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Abstract
The beam transverse emittances play a critical role for the

performance of high-energy colliders. Various measurement
techniques are thus employed to measure them. In particular,
the so-called luminosity emittance scans are used to evalu-
ate the convoluted beam emittances. This method usually
assumes different emittances in the two planes but identical
emittances in the two beams. In this paper, we propose an
approach to relax this assumption. We present a new mea-
surement protocol and discuss its potential and limits. We
also analyse the impact of statistical measurement errors of
the luminosity value.

INTRODUCTION
The transverse beam emittances directly affect the lu-

minosity of a collider and its overall performance. In the
Large Hadron Collider (LHC) they are typically measured
by means of the Wire Scanners (WS) and the Beam Syn-
chrotron Radiation Telescope (BSRT) [1]. The WS cannot
be used systematically during the operation due to its limita-
tion to low beam intensity [2]. The BSRT can be used for
continuous monitoring, but comes with a relative error of
about 10/20% [3].

In colliders, one could leverage on the diagnostic provided
by the detectors themselves, performing the so-called lumi-
nosity emittance scans [4, 5] (or Van der Meer scans [6]).
By controlling the transverse separation of the beam at the
Interaction Points (IP) with a good knowledge of the ma-
chine parameters and of the luminosity dependence on those
parameters, one can invert the problem. This inversion can
be done analytically, introducing convenient hypotheses. As-
suming that the transverse emittances in the two transverse
planes (horizontal and vertical) are different but are identical
between the two beams (convoluted emittance hypothesis),
and that the beam profiles are Gaussian and ignoring the dis-
persion contribution, it is possible to obtain the dependence
of the luminosity on the horizontal offset 𝛿𝑥 between the
beams at the IP:

ℒ(𝜖𝑥; 𝛽𝑥|𝛿𝑥) = ℒ0 𝑒− 𝛿2𝑥
4𝜖𝑥𝛽𝑥 , (1)

where ℒ0 is the luminosity for 𝛿𝑥 = 0 and 𝜖𝑥 is the con-
voluted horizontal emittance. Knowing 𝛽𝑥, it is possible to
compute the 𝜖𝑥 by measuring ℒ/ℒ0 for different values of
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𝛿𝑥. This approach can be trivially extended to compute the
emittance also in the vertical plane.

Our objective is to generalize the inversion of Eq. (1) solv-
ing numerically the problem assuming the emittances of
the two beams and for the two planes are fully independent
(𝜖𝑥1, 𝜖𝑥2, 𝜖𝑦1, 𝜖𝑦2). In doing so, we could not find a gener-
alization of the inversion of Eq. (1) in closed form, but we
propose a numerical inversion of the luminosity integral [7]:

ℒ = ℒ(𝜖𝑥1, 𝜖𝑥2, 𝜖𝑦1, 𝜖𝑦2; 𝛽𝑥1, 𝛽𝑥2, … |𝛿𝑥, 𝛿𝑦, 𝛿𝜃𝑥, 𝛿𝜃𝑦),
(2)

where 𝛿𝜃𝑥,𝑦 is the variation of the crossing angle.

NUMERICAL INVERSION METHOD
Obtaining the four emittances from the luminosity by in-

verting Eq. (2) is clearly an underdetermined problem. On
the other hand, one can apply several times small variations
to the variables in Eq. (2) (𝛿𝑥, 𝛿𝑦,…) and measure the lu-
minosity ℒ/ℒ0 producing artificially a well-posed system,
which can be inverted numerically. This method is yet to
be tested experimentally in the LHC. We propose a numer-
ical procedure to test our method, where we compute the
ℒ/ℒ0 values using the numerical integral of the luminosity
model [7] and the collider parameters (𝛽𝑥, 𝛽𝑦,…), assum-
ing some values for the four emittances. Subsequently, we
can formulate a system of equations, the inversion of which
retrieves the initially assumed emittances. In practice, we
produce a non-linear system of equation that is solved using
SciPy’s Nonlinear Least Squares method (LS) [8]. Since the
inversion is purely numerical, we can include in the luminos-
ity integral more complex effects, like hourglass effect [7],
geometrical reduction factor [9], dispersion, crabbing. [10].
In practice, the variations of the initial parameters are chosen
to perturb ℒ by at the most 1%, allowing the scan to be,
in principle, almost transparent for the luminosity produc-
tion. As an example, for the typical LHC parameters [11]
at 𝛽∗ = 30 cm, this 1% is attained with a variation of 𝛿𝑦 ∼
1.98 × 10−6 cm and 𝛿𝜃𝑦 ∼ 3.27 µrad.

