
Available on the CERN CDS information server CMS PAS MLG-24-002

CMS Physics Analysis Summary

Contact: cms-conveners-ml@cern.ch 2024/09/23

Wasserstein normalized autoencoder

The CMS Collaboration

Abstract

A novel approach to unsupervised jet tagging is presented for the CMS experiment at
the CERN LHC. The Wasserstein normalized autoencoder (WNAE) is a normalized
probabilistic model that minimizes the Wasserstein distance between the probability
distribution of the training data and the Boltzmann distribution of the reconstruction
error of the autoencoder. Trained on jets of particles from simulated standard model
processes, the WNAE is shown to learn the probability distribution of the input data,
in a fully unsupervised fashion, in order to effectively identify new physics jets as
anomalies. This algorithm has been developed and applied in the context of a recent
search for semivisible jets. The model consistently demonstrates stable, convergent
training and achieves strong classification performance across a wide range of signals,
improving upon standard normalized autoencoders, while remaining agnostic to the
signal. The WNAE directly tackles the problem of outlier reconstruction, a common
failure mode of autoencoders in anomaly detection tasks.
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1 Introduction
Unsupervised machine learning algorithms have proven to be powerful tools in the search
for new physics at the LHC [1, 2]. They can effectively separate known standard model (SM)
physics events (background) from potential signal events arising from interactions beyond the
SM, without relying on the simulation of specific signal hypotheses. Autoencoders (AEs) are
frequently used for unsupervised learning tasks. Outlier reconstruction is one of the main
challenges when using AE-based unsupervised machine learning algorithms for anomaly de-
tection. If the autoencoder is able to reconstruct outliers—examples that are not part of the
training data—its performance as a discriminator is degraded. The issue of complexity bias [3]
can be thought of as a type of outlier reconstruction. In this note, we introduce the Wasser-
stein normalized autoencoder (WNAE), an evolution of the normalized autoencoder (NAE)
algorithm [4], to solve these challenges. A search for semivisible jets (SVJs) [5] in the CMS ex-
periment [6] is used as a case study to demonstrate the effectiveness of the WNAE in separating
signal from background events.

The note is organized as follows. Section 2 provides a brief overview of the SVJ search and the
challenges it poses for anomaly detection. Section 3 discusses the use and limitations of AEs as
anomaly detection tools, focusing on the outlier reconstruction problem. In Section 4, a brief
review of the NAE algorithm and its application to anomaly detection in jet physics is given. In
Section 5, the WNAE algorithm is introduced and its advantages over the NAE are discussed.
In Section 6, the results of the WNAE applied to the SVJ search are shown. Finally, Section 7
discusses the implications of the findings and possible future directions.

2 Semivisible jets
Hidden valley models [7] are new physics scenarios in which the SM sector is expanded with
a dark sector, with its own particles and forces. The dark sector particles do not carry charge
under any SM gauge group, and similarly SM particles are not charged under the dark gauge
group. Hidden valley theories may, under certain conditions, lead to an experimental signature
known as a semivisible jet [5]. In the case where the dark sector has a new non-Abelian SU(N)
confining interaction, it would exhibit showering and hadronization qualitatively similar to SM
quantum chromodynamics (QCD). In analogy with the SM sector, the new confining force and
the new particles charged under it are referred to as dark QCD and dark quarks, respectively.
More specifically, we consider a dark QCD interaction SU(Ndark

c ), with a confinement scale
Λdark and Ndark

f flavors of dark quark χ with masses mχ, which communicates with the SM
via a mediator with mass mΦ. In such a model, QCD-like showers occur when Λdark � mΦ
and mχ ∼ Λdark. The dark quarks therefore form bound states (dark hadrons), some of which
may decay back to SM particles to produce a visible signature, depending on the symmetries
of the theory. Stable dark hadrons are invisible and escape detection, giving rise to missing
transverse momentum. The ensemble of stable and unstable dark hadrons produced in the
dark QCD shower is referred to as an SVJ.

CMS has published a search for resonant production of pairs of SVJs [8], and t-channel pro-
duction of SVJs by a bifundamental scalar mediator is also possible [9]. The latter production
mode is considered in this paper. The fraction of stable dark hadrons in the dark QCD shower
can be parametrized by the invisible fraction rinv:

rinv =

〈
Number of stable dark hadrons
Total number of dark hadrons

〉
(1)
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SVJs may have different radiation patterns than SM jets, which can be exploited to identify
them. The details depend on the exact spectrum of the dark hadrons, which in turn depends
on Ndark

c , Ndark
f , Λdark, and the non-perturbative physics in the dark sector, all of which are

unknown. Therefore, anomaly detection, which does not necessitate a detailed simulation of
every target signal hypothesis in this large parameter space, is a powerful complement to tra-
ditional, supervised searches for SVJs [8].

