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Abstract

The ALICE Collaboration presents a new suite of jet substructure measurements in Pb–Pb and pp
collisions at a center-of-mass energy per nucleon pair

√
sNN = 5.02 TeV. These measurements pro-

vide access to the internal structure of jets via the momentum and angle of their constituents, probing
how the quark–gluon plasma modifies jets, an effect known as jet quenching. Jet grooming addi-
tionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental
uncertainties. We report the groomed and ungroomed jet mass mjet and jet angularities λ κ

α using
κ = 1 and α > 0. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm
with E-scheme recombination and resolution parameter R = 0.2. This public note complements the
publication of the same title with an explicit presentation of all the mjet and λ κ

α results obtained using
these data sets. A narrowing of the jet mass and angularity distributions in Pb–Pb collisions with
respect to pp is observed and is enhanced for groomed results, confirming modification of the jet
core. By using consistent jet definitions and kinematic cuts between the mass and angularities for
the first time, previous inconsistencies in the interpretation of quenching measurements are resolved,
rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting
the importance of a well-controlled baseline. These results are compared with a variety of theoretical
models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark–gluon
plasma.

*See Appendix A for the list of collaboration members
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1 Introduction

Collisions of ultra-relativistic heavy ions at the Large Hadron Collider (LHC) allow the study of bulk
properties in quantum chromodynamics (QCD) at high temperature and density. These collisions produce
a strongly-interacting state of matter called the quark–gluon plasma (QGP) [1, 2] where quarks and
gluons are deconfined from nucleons. The hard scattering of two partons from these collisions forms
collimated sprays of particles called jets. As they traverse the QGP, the partonic jets lose energy to the
medium and their internal structure is modified, an effect known as jet quenching [3–7]. Consequently,
jets can probe the structure and evolution of the QGP, and provide information about QGP transport
properties, degrees of freedom, and the mechanisms for energy loss, as a function of momentum scale.

Jet substructure observables, which characterize the angular and transverse momentum distributions of
the particles which constitute jets, can quantify these QGP quenching effects [8, 9]. For example, the jet
invariant mass,

mjet ≡
√

E2
jet− p2

jet, (1)

where Ejet is the jet energy and pjet its total momentum, has seen extensive experimental [10–20] and
theoretical [21–24] study in recent years. The generalized jet angularities [25–29] are another class of
such observables, defined as

λ
κ
α ≡ ∑

i∈jet

(
pT,i

pch jet
T

)κ(
∆Ri

R

)α

, (2)

where i runs over constituents in the jet, pT designates transverse momentum, R is the jet resolution
parameter, and ∆Ri ≡

√
(yjet− yi)2 +(ϕjet−ϕi)2 gives the distance between the jet axis and its ith con-

stituent in the rapidity (y) – azimuthal angle (ϕ) plane. The continuous parameters α and κ define the
specific observable, where the κ = 1 and α > 0 configurations are infrared and collinear (IRC) safe [30].

Both mjet and λ κ
α characterize the jet radial energy profile, with a direct theoretical relation between

them,

λ
1
2 =

(
mjet

pch jet
T R

)2

+O[(λ 1
2 )

2], (3)

where λ 1
2 is also called the jet thrust [31], and the last term contains higher-order corrections in mjet [32].

The jet thrust is also related to the jet girth [33], g= λ 1
1 R, with a smaller angular weighting α . The ALICE

collaboration measured g and mjet in Pb–Pb collisions during LHC Run 1 at nucleon–nucleon center-of-
mass energy

√
sNN = 2.76 TeV, and compared the results to Monte Carlo models of pp collisions [11, 34].

Significant quenching modification was observed for g, while no significant modification was seen for
mjet. Since g and mjet are theoretically related, this discrepancy was unexpected. These measurements
differed in their ranges of pch jet

T , associated with quenching strength and nonperturbative dependence, as
well as the angular weighting α , associated with momentum broadening, which both could account for
the discrepancy.

This public note presents angularities for the 10% most central Pb–Pb collisions at
√

sNN = 5.02 TeV. A
recent measurement of IRC-safe angularities in pp collisions at identical center-of-mass energy is used as
a no-quenching baseline [35]. We preserve the convenient notation λα ≡ λ 1

α from this measurement, and
compare these angularities with new measurements of mjet using the same pp and Pb–Pb collision data,
using equivalent R for the first time to address the girth–mass inconsistency. The results are reported
for background-subtracted charged-particle jets with transverse momenta of 40 < pch jet

T < 150 GeV/c,
extending the results published in Ref. [36]. These results at higher pch jet

T extend the kinematic reach of
previous measurements and probe the strength of jet-medium interactions at varying energy scales.

Soft drop grooming [37] is employed to remove soft wide-angle radiation from jets, minimizing the
nonperturbative dependence of mjet and λα . Systematically varying pch jet

T , α , R, and grooming for each
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observable provides coherent constraints on models of jet quenching.

2 Experimental setup and data sets

A description of the ALICE detector and its performance can be found in Refs. [38, 39]. The pp data set
used in this analysis was collected in 2017 during LHC Run 2 at

√
s = 5.02 TeV. A minimum bias (MB)

trigger was used, which required a coincidence of hits in V0A and V0C detectors, covering pseudorapid-
ity ranges of 2.8 < η < 5.1 and −3.7 < η <−1.7, respectively [40]. The Pb–Pb data set was collected
in 2018 during LHC Run 2 at

√
sNN = 5.02 TeV. A centrality trigger that selects the 0–10% most central

events, based on the multiplicity of produced particles in the forward V0 counters, was used [41, 42].
The event selection includes a primary vertex selection, where the primary vertex is required to be unique
for the event and to be within ±10 (±1) cm from the center of the detector in the longitudinal (trans-
verse) direction. Beam-induced background events are removed using the timing information of the V0
detectors and, in Pb–Pb collisions, two neutron Zero Degree Calorimeters located ±112.5 m along the
beam axis from the center of the detector. Pileup is rejected based on multiple reconstructed vertices
and tracking selections [39]. After these selections, the pp data sample contains 870 million events and
corresponds to an integrated luminosity of 18.0±0.4 nb−1 [43]. The corresponding Pb–Pb data sample
contains 91.2 million events in 0-10% most central collisions, corresponding to an integrated luminosity
of 0.119±0.003 nb−1 [44].

This analysis uses charged particle tracks reconstructed using information from both the Time Projection
Chamber (TPC) [45] and the Inner Tracking System (ITS) [46]. Two types of tracks are defined: global
tracks and complementary tracks. Global tracks are required to include at least one hit in the silicon pixel
detector (SPD) comprising the first two layers of the ITS and to satisfy multiple tracking criteria. Com-
plementary tracks are all those satisfying all the selection criteria of global tracks except for the request
of a point in the SPD. They are refitted using the primary vertex to constrain their trajectory in order to
preserve a good momentum resolution, especially at high pT. Including this second class of tracks en-
sures approximately uniform azimuthal acceptance, while preserving similar transverse-momentum pT
resolution to tracks with SPD hits. Tracks with 0.15 < pT < 100 GeV/c are accepted over pseudorapidity
|η |< 0.9 and azimuthal angle 0 < ϕ < 2π . The track pT selection has no effect on jets with pch jet

T < 100
GeV/c and has a negligible effect on jets with 100 < pch jet

T < 150 GeV/c.

The instrumental performance of the detector is estimated with a model of the ALICE detector and
its response to particles using GEANT3 [47]. The tracking efficiency in pp collisions, as estimated
with a simulation performed with PYTHIA8 Monash 2013 [48] for the event generation and using the
GEANT3 [47] transport code for propagating particles through the simulated ALICE apparatus simula-
tion, is approximately 67% at track pT = 0.15 GeV/c, and rises to approximately 84% at pT = 1 GeV/c,
and remains above 75% at higher pT. Studies of the centrality dependence of the tracking efficiency in
a HIJING [49] simulation demonstrate that the tracking efficiency is approximately 2% lower in 0–10%
central Pb–Pb collisions compared to pp collisions, independent of track pT. The momentum resolution
σ(pT)/pT is estimated from the covariance matrix of the track fit [39], and is approximately 1% at track
pT = 1 GeV/c and 4% at pT = 50 GeV/c.

3 Analysis method

3.1 Jet reconstruction

Jets are reconstructed from charged-particle tracks with FastJet 3.3.3 [50] using the anti-kT algorithm
with E-scheme recombination for resolution parameter R= 0.2 [51, 52]. Despite track-based observables
being collinear-unsafe [53], they offer greater momentum and angular precision than calorimeter-based
observables. The π± meson mass is assumed for all jet constituents. For pp collisions, all reconstructed
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jets in the range 5 < pch jet
T < 200 GeV/c are analyzed. Jets in heavy-ion collisions have a large uncorre-

lated background contribution due to fluctuations in the underlying event (UE), owing to the large number
of soft, thermally-produced particles from the QGP. In ALICE, the UE contribution is quantified through
the transverse momentum density per unit area, ρ , which is on average 146 GeV/c in central (0-10%)
collisions. To reduce this thermal background, this measurement uses the event-by-event constituent
subtraction method, which corrects the overall pch jet

T and its substructure simultaneously by subtracting
energy constituent by constituent [54, 55]. The constituent subtraction method works by adding mass-
less, negligible “ghosts” to the event over the entire acceptance whose transverse momentum is very
small and negative. The ghosts and particles are then combined based on how close they are to each
other, as defined by

∆R = (pT)
α ·
√

(η−ηg)2 +(ϕ−ϕg)2 (4)

where ηg and ϕg are the η and ϕ of the ghosts, pT is the transverse momentum of the particle, and α

is a parameter that can be varied. Particles and ghosts with less than zero total momentum are removed
from the event. The maximum recombination distance Rmax specifies how close the particles and ghosts
must be to be considered a match. The values Rmax = 0.1 and α = 0 are chosen, which yields a corrected
charged-particle jet transverse momentum pch jet

T with minimal smearing. After background subtraction,
the measured range is 40 < pch jet

T < 200 GeV/c, which is used in the unfolding procedure (see Sect. 3.2)
and corrected to the final reported range of 40 < pch jet

T < 150 GeV/c. The jet axis is required to be within
the fiducial volume of the TPC,

∣∣ηjet
∣∣< 0.9−R= 0.7, where ηjet is the jet pseudorapidity. Jets containing

a track with ptrack
T > 100 GeV/c are rejected in order to optimize the overall jet momentum resolution.

