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Summary

Optimization and realistic estimates of the sensitivity of the measurement of charged particle
Electric Dipole Moment (EDM) in storage rings require a good understanding of systematic errors
that can contribute to a vertical spin build-up mimicking the EDM signal to be detected. A specific
case of systematic effects due to offsets of electrostatic bendings and longitudinal magnetic fields is
studied. Spin tracking simulations to investigate whether this special case generates spin rotations,
which cannot be disentangled from the ones due a finite EDM by combining observations made
with both counter-rotating beams as predicted by analytical derivations, will be presented.
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1 Introduction

Several schemes to measure the Electric Dipole Moment (EDM) of charged particles are
discussed at present [1, 2, 3, 4, 5, 6, 7]. Most of these proposals foresee to run a synchrotron
satisfying the ”frozen spin” condition. This condition requires that, in absence of an EDM
and with the well known Magnetic Dipole Moment (MDM) in a perfect machine, bunches
with initial longitudinal polarization (parallel or antiparallel to the direction of movement)
remain longitudinally polarized. This implies that the spin of a reference particle (reference
energy and reference orbit in perfect machine) rotates together with the direction of the
trajectory. This is achieved by an appropriate choice of the electric and magnetic fields
of bending elements. The effect of a finite EDM is a rotation of the spin around a radial
direction from the longitudinal direction into the vertical direction. In an EDM ring the
resulting vertical spin build up, which is very small for the smallest EDM to be detected in
typical proposals, is measured with a polarimeter. The study presented here is for proposals
based on a special case possibly only for particles with positive anomalous magnetic moment
G > 0 as for example protons, is operation with beams at the ”magic energy”, where the
”frozen spin” condition is met with only electric fields [2].

Systematic effects are any phenomena other than an EDM generating a vertical com-
ponent of the polarization and limit the sensitivity, i.e. the smallest detectable EDM, of
the proposed experiment. Such systematic effects may be generated by unwanted electric
fields owing to imperfections in the focusing structure, such as misalignments of compon-
ents, by magnetic fields penetrating the magnetic shielding or generated inside the shield
(for example by the beam itself or the RF cavity), or gravity [3]. A combination of several
such phenomena or a combination of an average horizontal polarization and one of these
phenomena may also lead to such systematic effects. This paper describes a special case of
systematic effects limiting the sensitivity of the experiment caused by transverse offsets of
electrostatic bending elements and residual longitudinal magnetic fields inside the magnetic
shieldings. The effect occurs both in purely electrostatic EDM rings and in hybrid rings
with magnetic focusing. Simulations have been carried out for the symmetric hybrid ring
proposal [8].

In most proposals (see, e.g., [3, 4, 8]), a target sensitivity of 10−29 e·cm is quoted, that cor-
responds to a vertical spin precession rate of 1 nrad/s for the 800 m circumference symmetric
hybrid ring (this number will be useful throughout the work). Thus, any non EDM origin-
ating vertical spin precession rate larger than 1 nrad/s is considered a potential systematic
error source.

We can distinguish between first order systematic effects and second order ones. First
order effects, where one machine imperfection contributes to a vertical spin build up and
second order effects, where instead two machine imperfections contribute to a vertical spin
build up. In this paper, we will focus on a specific case of a second order effect, a geometric
phase effect, due to horizontal offsets of bends and longitudinal magnetic fields penetrating
the shield, described in Fig. 1. The horizontal offsets of bends will generate spin rotation in
the horizontal plane due to the fact that the particle is no more at the magic energy while the
longitudinal magnetic fields rotate the spin around the longitudinal axis generating a small
vertical spin component. The fact that rotations are not commutative leads to a rotation
around the radial axis, i.e., a typical geometric phase effect. Moreover, betatron oscillations
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Figure 1: Detailed description of the mechanism of the geometric phase effect described in
this paper.

are neglected with the analysis restricted to particles following the closed orbit.

2 Basic Equations and Magic Energy

The time evolution of the particle spin is described by the Thomas-BMT equation comple-
mented by terms due to a possible EDM [9] as d S⃗/dt = (ω⃗M + ω⃗E)× S⃗ and
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with S⃗ a (unit) vector pointing in the direction of the spin, ω⃗M an angular frequency describ-
ing the particle with only an MDM and ω⃗E an angular frequency describing spin rotation
due an EDM. q and m are the particle charge and mass, γ and β the relativistic parameters
and B⃗ and E⃗ the magnetic and electric fields. Indices ⊥ and ∥ denote the component per-
pendicular and parallel to the particles direction of motion. G is the anomalous magnetic
moment factor and η describes a possible EDM. For protons with an EDM of 10−29 e · cm,
these values are G = 1.7928... and η = 1.9 · 10−15.