3 Autoencoders for anomaly detection
Autoencoders [10] are a class of neural networks that is intended to learn a compressed rep-
resentation of the input data. This is usually achieved by mapping the input feature space to
a lower-dimensional latent space via an encoder network, and mapping this latent space to
an output space with the same dimension as the input space via a decoder network. Autoen-
coders are typically trained by minimizing a loss function that penalizes the difference between
the input and output, referred to as the reconstruction error of the AE.

Crucially, when AEs are used for new physics searches, the network is only exposed to back-
ground SM events during training. If the network is then able to learn a compressed represen-
tation of the background events, it will be able to reconstruct them with low error. However,
since the new physics signal events are not part of the training set, the AE should be unable
to reconstruct them well, resulting in a larger average reconstruction error. Ideally, the recon-
struction error should be a function of the probability density of the training data: the lower the
probability density of the training data, the higher the reconstruction error. The reconstruction
error itself can therefore be used as a summary statistic to discriminate signal from background
events.

While this reasoning holds for many practical applications of AEs for anomaly detection, it does
not follow in general that achieving low reconstruction error on the background examples is
sufficient for an AE to effectively identify anomalies, as discussed in the next section. This
shortcoming is addressed by the WNAE algorithm, which is the main focus of this note.

3.1 Training setup

Simulated events are used to train and evaluate the performance of the machine learning mod-
els discussed in this note. Considerations for training directly on experimental data are dis-
cussed at the end of this section. Background and SVJ signal events are generated at parton
level with MADGRAPH5 aMC@NLO 2.6.5 [11], final state quarks are hadronized with PYTHIA

8.240 [12], and the interactions of the resulting particles with the CMS detector [6] are simulated
using GEANT4 [13]. The hadronization in the dark sector during signal generation follows the
procedure described in Ref. [8], and all dark hadrons have a fixed mass, 20 GeV. Because of the
hadronization in the dark sector and then in the SM sector, the substructure of SVJs is expected
to be different than that of QCD jets. In particular, SVJs are expected to be wide, and therefore
jets are reconstructed with the anti-kT algorithm with radius parameter R = 0.8 [14, 15]. Each
jet is represented by the following features, describing its substructure:

• the minor and major axes [16], which characterize the elliptical shape of the jet in the
η-φ plane;

• the first energy flow polynomial (EFP1) [17], a multiparticle energy correlator that
directly results from infrared and collinear safety;

• the C(0.5)
2 energy correlation function [18], a ratio of two ratios of energy correlation
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functions that can be used to determine if a jet has two hard subjets;

• the transverse momentum dispersion pD
T [16], which describes the spread of trans-

verse momenta of the jet constituents;

• the softdrop mass [19], the mass of the jet after soft wide-angle radiation has been
removed from the jet; and

• the 2- and 3-subjettiness τ2 and τ3 [20], describing the compatibility of the jet with a
two- or three-prong structure, respectively;

for a total of p = 8 inputs to the AE. These input features were chosen to exploit the difference
in shape (minor and major axes), energy distribution (pD

T and EFP1), prong structure (C(0.5)
2 , τ2,

τ3), and mass of the high-momentum core of the jet (softdrop mass) expected between SM jets
and SVJs. For each event, the two jets with highest transverse momenta are used for training
and evaluation. In addition, among the two selected jets, only jets identified via generator-level
information as originating from dark sector particles are considered as anomalous signal jets
when evaluating the network performance. The inputs are pre-processed via quantile normal-
ization, as implemented in the SCIKIT-LEARN package [21], to follow a normal distribution.
The architecture is a fully connected network with five hidden layers. All layers have ten
nodes, except for the third one (the bottleneck), which has six. The reconstruction of the AE is
parametrized by the weights θ. The reconstruction error lθ for an example x is defined as the
mean squared error (MSE) between the features xi of x and the features x̂θ,i of the reconstructed
output example:

lθ(x) =
1
p

p

∑
i=1

(
xi − x̂θ,i

)2 . (2)

The loss function of the AE is the reconstruction error averaged over the batch:

LAE =
1
N

N

∑
j=1

lθ(x(j)), (3)

where x(j) denotes the j-th example in the batch and N is the number of training examples in a
batch. The background dataset is split into three independent parts: a training set on which the
loss is minimized, a validation set used to monitor the training, and a test set used to evaluate
the performance of the network. The AE is trained until the loss function evaluated on the
validation set ceases to improve. The AE is then tested using multiple SVJ signal models, as
well as the background test sample.

