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Abstract: The search for New Physics (NP) beyond the Standard Model (SM) has been a central

focus of particle physics, including in the context of B-meson decays involving b → sℓℓ transitions.

These transitions, mediated by flavour-changing neutral currents, are highly sensitive to small NP

effects due to their suppression in the SM. While direct searches at colliders have not yet led to NP

discoveries, indirect probes through semi-leptonic decays have revealed anomalies in observables

such as the branching fraction B(B → Kµµ) and the angular observable P′
5(B → K∗µµ). In order to

assess the observed tensions, it is essential to ensure an accurate SM prediction. In this review, we

examine the theoretical basis of the B → K(∗)ℓℓ decays, addressing in particular key uncertainties

arising from local and non-local form factors. We also discuss the impact of QED corrections to the

Wilson coefficients, as well as the effect of CKM matrix elements on the predictions and the tension

with the experimental measurements. We discuss the most recent results, highlighting ongoing efforts

to refine predictions and to constrain potential signs of NP in these critical decay processes.

Keywords: B physics; semi-leptonic decays; form factors; charm loops

1. Introduction

The discovery of the Higgs boson at the LHC in 2012 [1,2] marked a significant
milestone in validating the Standard Model (SM) of particle physics. However, the SM
remains an incomplete theory; thus, the search for New Physics (NP) signals including
NP particles has been ongoing at colliders. Although direct searches have not yet led
to discoveries, several hints of potential NP have been observed via indirect searches.
Semi-leptonic B-meson decays via b → sℓ+ℓ− transitions have been prime candidates for
probing NP indirectly. These transitions mediated by flavour-changing neutral currents
are forbidden at the tree level in the SM and are further suppressed by elements of the
Cabibbo–Kobayashi–Maskawa (CKM) matrix, making them particularly sensitive to small
NP effects. Numerous deviations from SM predictions, often referred to as anomalies,
have been observed in these decays. An intriguing tension was found in the lepton
flavour universality ratios RK(∗) of B → K(∗)ℓ+ℓ− where the ratio is between a final
state with a muon pair and an electron pair. However, recent results from LHCb now
indicate an SM-like behaviour with no significant deviations observed [3]. Still, deviations
remain in other observables such as the branching fraction B(B → Kµ+µ−) [4–7], and the
angular observable P′

5(B → K∗µ+µ−) [8–13] at low q2 where q2 denotes the invariant
squared mass of the dilepton in the final state. Recent measurements by CMS [7,13]
confirm previous observations by LHCb [6,8,9], indicating a persistent tension with the
theoretical predictions.

However, branching fractions and, to a lesser degree, the optimised angular observables
Pi, are more challenging to predict than the RK(∗) ratios and suffer from larger uncertainties.
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In this review, we address the calculation of B → K(∗)ℓℓ observables. In Section 2,
we introduce the notations and key observables. We then turn to the current state of local
and non-local form factors in Sections 3 and 4, which constitute the primary sources of
uncertainty in these calculations. In Section 5, we address the impact of QED corrections to
Wilson coefficients as well as the effect of CKM matrix elements, which become increasingly
significant as precision increases. Section 6 presents a quantitative assessment of the
implications of different theoretical predictions. Finally, Section 7 provides our conclusions.

2. Theoretical Framework

B → K(∗)ℓ+ℓ− decays are well described in the Weak Effective Theory. In this formal-
ism, the transition b → sℓ+ℓ− is described by an effective Hamiltonian, where degrees of
freedom above the electroweak scale have been integrated out [14–16]:

Heff = −4GF√
2

{

λt

( i=2

∑
i=1

CiOc
i +

i=6

∑
i=3

CiOi + ∑
i=7,8,9,10

(CiOi + C
′
iO

′
i)

)

+ λu

( i=2

∑
i=1

Ci(Oc
i −Ou

i )

)

}

+ h.c. (1)

The CKM factor λj denotes λj = VjbV∗
js and GF is the Fermi coupling constant. The lo-

cal operators Oi and their associated Wilson coefficients Ci are given in the standard basis
introduced in [17] by

Oq
1 =(s̄LγµTaqL)(q̄LγµTabL),

O3 =(s̄LγµbL)∑
q′
(q̄′γµq′),

O5 =(s̄Lγµ1
γµ2 γµ3 bL)∑

q′
(q̄′γµ1 γµ2 γµ3 q′),

O7 =
e

16π2
mb(s̄σµνPRb)Fµν,

O9 =
e2

16π2
(s̄γµPLb)(l̄γµl),

Oq
2 =(s̄LγµqL)(q̄LγµbL),

O4 =(s̄LγµTabL)∑
q′
(q̄′γµTaq′),

O6 =(s̄Lγµ1
γµ2 γµ3 TabL)∑

q′
(q̄′γµ1 γµ2 γµ3 Taq′),

O8 =
gs

16π2
mb(s̄σµνPRTab)Ga

µν,

O10 =
e2

16π2
(s̄γµPLb)(l̄γµγ5l),

(2)

where gs is the strong coupling constant; the quark flavour q = u, c; the lepton flavour
l = e, µ, τ; and mb is the running b-quark mass in the MS scheme. We use the conventions
PL,R = (1 ∓ γ5)/2 and σµν = i

2

[

γµ, γν

]

. The primed local operators Oi are obtained by
performing the exchange PL ↔ PR.

The term proportional to λu in the definition (1) is often neglected as it is strongly
CKM-suppressed with respect to the term proportional to λt. However, it can be relevant
for observables that are specifically sensitive to complex phases of decay amplitudes. We
discard it in the following.

