LHCb-PUB-2024-006
06/09/2024

)

CERN

\
NS

RUST Bindings For DIM System Used In LHCb

CERN Summer 2024

Betiil Dogrul (Student), Niko Neufeld (Supervisor), Tommaso Colombo (Supervisor),
Flavio Pisani (Supervisor)

September 28, 2024

C

KEYWORDS

DIM, RUST, C, bindings, wrapper, bindgen, callback,
thread-safe.

ABSTRACT

The Distributed Information Management (DIM) system
in CERN is a well-established framework written in C
that handles event-based communication [1]. It is a
client/server paradigm based inter-process communica-
tion system [/1]]. It is used in environments where clients
must be notified of specific events and execute commands
in response. While DIM provides high performance due to
its low-level memory management, it comes with risks as-
sociated with manual memory handling, making it difficult
to maintain safety in complex systems.

Rust can be considered a systems programming lan-
guage focusing on memory safety and performance [2].
These constraints are necessary for Rust language as
they help the programmer to prevent the most common
memory-related issues such as null pointers dereferencing,
data races, and memory leaks [3]]. The specific reason for
implementing this project was to create Rust’s binding
against DIM so that the efficiency of DIM is preserved
while offering a robust system.

THE CHALLENGE

Integrating Rust with DIM presented several challenges,
primarily due to differences in memory management, call-
back mechanisms, and multi-threading models between
the two languages:

Memory Management

DIM is built on C, a language that allows direct mem-
ory access and requires manual memory management,
which makes the system prone to errors such as memory
leaks and buffer overflows. Rust’s approach to memory
is more controlled; it enforces ownership rules and pro-
vides compile-time checks to ensure memory safety [2].
Therefore, while integrating these two memory systems,
I needed to be careful when allocating, deallocating, and
transferring ownership between C and Rust.

Callback Mechanisms

DIM uses callbacks extensively to notify clients of events.
Callbacks in C are typically implemented as function
pointers, which allow functions to be passed and executed
dynamically. Rust uses closures and function pointers
instead of callback functions used in C so that Rust can
enforce strict rules about lifetimes and ownership. This
meant that a good solution must be found for how the call-
backs should be handled in Rust without violating Rust’s
safety rules.

0.1 Multi-threading

DIM clients are designed to operate concurrently, manag-
ing multiple services at once. In Rust, concurrency is man-
aged using ownership principles, with thread-safe refer-
ences being provided through constructs like Arc (Atomic
Reference Counted) and Mutex [4]. Rust prevents data
races by ensuring that only one thread can access mutable
data simultaneously, while multiple threads can access im-
mutable data concurrently. I needed to carefully analyze
and understand DIM’s threading and Rust’s concurrency
models to ensure a safe and efficient system.

1 APPROACH

My approach to solving these challenges involved under-
standing the DIM API to refine the auto-generated Rust
bindings to meet the safety and concurrency guarantees
provided by Rust.

1.1 Understanding DIM API

The first step was to gain a thorough understanding of
the DIM API, which is essential for effectively creating
bindings. DIM’s API defines how services are registered,
how commands are sent and received, and how events
are triggered. A deep understanding of this API was nec-
essary to integrate well with Rust while maintaining the
functionality of the DIM system.

1.2 Using BINDGEN

Rust Foreign Function Interface (FFI) bindings to C li-
braries are automatically generated by the program Bind-
gen [5]]. After going through the C headers, it generates
Rust code that enables safe C function calls from Rust
applications. Though strong, bindgen can’t handle ev-
ery edge situation, particularly regarding concurrency and
memory safety. The output from bindgen often requires
manual refinement to fit Rust’s strict safety rules.

1.3 Manual Refinement

After generating the initial bindings using bindgen, I fo-
cused on selecting the relevant structs, functions, and other
elements for binding generation. This process ensured that
only the necessary components were included.

1.4 Handling Pointers

Handling raw pointers from C in Rust is inherently unsafe.
Rust’s safety model enforces the usage of unsafe blocks
whenever raw pointers are involved [|6]. In order to mini-
mize the unsafe code from the client end and encapsulate
potential errors, C pointers were wrapped in Rust types.
This encapsulation helps prevent issues such as double
freeing memory or accessing memory that has already
been deallocated.

1.5 Callback Handling

DIM relies on callbacks to notify clients about events.
Handling these callbacks in Rust can be done by using
closures, which have complex lifetime rules. In order to
manage this integration, we developed a callback registry
that stores Rust closures and ensures they live long enough
to be used by C code. Rust’s Arc type was used to enable
shared ownership of these closures across threads, and
the Send and Sync traits were employed to ensure that
closures could be safely transferred between threads.

1.6 Ensuring Concurrency Safety

Concurrency is one of the core strengths of Rust, but
DIM’s existing concurrency model needs to be adapted
to fit Rust’s safety guarantees. This was achieved by
wrapping shared resources in Arc and Mutex to ensure
thread safety. Rust’s ownership model and borrowing
rules prevented data races while allowing multiple threads
to read data concurrently.