Though simulated events were used for the purpose of developing the WNAE, in practice
it may be preferable to use observed data directly for training, in order to limit biases arising
from differences between data and simulation. However, the presence of an anomaly from new
physics events in the training dataset is found to reduce performance. When a control region
without any new physics events can be defined, it is possible to train directly on the observed
data in this region. When no assumption at all can be made about the new physics signature,
such as in the case of triggering, alternative solutions may exist. The autoencoder associates
low probability density regions with high reconstruction error; because anomalies necessarily
have low probability density, they will still tend to have relatively high reconstruction error
when training a WNAE on a dataset containing them. Therefore, the dataset made of a given
fraction of examples with the lowest reconstruction error will have a reduced proportion of
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anomalous data and thus could be used to retrain the WNAE in a self-supervised approach.
We leave the development of such a procedure for future work.

3.2 Outlier reconstruction

Outlier reconstruction occurs when an AE, while learning to reconstruct the background exam-
ples, also learns to reconstruct pockets of examples outside the training data. More formally:
let B and S be the supports of the background and signal distributions, respectively. The AE
is trained to achieve minimum reconstruction error on background events xb ∈ B. Let E be the
set of examples for which the AE achieves reconstruction error below some threshold. Since
there is no constraint on the reconstruction error of signal events xs ∈ S , there can be a sizable
overlap S ∩ E . This overlap can in general be at least partly disjoint from the training data:
(S ∩ E)−B 6= ∅. Examples drawn from this region of phase space will be assigned low recon-
struction error by the AE, even though they are outside the training data. Thus, these examples
and the background will both have low reconstruction error, decreasing the performance of the
AE’s reconstruction error as a discriminator. This is illustrated in Fig. 1.

Full phase space

Low reconstruction 
error phase space

Training / background 
phase space

Anomaly / signal 
phase space

OOD 
reconstruction 
in the signal 
phase space

OOD

Figure 1: Schematic visualization of the outlier reconstruction failure mode. Signal events
drawn from the hatched area are reconstructed well by the AE, despite not being part of the
training set, and thus will not be separated from the background. The AE training is assumed
to have converged such that the background is reconstructed well.

This issue is found to be especially impactful in the case of the SVJ search. While previous stud-
ies have shown that AEs are an effective tool for the task of discriminating between the signal
and the SM QCD multijet background [22], the performance is found to degrade significantly
when including jets originating from t quarks (tt background). This is shown by training an
AE solely on the tt background.

The receiver operator characteristic (ROC) curve compares the true and false positive rates for
the AE reconstruction error used as a discriminator, and the area under the ROC curve (AUC)
is used to quantify the performance of the AE’s reconstruction error as a discriminator. As
shown in Fig. 2, when achieving minimum reconstruction error on the tt background, the AE
is unable to discriminate between the SVJ signal and the tt background, and the AUC score is
close to 0.5. In order to check that this behavior does not occur because the bottleneck was too
large, the same experiment was repeated with a bottleneck of only two nodes. The results were
found to be consistent with a bottleneck size of six, indicating that the issue does not arise from
insufficient compression of the data.

The AUC scores evolve in nontrivial ways throughout the training. As shown in Fig. 2, the
AUC score improves during the first stages of the training, indicating that the AE is performing
as desired. However, after further training, the AUC score starts to degrade, and eventually
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Figure 2: Left: the reconstruction error (upper panel) and the AUC scores (lower panel) for
the AE trained on the tt background, evaluated during each training epoch on tt background
jets and signal models with mΦ = 2000 GeV and rinv = 0.3 (upper) or rinv = 0.1, 0.3, 0.5, 0.7
(lower). Right: The AUC scores for the same AE, evaluated for the epoch with the minimal
background reconstruction error, for the classification of several SVJ signal hypotheses against
the tt background. The AUC scores are close to 0.5, indicating that the AE is unable to discrim-
inate between the SVJ signal and the tt background.

converges to a value close to 0.5. This is a clear indication that the requirement to minimize
the reconstruction error on the tt background is too weak to achieve good discrimination; it
does not prevent the AE from also reconstructing signal events. One of the key elements of this
note is a proposed metric that is able to quantify the degree of outlier reconstruction without
relying on the signal in any form during training, discussed in Section 4. The second major
part of this work in Section 5 is to use this metric as the direct target for the training, building
a more robust anomaly detection algorithm.