The decay amplitude reads as follows:

A(B → K(∗)
ℓ
+
ℓ
−) = − ⟨K(∗)(k)ℓ+ℓ−| Heff |B(pB = k + q)⟩ , (3)

which leads to the expression [18–20]

A(B → K(∗)
ℓ
+
ℓ
−) ≡ GF α VtbV∗

ts√
2π

{

(C9 L
µ
V + C10 L

µ
A)FB→K(∗)

µ

− L
µ
V

q2

[

2imbC7 FB→K(∗)
T,µ + 16π2HB→K(∗)

µ

]

}

. (4)
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Here, α denotes the electromagnetic coupling constant, L
µ
V,A are leptonic currents, and

F(T),µ and Hµ are, respectively, local and non-local hadronic matrix elements. They are
given by

L
µ
V ≡ ūℓ(q1)γ

µvℓ(q2) , (5)

L
µ
A ≡ ūℓ(q1)γ

µγ5vℓ(q2) , (6)

FB→K(∗)
µ ≡ ⟨K̄(∗)(k)| s̄γµPLb |B̄(pB = k + q)⟩ , (7)

FB→K(∗)
T,µ ≡ ⟨K̄(∗)(k)| s̄σµνqνPLb |B̄(pB = k + q)⟩ , (8)

HB→K(∗)
µ ≡ ∑

q′
HB→K(∗)

q′ ,µ . (9)

In the last term HB→K(∗)
µ , the sum runs over the accessible quark flavours (at the typical

scale µb = mb) q′ = u, d, s, c, b. For a given quark flavour,

HB→K(∗)
q′ ,µ (q, k) ≡iQq′

∫

d4xeiq·x

× ⟨K̄(∗)(k)| T
{

q̄′γµq′(x),
( i=2

∑
i=1

CiOc
i +

i=6

∑
i=3

CiOi + C8O8

)

(0)
}

|B̄(k + q)⟩ , (10)

where Qq′ denotes the electric charge of the quark q′. The local operators Oc
1 and Oc

2
have been singled out in (1) and (10), as they numerically contribute more than the other
hadronic operators O3−6.

The expression (4) is obtained at leading order in QED. The QED effects have been
discussed in [21–23] where the O(α) corrections have been computed. For the partial width,
the reduction is estimated to be up to 10% at high q2 for muons in the final state, while
it is even larger when considering electrons in the final state. Such effects are accounted
for on the experimental side with software like PHOTOS [24] before comparison with the
theoretical predictions.

In the following, we describe briefly the calculation of B → Kℓ+ℓ− and B → K∗ℓ+ℓ−

observables. For detailed descriptions, we refer the reader to the SuperIso manual [25].

2.1. B → Kℓ+ℓ−

The full differential distribution of the B → Kℓ+ℓ− decay can be expressed in the SM
as [26,27]

d2Γ(B̄ → K̄ℓ+ℓ−)
dq2d cos θ

= aℓ(q
2) + cℓ(q

2) cos θ2, (11)

where θ is defined as the angle between the directions of the lepton ℓ− and the B̄-meson in
the rest frame of the lepton pair. The boundaries of the phase space are given by

4m2
ℓ
≤ q2 ≤ (mB − mK)

2, −1 ≤ cos θ ≤ 1. (12)

The functions aℓ and cℓ in Equation (11) are defined in the SM as follows:

aℓ(q
2) = C(q2)

[

q2|FP(q
2)|2 + λ(m2

B, m2
K, q2)

4

(

|FA(q
2)|2 + |FV(q

2)|2
)

+ 4m2
ℓ
m2

B|FA(q
2)|2 + 2mℓ

(

m2
B − m2

K + q2
)

Re
(

FP(q
2)F∗

A(q
2)
)]

, (13)

cℓ(q
2) = C(q2)

[

− λ(m2
B, m2

K, q2)

4
β2
ℓ
(q2)

(

|FA(q
2)|2 + |FV(q

2)|2
)]

, (14)
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with the prefactor

C(q2) ≡ G2
Fα2|VtbV∗

ts|2
512π5m3

B

βℓ(q
2)
√

λ(m2
B, m2

K, q2), (15)

where βℓ(q
2) ≡

√

1 − 4
m2
ℓ

q2 for ℓ = e, µ, τ, and λ is the Källén function:

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz). (16)

In the above equations, FV , FA, and FP can be written in the SM as [26]

FV(q
2) = (C9 + C

′
9) f+(q

2) +
2mb

mB + mK
(Ceff

7 + C
′
7) fT(q

2) + δFV , (17)

FA(q
2) = (C10 + C

′
10) f+(q

2), (18)

FP(q
2) = − ml(C10 + C

′
10)
[

f+(q
2)− m2

B − m2
K

q2
( f0(q

2)− f+(q
2))
]

, (19)

where Ceff
7 is defined in Equation (47). The local form factors f+, f0, and fT are defined in

Appendix A and their calculations are discussed in Section 3. The term δFV corresponds to
non-local contributions and is addressed in more detail in Section 4. Appendix C introduces
the alternative form factor basis proposed in [20], establishing the correspondence between
their transversity amplitudes and the Fi functions, as well as the correspondence of the
non-local term.

Observables

It is customary to introduce the q2-integrated coefficients [26,27]

Aℓ =
∫ q2

max

q2
min

dq2aℓ(q
2) , Cℓ =

∫ q2
max

q2
min

dq2cℓ(q
2), (20)

to express the observables. The decay rate can then be written as

Γ(B → Kℓ+ℓ−) = 2
(

Aℓ +
1

3
Cℓ

)

, (21)

and the flat-term is

Fℓ
H =

2

Γℓ

(Aℓ + Cℓ). (22)

In the SM, the forward–backward asymmetry is null and the flat term is propor-
tional to mℓ. However, they can receive sizeable NP contributions, which make them
relevant observables.

2.2. B → K∗ℓ+ℓ−

For B̄ → K̄∗ℓ+ℓ−, the process that is measured is B̄ → K̄∗(→ Kπ)ℓ+ℓ−. The subse-
quent decay K∗ → Kπ can be described with the effective Hamiltonian [28]:

Heff = gK∗Kπ(pK − pπ) · εK∗ , (23)

where gK∗Kπ is the coupling constant and εK∗ is the polarisation of the K∗ meson. It
is convenient to consider the K∗-meson on the mass-shell when using a narrow-width
approximation [28–30] and to replace the squared K∗ propagator by

1

(p2
K∗ − m2

K∗)2 + (mK∗ΓK∗)2
−→

ΓK∗≪mK∗

π

mK∗ΓK∗
δ(p2

K∗ − m2
K∗). (24)
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Since the width of the K∗ meson can be written as

ΓK∗ =
g2

K∗Kπ

48π
mK∗ β3, (25)

where β is related to the Källén function as

β =
1

m2
K∗

λ(m2
K∗ , m2

K, m2
π)

1/2, (26)

the final result in this narrow-width limit is independent of the coupling gK∗Kπ which
cancels out. The impact of the finite width of the K∗-meson is addressed in Section 3.

