascia²⁷ , 735 A. Sciuccati⁴⁸, S. Sellam⁴⁶, A. Semennikov⁴³, T. Senger⁵⁰, M. Senghi Soares³⁸, 736 A. Sergi^{28,l,48} (\square , N. Serra⁵⁰ (\square , L. Sestini³² (\square , A. Seuthe¹⁹ (\square , Y. Shang⁶ (\square , D.M. Shangase⁸² (\square , 737 M. Shapkin⁴³, R. S. Sharma⁶⁸, I. Shchemerov⁴³, L. Shchutska⁴⁹, T. Shears⁶⁰, 738 L. Shekhtman⁴³, Z. Shen⁶, S. Sheng^{5,7}, V. Shevchenko⁴³, B. Shi⁷, Q. Shi⁷, 739 Y. Shimizu¹⁴ , E. Shmanin²⁴ , R. Shorkin⁴³ , J.D. Shupperd⁶⁸ , R. Silva Coutinho⁶⁸ , 740 G. Simi^{32,o}, S. Simone^{23,g}, N. Skidmore⁵⁶, T. Skwarnicki⁶⁸, M.W. Slater⁵³, 741 J.C. Smallwood⁶³ D. E. Smith⁶⁴ D. K. Smith⁶⁷ D. M. Smith⁶¹ D. A. Snoch³⁷ D. 742 L. Soares Lavra⁵⁸, M.D. Sokoloff⁶⁵, F.J.P. Soler⁵⁹, A. Solomin^{43,54}, A. Solovev⁴³, 743 I. Solovyev⁴³ \bigcirc , R. Song¹ \bigcirc , Y. Song⁴⁹ \bigcirc , Y. Song^{4,b} \bigcirc , Y. S. Song⁶ \bigcirc , 744 F.L. Souza De Almeida⁶⁸ (D), B. Souza De Paula³ (D), E. Spadaro Norella^{28,l} (D), E. Spedicato²⁴ (D), 745 J.G. Speer¹⁹, E. Spiridenkov⁴³, P. Spradlin⁵⁹, V. Sriskaran⁴⁸, F. Stagni⁴⁸, 746 M. Stahl⁴⁸ , S. Stahl⁴⁸ , S. Stanislaus⁶³ , E.N. Stein⁴⁸ , O. Steinkamp⁵⁰ 747 O. Stenyakin⁴³, H. Stevens¹⁹, D. Strekalina⁴³, Y. Su⁷, F. Suljik⁶³, J. Sun³¹, 748 L. Sun⁷³ (D, Y. Sun⁶⁶ (D, D. Sundfeld² (D, W. Sutcliffe⁵⁰, P.N. Swallow⁵³ (D, K. Swientek³⁹ (D, 749 F. Swystun⁵⁵ \square , A. Szabelski⁴¹ \square , T. Szumlak³⁹ \square , Y. Tan^{4,b} \square , M.D. Tat⁶³ \square , 750 A. Terentev⁴³ $(D, F. Terzuoli^{34,u,48} (D, F. Teubert^{48} (D, E. Thomas^{48} (D, D.J.D. Thompson^{53} (D, F. Teubert^{48} (D, F. Teubert^{48$ 751

⁷⁵² H. Tilquin⁶¹ (D), V. Tisserand¹¹ (D), S. T'Jampens¹⁰ (D), M. Tobin^{5,48} (D), L. Tomassetti^{25,k} (D),

- G. Tonani^{29,m,48} , X. Tong⁶ , D. Torres Machado² , L. Toscano¹⁹ , D.Y. Tou^{4,b}
- ⁷⁵⁴ C. Trippl⁴⁴, G. Tuci²¹, N. Tuning³⁷, L.H. Uecker²¹, A. Ukleja³⁹,
- ⁷⁵⁵ D.J. Unverzagt²¹ (\bigcirc , E. Ursov⁴³ (\bigcirc , A. Usachov³⁸ (\bigcirc , A. Ustyuzhanin⁴³ (\bigcirc , U. Uwer²¹ (\bigcirc ,
- ⁷⁵⁶ V. Vagnoni²⁴, V. Valcarce Cadenas⁴⁶, G. Valenti²⁴, N. Valls Canudas⁴⁸,
- ⁷⁵⁷ H. Van Hecke⁶⁷ , E. van Herwijnen⁶¹ , C.B. Van Hulse^{46,w} , R. Van Laak⁴⁹ ,