4 The normalized autoencoder paradigm
4.1 Normalized autoencoders

Normalized autoencoders provide a systematic mechanism to suppress outlier reconstruction.
The NAE algorithm was first proposed in Ref. [4], and it was first applied to jet tagging in
high energy physics in Ref. [23]. The core principle is to force the neural network to learn
the probability distribution of training events, rather than simply requiring low reconstruction
error. This coincides with the requirement that the AE learns to reconstruct only examples that
are present in the training data, thus directly tackling the problem of outlier reconstruction.

In analogy with energy-based models, often used for generative modeling, the NAE is assigned
a normalized probability distribution pθ(x), parametrized by the AE weights θ. Following
the maximum entropy principle [24], the probability distribution is chosen as the Boltzmann
distribution from statistical mechanics:

pθ(x) =
1

Ωθ

exp (−Eθ(x)), (4)

where Eθ(x) is the energy of the system and Ωθ is the partition function:
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Ωθ =
∫
B

dx exp(−Eθ(x)). (5)

The energy of the system is defined as the reconstruction error of the AE:

Eθ(x) = lθ(x). (6)

The problem is then recast as a maximum likelihood estimation problem, where the goal is to
find the weights θ that maximize the likelihood of the training data, with probability distribu-
tion denoted pdata. As is common, the negative log likelihood is minimized instead:

Ex∼pdata(x)[− log pθ(x)] = Ex∼pdata(x)[Eθ(x)] + log Ωθ . (7)

Calculating the partition function Ωθ is in general intractable, but the problem can be circum-
vented when using gradient descent to find the optimum, since the gradient of the partition
function can be calculated:

∇θ log Ωθ =
1

Ωθ

∇θΩθ =
1

Ωθ

∫
B

dx∇θ exp(−Eθ(x)) (8)

=
∫
B

dx
1

Ωθ

exp(−Eθ(x))∇θ(−Eθ(x)) (9)

=
∫
B

dxpθ(x)∇θ(−Eθ(x)) (10)

= −Ex∼pθ(x)[∇θEθ(x)], (11)

which is the expectation value of the AE loss over the probability distribution pθ(x). The gradi-
ent of the loss can thus be calculated by sampling from the probability distribution pθ(x). This
can be done via a Markov chain Monte Carlo (MCMC) algorithm. Tuning the parameters of the
MCMC is a crucial and delicate step in applying the NAE approach, which will be discussed
in more detail in Section 4.2.3. The loss function to be minimized is then:

LNAE = Ex∼pdata(x)[Eθ(x)]−Ex′∼pθ(x′)[Eθ(x′)]. (12)

Both terms in Eq. (12) are expectation values of the AE loss. The first term is the expectation
value over the training data x (the usual AE loss), referred to as the positive energy. The second
term is the expectation value over samples x′ drawn from the probability distribution pθ(x),
referred to as the negative energy. The NAE loss is thus the difference between the positive and
negative energy, respectively denoted E+ and E−:

LNAE ≡ E+ − E−. (13)

In analogy, the training examples are referred to as positive examples, and examples drawn
from pθ(x) are referred to as negative examples. In this way, the NAE is not trained just to re-
construct background events well, but rather to learn the probability distribution of the training
data. The NAE is therefore penalized for having low reconstruction error in regions with low
probability density of the training data, hence suppressing the reconstruction of examples out-
side the background support B. It is worth emphasizing that the whole procedure is still fully
unsupervised. The NAE is trained only on background events, and the signal is not used in
any form during training.
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4.2 Markov chain Monte Carlo

The key feature of the normalized autoencoder paradigm is to estimate the autoencoder proba-
bility pθ . This is achieved by running an MCMC algorithm to obtain a set of examples following
the pθ distribution. In this section, we describe the chosen MCMC algorithm, an approach to
MCMC initialization, and finally the tuning of the MCMC hyperparameters.

4.2.1 MCMC algorithm

The MCMC algorithm employed for this model is the Langevin Monte Carlo algorithm. First,
a starting set of points {x}0 is drawn from an initial distribution, following the procedure laid
out in Section 4.2.2. Using Langevin dynamics, a new set of points is then proposed from
the gradient of the target probability distribution. The process is repeated NMCMC times, until
{x}NMCMC

is representative of the target distribution, in this case pθ . The Langevin dynamics
MCMC equation is:

xi+1 = xi + λ∇x log pθ (xi) + σεi (14)

where λ is the step size, σ is the noise coefficient, εi is an independent draw from a normal
distribution on Rd with mean 0 and covariance matrix equal to the d× d identity matrix, and
d denotes the number of dimensions of the space over which pθ is defined, pθ : Rd 7→ R. We
denote the probability distribution of the sample {x}i as ρi. With the choice:

σ =
√

2λ, (15)

and an infinite number of steps, the probability ρi converges towards the target probability pθ :
limi→∞ ρi = pθ . In practice, pθ needs to be estimated at every gradient descent step, once every
batch, while training an NAE. For that reason, the number of MCMC steps cannot be too large,
and the probability pθ can only be approximated. In order to enhance the gradient term for
MCMC with a finite number of steps, the temperature T is introduced:

xi+1 = xi +
λ

T
∇x log pθ (xi) + σεi. (16)

Temperatures T < 1 result in an effective increase of the gradient term.