In the narrow-width approximation, summing over the lepton spins, the full differen-
tial distribution can be written as [28,29,31–33]

d4Γ

dq2d cos θℓd cos θK∗dϕ
=

9

32π
J(q2, θℓ, θK∗ , ϕ). (27)

We work in the convention where θℓ is defined as the angle between the directions
of the lepton ℓ− and the B̄-meson in the rest frame of the lepton pair, θK∗ is the angle
between the directions of the K-meson and the B̄-meson in the Kπ rest frame, and ϕ is the
angle between the normals of the plane of Kπ and the plane of the lepton pair. In [29,31],
the convention for θℓ is slightly different. More details about the angles and conventions
are given in Appendix B.

The boundaries of the phase space are

4m2
ℓ
≤ q2 ≤ (mB − mK∗)2 , −1 ≤ cos θℓ ≤ 1 , −1 ≤ cos θK∗ ≤ 1 , 0 ≤ ϕ ≤ 2π . (28)

The explicit expression of J is

J(q2, θk, θl , ϕ) =Jc
1 cos2 θk + Js

1 sin2 θk + (Jc
2 cos2 θk + Js

2 sin2 θk) cos 2θl + J3 sin2 θk sin2 θl cos 2ϕ

+ J4 sin 2θk sin 2θl cos ϕ + J5 sin 2θk sin θl cos ϕ + J6 sin2 θk cos θl

+ J7 sin 2θk sin θl sin ϕ + J8 sin 2θk sin 2θl sin ϕ + J9 sin2 θk sin2 θl sin 2ϕ. (29)

The angular coefficients Ja
i with i = 1, . . . , 9 and a = s, c can be expressed with the

transversity amplitudes A0, A∥, A⊥:

Jc
1 = |AL

0 |2 + |AR
0 |2 +

4m2
l

q2

(

|At|2 + 2 Re(AL
0 AL∗

0 )
)

, Jc
2 = −β2

l (|AL
0 |2 + |AR

0 |2),

Js
1 =

2 + β2
l

4

(

|AL
⊥|2 + |AL

∥ |2 + (L ↔ R)
)

Js
2 =

β2
l

4

(

|AL
∥ |2 + |AL

⊥|2 + (L ↔ R)
)

,

+
4m2

l

q2

(

Re(AL
∥ AR∗

∥ ) + Re(AL
⊥AR∗

⊥ )
)

, J3 =
β2

l

2

(

|AL
⊥|2 − |AL

∥ |2 + (L ↔ R)
)

,

J4 =
β2

l√
2

(

Re(AL
0 AL∗

∥ ) + (L ↔ R)
)

, J5 =
√

2βl

(

Re(AL
0 AL∗

⊥ )− (L ↔ R)
)

,

J6 = 2βl

(

Re(AL
∥ AL∗

⊥ )− (L ↔ R)
)

, J7 =
√

2βl

(

Im(AL
0 AL∗

∥ )− (L ↔ R)
)

,

J8 =
β2

l√
2

(

Im(AL
0 AL∗

⊥ ) + (L ↔ R)
)

, J9 = β2
l

(

Im(AL∗
∥ AL

⊥) + (L ↔ R)
)

, (30)

where, again, βℓ(q
2) =

√

1 − 4
m2
ℓ

q2 .

The transversity amplitudes can be written as follows:
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AL,R
0 = − N

2mK∗
√

q2

[(

(C9 − C
′
9)∓ (C10 − C

′
10)

)

[(m2
B − m2

K∗ − q2)(mB + mK∗ )A1

− λ(m2
B, m2

K∗ , q2)

mB + mK∗
A2] + 2mb(C

eff
7 − C

′
7)[(3m2

K∗ + m2
B − q2)T2 −

λ(m2
B, m2

K∗ , q2)

m2
B − m2

K∗
T3]

]

+ δAL,R
0 ,

AL,R
⊥ = N

√

2λ(m2
B, m2

K∗ , q2)

[(

(C9 + C
′
9)∓ (C10 + C

′
10)

)

V

mB + mK∗
+ 2mb

Ceff
7 + C

′
7

q2
T1

]

+ δAL,R
⊥ ,

AL,R
∥ = −N

√
2

[(

(C9 − C
′
9)∓ (C10 − C

′
10)

)

(mB + mK∗ )A1 + 2mb
Ceff

7 − C′
7

q2
(m2

B − m2
K∗ )T2

]

+ δAL,R
∥ ,

At = 2N(C10 − C
′
10)

√

λ(m2
B, m2

K∗ , q2)
√

q2
A0, (31)

with the prefactor

N = VtbV∗
ts

[

α2G2
F

3 × 210π5m3
B

q2βl

√

λ(m2
B, m2

K∗ , q2)

]1/2

.

The local form factors V, A0, A1, A2, T1, T2, and T3 are defined in Appendix A and their
calculations are discussed in Section 3. The terms δAi correspond to non-local contributions,
which are addressed in more detail in Section 4. Appendix C introduces the alternative form
factor basis suggested in [20], and establishes the correspondence between their transversity
amplitudes and the ones introduced in this section, as well as the correspondence of the
non-local terms.