This rejection has a negligible effect on jets with pch jet
T < 150 GeV/c.

The jet reconstruction performance is studied via a Monte Carlo (MC) approach, by comparing PYTHIA8
generated jets at “truth level” (before the particles undergo interactions with the detector) to those at “de-
tector level” (after the ALICE GEANT3 detector simulation). In pp collisions two collections of jets
are constructed: pp truth level (PYTHIA truth) and pp detector level (PYTHIA with detector simula-
tion). The detector-level jets are then geometrically matched with truth-level jets within ∆R < 0.6 R, and
required to be a unique match. To create the MC sample for Pb–Pb collisions, PYTHIA events are em-
bedded into 0–10% centrality Pb–Pb measured events. A truth-level jet from PYTHIA is then assigned
with an associated “combined” jet, consisting of a jet constructed from PYTHIA detector level tracks
with tracks from the Pb–Pb data. Since the tracking efficiency in Pb–Pb data is roughly 2% worse than
in pp, 2% of all tracks are also randomly rejected from the events at detector-level before applying jet
reconstruction to account for this difference. Three collections of jets are therefore defined: pp truth level
and pp detector level, in the same way as in pp collisions, and combined level. A scheme of jet matching
is used where the “combined” jet is matched geometrically to the nearest pp detector-level jet, requiring
that the jets are within ∆R < 0.6 R and that the combined jet contains at least 50% of the total ptrack

T of the
pp detector-level jet, implicitly enforcing uniqueness. Additionally, the pp detector-level jet is matched
to its corresponding pp truth-level jet in the same way as was done for the jets in pp collisions.

For the groomed jet observables, we perform soft drop grooming [37], in which the jet is re-clustered
with the Cambridge-Aachen algorithm with resolution parameter R. The jet is then declustered starting
from the largest-angle splitting, where each splitting in the declustered sequence is defined by

z≡
pT,subleading

pT,leading + pT,subleading
. (5)

If the so-called soft drop condition is not satisfied by a particular splitting, meaning that

z≤ zcutθ
β , (6)

where the angle θ is defined by

θ ≡ ∆R
R
≡
√

∆y2 +∆ϕ2

R
, (7)
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where ∆y (∆ϕ) is the difference between the jet and contituent rapidity (azimuthal angle), and zcut and
β are free parameters of the grooming algorithm, then the softer branch is dropped, and we proceed to
the next splitting in the harder branch. If the soft drop condition is satisfied, meaning Eq. 6 is not true,
then the grooming procedure is concluded, with all remaining constituents defining the groomed jet. The
groomed jet angularity λα,g and groomed jet mass mjet,g are then defined according to the remaining jet
constituents, using Eqs. 1–2 as before. The value of λα,g is calculated using the ungroomed pch jet

T and
calculating ∆Ri with respect to the ungroomed jet axis, as the groomed jet remnants are a property of the
original ungroomed jet.

Local background fluctuations in a heavy-ion environment can result in an incorrect splitting being iden-
tified by the grooming algorithm, in which the reconstructed splitting is unrelated to a hard process. In
order to address this issue, this measurement has been performed by requiring the jet to have a splitting
where the softer branch carries 20% or more of the groomed transverse momentum (i.e., zcut = 0.2) inde-
pendent of the angle of the splitting (i.e., β = 0), which improves the efficiency of tagging the first hard
splitting in the large background of Pb–Pb collisions, as compared to milder grooming conditions such
as zcut = 0.1 [56]. Additionally, by measuring jets with a small resolution parameter (R = 0.2 instead of
R = 0.4), the magnitude of these prong-mistagging effects was further decreased, since the collinear jet
fragmentation enhances the fraction of signal jet energy with respect to the background energy density.
Prong mistagging due to the residual background effects ranges from approximately 5% up to 15% at
lower pT [57]. The impact of the residual background contribution is quantified in Sect. 4.

3.2 Unfolding

The reconstructed pch jet
T along with the groomed and ungroomed λα and mjet differ from their true values

due to tracking inefficiency, particle-material interactions, and track pT resolution. Moreover, in Pb–Pb
collisions, background fluctuations significantly smear the reconstructed distributions. To account for
these effects, MC pp events are simulated with the PYTHIA8 generator [48] using the Monash 2013
tune and the GEANT3 model [47] for the particle transport in the ALICE detector material. Jets are
reconstructed from these simulated events following the procedure described above (Sec. 3.1). A 4D
response matrix (RM) is then constructed that describes the detector and background response in pch jet

T
and λα or mjet,

RM
(

pch jet
T, det, pch jet

T, truth, λα,det, λα,truth

)
, (8)

where the subscript ‘det’ refers to detector-level quantities in the case of pp collisions, or the combined-
level jet after embedding and background subtraction in the case of Pb–Pb collisions, and the subscript
‘truth’ refers to the truth-level (generator-level) quantities. Equation 8 holds analogously for mjet and the
groomed counterparts. A 2D unfolding is performed in pch jet

T and λα or mjet using the iterative Bayesian
unfolding algorithm [58] as implemented in the RooUnfold software package [59].

In order to reject jets formed from the random combination of tracks emanated from the thermal back-
ground produced in Pb–Pb collisions, a lower limit of pch jet

T, det > 40 GeV/c is enforced on the data that

is input to the unfolding. No such limitation is imposed on pch jet
T, truth during the unfolding process. The

distributions after unfolding are then corrected for the kinematic efficiency, defined as the efficiency of
reconstructing a “true” jet at a particular pch jet

T, truth value given a reconstructed jet pch jet
T, det range. This inef-

ficiency results from background effects, smearing from the soft drop threshold zcut, and detector effects
smearing pch jet

T out of the selected range. Since the final observables are normalized per jet, the kine-
matic efficiency only affects the shape of the distribution. The kinematic efficiency is 70% or higher in
all cases for pch jet

T > 60 GeV/c. For the lowest 40 < pch jet
T < 60 GeV/c bin, where kinematic efficiency

corrections are larger, the shape of the efficiency correction is verified by repeating the unfolding proce-
dure with varied jet shape assumptions. This is done by using several MC event generators, including
PYTHIA8, Herwig 7 [60, 61], and JEWEL [62], along with a fast detector simulation which emulates
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the tracking efficiency and track pT resolution of the ALICE detector. The number of untagged jets is
included in the unfolding procedure as an additional bin adjacent to the lower edge of the λα and mjet
distributions (in iterative Bayesian unfolding, the arrangement of the bins is immaterial). The number
of iterations, which sets the strength of regularization, is chosen by checking that the unfolding closure
tests (described below) are successful. This results in the optimal number of iterations ranging from 5 to
15, with the larger number of iterations offering increased accuracy in the lowest pch jet

T bin.

To validate the performance of the unfolding procedure, refolding tests are performed, in which the
RM is multiplied by the unfolded solution and compared to the original detector-level spectrum. The
unfolding is required to obtain reasonable convergence, which is evaluated by checking that successive
iterations produce smaller changes in the distributions. Three types of closure tests are also performed.
A "statistical" closure test smears detector-level MC by measured uncertainties on the data and unfolds
the smeared distribution by the nominal RM and compares the resulting spectrum to the truth-level MC
which is expected. Examples of the convergence and statistical closure tests are shown in Fig. 1. A
“shape” closure test is also performed, where the shape of the input spectrum is modified to account for
the fact that the actual distribution may be different than the MC input spectrum. The “prior” closure test
instead modifies the shape of the RM to account for differences in the bias of the MC shape. In all cases,
closure is achieved within statistical uncertainties. A thermal closure test is additionally performed for
the Pb–Pb analyses to quantify the sensitivity of the final result to combinatorial jets and background
splittings. This consists of redoing the entire analysis on combined events containing a PYTHIA event
and a thermal background, in which combined-level jets are clustered from the combination of PYTHIA
detector-level particles and thermal background particles. The background is modeled by generating N
particles with pT taken from a Gamma distribution,

fΓ (pT;β ) ∝ pTe−pT/β , (9)

where N and β are fixed to roughly fit the δ pT distribution (the difference truth- and combined-level
pch jet

T ) for R= 0.2 jets in Pb–Pb data [63]. This background model was verified to describe the subleading
prong purity to percent-level accuracy. The test consisted of constructing the combined detector-level
jet spectrum, building the RM, unfolding the combined jets, and comparing the resulting spectrum to
the truth-level PYTHIA spectrum. Since the background does not have any jet component, this test
is able to quantify the extent to which the analysis procedure recovers the signal distribution and is
not contaminated by background. Due to a residual background contamination, slight non-closure is
observed in some distributions and is therefore incorporated as a systematic uncertainty, discussed further
in Sect. 4.