4.2.2 Initialization of the MCMC

In theory, the convergence of the MCMC does not depend on the random initial set of points
from which the MCMC starts. However, there are two motivations for using a non-random
initial set of points. First, the MCMC is not infinitely long, and so there is no guarantee of con-
vergence starting from any initial distribution. Second, from one batch to another, the neural
network weights and pθ both only change slightly, so a good initialization for batch i usually
also works for batch i + 1. Persistent contrastive divergence (PCD) [25] is used to initialize
the MCMC at each batch. In PCD, the MCMC in batch i starts not from a new random set of
points, but rather from the final set of points obtained from the MCMC in batch i− 1. This pro-
cedure can be tuned by adding a restart fraction f , meaning that at every batch, a fraction f of
the points sampled for the previous batch are discarded and replaced by new, random points,
while the remaining points from the previous batch are reused [26]. The restart fraction f is a
hyperparameter of the MCMC and was set to 5%.
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4.2.3 Tuning of the MCMC

The MCMC is the crucial component of the NAE. A suboptimal MCMC would not accurately
sample the NAE probability pθ , resulting in the NAE not being able to learn the training data
probability distribution pdata. However, tuning the hyperparameters of the MCMC—the coef-
ficients of Eq. (14), the drift λ and the noise σ—is a complex task since the pθ distribution is
unknown.

The MCMC hyperparameters λ and σ were optimized to maximize the AUC for classifying
SVJs versus tt jets, using the loss function introduced in Eq. (17), under two constraints. First,
at the maximum AUC, the negative and positive samples histograms of the input features
should match, as discussed in Section 4.3 and Fig. 4. Second, the Wasserstein distance between
the positive and negative samples should be minimal, as discussed in Section 5.1. If the MCMC
is correctly set and the network is sufficiently trained, then the network learns pθ = pdata, so
the AUC is greater than 0.5, assuming the distribution of the signal is not also equal to pdata, in
which case no discrimination is possible. In this case, the distribution of the negative sample is
representative of the pdata distribution.

Some MCMC settings with a considerably larger gradient coefficient λ compared to the op-
timum were found to reach larger AUCs; however, these failed to achieve a good match be-
tween the distributions of negative and positive samples. Such MCMC configurations, though
appealing if only the AUC is considered, result in an inadequate NAE that has not learned
pθ = pdata, but rather has a large AUC only because of the specific location of the signal hy-
potheses. This choice would therefore bias the performance of the NAE towards the signal
hypotheses used for tuning, spoiling the unsupervised nature of the setup.

4.3 Failure modes of the NAE

After tuning of the MCMC, the evolution of the positive and negative energies of an NAE with
the loss function as defined in Eq. (13) is presented in Fig. 3. It presents two failure modes: neg-
ative loss values, indicating the negative energy is higher than positive energy; and divergence
of the two energies.
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Figure 3: Left: NAE training showing the divergence of the loss function, in terms of positive
and negative energy (upper panel), and the AUC for several signal hypotheses with fixed me-
diator mass, mΦ = 2000 GeV, but varying invisible fraction rinv (lower panel). Right: from the
same training, the positive and negative energies are shown before the divergence, illustrating
their differences.
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Negative values of the energy difference occur when the network did not learn the background
probability distribution, and the training data probability density, pdata, is higher than the NAE
probability density, pθ , in regions with low reconstruction error. This is a severe failure mode,
illustrating that training the NAE to minimize the energy difference can incentivize the NAE
to learn pθ 6= pdata.