For the CP-conjugated decay B → K∗ℓ−ℓ+, the full differential distribution can be
written as [32,34]

d4Γ̄

dq2d cos θℓd cos θK∗dϕ
=

9

32π
J̄(q2, θℓ, θK∗ , ϕ). (32)

The explicit expression of J̄(q2, θℓ, θK∗ , ϕ) can be derived from that of J(q2, θℓ, θK∗ , ϕ)
in Equation (29) while performing the following replacements:

J
(a)
1,2,3,4,7 → J̄

(a)
1,2,3,4,7, J5,6,8,9 → − J̄5,6,8,9, (33)

where J̄
(a)
i is obtained by conjugating all weak phases in J

(a)
i .

The relative signs when going from J
(a)
i to J̄

(a)
i can be understood from transforming

the angles as (θl , θK∗ , ϕ) → (π − θl , π − θK∗ , 2π − ϕ), which is the usual convention.

Observables

We introduce below some of the key observables for the B̄ → K̄∗ℓ+ℓ− decay. The
dilepton-invariant mass spectrum is obtained by integrating the full differential distribution
over all three angles [32]:

dΓ

dq2
=

3

4

(

J1 −
J2

3

)

, (34)

where, for convenience,
J1,2 ≡ 2Js

1,2 + Jc
1,2. (35)

The normalised forward–backward asymmetry is defined as [35]

AFB(q
2) ≡

[

∫ 0

−1
−
∫ 1

0

]

d cos θl
d2Γ

dq2d cos θl

/

dΓ

dq2

= −3

8

2J6

dΓ/dq2
. (36)
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In [29,32,36–38], the global sign is different in the definition of the forward–backward-
asymmetry.

The K∗-meson polarisation fractions FL and FT are given by [31,35,36,38]

FL(q
2) =

3Jc
1 − Jc

2

4dΓ/dq2
, FT(q

2) =
4Js

2

dΓ/dq2
, (37)

and the K∗-meson polarisation parameter reads as follows [31]:

αK∗(q2) = 2
FL

FT
− 1. (38)

A set of theoretically clean angular observables has been introduced in [31,35], de-
signed to be less sensitive to form factors. Primed angular observables were later introduced
in [39]. They are defined in the SM as

P1(q
2) =

J3

2Js
2

, P2(q
2) = βℓ

J6

8Js
2

,

P3(q
2) = − J9

4Js
2

, P4(q
2) =

√
2J4

√

−Jc
2(2Js

2 − J3)
,

P5(q
2) =

βℓ J5
√

−2Jc
2(2Js

2 + J3)
, P6(q

2) = − βℓ J7
√

−2Jc
2(2Js

2 − J3)
,

P′
4(q

2) =
J4

√−Jc
2 Js

2

, P′
5(q

2) =
J5

2
√−Jc

2 Js
2

,

P′
6(q

2) = − J7

2
√−Jc

2 Js
2

. (39)

For all of the observables given in this section, one can define the CP-average quantities,
which are often the ones measured experimentally.

3. Local Form Factors

Local form factors can be computed in lattice QCD or with QCD sum rules on the light-
cone. Lattice QCD determinations, based on first principles, are typically more accurate
and reliable but are mostly limited to the low-recoil region (high q2). Light-Cone Sum
Rules (LCSRs) can bridge that gap, as they allow for determinations in the low-q2 region,
although they suffer from systematic uncertainties that are challenging to evaluate.

We present in the following predictions the full set of local form factors. Instead, one
can introduce a reduced set of form factors (soft form factors) in the heavy quark limit
within the large recoil region. Under this approximation, only two independent form
factors remain for B → K∗ and only one for B → K [40]. This significantly reduces the
uncertainties related to the form factors. Nonetheless, considering the correlations among
the full form factors, a similar cancellation of the uncertainties can be obtained.

3.1. Lattice QCD

3.1.1. B → K

The latest lattice results for the hadronic B → K form factors are given in [41] for the
FNAL/MILC collaboration, and in [42] for the HPQCD collaboration. The FNAL/MILC
results are obtained directly for the range q2 ≥ 17 GeV2, and expanded to the whole q2

range using the Boyd, Grinstein, and Lebed (BGL) parameterisation [43]. The total errors,
which encompass both the statistical and the systematic uncertainties, are below 4% at high
q2. For lower q2, the errors are of the order of 10% for f+ and around 30% for fT .

The recent determination by HPQCD [42] supersedes their previous results [44] and
covers the entire q2 range, sending the lattice spacing a → 0 and simultaneously fitting them
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using the Bourreley–Caprini–Lellouch (BCL) parameterisation [45]. This determination is
highly precise, with quoted errors of less than 4% for f+ and f0 and less than 7% for fT .
Their results at q2 = 0 GeV2 read as follows:

f+(q
2 = 0) = f0(q

2 = 0) = 0.332 ± 0.012, (40)

fT(q
2 = 0, µ = 4.8 GeV) = 0.332 ± 0.024. (41)

Confirmation of this new determination using the new approach is still awaited from
other lattice collaborations.

The Flavour Lattice Averaging Group [46] performed an average of the results from [41]
and [44], which has not yet been updated to incorporate the latest HPQCD results.

3.1.2. B → K∗

Lattice QCD results for the B → K∗ local form factors are given in [47] and updated
in [48]. These results are obtained directly at low recoil and extrapolated using their
parameterisation. At q2 = 0 GeV2, the results read as follows:

V(q2 = 0) = 0.31 ± 0.15, A0(q
2 = 0) = 0.351 ± 0.074,

A1(q
2 = 0) = 0.303 ± 0.051, A12(q

2 = 0) = 0.251 ± 0.053,

T1(q
2 = 0) = 0.291 ± 0.044, T2(q

2 = 0) = 0.291 ± 0.044,

T3(q
2 = 0) = 0.50 ± 0.10. (42)

The total error can reach up to O(50%) at q2 = 0 GeV2 due to the extrapolation, but it
remains below 10% in the low-recoil region.