For a magic energy ring, the angular frequency describing the rotation of the direction of
motion along the reference orbit has only a vertical component given for a Clock-Wise (CW)
beam by ωp,y = −βc/ρ = (q/m)Ex/(γβc) with ρ the bending radius. The angular frequency
describing the rotation of the spin with an MDM only is ωM,y = (q/m)(G+1/(γ+1))βEx/c.
The frozen spin condition is satisfied for ωp,y = ωM,y leading to the condition β2γ2 = G−1.
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The magic (kinetic) energy evaluated for protons is given by Em = (
√
1 + 1/G − 1)mc2 =

232.8MeV.

3 Geometric phase effect due to offset of bends and

longitudinal magnetic fields

This study describes the BMAD [10] implementation of the symmetric hybrid ring lattice
proposal and the study of a second order systematic effect: the geometric phase effect due
to offset of bends and longitudinal magnetic fields. The symmetric hybrid ring design has
been chosen for this study because it has interesting features, as the absence of spin rotation
proportional to the unwanted magnetic fields due to focusing using magnetic quadrupoles.
Anyway, it is necessary to take into consideration that, for this specific ring, the lattice is
different for counter-rotating beams and thus the tuning is more delicate. More details on
this lattice proposal can be found in [8] .

3.1 Analytical Estimates

The effect sketched in Fig. 1 for the simplified case simulated in Section 4.3 can be estimated
by an analytical derivation. A horizontal offset of bend induces spin rotations around the
vertical axis. In particular, we assume no deflection due to offset to simplify (deflection due to
electrode spacing compensates and cannot be disentangled from offset). This offset generates
a change of relativistic gamma by a bending offset of xB that is ∆γ = − qE

mc2
xB = β2γ αB

lB
xB,

where lB is the length of the bending element and αB is the bending angle. The angular
frequency of spin rotation with respect to direction of:
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The final change of radial spin is:
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and the radial spin component before and after the bending element is:

Sx = ±1

2
∆Sx.

An integrated magnetic field, instead, generates a rotation around the longitudinal axis and
in particular a vertical spin per turn of:

∆Sy = 2
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∆ωzSx = 2
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and a build up rate of:

dSy
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=
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where ls is the length of the section where the magnetic field is applied, and Bs is the strength
of the magnetic field.
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Figure 2: Example of the systematic effect studied and the BMAD reference system used to
model the CW beam.

Figure 3: Schematic view of the lattice design and the systematic effect studied for this
specific case (for the CW beam).

4 Simulation Results

The simulation results have been obtained with the BMAD tracking code. In the following,
the implementation of the lattice for the Clock-Wise (CW) and Counter-ClockWise (CCW)
beams is presented.

4.1 BMAD Lattice Implementation for the CW beam

Figure 2 shows an example of the schematic of the effect and the axis for the BMAD con-
vention. An horizontal offset of the bends of xB= ±10 mm has been added in two locations
of the lattice as can be seen in Fig. 3. Then, the bending strengths has been adjusted to
compensate the deflection due to the bending offsets, Moreover, a longitudinal magnetic field
of 1,10,100 nTm has been added with solenoids (see Fig. 3). Then a correction of the energy
to reduce the horizontal spin build up was performed.

The lattice functions can be seen in Fig. 4, where the Twiss parameters and the horizontal
dispersion are shown.

4.2 BMAD Lattice Implementation for the CCW beam

The BMAD convention for the coordinate system has been applied, see example of the
schematic of the effect and the axis in Fig. 5. Thus, the direction of the horizontal axis
points inwards of the ring for the CCW beam. The sign of the horizontal electric field and
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Figure 4: Twiss functions and horizontal dispersion for the CW beam.

Figure 5: Example of the systematic effect studied and the BMAD reference system used to
model the CCW beam.

the gradient of the magnetic quadrupoles are swapped. In order to implement the CCW
beam in BMAD, the first step has been to invert the FODO cell, as can be seen in Fig. 6.
The same systematic effects have been studied but with the beam passing before through
the positive longitudinal magnetic field and the positive offset and after going towards the
negative magnetic field and the negative offset (see Fig. 6).

The lattice functions can be seen in Fig. 7, where the Twiss parameters and the horizontal
dispersion are shown.