The divergence of the negative energy was also reported in previous work [4, 23]. It was found
to happen for multiple reasons. First, there are limitations when sampling negative samples
from a finite phase space. When the region of phase space with the lowest reconstruction error
lies beyond the sampling boundaries, negative samples accumulate at the boundaries, unable
to reach the lowest reconstruction error phase space. This results in a failure mode in which the
network is incentivized to increase the reconstruction error of positive and negative samples,
effectively leading to a divergence of both energy terms and the loss itself, as shown in Fig. 3.
The distributions of a selected input feature τ3 for the positive, negative, and signal (only used
for plotting purposes, not training) samples before and after the start of the divergence are
provided in Fig. 4, showing that the finite sampling phase space is the cause of the divergence.
However, sampling from an infinite phase space is not possible in practice. Moreover, large
regions of the input feature space may be valid for computing the NAE reconstruction error but
still physically meaningless, such as negative values of jet substructure variables. Therefore,
sampling from an infinite, unbounded phase space is not desirable.
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Figure 4: Histograms of the input feature τ3 for positive, negative, and signal samples, before
(epochs 274) and after (epochs 275–279) the start of the divergence of the NAE loss.

Second, both negative values of the energy difference and divergence of the energies can result
from incorrect MCMC tuning. For instance, large values of λ result in MCMC steps beyond the
size of the sampling phase space, such that the negative samples are pushed to the boundaries
of that space. Therefore, the negative samples are not representative of the network probability
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distribution, leading to negative values of the energy difference and divergences, from the
mechanism explained previously. A simple way of mitigating these issues would be to modify
the NAE loss to:

L = log cosh(E+ − E−). (17)

This removes the incentive to favor negative energy difference, and leads to a more stable
training procedure. The evolution of the energies and the AUC score for a training with this
loss function are shown in Fig. 5.
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Figure 5: Positive and negative energies (upper panel) and AUC for several signal hypotheses
with fixed mediator mass, mΦ = 2000 GeV, but varying invisible fraction rinv (lower panel)
during training with the loss function in Eq. (17).

The behavior can be qualitatively understood as follows: there is a first stage in which the en-
ergy difference is minimized, giving the largest improvement in AUC; once the difference be-
tween positive and negative energies is approximately zero, there is a second stage in which the
network must fine-tune its knowledge of pθ , further increasing the AUC score up to a plateau.
There is, however, a third stage in which a new form of mode collapse is observed: the energy
difference is still roughly constant and zero, and the positive energy is further minimized, but
the AUC score begins to decrease. Crucially, it is not possible to avoid this degradation by re-
lying solely on the positive and negative energies. On the other hand, making use of the AUC
score as a stopping condition for the training would be in contradiction with the unsupervised
nature of the NAE.

This form of collapse is understood as a form of overtraining of the network. While keeping
the reconstruction error low, the network eventually achieves low reconstruction in a region E
that contains, but is larger than, the support of the training data B, while keeping Ex∼E [E(x)]
comparable to Ex∼B [E(x)]. As the overlap of E with the support of the signal S becomes larger,
the AUC score decreases. This behavior is shown schematically in Fig. 6. A solution to this
problem, leading to the development of the WNAE algorithm, is discussed in the following
section.
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Figure 6: Schematic representation of the mode collapse when using the loss function described
in Eq. (17). Left: before the mode collapse, E and B overlap, while E and S do not. Right:
after the mode collapse, E expands and can partially include S , reducing the difference in
AE reconstruction error and thus lowering the AUC score. E+ and E− respectively denote
the positive and negative energies. In both cases, the difference between the positive and the
negative energies is zero.

5 The Wasserstein normalized autoencoder
5.1 The Wasserstein distance as a measure of outlier reconstruction

The failure mode described at the end of Section 4 is a consequence of the fact that the energy
difference is unable to distinguish the two cases shown in Fig. 6. In fact, there is no stop-
ping condition based solely on combinations of positive and negative energies that was found
to be a good indicator of the start of this mode collapse. In other words, without explicitly
monitoring the AUC during training, there is no clear stopping condition; choosing a stopping
condition based on the AUC, however, violates the principle of unsupervised learning. In or-
der to overcome this problem, a new metric was introduced, using the Wasserstein distance W
(also known as the earth mover’s distance) between the probability distribution of the training
data pdata and the probability distribution learned by the network pθ , in analogy to what was
applied successfully to generative adversarial networks [27]:

W(pdata, pθ) = inf
γ∈Π(pdata,pθ)

E(x,x′)∼γ

[
‖x− x′‖

]
, (18)

where Π(pdata, pθ) denotes the set of all joint distributions whose marginal distributions are
pdata and pθ , respectively. The Wasserstein distance is found to be a good indicator of the start
of the mode collapse, as can be seen in Fig. 7: the Wasserstein distance increases significantly
when this collapse occurs and the AUC simultaneously starts to decrease. The kink in the
Wasserstein distance, quantified as the point in which its derivative changes by more than a
given threshold, can then be identified as a stopping condition for the training of the NAE.
It is worth stressing that the Wasserstein distance, being calculated between the positive and
negative samples, is completely agnostic to the signal, and yet it is found to be closely correlated
with the performance of the NAE as an outlier detector. With this prescription, the NAE was
able to successfully learn the tt distribution and effectively detect the signal, as shown in Fig. 7.