3.2. LCSR

LCSRs for hadronic transition form factors are derived from a vacuum-to-hadron
correlation function, with two intermediate quark currents. In given kinematical conditions,
this correlation function can be expanded through an operator product expansion near the
light-cone (LCOPE), in terms of the hadron Light-Cone Distribution Amplitudes (LCDAs).
For B → K(∗) transitions, the hadron can be either the light meson (here K(∗)) [49–54] or the
B-meson [18,55–62]. The other hadron is then interpolated between the two quark currents
which allows for the extraction of the form factor of interest. The light-meson LCDAs are
generally known with a better accuracy, and higher-order corrections have been included.
The use of B-meson LCDAs is more recent and carries larger uncertainties. There have been
discrepant predictions for the B-meson LCDAs [63–67] with significant implications as
demonstrated in [60], with an increase of up to 50% in AB→K∗

2 at q2 = 0 GeV2. Nonetheless,
they allow for a direct computation of a large set of form factors for different processes.
Using B-meson LCDAs makes it possible to take into account in addition the effects of the
finite width of the K∗-meson.

LCSRs rely on the semi-global quark–hadron duality [68], which induces a systematic
error that is difficult to quantify. In [60], a regime of the LCSR method was introduced to
mitigate this error; however, conclusive results for these form factors are still awaited.

3.2.1. B → K

In [51], the form factors are obtained directly for q2 ≤ 14 GeV2 before extrapolating to
the entire physical range. The results in [54] are expected to supersede those of [51], due to
updates in inputs and the inclusion of higher-order corrections. In [54], results are directly
derived for q2 < 12 GeV2 and extrapolated to the entire physical range using the BCL
parameterisation [45]. The LCSR results were later fitted in [20] by adding lattice points
and using the parameterisation given in [53].

The results in [58] are computed for q2 ≤ 5 GeV2 and are then fitted with the z-
expansion [53], including additional points from the lattice determination [44] to constrain
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the high-q2 region. The inclusion of lattice data does change the central values presented
in Table 1. In a subsequent work [20], the authors advise against using their previous
results [58] for B → K due to issues with the determination of the sum rule thresholds that
are not yet understood. The authors of [57] work in the Soft-Collinear Effective Theory
(SCET) framework, in which they computed the next-order QCD corrections that have
not been included in [58]. However, they do not necessarily supersede the results of [58]
where the framework is the Heavy Quark Effective Theory (HQET) and not SCET. Their
results are obtained directly for q2 ≤ q2

cut where q2
cut varies between 8 GeV2 and 10 GeV2.

The extrapolation is performed using the BCL parameterisation [45], including the lattice
results of [41,42].

Table 1. LCSR predictions for B → K form factors at q2 = 0, where f0(q
2 = 0) = f+(q2 = 0).

Form Factor Value at q2 = 0 Ref.

f+

0.331 ± 0.041 ± δ f+
† [51] *

0.395 ± 0.033 [54] *
0.27 ± 0.08 [58] **

0.325 ± 0.085 [57] **

fT

0.358 ± 0.037 ± δ fT
† [51] *

0.351 ± 0.027 [54] *
0.25 ± 0.07 [58] **

0.351 ± 0.097 [57] **

†: δ f+,T
accounts for the uncertainty in the first Gegenbauer moment. *: using K-meson LCDAs. **: using

B-meson LCDAs.

3.2.2. B → K∗

In [50], the form factors are obtained directly for q2 ≤ 14 GeV2 before being extrapo-
lated to the whole physical range. These results are superseded in [53] due to the updated
inputs. They are also determined directly for q2 below 14 GeV2 and fitted using their
modified z-expansion (BSZ). The numerical values presented in Table 2 are the result of the
fit using only their LCSR results. Additional results for a fit adding lattice points from [48]
are also presented, which slightly shift the values presented in Table 2.

Table 2. LCSR predictions for B → K∗ form factors at q2 = 0 where T2(q
2 = 0) = T1(q

2 = 0).

The linear combinations A12 and T23 are introduced in Appendix A.

Form Factor Value at q2 = 0 Ref.

A1

0.282 ± 0.028 ± δA1
† [50] *

0.27 ± 0.03 [53] *

0.25+0.16
−0.10

[18] **

0.26 ± 0.08 [58] **

A2

0.259 ± 0.027 ± δA2
† [50] *

0.23+0.19
−0.10

[18]∗∗

0.24 ± 0.09 [58] **

A12 0.26 ± 0.03 [53] *

V

0.411 ± 0.033 ± δV
† [50] *

0.34 ± 0.04 [53] *

0.36+0.23
−0.12

[18] **

0.33 ± 0.11 [58] **

T1

0.333 ± 0.028 ± δT1
† [50] *

0.28 ± 0.03 [53] *

0.31+0.18
−0.10

[18] **

0.29 ± 0.10 [58] **

T3
0.202 ± 0.018 ± δT3

† [50] *

0.22+0.17
−0.10

[18] **

T23
0.67 ± 0.08 [53] *
0.58 ± 0.13 [58] **

†: δX accounts for the uncertainty in the first Gegenbauer moment. *: using K∗-meson LCDAs. **: using
B-meson LCDAs.
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In [18], the form factors are obtained at q2 < 12 GeV2 and are then fitted using the
BCL-parameterisation [45]. These results are superseded in [58] due to the updated inputs
and the inclusion of higher order in the LCOPE. They are computed for q2 ≤ 5 GeV2 and
are then fitted with the BSZ z-expansion [53], including additional points from the lattice
determination [47,48] to constrain the high-q2 region. The inclusion of lattice data does
change the central values presented in Table 2.

An advantage of LCSRs with B-meson LCDAs is the possibility of computing form
factors for decays such as B → Kπ, where the final state is a dimeson state, which allows
us to study of the impact of the finite width of the K∗-meson. This computation has
been carried out in [61] for the P-wave Kπ system, and then updated in [62] to add the
contribution of the S-wave Kπ. In [61], a correction to the B → K∗ form factors (using
B-meson LCDAs) was obtained as a multiplicative factor of WK∗ ∼ 1.1. It corresponds
to an enhancement in the decay rate B → K∗(→ Kπ)ℓℓ of O(20%) but has a negligible
impact on P′

5(B → K∗(→ Kπ)ℓℓ). In [62], the additional S-wave corrections are claimed to
be small. This WK∗ ∼ 1.1 correction is valid only in the low-q2 region, where it has been
computed, and when using LCSR with B-meson LCDAs.