4 Systematic uncertainties

The systematic uncertainties for observables reported in this note are estimated from the uncertainty on
the tracking efficiency, the unfolding procedure, the background subtraction procedure, the generator
model-dependence, and any non-closure in a thermal closure test. Tables 1 and 2 summarize the system-
atic uncertainty contributions for λα and mjet in Pb–Pb collisions, as well as the systematic uncertainty
contributions for their soft drop groomed counterparts λα,g and mjet,g. Table 3 correspondingly gives
the systematic uncertainty contributions to mjet in pp collisions.1 All sources of systematic uncertainty
contribute significantly in certain regions of the measured observables. The total systematic uncertainty
is calculated as the quadratic sum of all of the individual systematic uncertainties described below.

The systematic uncertainties tend to be largest at low pch jet
T , where tracking efficiency effects are more

significant compared to the overall pch jet
T , the distributions are closer to the detector-level cuts, and there

is greater modeling uncertainty due to increased nonperturbative dependence. Systematic uncertainties

1The systematic uncertainty contributions for λα in pp collisions are reported in Ref. [35].
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Fig. 1: Left: example of a statistical closure test; right: example of an unfolding convergence test, both for the
jet girth in Pb–Pb with 40 < pch jet

T < 60 GeV/c. In both cases, the rightmost (highest) λα bin is included only for
statistical considerations and is truncated from the reported distributions.

are typically lower in the groomed distributions, where removal of soft radiation reduces these effects.
For the Pb–Pb observables, the highest 100 < pch jet

T < 150 GeV/c bin has no pp baseline, so it was
binned more finely than the lower pch jet

T bins; as a result, the tails of the distribution are more sensitive to
systematic fluctuations, and enhanced values are observed for some systematic uncertainty contributions.

In general, correcting for unmeasured tracks is a major effect of the unfolding procedure. The system-
atic uncertainty due to the tracking efficiency uncertainty is evaluated using random rejection of tracks
before jet finding. The tracking efficiency uncertainty is estimated to be 3% in pp 2 and 3–5% in Pb–Pb
collisions, depending on track pT, based on variations in the track selection criteria and on the ITS–TPC
track-matching efficiency uncertainty. Since the nominal Pb–Pb RM randomly rejects 2% of all tracks to
account for the worsened tracking efficiency in Pb–Pb data as compared to pp, the varied response matrix
in total randomly rejects approximately 2% more than these calculated values. This response matrix is
then used to unfold the same measured data as used in the final result. This variation is compared to the
nominal result, with the differences in each bin taken as the tracking efficiency uncertainty. Since the
tracking efficiency uncertainty is symmetric, the uncertainties on the jet distributions which result from
this subtraction procedure are also taken to be symmetric.

In application of unfolding, the underlying systematic uncertainty is due to the regularization. In order
to quantify the size of this uncertainty, several systematic variations are performed on the unfolding
procedure, which assign a shape uncertainty arising from the regularization:

– Variation of the regularization parameter niter by±2 units (for λα and λα,g) or±1 unit (for mjet
and mjet,g). The average deviation of these two variations is taken as the systematic uncertainty.

– Variation of the prior by scaling the shape by p±0.5
T × [1±0.5(2λα −1)] (for λα ) or by p±0.5

T ×
N±0.1

counts (for mjet). These scaling functions were determined by approximating the differences be-
tween detector-level simulation and data. For mjet, it is also mandated that 0.5 ≤ N±0.1

counts ≤ 1.5,
else it is set to the boundary values as to not over-modulate the tails of distributions. These vari-
ations are chosen since they vary the prior quite dramatically to demonstrate a broad range of
independence on the prior, via an effect that would be reasonably expected in differing calcula-
tions (smoothing or sharpening of the distributions). The maximum of the ± case is chosen for

2The measurements of λα in pp collisions instead use a more generous 4% tracking efficiency uncertainty assumption, as
the results were finalized before the more recent 3% estimation was completed.
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each bin and used as the systematic uncertainty due to the prior in that bin.

– Variation of the binning of the observable. An alternate binning is constructed with slightly finer
and/or coarser granularity than the main result, by adding and/or reducing the number of bins
by 1 or 2. This is performed for both the data and RM. The unfolding is then repeated, and the
difference with respect to the nominal result is taken as the systematic uncertainty.

– Variation of the truncation of pch jet
T, det. The lower and upper pch jet

T, det limits are truncated by 5 and
50 GeV/c, respectively, also taking into account the kinematic efficiency considerations. For the
lowest 40 < pch jet

T < 60 GeV/c bin, the upper pch jet
T, det limit is truncated by a more liberal 80 GeV/c.

Similar to the binning variation, the unfolding is again repeated using the varied data and RM, and
the difference with respect to the nominal result is taken as the systematic uncertainty.

Since each of these procedures comprise independent measurements of the same underlying systematic
uncertainty in the regularization, the total unfolding systematic uncertainty is taken as the standard devi-

ation of these variations,
√

∑
N
i=1 σ2

i /N, where σi is the systematic uncertainty due to a single variation.
In this case, N = 4, as there are four unfolding uncertainties calculated for these analyses.

To quantify the model-dependence of using PYTHIA 8 [48] to build the RM, alternate RMs are built us-
ing different MC generators. In particular, RMs are produced using Herwig 7 [60, 61] and JEWEL [62]
(for Pb–Pb) using an identical binning and the same cuts as the nominal PYTHIA RM. To apply detector
effects to the alternate MC events, a fast detector simulation is used, which applies tracking efficiency
rejections and pT smearing according to the GEANT3-estimated performance, both as a function of
ptrack

T . This simulation was validated on truth-level PYTHIA by comparing to PYTHIA with the full
GEANT3 simulation, with agreement to the few-percent-level. In order to make equitable comparisons,
both PYTHIA and the alternate MC events are run through this fast simulation, and the bin-by-bin dif-
ferences are calculated in the final unfolded distributions, comparing the PYTHIA response to that from
the alternate MCs. The average of the differences (for all variations) is taken as a systematic uncertainty.

In Pb–Pb analyses, background subtraction via iterative constituent subtraction introduces a bias in the
observed distributions, since it implicitly makes a choice of how much to subtract the soft particles com-
pared to hard particles, as well as their angular distributions. To estimate the size of the corresponding
systematic uncertainty, the Rmax parameter is varied generously from “undersubtraction" (Rmax = 0.05)
to “oversubtraction" (Rmax = 0.5), around the nominal value of Rmax = 0.1. The maximum deviation of
these two variations is taken as the systematic uncertainty.

As mentioned above, any non-closure in the thermal closure test is addressed by the addition of a thermal
non-closure systematic uncertainty. The thermal closure test for each of the distributions is converted into
a percentage of non-closure, and the statistical uncertainty is ‘subtracted’ from the nominal ratio in order
to minimize covariance with the statistical uncertainties introduced by the smearing procedure in the
unfolding. Specifically, the non-closure uncertainty is approximated from these ratios as

σ
2
total ≈ σ

2
stat +σ

2
non-closure, (10)

thereby requiring that σtotal > σstat, or else it is assumed that reasonable closure is observed for that bin,
in which case the thermal non-closure uncertainty is set to 0. As before, this bin-by-bin uncertainty is
taken as being symmetric on each individual reported data point.

Each of the systematic uncertainties outlined above is assumed to be independent, and therefore they
are summed in quadrature to obtain the total bin-by-bin systematic uncertainty. The liberal assumption
of independence is intended to capture any missing components of the systematic uncertainty that were
not addressed in the above methodologies.3 The dominant systematic uncertainties are typically due to

3A more detailed procedure would involve reconstructing a covariance matrix for each of the variations, although this is
nontrivial; therefore, the covariances between these systematic uncertainties are neglected.
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uncertainty on the tracking efficiency and the dependence of unfolding on the model which is used to
generate the RM.
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Pb–Pb Relative uncertainty (%)
pch jet

T (GeV/c) Trk. eff. Unfolding Generator Therm. clos. Bkgd. sub. Total
λ1

40 - 60 1–20% 0–4% 2–8% 0–4% 0–8% 4–24%
60 - 80 1–9% 0–2% 1–3% 0–2% 3–13% 3–16%
80 - 100 2–6% 0–3% 1–4% 0–3% 2–8% 4–11%
100 - 150 2–76% 0–3% 1–5% 0–5% 2–10% 7–77%

λ1,g (zcut = 0.2, β = 0)
40 - 60 0–5% 1–8% 3–12% 0–4% 0–9% 4–18%
60 - 80 0–6% 0–4% 0–8% 0–4% 1–8% 2–11%
80 - 100 1–4% 2–3% 1–10% 0–4% 1–7% 3–14%
100 - 150 1–10% 1–3% 1–8% 0–9% 0–11% 7–17%

λ1.5
40 - 60 1–12% 0–6% 1–8% 0–1% 1–9% 4–16%
60 - 80 1–8% 0–2% 1–3% 0–3% 2–12% 3–15%
80 - 100 2–9% 0–2% 2–8% 0–3% 3–9% 4–14%
100 - 150 7–47% 0–2% 0–8% 0–7% 0–15% 8–48%