4.3 Study of a simplified case

A simplified case studied here to understand the effect is generated by two bending offsets
by ±10 mm interleaved in two locations with longitudinal magnetic fields (integrated fields
of 0 nTm, ± 1 nTm, ± 10 nTm and ± 100 nTm).

The strength of the bendings is adjusted such that the deflection (corresponding, e.g., to
a slight change of the electrode spacing) vanishes. In practice, independent positioning and
strength errors will occur and generate orbit distortions resulting in additional systematic
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Figure 6: Schematic view of the lattice design and the systematic effect studied for this
specific case (for the CCW beam).

Figure 7: Twiss functions and horizontal dispersion for the CCW beam.

Figure 8: Horizontal and vertical spin build up for the CW and CCW beams with only the
horizontal offsets of bends and no longitudinal magnetic fields.
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Figure 9: Vertical spin build up for the CW and CCW beams without longitudinal magnetic
fields and with longitudinal magnetic fields of 1 nTm.

effects to be taken into account for a realistic sensitivity estimate. The effect is independent
on the location of the machine imperfections provided bending offsets and longitudinal mag-
netic fields are interleaved. For the simulation presented here, all imperfections are located
within a small portion of the ring. Simulations have been carried out for CW and CCW
beams showing that, as expected, the effect cannot be disentangled from a finite EDM.

4.3.1 Simulation results for a longitudinally polarized beam

After implementing the bending offsets and without longitudinal magnetic fields, the particle
energy has been slightly adjusted to reduce a slow spin rotation in the horizontal plane
resulting in the spin evolution plotted in Fig. 8 for a proton initially polarized in longitudinal
direction. The effect of adding weak integrated longitudinal magnet fields of ± 1 nT is shown
in Fig. 9. Transverse spin components for a proton with initially longitudinal polarization
for different additional integrated longitudinal magnetic fields in plotted in Fig. 10 and 11.
One notes that the residual radial spin component after readjusting the particle energy
is independent of the additional longitudinal magnetic fields. From Fig. 11, one observes
that the vertical spin component generated by the effects agrees well with with analytical
estimates and is as expected proportional to the additional longitudinal magnetic fields.

4.3.2 Simulation results for a radially polarized beam

Then, the simulations have been performed also for a beam with initial radial polarization
to verify the absence of a spin rotation around the longitudinal axis due to finite integrated
longitudinal magnetic field.

From Fig. 12, we can confirm the absence of spin rotation around the longitudinal axis
for this specific case of systematic error. Additionally, the small vertical spin buildup is
identical for all longitudinal magnetic fields and, thus, independent of them. The results
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Figure 10: Horizontal spin build up for the CW and CCW beams with longitudinal magnetic
fields of 1, 10, 100 nTm.

Figure 11: Vertical spin build up and comparison with analytical estimates for the CW and
CCW beams with longitudinal magnetic fields of 1, 10, 100 nTm.
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Figure 12: Vertical and longitudinal spin build up for the CW and CCW beams for a beam
radially polarized.

presented cover all the longitudinal magnetic fields (integrated fields of 0 nTm, ± 1 nTm,
± 10 nTm, and ± 100 nTm), and the lines overlap because the vertical spin is the same for
all the simulated cases. The slow rotation around the longitudinal axis of about ±5 nrad/s
is then caused by numerical errors.

4.3.3 Comparison between simulations results and analytical estimates

A comparison between analytical estimates and simulation results has been performed using
the formulas shown in Section 3.1.

In particular, a horizontal offset xB=±10 mm of bends induces a change of radial spin
∆Sx = −22µrad and a vertical spin ±Sx=±11µrad at the bending exit and entrance, with
the bending length of lB=12.5 m and the deflection of αB=π/24. In Table 1 we can see a
clear comparison between analytical estimates and simulation results, showing a very good
agreement between them.

Table 1: Comparison between analytical estimates and simulation results for the simplified
case.

Longitudinal field Sy per turn Sy per turn Build-up rate
BSlS (analytical) (simulations) (analytical)

1 nTm (CW beam) 2.60 ×10−14 rad 2.46 × 10−14 rad 5.9 nrad s−1

10 nTm (CW beam) 2.60 × 10−13 rad 2.60 × 10−13 rad 59 nrad s−1

100 nTm (CW beam) 2.60 × 10−12 rad 2.62 ×10−12 rad 590 nrad s−1

1 nTm (CCW beam) -2.60 × 10−14 rad -2.77 × 10−14 rad -5.9 nrad s−1

10 nTm (CCW beam) -2.60 × 10−13 rad -2.63 × 10−13 rad -59 nrad s−1

100 nTm (CCW beam) -2.60 × 10−12 rad -2.62 × 10−12 rad -590 nrad s−1
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Figure 13: Horizontal spin build up before and after applying the energy correction for two
different random seeds. The dashed blue lines are below the solid blue ones.