5.2 Obtaining a differentiable Wasserstein distance

Having shown that the Wasserstein distance is a good indicator of the performance of the NAE
as an outlier detection algorithm, it is natural to use it directly as a loss function. This is com-
mon practice in energy-based models for generative applications. Such a generative model g is
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Figure 7: Upper: the positive and negative energy (upper panel), and the Wasserstein distance
between the positive and negative samples with AUC scores for several signal hypotheses with
fixed mediator mass, mΦ = 2000 GeV, but varying invisible fraction rinv (lower panel), during
the training of an NAE with the loss function in Eq. (17). Lower left: the AUC scores for an
NAE trained on the tt background and tested against a grid of possible SVJ signals, before the
increase of the Wasserstein distance (at epoch 3000). Lower right: the AUC scores for the same
NAE after the increase in Wasserstein distance (at epoch 10000).
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Figure 8: Flowchart of the Wasserstein normalized autoencoder training. The positive exam-
ples are passed through the autoencoder, and the negative examples are generated via MCMC.
The Wasserstein distance is calculated between the positive and negative examples, and the
gradients are backpropagated through the entire MCMC chain.

trained to minimize the Wasserstein distance W between the training examples x it is trying to
replicate, and the samples g(z) it generates from random noise z:

Lgenerative = W(pdata, pg) = inf
γ∈Π(pdata,pz)

E(x,z)∼γ [‖x− g(z)‖] . (19)

A differentiable implementation of the Wasserstein distance metric is provided in the POT
package [28]. In the case of energy-based generative models, the Wasserstein distance depends
explicitly on the network weights via g(z). However, this is not the case for an AE with the loss
function defined in Eq. (18), since neither the positive nor the negative examples are passed
through the network explicitly. The dependency is in the generation of the negative examples,
which is done via the MCMC described in Section 4. As is evident from Eq. (16), the depen-
dency on the network weights is in the gradient of the energy function with respect to the input
features. As such, in order to use the Wasserstein distance as a loss function, the dependency
of each step of the MCMC on the weights of the network must be retained:

∇θxi+1,θ = ∇θxi,θ − λ∇θ∇xEθ(xi,θ). (20)

In the PYTORCH package [29], this is accomplished by explicitly enabling the create graph
flag when calling the autograd method on the AE energy at each MCMC step. This ensures
that the computational graph, on which PYTORCH relies to perform the backpropagation step,
includes the dependency of the negative examples on the network weights throughout the
MCMC. With this prescription, the Wasserstein distance can be used as a loss function for the
AE, and the resulting model is called the Wasserstein normalized autoencoder (WNAE). The
flowchart for training the WNAE is shown in Fig. 8.
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5.3 Training the Wasserstein normalized autoencoder

The model discussed in the following is the same fully connected AE as in the previous sections,
consisting of 5 layers with 10, 10, 6, 10, and 10 nodes. The network is trained on a sample of tt
background events. The features have been preprocessed with the same quantile normalization
as in the AE and NAE examples. The loss function is now the Wasserstein distance as written
in Eq. (18).

Special care has to be taken in the choice of the learning rate, as the training is found to qual-
itatively proceed in two phases: first, a coarse adjustment in which the Wasserstein distance
decreases sharply while the model adapts the negative samples to resemble physical examples,
and second, a fine-tuning phase in which the model learns the specifics of the training sample.
If the learning rate is too small, the training time increases significantly, while if it is too large,
the training becomes unstable in the second phase. In this example, an initial learning rate
of 2× 10−4 is chosen. The torch.optim.lr scheduler.ReduceLROnPlateau method is
used to reduce the learning rate by a factor of 0.8 when the Wasserstein distance stops decreas-
ing sharply. This was found to be a good compromise between training time and stability.

The computational bottleneck for training the WNAE is the calculation of the Wasserstein dis-
tance between the positive and negative samples, which takes approximately 90% of the com-
putation time for each training batch. The second most impactful operation is the backprop-
agation through the MCMC chain, which takes approximately 7% of the computation time.
The time needed for the calculation of the Wasserstein distance heavily depends on the batch
size, which was set to 4096 to allow for a robust estimation of the distance between positive
and negative samples. Lowering the batch size reduces the computation time at the expense
of decreasing the stability of the loss function. Depending on the batch size, the training of
the WNAE can thus be significantly slower than that of the NAE. However, the Wasserstein
distance is found to be a much more reliable and stable stopping condition, as will be shown
in the following section.