λ1.5,g (zcut = 0.2, β = 0)
40 - 60 0–10% 1–12% 2–11% 0–2% 1–18% 3–26%
60 - 80 0–6% 0–2% 0–8% 0–4% 2–8% 3–11%
80 - 100 0–4% 1–3% 2–8% 0–4% 0–12% 5–11%
100 - 150 3–9% 1–7% 1–10% 1–7% 1–12% 6–20%

λ2
40 - 60 0–11% 0–3% 1–5% 0–3% 3–7% 5–14%
60 - 80 0–9% 1–3% 0–4% 0–2% 3–12% 3–16%
80 - 100 1–9% 0–2% 1–9% 0–1% 1–7% 3–12%
100 - 150 0–28% 0–3% 1–9% 0–10% 0–12% 6–29%

λ2,g (zcut = 0.2, β = 0)
40 - 60 1–6% 0–4% 0–11% 0–3% 1–9% 3–16%
60 - 80 0–6% 0–3% 2–9% 0–3% 2–9% 3–12%
80 - 100 0–4% 0–3% 2–10% 0–3% 2–7% 4–14%
100 - 150 0–10% 1–4% 0–10% 0–7% 3–8% 8–17%

λ3
40 - 60 0–9% 0–7% 0–6% 0–2% 2–11% 5–17%
60 - 80 0–10% 0–3% 1–4% 0–3% 2–9% 3–12%
80 - 100 1–7% 0–2% 1–5% 0–2% 3–9% 4–12%
100 - 150 2–17% 0–3% 0–9% 0–3% 2–12% 3–21%

λ3,g (zcut = 0.2, β = 0)
40 - 60 2–7% 0–6% 2–10% 0–4% 0–8% 3–15%
60 - 80 2–6% 1–4% 2–11% 0–4% 1–8% 4–14%
80 - 100 0–3% 1–3% 2–11% 0–3% 0–9% 3–16%
100 - 150 5–12% 2–4% 1–9% 1–6% 1–9% 6–18%

Table 1: Summary of systematic uncertainties on the Pb–Pb measurements of λα and λα,g. The ranges correspond
to the minimum and maximum systematic uncertainties obtained.
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Pb–Pb Relative uncertainty (%)
pch jet

T (GeV/c) Trk. eff. Unfolding Generator Therm. clos. Bkgd. sub. Total
mjet

40 - 60 1–8% 1–8% 1–16% 0–24% 1–4% 2–30%
60 - 80 2–13% 1–8% 2–20% 0–3% 2–11% 6–28%
80 - 100 2–11% 1–6% 1–11% 0–1% 2–9% 3–19%
100 - 150 2–26% 0–6% 2–15% 1–10% 2–12% 3–33%

mjet,g (zcut = 0.2, β = 0)
40 - 60 0–5% 1–9% 1–13% 0–25% 0–14% 3–28%
60 - 80 0–6% 2–7% 1–9% 0–7% 1–10% 2–16%
80 - 100 1–6% 3–8% 1–6% 0–2% 3–6% 3–12%
100 - 150 1–9% 3–8% 2–11% 1–16% 1–8% 5–22%

Table 2: Summary of systematic uncertainties on the Pb–Pb measurements of mjet and mjet,g. The ranges corre-
spond to the minimum and maximum systematic uncertainties obtained.

pp Relative uncertainty (%)
pch jet

T (GeV/c) Trk. eff. Unfolding Generator Total
mjet

40 - 60 1–8% 1–6% 0–20% 2–22%
60 - 80 2–16% 0–7% 1–20% 3–26%
80 - 100 0–11% 1–8% 1–11% 2–17%

mjet,g (zcut = 0.2, β = 0)
40 - 60 0–6% 1–28% 0–13% 3–28%
60 - 80 0–18% 2–18% 1–16% 2–30%
80 - 100 2–8% 5–9% 0–8% 5–13%

Table 3: Summary of systematic uncertainties on the pp measurements. The ranges correspond to the minimum
and maximum systematic uncertainties obtained. All values correspond to zcut = 0.2 unless otherwise noted.
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5 Results

We report the λα and mjet distributions both with and without soft drop grooming with zcut = 0.2 and
β = 0 in bins of charged-jet transverse momentum pch jet

T between 40 and 150 GeV/c in central (0–10%)
Pb–Pb collisions and between 40 and 100 GeV/c in pp collisions. The measurements are reported using
jet resolution (radius) parameter R = 0.2. The observable O distributions (where O is either λα or mjet)
are reported as self-normalized differential cross sections,

1
σ

dσ

dO
≡ 1

Njets

dNjets

dO
(ungroomed), or

1
σinc

dσ

dOg
≡ 1

Njets

dNgr jets

dOg
(groomed), (11)

where Njets is the number of inclusive jets within a given pch jet
T range and σ is the corresponding cross

section. For the groomed case, some jets are removed by the grooming procedure (“untagged”), and
therefore two different quantities are defined: Ngr jets, the number of jets which have at least one splitting
satisfying the SD condition, and Njets, the total number of inclusive jets, with both Ngr jets and Njets being
within the given pch jet

T range. Njets is corrected from the raw data by including the number of untagged
jets as an extra bin in the unfolding procedure. σinc is the cross section corresponding to the latter
inclusive quantity. For the ungroomed case, σ = σinc, so the redundant label is dropped. It is useful to
normalize the groomed differential cross section by the number of inclusive jets since the groomed jet
angularities are a property of the inclusively-measured jet population and are thus typically normalized
as such in theoretical calculations [64].

Results for the ungroomed and SD-groomed jet angularities λα with α = 1 (girth) are shown in Figs. 2–
5, for α = 1.5 in Figs. 6–9, for α = 2 (thrust) in Figs. 10–13, and for α = 3 in Figs. 14–17. The same
are shown for the groomed and ungroomed jet mass mjet in Figs. 18–21. The Pb–Pb result is shown
in the center panels along with the respective models, while the pp baselines are given in the left panel
along with the corresponding model baselines. The superposition of the pp and Pb–Pb distributions along
with the Pb–Pb/pp ratio, which quantifies the quenching modification, is shown in the right panels. The
highest 100 < pch jet

T < 150 GeV/c bin does not have a baseline result from pp, so only the Pb–Pb result
is reported.

The fraction of jets that do not contain a splitting that passes the Soft Drop condition ( ftagged) ranges from
10% to 12%. The differences in these tagging rates between pp and Pb–Pb are at most 2%. Since these
differences between pp and Pb–Pb collisions are small, the measured distributions are approximately
self-normalized, and therefore any modifications in Pb–Pb compared to pp can change the shape of the
distribution, but keep the integral approximately the same.



Groomed and ungroomed mjet and λα in Pb–Pb and pp at
√

sNN = 5.02 TeV 13

0 0.2 0.4

1

2

3

4

5

6

71λdσd  
σ1

ALICE

 = 5.02 TeVspp 

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

pp data

pp syst. uncert.

0 0.2 0.4

1λ

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

PYTHIA8 Monash2013
Herwig7 default tune
POWHEG+PYTHIA6
Hybrid model vacuum
JETSCAPE pp

0 0.2 0.4

1

2

3

4

5

6

71λdσd  
σ1

ALICE 

Pb−10% centrality Pb−0

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

Pb data−Pb

Pb syst. uncert.−Pb

0 0.2 0.4

1λ

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 0.2 0.4

1

2

3

4

5

6

71λdσd  
σ1

ALICE 

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

Pb data−10% Pb−0
Pb syst. uncert.−Pb

pp data
pp syst. uncert.

0 0.2 0.4

1λ

0.6

0.8

1

1.2

1.4

1.6

1.8pp
P

b
−

P
b

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 0.2 0.4

1

10

1,
g

λd
σd

 
in

c
σ1

ALICE

 = 5.02 TeVspp 

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

pp data

pp syst. uncert.

0 0.2 0.4

1,gλ

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

PYTHIA8 Monash2013
Herwig7 default tune
POWHEG+PYTHIA6
Hybrid model vacuum
JETSCAPE pp

0 0.2 0.4

1

10

1,
g

λd
σd

 
in

c
σ1

ALICE 

Pb−10% centrality Pb−0

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

Pb data−Pb

Pb syst. uncert.−Pb

0 0.2 0.4

1,gλ

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 0.2 0.4

1

10

1,
g

λd
σd

 
in

c
σ1

ALICE 

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

Pb data−10% Pb−0
Pb syst. uncert.−Pb

pp data
pp syst. uncert.

0 0.2 0.4

1,gλ

0.6

0.8

1

1.2

1.4

1.6

1.8pp
P

b
−

P
b

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

Fig. 2: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1 for R = 0.2 charged-particle jets in
pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 40 < pch jet

T < 60 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 3: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1 for R = 0.2 charged-particle jets in
pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 60 < pch jet

T < 80 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 4: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1 for R = 0.2 charged-particle jets in
pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 80 < pch jet

T < 100 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 5: ALICE measurement of ungroomed (left) and SD groomed (right) λ1 for R = 0.2 charged-particle jets in
Pb–Pb collisions at

√
sNN = 5.02 TeV for 100 < pch jet

T < 150 GeV/c as compared to models.
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Fig. 6: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1.5 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 40 < pch jet

T < 60 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 7: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1.5 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 60 < pch jet

T < 80 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 8: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ1.5 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 80 < pch jet

T < 100 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 9: ALICE measurement of ungroomed (left) and SD groomed (right) λ1.5 for R = 0.2 charged-particle jets in
Pb–Pb collisions at

√
sNN = 5.02 TeV for 100 < pch jet

T < 150 GeV/c as compared to models.
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Fig. 10: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ2 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 40 < pch jet

T < 60 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35], while the rightmost panels are similarly reported in Ref. [36].
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Fig. 11: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ2 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 60 < pch jet

T < 80 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 12: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ2 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 80 < pch jet

T < 100 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35].
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Fig. 13: ALICE measurement of ungroomed (left) and SD groomed (right) λ2 for R = 0.2 charged-particle jets in
Pb–Pb collisions at

√
sNN = 5.02 TeV for 100 < pch jet

T < 150 GeV/c as compared to models.
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Fig. 14: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ3 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 40 < pch jet

T < 60 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35], while the rightmost panels are similarly reported in Ref. [36].
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Fig. 15: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ3 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 60 < pch jet

T < 80 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35]
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Fig. 16: ALICE measurement of ungroomed (top) and SD groomed (bottom) λ3 for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 80 < pch jet

T < 100 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35]
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Fig. 17: ALICE measurement of ungroomed (left) and SD groomed (right) λ3 for R = 0.2 charged-particle jets in
Pb–Pb collisions at

√
sNN = 5.02 TeV for 100 < pch jet

T < 150 GeV/c as compared to models.