Since form factors are real analytic functions in the q2 complex plane, up to a branch cut
and a pole at the resonance, it is customary to use parameterisations respecting these con-
straints, such as the Caprini, Lellouch, and Neubert (CLN) parameterisation [69]; the Boyd,
Grinstein, and Lebed (BGL) parameterisation [43]; the Bourrely, Caprini, and Lellouch
(BCL) parameterisation [45]; the Bharucha, Straub, and Zwicky (BSZ) parametrisation [53];
and the Gubernari, van Dyk, and Virto (GvDV) parameterisation [19]. These parameterisa-
tions are used to extrapolate the results obtained for a limited range to the entire physical
q2 range. The z-expansions are in practice truncated and only the first terms are considered
for the fits, which induces a systematic truncation error. Dispersive (or unitarity) bounds
allow for the control of said truncation errors for a given parameterisation and have been
used for B-meson decays [19,20,43,70–73].

The latest dispersive bound results for local B → K(∗) form factors have been obtained
in [73] to which we refer for more details.

4. Non-Local Contributions

The long-distance effects in the B → K(∗)ℓℓ decays generated by four-quark and
chromomagnetic dipole operators, sometimes referred to as charm-loop effects, are techni-
cally more challenging to derive than the local contributions. These long-distance effects
were traditionally accounted for in the QCD factorisation framework and in the heavy
quark limit for q2 < 7 GeV2. This calculation included up to weak annihilation, some
non-factorisable contributions, and the hard spectator scattering [74,75]. However, in [20], it
is suggested that this approach is reliable only below 4 GeV2 and may overlook potentially
significant power corrections. Even outside of the resonance region, intermediate and/or
virtual cc̄ states still contribute. An agnostic approach to take into account the effect of
the power corrections is to consider a q2- and transversity-dependent polynomial whose
relative size is guesstimated [76].

Two approaches have emerged in recent years to take into account these effects in a
more comprehensive manner, which we refer to in the following as the z-expansion [20] and
the hadronic dispersion relation [77–81]. Both approaches start from a dispersion relation;
however, they differ in their evaluation methods. The z-expansion approach evaluates the
dispersion relation using an LCOPE at negative q2 before extrapolating it to the physical
range. In contrast, the hadronic dispersion relation is evaluated directly at the hadronic
level within the physical range.

4.1. The z-Expansion

In the sum over accessible quark flavours in Equation (9), HB→K(∗)
u,µ and HB→K(∗)

d,µ are

usually neglected as they are suppressed by CKM subleading matrix elements and/or

small Wilson coefficients. The necessary formulas for HB→K(∗)
s,µ and HB→K(∗)

b,µ have been
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derived in [74,75,82] in the QCD factorisation framework and in the heavy quark mass
limit, and are given in Appendix C of [20].

The most significant and challenging contributions of HB→K(∗)
c,µ , however, have been

treated differently. In the z-expansion approach [20], the non-local contributions HB→K(∗)
c,µ

are computed at negative values of q2 using an LCOPE. At q2 = m2
J/ψ these contributions

are obtained from data on branching ratios and angular observables. This non-local form
factor is then fitted via a z-expansion over the region 0 < q2 < m2

J/ψ.

The LCOPE computation was performed in [19] considering only the dominant con-
tributions from Oc

1 and Oc
2. In [20], contributions from penguin operators were added,

but not from O8 as its contribution is considered negligible in this stage. The LCOPE
expansion reads as follows:

HB→K(∗)
c,λ = − 1

16π2

(

q2

2m2
B

∆C9FB→K(∗)
λ +

mb

mB
∆C7FB→K(∗)

T,λ

)

+ 2Qc

(

C2 −
C1

2Nc

)

ṼB→K(∗)
λ

+ higher-power corrections,

(43)

where the basis of local form factors FB→K(∗)
(T),λ is introduced in Appendix C, the match-

ing coefficients ∆C7,9 correspond to the leading power of non-local contributions, and

ṼB→K(∗)
λ denotes subleading contributions that are not proportional to the local form factors.

The matching coefficients ∆C7,9 have been computed to NLO in QCD [4,82–86] and are
sometimes incorporated into the effective Wilson coefficients Ceff

7,9 which then become q2-

dependent. The term ṼB→K(∗)
λ was initially found to be sizeable in [18], but this computation

has been superseded by that in [19] where it was determined to be negligible due to a more
complete calculation which included the missing three-particle distribution amplitudes and

updated the necessary inputs. Thus, in [20], to account for ṼB→K(∗)
λ , only the uncertainty of

the non-local form factors was increased.
The LCOPE results and the residue extracted from the data at q2 = m2

J/ψ are then fitted

with the z parameterisation described in [19]. The result is data-driven but can also be used
with only the LCOPE results for extrapolation, although this leads to larger uncertainties.

Dispersive bounds for the non-local contributions were first derived in [20]. Imposing
this dispersive bound for the long-distance effects significantly reduces the uncertainties.
This dispersive bound can be further saturated by considering additional channels such
as Λb → Λµ+µ−. The final results agree with the QCD factorisation approach; however,
they exhibit larger uncertainties for the z-expansion method, especially near the J/ψ pole,
which is not accounted for in QCD factorisation. Assuming that the z-expansion accounts
for the whole amplitude, a careful assessment of the uncertainties is required to include
all contributions.