- ⁷⁵⁸ M. van Veghel³⁷, G. Vasquez⁵⁰, R. Vazquez Gomez⁴⁵, P. Vazquez Regueiro⁴⁶,
- ⁷⁵⁹ C. Vázquez Sierra⁴⁶ , S. Vecchi²⁵ , J.J. Velthuis⁵⁴ , M. Veltri^{26,v} , A. Venkateswaran⁴⁹ ,
- ⁷⁶⁰ M. Verdoglia³¹, M. Vesterinen⁵⁶, D. Vico Benet⁶³, P. V. Vidrier Villalba⁴⁵,
- ⁷⁶¹ M. Vieites Diaz⁴⁸ (D), X. Vilasis-Cardona⁴⁴ (D), E. Vilella Figueras⁶⁰ (D), A. Villa²⁴ (D),
- ⁷⁶² P. Vincent¹⁶ , F.C. Volle⁵³ , D. vom Bruch¹³ , N. Voropaev⁴³ , K. Vos⁷⁸ ,
- 763 G. Vouters¹⁰ (D), C. Vrahas⁵⁸ (D), J. Wagner¹⁹ (D), J. Walsh³⁴ (D), E.J. Walton^{1,56} (D), G. Wan⁶ (D),
- 764 C. Wang²¹ (D), G. Wang⁸ (D), J. Wang⁶ (D), J. Wang⁵ (D), J. Wang^{4,b} (D), J. Wang⁷³ (D),
- ⁷⁶⁵ M. Wang²⁹ , N. W. Wang⁷ , R. Wang⁵⁴ , X. Wang⁸, X. Wang⁷¹ , X. W. Wang⁶¹ ,
- ⁷⁶⁶ Y. Wang⁶, Z. Wang¹⁴, Z. Wang^{4,b}, Z. Wang²⁹, J.A. Ward^{56,1}, M. Waterlaat⁴⁸,
- 767 N.K. Watson⁵³, D. Websdale⁶¹, Y. Wei⁶, J. Wendel⁸⁰, B.D.C. Westhenry⁵⁴,
- ⁷⁶⁸ C. White⁵⁵ (D), M. Whitehead⁵⁹ (D), E. Whiter⁵³ (D), A.R. Wiederhold⁶² (D), D. Wiedner¹⁹ (D),
- G. Wilkinson⁶³, M.K. Wilkinson⁶⁵, M. Williams⁶⁴, M.R.J. Williams⁵⁸,
- R. Williams⁵⁵, Z. Williams⁵⁴, F.F. Wilson⁵⁷, M. Winn¹², W. Wislicki⁴¹,
- 771 M. Witek⁴⁰, L. Witola²¹, G. Wormser¹⁴, S.A. Wotton⁵⁵, H. Wu⁶⁸, J. Wu⁸,
- 772 Y. Wu⁶, Z. Wu⁷, K. Wyllie⁴⁸, S. Xian⁷¹, Z. Xiang⁵, Y. Xie⁸, A. Xu³⁴, J. Xu⁷, J. Xu⁷
- 773 L. Xu^{4,b} (D), L. Xu^{4,b} (D), M. Xu⁵⁶ (D), Z. Xu⁴⁸ (D), Z. Xu⁷ (D), Z. Xu⁵ (D), D. Yang⁴ (D), K. Yang⁶¹ (D),
- S. Yang⁷ (b), X. Yang⁶ (b), Y. Yang^{28,l} (b), Z. Yang⁶ (b), Z. Yang⁶⁶ (b), V. Yeroshenko¹⁴ (b),
- 775 H. Yeung⁶², H. Yin⁸, X. Yin⁷, C. Y. Yu⁶, J. Yu⁷⁰, X. Yuan⁵, Y Yuan^{5,7},
- E. Zaffaroni⁴⁹, M. Zavertyaev²⁰, M. Zdybal⁴⁰, F. Zenesini^{24,i}, C. Zeng^{5,7},
- ⁷⁷⁷ M. Zeng^{4,b}, C. Zhang⁶, D. Zhang⁸, J. Zhang⁷, L. Zhang^{4,b}, S. Zhang⁷⁰,
- 778 S. Zhang⁶³, Y. Zhang⁶, Y. Z. Zhang^{4,b}, Y. Zhao²¹, A. Zharkova⁴³,
- 779 A. Zhelezov²¹, S. Z. Zheng⁶, X. Z. Zheng^{4,b}, Y. Zheng⁷, T. Zhou⁶, X. Zhou⁸,
- ⁷⁸⁰ Y. Zhou⁷, V. Zhovkovska⁵⁶, L. Z. Zhu⁷, X. Zhu^{4,b}, X. Zhu⁸, V. Zhukov¹⁷,
- 781 J. Zhuo⁴⁷ (D), Q. Zou^{5,7} (D), D. Zuliani^{32,0} (D), G. Zunica⁴⁹ (D).