Groomed and ungroomed mjet and λα in Pb–Pb and pp at
√

sNN = 5.02 TeV 29

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

je
t

md
σd

 
σ1

ALICE 

 = 5.02 TeVspp 

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

pp data

pp syst. uncert.

0 2 4 6
)2c (GeV/jetm

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

PYTHIA8 Monash2013
Herwig7 default tune
POWHEG+PYTHIA6
Hybrid model vacuum
JETSCAPE pp

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

je
t

md
σd

 
σ1

ALICE 

Pb−10% centrality Pb−0

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

Pb data−Pb

Pb syst. uncert.−Pb

0 2 4 6
)2c (GeV/jetm

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

je
t

md
σd

 
σ1

ALICE 

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

Pb data−10% Pb−0
Pb syst. uncert.−Pb

pp data
pp syst. uncert.

0 2 4 6
)2c (GeV/jetm

0.6

0.8

1

1.2

1.4

1.6

1.8pp
P

b
−

P
b

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

je
t,g

md
σd

 
in

c
σ1

ALICE 

 = 5.02 TeVspp 

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

pp data

pp syst. uncert.

0 2 4 6
)2c (GeV/jet,gm

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

PYTHIA8 Monash2013
Herwig7 default tune
POWHEG+PYTHIA6
Hybrid model vacuum
JETSCAPE pp

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

je
t,g

md
σd

 
in

c
σ1

ALICE 

Pb−10% centrality Pb−0

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

Pb data−Pb

Pb syst. uncert.−Pb

0 2 4 6
)2c (GeV/jet,gm

0.6

0.8

1

1.2

1.4

1.6

1.8

D
at

a
T

he
or

y

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
je

t,g
md

σd
 

in
c

σ1

ALICE 

 = 5.02 TeVNNs

 jetsTkCh.-particle anti-

c < 60 GeV/ch jet

T
p40 < 

 = 0.2R| < 0.7,   
jet

η| 

 = 0β = 0.2, cutzSD: 

Pb data−10% Pb−0
Pb syst. uncert.−Pb

pp data
pp syst. uncert.

0 2 4 6
)2c (GeV/jet,gm

0.6

0.8

1

1.2

1.4

1.6

1.8pp
P

b
−

P
b

JETSCAPE (MATTER+LBT)

-lossEHigher-Twist parton 

Hybrid model (no elastic)

Hybrid model (with elastic)

Fig. 18: ALICE measurement of ungroomed (top) and SD groomed (bottom) mjet for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 40 < pch jet

T < 60 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35], while the rightmost panels are similarly reported in Ref. [36].
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Fig. 19: ALICE measurement of ungroomed (top) and SD groomed (bottom) mjet for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 60 < pch jet

T < 80 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35]
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Fig. 20: ALICE measurement of ungroomed (top) and SD groomed (bottom) mjet for R = 0.2 charged-particle jets
in pp (left) and Pb–Pb (middle) collisions at

√
sNN = 5.02 TeV for 80 < pch jet

T < 100 GeV/c as compared to models.
The ratio of Pb–Pb to pp is also shown (right), which quantifies the substructure modifications from quenching.
The pp result is taken from Ref. [35]
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Fig. 21: ALICE measurement of ungroomed (left) and SD groomed (right) mjet for R = 0.2 charged-particle jets
in Pb–Pb collisions at

√
sNN = 5.02 TeV for 100 < pch jet

T < 150 GeV/c as compared to models.
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5.1 Comparing Pb–Pb and pp collisions

In high-energy heavy-ion collisions, the internal structure of jets undergo modifications via scatterings
of jet fragments with the hot and dense QCD medium. Measurements of the groomed and ungroomed
λα and mjet, reported above, probe the angular dependence of jet quenching and seek to clarify previous
measurements where a vacuum baseline was unavailable.

In comparing the Pb–Pb and pp distributions, a significant “narrowing” effect in Pb–Pb collisions with
respect to pp collisions is observed via an enhancement at small values of angularity (mass), and a cor-
responding suppression at large values. For the jet angularities, the narrowing is strongest at low α and
decreases at larger values of α , since larger values of α increase the weighting of large-angle radiations,
corresponding to a strongly quenched jet core. This conclusion is supported by a significant enhancement
in the narrowing for SD groomed jets, which remove soft radiation at wide angles, as compared to un-
groomed jets. The narrowing is also observed in the jet mass distributions, where jets with intermediate-
to high-mjet are suppressed in Pb–Pb as compared to pp. Some distributions, however, show hints of
a possible enhancement at very large mjet, which might be expected from sequential in-medium hard
scatterings, though the ratios are consistent with unity (i.e. no modification) within experimental uncer-
tainties. The strength of quenching appears to be consistent across the reported pch jet

T range within the
reported uncertainties, though the behavior is most obvious at low-pch jet

T where statistical uncertainties
are the smallest.

Earlier LHC Run 1 comparisons of Pb–Pb data to vacuum MC simulations generated with PYTHIA8
show even stronger modification, with both tails of the distribution modified by an approximate factor
of 2 [34]. However, these new Run 2 results are compared to baselines from pp data taken at equiva-
lent center-of-mass energy, which comparatively reduces this narrowing effect. A proper pp baseline is
therefore essential for correctly interpreting measurements of jet quenching in an unbiased way. This
conclusion has far-reaching implications for future runs at the LHC: heavy-ion data must pair with sta-
tistically consistent jet samples in pp, where smaller collision systems result in fewer jets.

5.2 Comparison to theoretical models

We compare the ratio of the measurements in pp and Pb–Pb collisions to several theoretical implemen-
tations of jet quenching.

JETSCAPE. The predictions by the JETSCAPE Collaboration [65] are extracted from a Monte Carlo
implementation of multi-stage energy loss with the MATTER [66] medium-modified parton shower
model controlling the high-virtuality phase and the Linear Boltzmann Transport (LBT) model [67] de-
scribing the low-virtuality phase. The version of JETSCAPE used for this calculation employs a jet
transport coefficient, q̂, that includes dependence on parton virtuality, in addition to dependence on the
local temperature and running of the parton-medium coupling. The JETSCAPE predictions reproduce
the measurements well.

Higher-Twist parton energy loss. The predictions by Yan et al. [68] use POWHEG matching of NLO
matrix elements to the PYTHIA parton shower [69] as a baseline and apply the Higher-Twist formalism
for jet–medium interactions. The initial position in the QGP of the produced partons is sampled from a
Glauber model [70], and as the parton propagates, it emits medium-induced gluon radiation based on the
q̂-dependent Higher-Twist approach [71–74], with the smooth iEBE-VISHNU hydro model [75] provid-
ing the evolution profile of the QGP medium. These predictions describe the λα and mjet measurements
well.

Hybrid model. The predictions by Pablos et al. [76], known as the Hybrid model, consist of partons
produced by a vacuum shower that interact with the medium according to a strongly-coupled AdS/CFT-
based model. Hybrid model predictions are generated with a wake behind the jet, created by the partonic
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energy lost due to medium-induced emissions [77]. These predictions are produced both with and with-
out elastic Molière scattering of medium scattering centers [78], which are hypothesized to arise from
the particle nature of the fluid at high energies, or from possible emergent structures.

The mjet data strongly favor the Hybrid model predictions without Molière scattering, supporting a pic-
ture where the dominant energy loss mechanism in these systems is gluon-induced radiation. The λα data
are less discriminating on Molière effects, with both predictions describing the data within experimental
uncertainties; however, the with-elastic case tends to be closer to the central values of the data points
than the no-elastic case. This presents an opportunity to reevaluate the strength of Molière effects and
how their behavior should affect different observables.

Despite employing different microscopic implementations of the jet-medium interactions, the majority
of the models capture the qualitative feature of the narrowing seen in the ratio of λα and mjet distribu-
tions in Pb–Pb versus pp. The Higher-Twist model predictions tend to predict the strongest narrowing
behavior, while JETSCAPE produces predictions which are very similar to the Hybrid model without
Molière effects. Slight tension is observed between the data and models in the higher pch jet

T bins, though
the predictions are still generally within the large statistical and systematic uncertainties. Models tend
to perform better for the groomed observables than for the ungroomed ones, as grooming removes non-
perturbative, soft gluon radiations which are more difficult to model theoretically than the hard parton
which initiates the jet. These comparisons provide new insight to the nature of these modifications, and
as outlined in the following section, indicate promising directions for further studies.