2 Key Features Implemented

In order to enhance the integration of DIM with Rust and
provide a safer and more efficient API for developers,
some key features are implemented:

2.1 Service Subscription

One of the key features implemented is service subscrip-
tion, which allows Rust clients to subscribe to services
provided by DIM servers. This feature was designed with
a safe Rust API in mind, making it easier for Rust devel-
opers to interact with DIM without having to deal with the
complexities of C’s memory management.

Figure 1: Service Subscription

2.2 Command Handling

|_| CommandError::

ret: i32

dic_cmnd

mut_ptr

CommandNotFound)

Figure 2: Command Handling

The bindings allow Rust clients to request the execution of
commands on DIM servers. This is achieved using high-
level Rust constructs, making the API more accessible
and easier to use compared to the low-level C interfaces.
Command handling is a crucial part of DIM’s functionality,
and the Rust bindings make it simpler and safer to use.

2.3 Error Handling

Better error handling was one of the main improvements
to the Rust bindings. Using Rust’s Result type, errors are
reported in a more straightforward and more manageable
way [[7]. This guarantees that errors are either handled or
explicitly ignored by Rust’s compiler.

To make error handling even more robust, I created
a custom DimError enum, which covers different error
scenarios like service errors, format errors, network issues,
and more. This approach gives more precise and detailed
error messages, making it easier to debug problems when
they occur.

#[derive(Debug

Figure 3: Error Handling

2.4 Callback Functions

Figure 4: Callback Functions

Callback functions in DIM are represented in Rust as
closures that match a specific signature. These closures
are wrapped in an Arc to enable shared ownership across
threads, and the Send and Sync traits ensure that they can
be safely transferred between threads [4] [8]]. A static
lifetime was enforced, indicating that the closure must live
for the entire duration of the program, ensuring that it is
not deallocated while still in use by DIM.

A callback registry was also implemented using the
lazy_static! macro, which ensures that the service and com-
mand callback registries are lazily initialized and available
globally. These registries are stored in thread-safe struc-
tures using Mutex; Vec;Option;jRustServiceCallbacky

and Mutex; Vec;OptionjRustCommandCallback;,, ensur-
ing that access to the list of callbacks is safe in a multi-
threaded environment.

2.5 Thread-Safe Clients

The wrappers were designed to enable thread-safe client
operations, allowing multiple threads to interact with DIM
services concurrently. This was achieved using Rust’s Arc
and Mutex constructs, which allow for shared access to
resources while ensuring that only one thread can mutate
the data at a time [4]]. This design prevents data races
and ensures that operations remain safe even in a multi-
threaded environment.

2.6 Resource Management

Rust’s Drop trait was used to manage resource cleanup
automatically [9]. Resource management is manual in
C, leading to memory leaks and resource exhaustion if
not handled correctly. Using Rust’s automatic memory
management features, the wrappers help prevent resource
leaks and ensure that resources are cleaned up efficiently
when no longer needed.

Figure 5: Resource Management

3 BENEFITS OF RUST WITH DIM

The integration of Rust with DIM brings several signifi-
cant benefits that improve both the safety and performance
of the system:

3.1 Memory Safety

One of the primary advantages of using Rust with DIM is
the improvement in memory safety. Rust’s strict memory
rules help prevent common memory issues such as null
pointer dereferencing, buffer overflows, and use-after-free
errors. This results in more reliable DIM operations and
reduces the likelihood of crashes due to memory-related
bugs [3].

3.2 Concurrency Safety

Rust’s concurrency model is another significant benefit.
By using Arc and Mutex, the Rust wrapper ensures that
data races and concurrency issues are avoided [4]]. This
is particularly important in systems like DIM, where mul-
tiple clients and services may be operating concurrently.
Rust’s ownership and borrowing rules help enforce thread
safety at compile time, reducing the risk of runtime errors.

3.3 Performance

Despite its safety features, Rust is designed to be as good
as C in terms of performance. The Rust bindings maintain
the high performance of DIM while providing additional
safety guarantees. By avoiding unnecessary overhead and
optimizing the use of memory and CPU resources, the
bindings ensure that DIM remains efficient even with the
added safety checks.

3.4 Ease Of Use

The Rust wrapper provides an easy Rust API, which sim-
plifies the process of interacting with DIM. For Rust de-
velopers, this means that they can work with DIM in a
way that feels natural and consistent with other Rust code
without having to worry about the complexities of C’s
memory management and error handling.

4 CHALLENGES FACED

The project encountered several challenges, particularly
around handling the foreign function interface (FFI), de-
bugging, and ensuring thread safety:

4.1 FFI Layer Complexity

Handling the FFI layer between Rust and C required care-
ful management of raw pointers and memory. Rust’s
safety model enforces strict rules around memory access,
which meant that care had to be taken when passing data
between Rust and DIM. The FFI layer also required ex-
plicit handling of lifetimes and ownership, which added
complexity to the binding implementation.

4.2 Debugging Issues

Debugging issues that arose during the development of
the bindings involved working with both Rust and C de-
bugging tools. This was particularly challenging when
dealing with unsafe code, as bugs could originate in ei-
ther the Rust or the underlying C code. Debugging these
issues required a deep understanding of both languages
and their respective debugging tools, making the process
time-consuming and complex.