6 Performance of the Wasserstein normalized autoencoder
6.1 Identification of semivisible jets

The WNAE is found to be significantly more stable in training, not showing any of the forms
of divergence described previously. It is able to achieve anomaly detection performance on par
with or better than the NAE, while using the minimum of the validation loss, the Wasserstein
distance evaluated on the validation set, as a clear stopping condition. Figure 9 shows the evo-
lution of the Wasserstein distance and the AUC score for several SVJ signal hypotheses. The
minimum of the Wasserstein distance corresponds to the maximum discrimination power. Fig-
ure 10 shows the AUC score evaluated for a grid of SVJ signals, showing good discrimination
power across the parameter space. The WNAE is thus found to be a more reliable, stable, and
effective tool for anomaly detection in the context of the SVJ search. In addition, it must be
noted that this algorithm does not rely on the existence of a bottleneck with lower dimension
than the input feature space. The same performance can be obtained with all hidden layers
being of higher dimension than the input feature space.

The fact that the WNAE behaves as desired can be seen in Figs. 11 and 12, where the distri-
butions of the input features for the positive, negative, and signal samples are shown at the
start and end of the training. Starting from an essentially multivariate distribution, induced by
the random weight initialization of the network, the WNAE is able to learn the distribution of
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Figure 9: Left: the Wasserstein distance between pairs of the positive, negative, and signal
samples during the WNAE training. Right: the AUC scores from the same WNAE for several
signal hypotheses with fixed mediator mass, mΦ = 2000 GeV, but varying invisible fraction
rinv.
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Figure 10: The AUC scores for a WNAE trained on the tt background and tested on a grid of
possible SVJ signal models.

the training data, as evidenced by the negative and positive sample distributions eventually
matching.

6.2 Complexity bias in the Wasserstein normalized autoencoder

A common weakness of plain AEs is the so-called complexity bias, in which the AE tends to
be able to effectively discriminate only between examples whose distribution in input space
is more structured than that of the training data. This can be demonstrated by inverting the
background and signal samples and observing that, in this case, an AE trained on SM jets can
tag SVJs as anomalous, but the reverse is not true. Because the WNAE learns the probability
distribution of the training data in input space, this issue is mitigated, as shown in Fig. 13. The
high AUC at the start of the training is caused by the Gaussian initialization of the network
weights. The AUC then decreases as the network learns a distribution closer to the physical
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Figure 11: The distributions of half of the input variables, τ2, τ3, EFP1, and C(0.5)
2 , for the pos-

itive, negative, and signal samples, at the start (upper) and at the end (lower) of the WNAE
training.
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Figure 12: The distributions of the other half of the input variables, axis major, axis minor, pD
T ,

and softdrop mass, for the positive, negative, and signal samples, at the start (upper) and at the
end (lower) of the WNAE training.

input data, before increasing again as the network starts to more precisely learn the distribution
of SVJ examples and thus becomes able to tag SM jets as anomalous.
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Figure 13: The Wasserstein distance between the positive and negative samples and the AUC
score during the training of a WNAE on an SVJ signal (mΦ = 2000 GeV, rinv = 0.3), with the tt
background used for testing.

7 Summary
Autoencoder-based anomaly detection relies on learning a reconstruction error such that phase
space regions with low probability density have high reconstruction error and can be identi-
fied as anomalous. However, standard autoencoders are prone to learn to reconstruct outliers
because they are free to minimize the reconstruction error outside the training phase space.
The normalized autoencoder paradigm promotes the autoencoder reconstruction error to an
energy function in the framework of energy-based models, in order to define a normalized
probabilistic model. This is achieved by minimizing the negative log-likelihood of the train-
ing data, given the energy-based model probability. In practice, this construction presents a
number of failure modes, such as divergence of the loss function and phase space degeneracy,
leading phase space regions distinct from the training data to have low reconstruction error.
The Wasserstein normalized autoencoder, an improvement over normalized autoencoders, is
introduced to solve the aforementioned failure modes. This is achieved by using the Wasser-
stein distance to quantify the difference between the probability distribution of the training
data and the Boltzmann distribution of the energy function of the model. Using simulated
samples from the CMS experiment, the classification of out-of-distribution examples by the
Wasserstein normalized autoencoder is shown to be on par with or better than that of the nor-
malized autoencoder. Furthermore, the Wasserstein distance is found to be a robust metric to
define a stopping condition for the training in a fully signal-agnostic fashion.
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