5.3 Discussion

In order to study the girth–mass inconsistency in light of Eq. 3, ALICE has performed new measurements
of mjet and λ 1

2 using the same jet sample for the first time. While Eq. 3 relates mjet and λ2 directly to one
another, model comparisons show differing behavior. The Hybrid model with elastic Molière scattering,
for example, vastly overestimates the data at large values of mjet, while it agrees with or even slightly
underestimates the yield at large λ2. Since the distributions are positive definite and obey square pro-
portionality following Eq. 3, large corrections to Eq. 3 must apply at these values of pch jet

T . These could
include nonperturbative effects such as hadronization or higher-order correction terms O[(λ2)

2]. Despite
their mathematical similarity, underlying physical differences between the two observables exist: the jet
mass is sensitive to quark masses, whereas the IRC-safe jet angularities are sensitive to fragmentation
and quark- versus gluon-initiated jet differences. Identifying the variations in the measured distributions
as these physical differences of the observables explains the girth–mass difference.

This observation highlights the importance of making broad measurements of quenched jet substructure,
as closely-related observables can provide significantly different probes of underlying physical phenom-
ena. Studies of quenched jets using N-subjettiness variables as a basis suggest that dozens of such
observables may be required to optimally characterize quenched jet behavior [79].

These measurements are not able to significantly differentiate between JETSCAPE, the Higher-Twist
formalism, and the Hybrid model without elastic scattering. The addition of elastic Molière scattering
to the Hybrid approach enhances wide-angle constituents and correspondingly boosts the quenching
modification at large mjet and λα ; however, this effect greatly reduces agreement with experimental data
for mjet. The jet narrowing observed in Pb–Pb data as compared to pp is strongest at smaller values of α

and with soft drop grooming, revealing a strongly-quenched jet core.

As discussed above, jet grooming enhances the perturbative calculability of jet substructure observables,
while its use in heavy-ion collisions additionally reduces contamination from the thermal background.
Compared to their ungroomed counterparts, the groomed λα and mjet distributions display reduced sys-
tematic uncertainties and an enhanced narrowing effect, consistent with a strongly quenched jet core. In-
creased similarity between models also suggests perturbative agreement and a continuing need for prob-
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ing nonperturbative effects. For the jet angularities, several model predictions converge with grooming,
limiting the differentiating power between them – despite different theoretical approaches. Scrutiniz-
ing jet quenching models therefore requires consideration of both the significant nonperturbative and
perturbative effects.

6 Conclusion

We provide measurements of jet angularities, mass, and their medium-induced modifications in Pb–Pb
collisions both with and without grooming. These results depict a consistent picture of narrowing as
jets traverse the QGP, which is dominated by a collinearized jet core. By measuring both mjet and jet
thrust (λ2) using the same jets, and by also measuring the appropriate pp baseline, we reexamine the
girth–mass inconsistency raised by earlier measurements, which showed conflicting quenching behavior
in these related observables. We again observe fundamental differences between these observables and
deduce that the mass–thrust relation (Eq. 3) must depend on significant higher-order corrections or on
nonperturbative physics at these low pch jet

T , where the strong coupling αS is large.

The data generally agree with models including in-medium energy loss. The jet mass prefers no in-
medium elastic Molière scattering (within the Hybrid model), but the jet angularities slightly prefer if
this process is included. Theory comparisons also reveal that a pp baseline is essential for evaluating
quenching behavior of jet substructure and should always be measured to fully profit from heavy-ion
runs at the LHC. Compared to previous measurements using a MC simulated pp baseline, quenching
effects of these results are reduced.

While jet grooming has been used in many recent measurements, the phase space of groomed observ-
ables remains mostly unexplored. Using grooming to reduce experimental uncertainties while select-
ing observables which probe effects such as in-medium color coherence will be essential to illuminate
medium structure and the origins of jet quenching. Grooming can also be used to reduce nonperturbative
effects, providing a handle between groomed and ungroomed observables to isolate these mechanisms in
the QGP.
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L. Bianchi 24, J. Bielčík 35, J. Bielčíková 85, A.P. Bigot 128, A. Bilandzic 94, G. Biro 46, S. Biswas 4,
N. Bize 102, J.T. Blair 107, D. Blau 140, M.B. Blidaru 96, N. Bluhme38, C. Blume 64, F. Bock 86,
T. Bodova 20, J. Bok 16, L. Boldizsár 46, M. Bombara 37, P.M. Bond 32, G. Bonomi 133,55,
H. Borel 129, A. Borissov 140, A.G. Borquez Carcamo 93, E. Botta 24, Y.E.M. Bouziani 64,
L. Bratrud 64, P. Braun-Munzinger 96, M. Bregant 109, M. Broz 35, G.E. Bruno 95,31,
V.D. Buchakchiev 36, M.D. Buckland 84, D. Budnikov 140, H. Buesching 64, S. Bufalino 29,
P. Buhler 101, N. Burmasov 140, Z. Buthelezi 68,122, A. Bylinkin 20, S.A. Bysiak106, J.C. Cabanillas
Noris 108, M.F.T. Cabrera115, H. Caines 137, A. Caliva 28, E. Calvo Villar 100, J.M.M. Camacho 108,
P. Camerini 23, F.D.M. Canedo 109, S.L. Cantway 137, M. Carabas 112, A.A. Carballo 32,
F. Carnesecchi 32, R. Caron 127, L.A.D. Carvalho 109, J. Castillo Castellanos 129, M. Castoldi 32,
F. Catalano 32, S. Cattaruzzi 23, R. Cerri 24, I. Chakaberia 73, P. Chakraborty 135, S. Chandra 134,
S. Chapeland 32, M. Chartier 118, S. Chattopadhay134, M. Chen39, T. Cheng 6, C. Cheshkov 127,
D. Chiappara27, V. Chibante Barroso 32, D.D. Chinellato 101, E.S. Chizzali II,94, J. Cho 58, S. Cho 58,
P. Chochula 32, Z.A. Chochulska135, D. Choudhury41, S. Choudhury98, P. Christakoglou 83,
C.H. Christensen 82, P. Christiansen 74, T. Chujo 124, M. Ciacco 29, C. Cicalo 52, F. Cindolo 51,
M.R. Ciupek96, G. ClaiIII,51, F. Colamaria 50, J.S. Colburn99, D. Colella 31, A. Colelli31, M. Colocci 25,
M. Concas 32, G. Conesa Balbastre 72, Z. Conesa del Valle 130, G. Contin 23, J.G. Contreras 35,
M.L. Coquet 102, P. Cortese 132,56, M.R. Cosentino 111, F. Costa 32, S. Costanza 21,55, C. Cot 130,
P. Crochet 126, M.M. Czarnynoga135, A. Dainese 54, G. Dange38, M.C. Danisch 93, A. Danu 63,
P. Das 32,79, S. Das 4, A.R. Dash 125, S. Dash 47, A. De Caro 28, G. de Cataldo 50, J. de Cuveland38,
A. De Falco 22, D. De Gruttola 28, N. De Marco 56, C. De Martin 23, S. De Pasquale 28, R. Deb 133,
R. Del Grande 94, L. Dello Stritto 32, W. Deng 6, K.C. Devereaux18, P. Dhankher 18, D. Di Bari 31, A. Di
Mauro 32, B. Di Ruzza 131, B. Diab 129, R.A. Diaz 141,7, Y. Ding 6, J. Ditzel 64, R. Divià 32,
Ø. Djuvsland20, U. Dmitrieva 140, A. Dobrin 63, B. Dönigus 64, J.M. Dubinski 135, A. Dubla 96,
P. Dupieux 126, N. Dzalaiova13, T.M. Eder 125, R.J. Ehlers 73, F. Eisenhut 64, R. Ejima 91, D. Elia 50,
B. Erazmus 102, F. Ercolessi 25, B. Espagnon 130, G. Eulisse 32, D. Evans 99, S. Evdokimov 140,
L. Fabbietti 94, M. Faggin 23, J. Faivre 72, F. Fan 6, W. Fan 73, A. Fantoni 49, M. Fasel 86,
G. Feofilov 140, A. Fernández Téllez 44, L. Ferrandi 109, M.B. Ferrer 32, A. Ferrero 129,
C. Ferrero IV,56, A. Ferretti 24, V.J.G. Feuillard 93, V. Filova 35, D. Finogeev 140, F.M. Fionda 52,
E. Flatland32, F. Flor 137,115, A.N. Flores 107, S. Foertsch 68, I. Fokin 93, S. Fokin 140, U. Follo IV,56,
E. Fragiacomo 57, E. Frajna 46, U. Fuchs 32, N. Funicello 28, C. Furget 72, A. Furs 140,
T. Fusayasu 97, J.J. Gaardhøje 82, M. Gagliardi 24, A.M. Gago 100, T. Gahlaut47, C.D. Galvan 108,
S. Gami79, D.R. Gangadharan 115, P. Ganoti 77, C. Garabatos 96, J.M. Garcia44, T. García Chávez 44,
E. Garcia-Solis 9, C. Gargiulo 32, P. Gasik 96, H.M. Gaur38, A. Gautam 117, M.B. Gay Ducati 66,
M. Germain 102, R.A. Gernhaeuser94, C. Ghosh134, M. Giacalone 51, G. Gioachin 29, S.K. Giri134,
P. Giubellino 96,56, P. Giubilato 27, A.M.C. Glaenzer 129, P. Glässel 93, E. Glimos 121, D.J.Q. Goh75,
V. Gonzalez 136, P. Gordeev 140, M. Gorgon 2, K. Goswami 48, S. Gotovac33, V. Grabski 67,
L.K. Graczykowski 135, E. Grecka 85, A. Grelli 59, C. Grigoras 32, V. Grigoriev 140, S. Grigoryan 141,1,