4.4 Study of a more realistic case

To understand the real limitation that can have this effect on the EDM measurement, a
more realistic case has been studied. This involves a random offset of all the bendings with
a reasonable small radial misalignment of 0.1 mm rms and reasonable longitudinal magnetic
fields added with 48 solenoids with a length of 1 m and a random rms kS=Bs/Bρ value of
10−9 m−1. In addition, the field of the bendings has again been adjusted (electrode spacing)
to have no (or negligible) orbit deformation. Then, simulations have been done without any
further correction and after adjusting the beam energy to strongly reduce a rotation in the
horizontal plane and then setting the integrated longitudinal field to zero. The spin rotation
in the horizontal plane is so large because the average of the bending offsets is not vanishing
(x̄B ̸= 0).

4.4.1 Simulation results for a longitudinally polarized beam

The results are shown for a longitudinally polarized beam and in addition different random
seeds have been used for comparison (case 1 and case 2 in Fig. 13 and 14). Fig. 13 shows
the horizontal spin build up before and after applying the energy correction. In fact, by
applying the correction we can see that the horizontal spin build up goes very close to zero
as we expect (the blue lines). Fig. 14 shows instead the vertical spin build up before and
after applying the energy and the longitudinal magnetic field corrections (set the integral
over one turn to zero). In fact, by doing that we can see that the effect from quadratic
becomes linear as expected and it is equal to ≈ 3 nrad/s. Without corrections, the radial
spin component increases about linearly with time (more precisely a sine wave). A non
zero average longitudinal magnetic field leads to a small rotation of this radial component
into the vertical direction leading to a contribution increasing quadratically with time (more
precisely proportional to a cosine function), as represented by the purple traces in Fig. 14.
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Figure 14: Vertical spin build up before and after applying the energy and the longitudinal
magnetic field correction for two different random seeds.

4.4.2 Simulation results for a radially polarized beam

Then, also in this case, the simulations have been performed also for a beam with initial
radial polarization to verify the absence of a spin rotation around the longitudinal axis due
to finite integrated longitudinal magnetic field.

From Figs. 15, 16 we can confirm, also in this case, the absence of a spin rotation around
the longitudinal axis for this specific case of systematic error and that the small vertical spin
build up is the same for all longitudinal magnetic fields and, thus, independent of them. Also
in this case, there is again a small rotation around the longitudinal axis probably caused by
numerical errors.

5 Conclusion

Geometric phase effects caused by offsets of bendings and residual longitudinal magnetic
fields inside the shield have been studied. The offset of the bendings generate spin rotation in
horizontal plane while the longitudinal magnetic fields generate rotations around longitudinal
axis. The net effect is a rotation around the radial axis that rotates the longitudinal spin
component into the vertical direction. It has been shown that this effect mimics a finite EDM
(cannot be disentangled from EDM combining observations with CW and CCW beams). It
has also been shown that there are no net rotation around the longitudinal axis rotating
radial spin component into the vertical direction.

From the simulations for the more realistic case, possibly with still optimistic assump-
tions, for a longitudinally polarized beam there is a geometric phase effect of ≈ 3 nrad/s,
3 times larger than what an EDM of 10−29 e·cm would give. In practice, bending elements
will have integrated strength errors and radial position offsets. Both generate closed orbit
perturbations, which cannot be disentangled. As consequence, there will be spin rotations
in the horizontal plane which do not correlate with orbit perturbations, which could be
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Figure 15: Longitudinal spin build up for a beam radially polarized before and after applying
the energy and the longitudinal magnetic field correction for two different random seeds. The
dashed blue lines are below the solid blue ones.

Figure 16: Vertical spin build up for a beam radially polarized before and after applying the
energy and the longitudinal magnetic field correction for two different random seeds.
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measured and used for mitigation measures. The effect occurs for any frozen spin machine
and not only the symmetric hybrid lattice [8] used for simulations. This is an example of
a geometric phase effect that cannot be disentangled from a finite EDM by combining spin
rotations made with both counter-rotating beams.
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