RESULTS AND DISCUSSION
In the previous section, we presented what we refer to as

the measurement protocol. Unfortunately, this is not enough
to compute the true beam emittances in all circumstances,
since the inversion is ill-conditioned.

This section will briefly detail how we improved the ro-
bustness of the inversion also by taking into account the
statistical measurement error on the luminosity value. The
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main tool we used to guide us in the tuning of the numerical
inversion is the LS penalty function plot. We gradually in-
creased the difficulty of the problem, progressing through
sequential steps. For additional details, see [12].

No Statistical Measurement Error
on the Luminosity

In this subsection, we show the results of the inversion of
the general Eq. (2), neglecting statistical errors in the lumi-
nosity determination. It is possible to show, that assuming
full symmetry in the machine parameters, the problem is
ill-posed. In fact, from the general luminosity formula of [7],
assuming that beta parameters (𝛽∗

{𝑥1,𝑥2,𝑦1,𝑦2},𝛼{𝑥1,𝑥2,𝑦1,𝑦2})
are equal for both beams and planes, it is possible to obtain
this dependence on the luminosity

ℒ(𝜖𝑥1, 𝜖𝑥2, 𝜖𝑦1, 𝜖𝑦2; … ) = ℒ((𝜖𝑥1+𝜖𝑥2), (𝜖𝑦1+𝜖𝑦2); … ).
(3)

More details about this dependence can be found in Ref. [11].
It is evident that due to this symmetry, the LS can es-

timate the two sum emittances ((𝜖𝑥1 + 𝜖𝑥2),(𝜖𝑦1 + 𝜖𝑦2)),
but it is unable to distinguish between the emittances in the
same plane for the different beams. In Fig. 1 it is possi-
ble to visualize the last statement even in a simplified case
(𝜖1 = 𝜖𝑥1 = 𝜖𝑦1, 𝜖2 = 𝜖𝑥2 = 𝜖𝑦2), where the red point in
the center of the image is the first guess of the optimizer.
During several iterations, the solver, from the current guess,
picks two points along the two orthogonal axes, and from
the evaluation of the penalty functions in these three points
obtains the tangent plane, and it proceeds towards its deepest
descent direction obtaining a new guess, and so on. Chang-

Figure 1: Plots of the penalty function when 𝜖1 = 𝜖𝑥1 =
𝜖𝑦1, 𝜖2 = 𝜖𝑥2 = 𝜖𝑦2, with configuration from [11], repre-
sented in the second bar, while the first bar represents the
colour of the different iterations of the optimizer.

ing the nominal value of 𝛽∗ for one of the two beams in each
plane, adding a small value (1 × 10−4 cm, smaller than its
measurement error), it is possible to see in Fig. 2 how accu-
rate the emittance reconstruction becomes. For convenience,
we will refer to the estimated emittance from the LS as ̂𝜖.
Note that all the histograms that will be shown in the follow-
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Figure 2: Histogram of the relative error for all the
random choices of emittances component-wise ([(𝜖𝑥1 −

̂𝜖𝑥1)/𝜖𝑥1, … ]) without considering the luminosity measure-
ment error, where (𝜖𝑥1 ≠ 𝜖𝑥2 ≠ 𝜖𝑦1 ≠ 𝜖𝑦2).

ing are the result of 1600 random choices of emittances in a
square of 20% of the usual value (2.3 × 10−6 ).

Statistical Measurement Error on the Luminosity
In the analytical approach of Eq. (1) and in our numerical

one, there are two hidden assumptions: we neglected the
statistical or systematic errors in the luminosity and in the
machine parameter values.

The purpose of this subsection is to extend the preceding
analysis by examining how the results are affected by adding
a statistical error to the luminosity values used in the sys-
tem. We model this error like a Gaussian, with 0 mean and
standard deviation of 0.1% ℒ0.