https://orcid.org/0000-0002-9213-5329
https://orcid.org/0000-0002-9611-3696
https://orcid.org/0009-0003-0763-6802
https://orcid.org/0000-0002-0760-5075
https://orcid.org/0000-0003-0348-9836
https://orcid.org/0000-0001-5241-7412
https://orcid.org/0000-0003-0497-5705
https://orcid.org/0000-0001-8847-489X
https://orcid.org/0000-0002-4417-1392
https://orcid.org/0000-0002-7388-3022
https://orcid.org/0000-0002-8071-4497
https://orcid.org/0000-0002-9719-7035
https://orcid.org/0000-0001-9680-4940
https://orcid.org/0000-0002-5659-2119
https://orcid.org/0000-0002-4713-7069
https://orcid.org/0000-0002-0877-7979
https://orcid.org/0000-0003-3618-4617
https://orcid.org/0009-0000-7365-1064
https://orcid.org/0000-0002-2205-5761
https://orcid.org/0000-0003-0177-0536
https://orcid.org/0000-0001-8910-9173
https://orcid.org/0009-0005-4862-5370
https://orcid.org/0000-0001-8048-5500
https://orcid.org/0000-0002-8079-7026
https://orcid.org/0000-0002-5038-1337
https://orcid.org/0000-0002-6180-4243
https://orcid.org/0000-0001-8535-0680
https://orcid.org/0009-0009-7457-6866
https://orcid.org/0000-0002-2372-6117
https://orcid.org/0000-0003-0437-9292
https://orcid.org/0009-0006-0236-2680
https://orcid.org/0000-0002-7366-8891
https://orcid.org/0000-0001-7516-3726
https://orcid.org/0000-0002-5478-6120
https://orcid.org/0000-0001-7662-3878
https://orcid.org/0000-0003-0614-7671
https://orcid.org/0009-0002-1990-7289
https://orcid.org/0000-0001-6367-9215
https://orcid.org/0000-0001-6698-9577
https://orcid.org/0000-0002-5194-2079
https://orcid.org/0000-0003-2316-9565
https://orcid.org/0000-0002-3888-8303
https://orcid.org/0009-0008-5460-6805
https://orcid.org/0000-0003-4277-4963
https://orcid.org/0000-0002-0027-4648
https://orcid.org/0000-0002-2501-6856
https://orcid.org/0000-0002-0569-4828
https://orcid.org/0009-0008-4806-8019
https://orcid.org/0000-0002-4343-4883
https://orcid.org/0009-0009-9085-079X
https://orcid.org/0000-0001-7987-4592
https://orcid.org/0000-0003-1172-0225
https://orcid.org/0000-0002-4116-2861
https://orcid.org/0000-0002-0359-1403
https://orcid.org/0000-0002-6186-289X
https://orcid.org/0000-0002-3082-4209
https://orcid.org/0000-0002-7178-3001
https://orcid.org/0000-0003-2088-1290
https://orcid.org/0000-0002-7328-9154
https://orcid.org/0000-0001-9223-6480
https://orcid.org/0000-0001-7357-9904
https://orcid.org/0009-0003-1533-0782
https://orcid.org/0000-0003-0611-9283
https://orcid.org/0000-0002-6454-0052
https://orcid.org/0009-0002-3371-4483
https://orcid.org/0000-0001-7633-1189
https://orcid.org/0009-0006-7928-4203
https://orcid.org/0000-0002-6905-8345
https://orcid.org/0000-0003-0687-8124
https://orcid.org/0000-0001-8638-6300
https://orcid.org/0009-0000-0199-3372
https://orcid.org/0009-0009-2974-6985
https://orcid.org/0000-0001-9148-9101
https://orcid.org/0000-0003-2784-3094
https://orcid.org/0000-0001-7431-4051
https://orcid.org/0000-0002-7908-3288
https://orcid.org/0000-0002-2599-7957
https://orcid.org/0009-0005-5922-8936
https://orcid.org/0000-0002-0442-6549
https://orcid.org/0000-0003-3498-4661
https://orcid.org/0000-0002-3156-0188
https://orcid.org/0000-0002-4862-3384
https://orcid.org/0000-0002-9413-6069
https://orcid.org/0009-0002-8212-4789
https://orcid.org/0000-0002-9040-5292
https://orcid.org/0000-0003-4673-8038
https://orcid.org/0000-0003-0309-5917
https://orcid.org/0000-0003-3705-7898
https://orcid.org/0009-0004-5511-2496
https://orcid.org/0000-0001-5253-2517
https://orcid.org/0000-0002-1373-1844
https://orcid.org/0000-0001-7883-3190
https://orcid.org/0000-0002-3687-8179
https://orcid.org/0000-0002-3755-0992
https://orcid.org/0000-0003-1664-8189
https://orcid.org/0000-0003-4940-2441
https://orcid.org/0000-0003-1659-0394
https://orcid.org/0009-0001-0415-8257
https://orcid.org/0000-0003-0002-4654
https://orcid.org/0000-0003-2849-0120
https://orcid.org/0000-0003-3578-5373
https://orcid.org/0009-0008-5850-0274
https://orcid.org/0000-0002-4681-3002
https://orcid.org/0000-0002-4266-8338
https://orcid.org/0000-0002-8085-8597
https://orcid.org/0000-0002-6800-3465
https://orcid.org/0000-0003-4185-2093
https://orcid.org/0009-0001-4479-0417
https://orcid.org/0000-0001-6283-2927
https://orcid.org/0009-0009-8669-3875
https://orcid.org/0000-0001-7333-224X
https://orcid.org/0009-0004-0514-1723
https://orcid.org/0000-0003-1618-9648
https://orcid.org/0000-0001-8879-6290
https://orcid.org/0000-0003-2881-9635
https://orcid.org/0009-0009-3727-3102
https://orcid.org/0000-0002-5054-1521
https://orcid.org/0000-0003-3468-3164
https://orcid.org/0000-0002-3069-5822
https://orcid.org/0000-0003-2527-0720
https://orcid.org/0000-0001-9610-5218
https://orcid.org/0000-0002-3075-1556
https://orcid.org/0000-0001-6247-9633
https://orcid.org/0000-0001-7504-2561
https://orcid.org/0009-0008-2547-0419
https://orcid.org/0009-0009-7215-3122
https://orcid.org/0009-0009-4284-8943
https://orcid.org/0000-0002-0413-9478
https://orcid.org/0000-0003-2049-1380
https://orcid.org/0000-0002-9962-1880
https://orcid.org/0000-0002-8880-1608
https://orcid.org/0000-0001-6286-120X
https://orcid.org/0000-0002-2253-165X
https://orcid.org/0000-0002-1595-411X
https://orcid.org/0000-0002-2543-0336
https://orcid.org/0000-0002-5269-9779
https://orcid.org/0000-0001-5945-3424
https://orcid.org/0000-0002-9261-9497
https://orcid.org/0000-0003-0604-2044
https://orcid.org/0000-0001-5405-3480
https://orcid.org/0000-0002-4008-9922
https://orcid.org/0000-0002-8024-9441
https://orcid.org/0000-0001-9981-7536
https://orcid.org/0000-0001-7610-8673
https://orcid.org/0000-0001-9822-0463
https://orcid.org/0000-0002-5187-2779
https://orcid.org/0009-0003-9141-4590
https://orcid.org/0000-0002-0722-7692
https://orcid.org/0009-0008-7385-1259
https://orcid.org/0009-0006-0432-2498
https://orcid.org/0000-0002-9614-4046
https://orcid.org/0000-0002-3311-1175
https://orcid.org/0000-0003-4238-2302
https://orcid.org/0000-0003-4511-4784
https://orcid.org/0000-0003-0578-5567
https://orcid.org/0009-0004-0724-7003
https://orcid.org/0009-0002-8368-9407
https://orcid.org/0000-0001-6837-3362
https://orcid.org/0000-0002-9982-9577
https://orcid.org/0009-0009-7059-0601
https://orcid.org/0009-0001-4181-8891
https://orcid.org/0000-0003-0000-2674
https://orcid.org/0009-0009-5292-9579
https://orcid.org/0000-0002-4325-0646
https://orcid.org/0000-0002-1850-0121
https://orcid.org/0000-0001-7066-3473
https://orcid.org/0000-0001-5433-969X
https://orcid.org/0000-0002-8804-1100
https://orcid.org/0000-0001-5129-1723
https://orcid.org/0000-0002-4255-7347
https://orcid.org/0000-0003-2677-7961
https://orcid.org/0000-0001-9102-9500
https://orcid.org/0000-0001-7804-0721
https://orcid.org/0000-0003-4167-9665
https://orcid.org/0000-0001-5283-3520
https://orcid.org/0000-0002-7602-2930
https://orcid.org/0000-0001-9504-2702
https://orcid.org/0000-0002-9677-5294
https://orcid.org/0000-0002-8343-8758
https://orcid.org/0000-0003-2778-6421
https://orcid.org/0000-0002-7880-8611
https://orcid.org/0000-0001-6955-3314
https://orcid.org/0000-0002-5860-585X
https://orcid.org/0000-0001-5845-6500
https://orcid.org/0000-0001-7528-6523
https://orcid.org/0000-0002-2166-1874
https://orcid.org/0000-0002-5165-6638
https://orcid.org/0000-0002-8899-3654
https://orcid.org/0009-0002-3904-8872
https://orcid.org/0000-0002-2678-6780
https://orcid.org/0000-0001-6632-7741
https://orcid.org/0000-0001-5008-6859
https://orcid.org/0000-0002-7865-4202
https://orcid.org/0000-0002-3220-4505
https://orcid.org/0000-0002-0830-4872
https://orcid.org/0000-0002-7055-6181
https://orcid.org/0000-0002-5884-4404
https://orcid.org/0000-0002-0711-4022
https://orcid.org/0000-0001-9236-0748
https://orcid.org/0009-0002-6200-0391
https://orcid.org/0000-0002-7599-2716
https://orcid.org/0000-0001-6700-7950
https://orcid.org/0000-0003-2860-9881
https://orcid.org/0000-0002-6562-5082
https://orcid.org/0000-0002-5559-8906
https://orcid.org/0000-0003-0348-092X
https://orcid.org/0000-0001-9925-5254
https://orcid.org/0000-0002-6669-1698
https://orcid.org/0000-0002-4886-6052
https://orcid.org/0009-0005-3775-1945
https://orcid.org/0009-0002-9000-0815
https://orcid.org/0000-0002-6357-7857
https://orcid.org/0000-0001-6853-8905
https://orcid.org/0000-0003-4432-4026
https://orcid.org/0000-0003-0739-0120
https://orcid.org/0000-0002-2568-0132
https://orcid.org/0000-0002-9582-8948
https://orcid.org/0000-0002-0207-2871
https://orcid.org/0009-0008-9752-4391
https://orcid.org/0000-0002-3897-0876
https://orcid.org/0009-0006-9458-8723
https://orcid.org/0009-0004-8219-2743
https://orcid.org/0000-0001-6351-2378
https://orcid.org/0009-0003-4464-3366
https://orcid.org/0000-0001-7873-0968
https://orcid.org/0000-0003-2449-3172
https://orcid.org/0000-0003-1795-6212
https://orcid.org/0000-0002-8427-322X
https://orcid.org/0000-0002-4239-6424
https://orcid.org/0000-0002-2325-8368
https://orcid.org/0000-0003-2202-5906
https://orcid.org/0009-0007-8219-3334
https://orcid.org/0000-0003-3573-3389
https://orcid.org/0000-0002-0844-3282
https://orcid.org/0000-0001-6270-9283
https://orcid.org/0009-0005-4586-0930
https://orcid.org/0000-0003-3700-8623
https://orcid.org/0000-0003-0152-4220
https://orcid.org/0000-0001-7107-2325
https://orcid.org/0000-0001-9723-1291
https://orcid.org/0000-0003-1089-6632
https://orcid.org/0009-0008-5359-761X
https://orcid.org/0000-0001-9084-5784
https://orcid.org/0009-0002-0542-4454
https://orcid.org/0000-0002-6444-4669
https://orcid.org/0000-0002-7104-7477
https://orcid.org/0000-0002-8632-5580
https://orcid.org/0000-0002-0194-1318
https://orcid.org/0009-0006-6140-676X
https://orcid.org/0009-0007-2053-4869
https://orcid.org/0000-0003-0642-2047
https://orcid.org/0000-0002-2136-778X
https://orcid.org/0009-0008-3206-9607
https://orcid.org/0000-0001-8216-396X
https://orcid.org/0000-0002-3420-6301
https://orcid.org/0009-0005-2155-0460
https://orcid.org/0000-0001-7814-319X
https://orcid.org/0009-0004-9666-7156
https://orcid.org/0000-0002-2582-1927
https://orcid.org/0000-0003-1148-0428
https://orcid.org/0000-0001-6122-4698
https://orcid.org/0000-0002-6314-7419
https://orcid.org/0000-0002-0019-9692
https://orcid.org/0000-0001-5496-8533
https://orcid.org/0000-0002-8698-3647
https://orcid.org/0000-0003-4871-4064
https://orcid.org/0009-0007-2395-8130
https://orcid.org/0000-0002-6224-1577
https://orcid.org/0000-0002-6847-8671
https://orcid.org/0009-0001-4753-577X
https://orcid.org/0000-0001-9840-6460
https://orcid.org/0000-0001-7039-535X
https://orcid.org/0000-0002-8450-5318
https://orcid.org/0000-0001-7382-1609
https://orcid.org/0000-0002-4831-5808
https://orcid.org/0009-0000-5731-050X
https://orcid.org/0000-0002-1383-6160
https://orcid.org/0000-0003-4358-5355
https://orcid.org/0000-0001-7400-7019
https://orcid.org/0000-0003-3793-5291
https://orcid.org/0009-0008-1162-7067
https://orcid.org/0000-0002-7607-3965
https://orcid.org/0000-0002-7474-901X
https://orcid.org/0000-0003-1746-1279
https://orcid.org/0000-0002-0476-1005
https://orcid.org/0000-0002-9581-0879
https://orcid.org/0000-0002-4442-5727
https://orcid.org/0009-0002-9826-4989
https://orcid.org/0000-0003-0562-9820
https://orcid.org/0009-0006-9035-556X
https://orcid.org/0000-0002-0661-5220
https://orcid.org/0000-0002-0658-5949