4.2. The Hadronic Dispersion Relation

The evaluation of the long-distance effect in [80] for B → Kℓℓ and its subsequent exten-
sion in [81] to B → K(∗)ℓℓ follows a slightly different and predominantly data-driven approach.
This strategy can be viewed as an extension of the procedures suggested in [77–79]. For B →
Kµµ [80], the long-distance effects are incorporated into the effective Wilson coefficient:

Ceff
9 = C9 + Ycc̄(q

2) + Ylight(q
2) + Yττ̄(q

2), (44)

where Yi(q
2) stands for the long-distance effect caused by the intermediate state i. Specifi-

cally, Ycc̄ accounts for the dominant contributions from Oc
1 and Oc

2 only, Ylight corresponds
to the contributions from the subleading operators O3−6,8 and of Ou

1−2, and Yττ̄ corre-
sponds to the tau loop. Instead of using an LCOPE to evaluate the dispersion relations at
negative q2, as performed in [18–20], the dispersion relations here are evaluated directly at
the hadronic level for positive q2. For Ycc̄, single-particle intermediate states (J/ψ, ψ(2S),
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etc.) and two-particle states (DD̄, D∗D̄, etc.) are considered. For Ylight, given the loop
or CKM suppression and the inclusion of intermediate states with charm valence quarks
in Ycc̄, only vector single-particle states with light valence quarks (ρ, ω, ϕ) are taken into
account. The hadronic contributions for single-particle intermediate states are modelled
using Breit–Wigner distributions, while a more complex approximation is used for two-
particle intermediate states. The relevant amplitude and phase parameters are extracted
from experimental measurements. The dispersion relation for Ycc̄ is subtracted at q2 = 0
to ensure convergence of the two-particle term, with the term at q2 = 0 evaluated in QCD
factorisation. The tau loop contribution is fully computed in perturbation theory.

For B → K∗ℓℓ [81], the correction to C7 is treated as a universal shift estimated using
perturbation theory [74]. The corrections Y(q2) to C9 were evaluated as

Yλ(q2) = Yλ
cc̄(q

2) + Y
[0]
qq̄ (q

2) + Y
[0]

bb̄
(q2) , (45)

where λ denotes the polarisation. The charm-loop contribution Yλ
cc̄ was evaluated hadron-

ically, similar to the approach in [80], while the other contributions were taken from
perturbation theory at the lowest order in αs. For explicit expressions, we refer the reader
to [80].

The hadronic dispersion relation method has been implemented by LHCb in [87–89],
revealing a persistent tension between Standard Model predictions and measurements.
Overall, there is a strong agreement between the z-expansion and hadronic dispersion
relation approaches. For visual comparisons, we refer the reader to the plots in [89].

In [90], the impact of the rescattering of intermediate hadronic states is discussed.
These contributions are particularly challenging to estimate. Based on a data-driven
analysis, it is argued in [90] that these contributions can potentially resolve the tension
between SM predictions and experimental measurements, although a consensus has not
yet been reached. In [91], an estimate of the rescattering of charmed and charmed-strange
mesons has been performed for the B0 → K0ℓℓ decay, which finds at most a 10% shift to C9,
insufficient to resolve the tension.

5. Other Sources of Uncertainties

In this section, we discuss the impact of QED corrections on the Wilson coefficients and
the influence of CKM matrix elements on predictions and their discrepancies with experi-
mental measurements. These effects are often overlooked but are becoming increasingly
relevant given the current precision of both measurements and predictions.

5.1. Wilson Coefficients

The Wilson coefficients are calculated in perturbative theory and have been computed
to NNLO in QCD [15,92,93]:

Ci(µ) = C
(0)
i +

αs(µ)

4π
C
(1)
i +

(αs(µ)

4π

)2
C
(2)
i +O(α3

s ), (46)

where C
(n)
i is the nth order of the Wilson coefficient in the αs expansion. These coefficients

are initially calculated at the electroweak scale µ0 ∼ MW using a two-loop level computa-
tion, followed by the resummation of large logarithms and the evolution to the relevant
scale µb ∼ mb using the three-loop Anomalous Dimension Matrix to account for operator
mixing. Due to this operator mixing, it is customary to introduce the effective Wilson
coefficients through the following combinations:

Ceff
7 (µ) = C7(µ)−

1

3
C3(µ)−

4

9
C4(µ)−

20

3
C5(µ)−

80

9
C6(µ), (47)

Ceff
8 (µ) = C8(µ) + C3(µ)−

1

6
C4(µ) + 20C5(µ)−

10

3
C6(µ). (48)
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We emphasise that the notation Ceff
7 used here arises solely from renormalisation and

should not be confused with the use of effective Wilson coefficients in the context of non-
local contributions, where “effective” refers to the inclusion of these non-local contributions
within the Wilson coefficients.

QED corrections can also be computed and have been accounted for in [94,95]. Intro-

ducing the variable κ(µ) = α(µ)
αs(µ)

, the perturbative expansion in both QED and QCD can be

written as

Ci(µ) =
2

∑
n,m=0

αs(µ)
nκ(µ)mC

(n,m)
i (µ) +O(α3

s , κ3). (49)

Numerical values of the Wilson coefficients including NNLO QCD and NLO QED
(we note that for C9 and C10, the QED corrections are said to be at NNLO in [95], but the
definition of the operators O9 and O10 is different from the one used here) corrections at
the scale µb = 5 GeV are reported in Table 3.

Table 3. Wilson coefficients at the scale µb = 5.0 GeV. We use sin2 θW = 0.231160.

Wilson Coefficient Value (QCD) Correction (QED)

C1(µb) −0.2477 −0.0030
C2(µb) 1.0080 0.0056
C3(µb) −0.0049 −0.0000
C4(µb) −0.0763 −0.0003
C5(µb) 0.0003 0.0000
C6(µb) 0.0009 0.0000
C7(µb) −0.3180 0.0037
C8(µb) −0.1710 0.0000
C9(µb) 4.1764 −0.1305
C10(µb) −4.1494 −0.1445

The QED contributions induce small corrections to the Wilson coefficients, up to
∼3.5% for C9,10 which are often neglected. Nevertheless, given the current precision, their
inclusion is becoming increasingly relevant.

5.2. CKM

The determination of the CKM factor λt = VtbV∗
ts is particularly relevant for branching

fractions, where the predictions scale with |VtbV∗
ts|2.