Using the same measurement protocol described in the
previous case, it is possible to show that the LS is particu-
larly affected by this random error, leading to an increased
relative error of the estimation, even in a simpler case of
convoluted emittance (𝜖𝑥 = 𝜖𝑥1 = 𝜖𝑥2, 𝜖𝑦 = 𝜖𝑦1 = 𝜖𝑦2),
as can be seen in Fig. 3. As a result, alternative strategies
are proposed. Even in this case, the examination of the
penalty function behaviour can guide us. Figure 4a depicts
the penalty function of the LS in the (𝜖𝑥,𝜖𝑦) case, in the
nominal configuration in [11]. A vertical line near the center
of the plot is observed, delineating a zone characterized by
small values of the penalty function, containing a global
minimum. The orientation of that region is due to the cross-
ing angle plane. In fact, the line represents the vulnerable
aspect of our inversion approach: indeed adding a random
error on the luminosity value, the LS can invert the 𝜖𝑥 but it
is unable to invert the 𝜖𝑦.

To condition this problem, we can use the information
of the other detectors of the LHC, in which the crossing
plane is rotated by 90 degrees. In particular, in ATLAS the
crossing is in the vertical plane, whereas in CMS it is in the
horizontal. This process yields a composite penalty function
comprised of two distinct functions, each characterized by
orthogonal ”minima”. The intersection point of these lines
will stabilize the inversion, as illustrated in Fig. 4b.
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Figure 3: Histogram of the relative error component-
wise(Δ ⃗𝜖/ ⃗𝜖 = [(𝜖𝑥 − ̂𝜖𝑥)/𝜖𝑥, … ]) without considering the
luminosity measurement error, (𝜖𝑥 = 𝜖𝑥1 = 𝜖𝑥2, 𝜖𝑦 = 𝜖𝑦1 =
𝜖𝑦2). In red the error using the luminosity from one detector,
in green the error using the luminosity from two detectors
with different transverse crossing plane.

(a) Penalty function, with y-plane crossing angle.

(b) Penalty function with 2 crossing angle planes.

Figure 4: Plots of the penalty functions when 𝜖𝑥 = 𝜖𝑥1 =
𝜖𝑥2, 𝜖𝑦 = 𝜖𝑦1 = 𝜖𝑦2, in different choices of the configuration
system.

The same strategy can also be employed in the most diffi-
cult example, where all four emittances differ. In this situa-
tion, a larger number of variables is required, namely during
the scan one has to vary also the 𝛽∗. For example, in order
to invert the problem, we need also 2 different 𝛽∗ configura-

tion for each detector. In particular, we need two different
𝛽∗ between the two beams (between the planes the 𝛽∗ can
be equal). Table 1 illustrates an example of different 𝛽∗

configurations to condition the inversion.

Table 1: Table Representing the Different System Configu-
rations for Each Detector

1st detector Δ𝜃𝑥 ≠ 0, Δ𝜃𝑥 ≠ 0,
𝛽∗

1 = 𝛽∗
2 𝛽∗

1 = 1.02𝛽∗
2

2nd detector Δ𝜃𝑦 ≠ 0, Δ𝜃𝑦 ≠ 0,
𝛽∗

1 = 𝛽∗
2 𝛽∗

1 = 1.02𝛽∗
2

The shift for 𝛽∗ is in the order of 2%, so similar to its
measurement error, but it is in principle more complex to
be performed if compared to the orbit related variables. The
histogram in Fig. 5 shows the accuracy of this, relatively
involved, measurement protocol. The success of this strategy
is apparent in the precision of the reconstructed emittances
(standard deviation of ∼ 6 × 10−3 ).
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Figure 5: Histogram of the relative error component-
wise(Δ ⃗𝜖/ ⃗𝜖 = [(𝜖𝑥1 − ̂𝜖𝑥1)/𝜖𝑥1, … ]) considering the lumi-
nosity measurement error, where (𝜖𝑥1 ≠ 𝜖𝑥2 ≠ 𝜖𝑦1 ≠ 𝜖𝑦2).

CONCLUSIONS
In this paper, we proposed a generalization of the luminos-

ity scan measurement protocol with the aim of relaxing the
convoluted emittance assumption. It is based on a fully nu-
merical approach to analyze the problem. The efficacy and
constraints of this methodology have been investigated, and
several alternative strategies have been suggested to mitigate
the inherent limitations of the ill-posed problem.

Subsequent research endeavours could entail expanding
the error analysis to encompass both the measured parame-
ters and the underlying model. Additionally, experimental
validation of this approach on operational runs within the
LHC could provide valuable insights into its real-world ap-
plicability.
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