4.3 Thread Safety

Another significant challenge was ensuring compatibil-
ity between DIM’s threading model and Rust’s concur-
rency model. DIM was designed to handle concurrency
in C, which does not have the same safety guarantees as
Rust. Adapting DIM’s threading model to Rust’s concur-
rency model required careful design and implementation
to ensure that operations remained thread-safe while still
maintaining the performance and functionality of DIM.

5 FUTURE WORK

While significant progress was made during this project,
there are several areas where further work could enhance
the Rust bindings for DIM:

5.1 API Refinements

Some of the APIs could be made more user-friendly. Rust
developers expect APIs to follow certain conventions and
patterns, and further refinements could make the wrapper
more intuitive and easier to use.

5.2 Callback Function Structure Improvements

While the current callback mechanism is functional, there
is room for improvement in terms of structure and per-
formance. Further work could involve optimizing the
callback system to reduce overhead and ensure that call-
backs are handled as efficiently as possible while still
maintaining safety guarantees.

5.3 Performance Optimizations

Although the Rust bindings already provide high perfor-
mance, there is always room for further optimization. Ad-
ditional performance tests and improvements could be
made to ensure that the bindings are as efficient as possi-
ble, particularly in high-load scenarios.

5.4 Testing

Expanding the testing suite for the bindings would help
ensure their robustness. More extensive tests, particularly
in multi-threaded and high-concurrency scenarios, would
help identify and fix any remaining issues. Automated
testing could also be improved to catch potential problems.

6 CONCLUSION

The integration of Rust bindings with DIM represents a
significant modernization of the DIM system, bringing en-
hanced safety and reliability through Rust’s memory and
concurrency guarantees. By combining DIM’s efficiency
with Rust’s safety features, the bindings provide a safer
and more efficient interface for interacting with DIM. This
project has laid the foundation for future improvements
and optimizations, ensuring that DIM remains a robust
and reliable system for event-based communication.

The Rust bindings not only improve the reliability and
performance of DIM but also make it more accessible to
Rust developers, who can now use Rust’s powerful safety
features without sacrificing performance. The work done
here represents a meaningful step forward in modernizing
DIM and ensuring its continued success in environments
where safety, concurrency, and performance are essential.

The link for the Gitlab code is the following: [[10]]

REFERENCES
References

C. Gaspar, “Dim.” http://dim.web.cern.ch/l
Accessed: 2024-09-06.

“The rust programming language.” |https:
//rust-book.cs.brown.edu/
ch00-00-introduction.html. Accessed:
2024-09-06.

O. Kevin Andrian Santoso, C. Kwee, W. Chua, G. Z.
Nabiilah, and Rojali, “Rust’s memory safety model:
An evaluation of its effectiveness in preventing com-
mon vulnerabilities,” Procedia Computer Science,
vol. 227, pp. 119-127, 2023. 8th International Con-
ference on Computer Science and Computational
Intelligence (ICCSCI 2023).

“Rust arc.” Available: https://doc.rust-
lang.org/std/sync/struct. Arc.html. Accessed:
September 23, 2024.

“Bindgen.” Available: https://docs.rs/
bindgen/latest/bindgen/\ Accessed:
September 23, 2024.

“Unsafe rust” Available: https://doc.rust-
lang.org/book/ch19-01-unsafe-rust.html. Accessed:
September 23, 2024.

“Rust result type.” Available: https://doc.rust-
lang.org/rust-by-example/error/result.html.
Accessed: September 23, 2024.

“Rust send and sync.” Available: |hitps://doc.rust-
lang.org/nomicon/send-and-sync.html. Accessed:
September 23, 2024.

“Rust drop.” Available: https://doc.rust-lang.org/rust-by-
example/trait/drop.html. Accessed: September 23,
2024.

CERN, “rsdim.” Available: |https://gitlabl

cern.ch/lhcb-online/rsdim. Accessed:
September 6, 2024.

http://dim.web.cern.ch/
https://rust-book.cs.brown.edu/ch00-00-introduction.html
https://rust-book.cs.brown.edu/ch00-00-introduction.html
https://rust-book.cs.brown.edu/ch00-00-introduction.html
h
https://docs.rs/bindgen/latest/bindgen/
https://docs.rs/bindgen/latest/bindgen/
h
h
h
h
https://gitlab.cern.ch/lhcb-online/rsdim
https://gitlab.cern.ch/lhcb-online/rsdim

	Multi-threading
	APPROACH
	Understanding DIM API
	Using BINDGEN
	Manual Refinement
	Handling Pointers
	Callback Handling
	Ensuring Concurrency Safety

	Key Features Implemented
	Service Subscription
	Command Handling
	Error Handling
	Callback Functions
	Thread-Safe Clients
	Resource Management

	BENEFITS OF RUST WITH DIM
	Memory Safety
	Concurrency Safety
	Performance
	Ease Of Use

	CHALLENGES FACED
	FFI Layer Complexity
	Debugging Issues
	Thread Safety

	FUTURE WORK
	API Refinements
	Callback Function Structure Improvements
	Performance Optimizations
	Testing

	CONCLUSION