- ⁷⁸² ¹School of Physics and Astronomy, Monash University, Melbourne, Australia
- ²Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
- ⁷⁸⁴ ³Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- ⁴Department of Engineering Physics, Tsinghua University, Beijing, China, Beijing, China
- ⁷⁸⁶ ⁵Institute Of High Energy Physics (IHEP), Beijing, China
- ⁶School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
 ⁷⁸⁸China
- 789 ⁷University of Chinese Academy of Sciences, Beijing, China
- ⁷⁹⁰ ⁸Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
- ⁹Consejo Nacional de Rectores (CONARE), San Jose, Costa Rica
- ¹⁰ Université Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
- ⁷⁹³ ¹¹ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
- ¹²Département de Physique Nucléaire (DPhN), Gif-Sur-Yvette, France
- ¹³ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
- ¹⁴ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
- ¹⁵Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris,
- 798 Palaiseau, France
- ⁷⁹⁹ ¹⁶LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
- ⁸⁰⁰ ¹⁷I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
- ¹⁸ Universität Bonn Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany
- ⁸⁰² ¹⁹Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
- ²⁰ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
- ²¹Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

- ²²School of Physics, University College Dublin, Dublin, Ireland
- ⁸⁰⁶ ²³INFN Sezione di Bari, Bari, Italy
- ⁸⁰⁷ ²⁴ INFN Sezione di Bologna, Bologna, Italy
- ⁸⁰⁸ ²⁵INFN Sezione di Ferrara, Ferrara, Italy
- ²⁶INFN Sezione di Firenze, Firenze, Italy
- 810 ²⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁸¹¹ ²⁸ INFN Sezione di Genova, Genova, Italy
- ⁸¹² ²⁹INFN Sezione di Milano, Milano, Italy
- ⁸¹³ ³⁰INFN Sezione di Milano-Bicocca, Milano, Italy
- ⁸¹⁴ ³¹INFN Sezione di Cagliari, Monserrato, Italy
- 815 ³²INFN Sezione di Padova, Padova, Italy
- ⁸¹⁶ ³³INFN Sezione di Perugia, Perugia, Italy
- ⁸¹⁷ ³⁴INFN Sezione di Pisa, Pisa, Italy
- ⁸¹⁸ ³⁵INFN Sezione di Roma La Sapienza, Roma, Italy
- ⁸¹⁹ ³⁶INFN Sezione di Roma Tor Vergata, Roma, Italy
- ³⁷Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
- ³⁸Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam,
 Netherlands
- ³⁹AGH University of Krakow, Faculty of Physics and Applied Computer Science, Kraków, Poland
- ⁴⁰Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
- ⁸²⁵ ⁴¹National Center for Nuclear Research (NCBJ), Warsaw, Poland
- ⁴²Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
- $^{43}Affiliated$ with an institute covered by a cooperation agreement with CERN
- $^{\rm 828}$ $^{\rm 44}DS4DS,$ La Salle, Universitat Ramon Llull, Barcelona, Spain
- ⁴⁵ICCUB, Universitat de Barcelona, Barcelona, Spain
- ⁴⁶Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela,
- 831 Santiago de Compostela, Spain
- ⁴⁷Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia CSIC, Valencia, Spain
- ⁴⁸European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ⁴⁹Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ⁸³⁵ ⁵⁰ Physik-Institut, Universität Zürich, Zürich, Switzerland
- ⁵¹NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
- ⁵²Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
- ⁵³School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ⁸³⁹ ⁵⁴H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- ⁵⁵Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ⁵⁶Department of Physics, University of Warwick, Coventry, United Kingdom