Groomed and ungroomed mjet and λα in Pb–Pb and pp at
√

sNN = 5.02 TeV 43

F. Grosa 32, J.F. Grosse-Oetringhaus 32, R. Grosso 96, D. Grund 35, N.A. Grunwald93,
G.G. Guardiano 110, R. Guernane 72, M. Guilbaud 102, K. Gulbrandsen 82, J.J.W.K. Gumprecht101,
T. Gündem 64, T. Gunji 123, W. Guo 6, A. Gupta 90, R. Gupta 90, R. Gupta 48, K. Gwizdziel 135,
L. Gyulai 46, C. Hadjidakis 130, F.U. Haider 90, S. Haidlova 35, M. Haldar4, H. Hamagaki 75,
Y. Han 139, B.G. Hanley 136, R. Hannigan 107, J. Hansen 74, M.R. Haque 96, J.W. Harris 137,
A. Harton 9, M.V. Hartung 64, H. Hassan 116, D. Hatzifotiadou 51, P. Hauer 42, L.B. Havener 137,
E. Hellbär 32, H. Helstrup 34, M. Hemmer 64, T. Herman 35, S.G. Hernandez115, G. Herrera Corral 8,
S. Herrmann 127, K.F. Hetland 34, B. Heybeck 64, H. Hillemanns 32, B. Hippolyte 128, I.P.M. Hobus83,
F.W. Hoffmann 70, B. Hofman 59, M. Horst 94, A. Horzyk 2, Y. Hou 6, P. Hristov 32, P. Huhn64,
L.M. Huhta 116, T.J. Humanic 87, A. Hutson 115, D. Hutter 38, M.C. Hwang 18, R. Ilkaev140,
M. Inaba 124, G.M. Innocenti 32, M. Ippolitov 140, A. Isakov 83, T. Isidori 117, M.S. Islam 47,98,
S. Iurchenko140, M. Ivanov 96, M. Ivanov13, V. Ivanov 140, K.E. Iversen 74, M. Jablonski 2,
B. Jacak 18,73, N. Jacazio 25, P.M. Jacobs 73, S. Jadlovska105, J. Jadlovsky105, S. Jaelani 81, C. Jahnke 109,
M.J. Jakubowska 135, M.A. Janik 135, T. Janson70, S. Ji 16, S. Jia 10, T. Jiang 10, A.A.P. Jimenez 65,
F. Jonas 73, D.M. Jones 118, J.M. Jowett 32,96, J. Jung 64, M. Jung 64, A. Junique 32, A. Jusko 99,
J. Kaewjai104, P. Kalinak 60, A. Kalweit 32, A. Karasu Uysal V,138, D. Karatovic 88, N. Karatzenis99,
O. Karavichev 140, T. Karavicheva 140, E. Karpechev 140, M.J. Karwowska 135, U. Kebschull 70,
M. Keil 32, B. Ketzer 42, J. Keul 64, S.S. Khade 48, A.M. Khan 119, S. Khan 15, A. Khanzadeev 140,
Y. Kharlov 140, A. Khatun 117, A. Khuntia 35, Z. Khuranova 64, B. Kileng 34, B. Kim 103, C. Kim 16,
D.J. Kim 116, D. Kim103, E.J. Kim 69, J. Kim 139, J. Kim 58, J. Kim 32,69, M. Kim 18, S. Kim 17,
T. Kim 139, K. Kimura 91, A. Kirkova36, S. Kirsch 64, I. Kisel 38, S. Kiselev 140, A. Kisiel 135,
J.L. Klay 5, J. Klein 32, S. Klein 73, C. Klein-Bösing 125, M. Kleiner 64, T. Klemenz 94, A. Kluge 32,
C. Kobdaj 104, R. Kohara123, T. Kollegger96, A. Kondratyev 141, N. Kondratyeva 140, J. Konig 64,
S.A. Konigstorfer 94, P.J. Konopka 32, G. Kornakov 135, M. Korwieser 94, S.D. Koryciak 2, C. Koster83,
A. Kotliarov 85, N. Kovacic88, V. Kovalenko 140, M. Kowalski 106, V. Kozhuharov 36, G. Kozlov38,
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