- ⁵⁷STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
- ⁵⁸School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁵⁹School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁶⁰ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁶¹Imperial College London, London, United Kingdom
- ⁶²Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁶³Department of Physics, University of Oxford, Oxford, United Kingdom
- $^{64}Massachusetts$ Institute of Technology, Cambridge, MA, United States
- 850 ⁶⁵ University of Cincinnati, Cincinnati, OH, United States
- ⁶⁶ University of Maryland, College Park, MD, United States
- ⁶⁷Los Alamos National Laboratory (LANL), Los Alamos, NM, United States
- ⁶⁸Syracuse University, Syracuse, NY, United States
- ⁶⁹Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ³
- ⁸⁵⁵ ⁷⁰School of Physics and Electronics, Hunan University, Changsha City, China, associated to ⁸
- ⁸⁵⁶ ⁷¹ Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of
- 257 Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China,
- $_{\rm 858}$ $\ associated$ to 4
- $^{\rm 72} Lanzhou$ University, Lanzhou, China, associated to 5
- $_{\rm 860}$ $^{73}School of Physics and Technology, Wuhan University, Wuhan, China, associated to <math display="inline">^4$

- ⁷⁴Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ¹⁶
- ⁷⁵Ruhr Universitaet Bochum, Fakultaet f. Physik und Astronomie, Bochum, Germany, associated to ¹⁹
- ⁷⁶ Eotvos Lorand University, Budapest, Hungary, associated to ⁴⁸
- ⁷⁷ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ³⁷
- ⁷⁸ Universiteit Maastricht, Maastricht, Netherlands, associated to ³⁷
- ⁷⁹ Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland, associated to ⁴⁰
- ⁸⁰ Universidade da Coruña, A Coruña, Spain, associated to ⁴⁴
- ⁸⁶⁸ ⁸¹Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to ⁵⁹
- ⁸⁶⁹ ⁸² University of Michigan, Ann Arbor, MI, United States, associated to ⁶⁸
- ^aCentro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio De Janeiro, Brazil
- ⁸⁷¹ ^bCenter for High Energy Physics, Tsinghua University, Beijing, China
- ⁸⁷² ^cHangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- ⁸⁷³ ^dSchool of Physics and Electronics, Henan University, Kaifeng, China
- 874 ^eLIP6, Sorbonne Université, Paris, France
- ⁸⁷⁵ ^f Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- ⁸⁷⁶ ^g Università di Bari, Bari, Italy
- ⁸⁷⁷ ^h Università di Bergamo, Bergamo, Italy
- ⁸⁷⁸ ⁱ Università di Bologna, Bologna, Italy
- ³⁷⁹ ^j Università di Cagliari, Cagliari, Italy
- ⁸⁸⁰ ^k Università di Ferrara, Ferrara, Italy
- ⁸⁸¹ ^l Università di Genova, Genova, Italy
- ⁸⁸² ^mUniversità degli Studi di Milano, Milano, Italy
- ⁸⁸³ ⁿUniversità degli Studi di Milano-Bicocca, Milano, Italy
- ⁸⁸⁴ ^o Università di Padova, Padova, Italy
- ⁸⁸⁵ ^pUniversità di Perugia, Perugia, Italy
- 886 ^qScuola Normale Superiore, Pisa, Italy
- ⁸⁸⁷ ^r Università di Pisa, Pisa, Italy
- ⁸⁸⁸ ^sUniversità della Basilicata, Potenza, Italy
- ⁸⁸⁹ ^t Università di Roma Tor Vergata, Roma, Italy
- ⁸⁹⁰ ^u Università di Siena, Siena, Italy
- 891 ^v Università di Urbino, Urbino, Italy
- ⁸⁹² ^w Universidad de Alcalá, Alcalá de Henares, Spain
- 893 ^x Facultad de Ciencias Fisicas, Madrid, Spain
- ⁹⁹Department of Physics/Division of Particle Physics, Lund, Sweden
- $^{*}Deceased$