We use values from the Particle Data Group [96] where the Wolfenstein parameter fit
was performed with over-constraining measurements (and for which unitarity of the CKM
matrix is implied):

λ = 0.22500 ± 0.00067, A = 0.826+0.018
−0.015,

ρ̄ = 0.159 ± 0.010, η̄ = 0.348 ± 0.010, (50)

which sets the following values:

|Vts| = 0.04110+0.00083
−0.00072, |Vtb| = 0.999118+0.000031

−0.000036. (51)

Very similar results were obtained in the CKMfitter 2023 update [97] and the UTfit
2023 update [98], with differences in the CKM factor λt being well under a percent.

While the uncertainties in the CKM matrix elements are relatively small compared
to the uncertainty on local and non-local form factors, and only amount to O(2%) for
|Vts|, they can still have a significant impact on the predictions due to the dependence on
|VtbV∗

ts|2. Between 2021 and 2022, the prediction of the B → K(∗)µµ branching fraction has
been shifted by O(5%) due to the update of the CKM values. Moreover, if we reconsider
the assumptions of BSM physics or unitarity, the CKM matrix elements are not immune to
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further shifts or changes. In addressing constraints in the presence of BSM physics, a fit
with tree-level inputs alone led to shifts of O(5%) and larger uncertainties in [96].

Therefore, given the precision of measurements and predictions, careful consideration
of the CKM matrix elements and the assumptions under which they are obtained is crucial
when discussing SM predictions. Notably, P′

5 serves as an ideal probe for NP due to its
independence from CKM matrix elements by construction.

6. Impact on Predictions

We discuss in this section the impact of local form-factors and long-distance effects on
the branching fraction B(B+ → K+µµ) and the angular observable P′

5(B0 → K∗0µµ) using
the SuperIso public program [25,99–101]. For reference, we also plot the experimental
results of LHCb [6] and CMS [7] for B(B+ → K+µµ) and LHCb [9] and CMS [13] for
P′

5(B0 → K∗0µµ). The grey vertical bands starting at q2 = 6 GeV2 denote the region
approaching the resonances, which is less reliable and sometimes disregarded. The error
bars on the figures in this section represent the 1σ errors computed by considering the
propagated uncertainties across all parameters and inputs.

6.1. Impact of Local Form Factors

As expected, the branching fraction B(B+ → K+µµ) is significantly influenced by the
local form factors. The predictions shown in Figure 1a, based on form factors from [42],
agree within the error bars with those from [54]. However, the observed tension with the
measurements clearly depends on the specific set of form factors employed. Using the
form factors from [42], for instance, reveals a reduced tension. In both cases, non-local
contributions are adopted from [20].

(a) (b)

Figure 1. Impact of local form factors on the prediction of (a) B(B+ → K+µµ) with local form factors

from [54] (KR) and from [42] (HPQCD); (b) P′
5(B0 → K∗0µµ) with local form factors from [58] (GKvD)

and from [53] (BSZ). For both, non-local form factors from [20], denoted as GRvDV, have been used.

The optimised angular observables such as P′
5 are by construction less dependent

on the local form factors, which is confirmed by the relatively small uncertainty on
the predictions in Figure 1b. Moreover the different determinations of the local form
factors [53,58] are in agreement and consistent in their tension with the experimental data.

6.2. Impact of Non-Local Form Factors

We compare the impact of non-local form factors obtained in QCD factorisation
(QCDf) [74,75] with those determined using the more recent z-expansion approach [20].
The differences in central values for the branching fraction (Figure 2a) and the angular
observable P′

5 (Figure 2b) are small in both implementations. However, since the QCDf
approach does not account for charm resonances, there is a noticeable difference in uncer-
tainties for the branching fraction. Consequently, in the implementation of long-distance
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effects in SuperIso, an error budget was guesstimated to account for the yet unknown
power corrections when using QCDf results (see [76,102–107] for more details).

(a) (b)

Figure 2. Impact of non-local form factors on the prediction of (a) B(B+ → K+µµ) with local form

factors from [42] (HQPCD), and non-local form factors from [74,75] (QCDf) and from [20] (GRvDV);

(b) P′
5(B0 → K∗0µµ) with local form factors from [58] (GKvD), and non-local form factors from [74,75]

(QCDf) and from [20] (GRvDV).

6.3. Impact of QED Corrections to Wilson Coefficients

We compare the impact of QED corrections to Wilson coefficients. These corrections are
relatively minor and the resulting shift observed in the branching fraction B(B+ → K+µµ)
in Figure 3a is negligible. However, their impact is more visible in P′

5 as shown in Figure 3b,
where they tend to reduce the tension between predictions and measurements.

(a) (b)

Figure 3. Impact of QED corrections to Wilson coefficients on the prediction of (a) B(B+ → K+µµ)

with local form factors from [42] (HPQCD) and non-local form factors from [20] (GRvDV); (b) P′
5(B0 →

K∗0µµ) with local form factors from [58] (GKvD) and non-local form factors from [20] (GRvDV).

6.4. Impact of CKM Matrix Elements

We compare below the impact of the CKM matrix elements obtained from the fits
in [96]: One with the full data, and one taking only into account tree-level inputs (Figure 4).
There is a clear effect from the set of CKM parameters used when discussing the tension
with the experimental data.
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Figure 4. Impact of the CKM factor on the prediction of B(B+ → K+µµ) with local form factors

from [42] (HPQCD) and non-local form factors from [20] (GRvDV).

7. Conclusions

Hints of NP beyond the SM in semi-leptonic B decays, particularly in the branching
fraction B(B → Kµµ) and the angular observable P′

5(B → K∗µµ) at low q2, still persist.
However, unlike the RK(∗) ratios, accurately assessing the level of tension with experimental
measurements for these observables is significantly more challenging. In this review, we
addressed the theoretical calculations of B → K(∗)ℓℓ and the main sources of uncertainties.

The primary elements contributing to the remaining uncertainty in B → K(∗)ℓℓ decays
are the local transition form factors and the long-distance contributions. Significant progress
has been achieved in lattice QCD, particularly by the HPQCD collaboration, which has
provided direct results for f B→K

+,T across the entire q2 range. Nevertheless, as we await
similar results for B → K∗, and a cross-check for B → K, LCSRs remain relevant. Despite
all predictions for the relevant form factors being consistent within their uncertainties, they
significantly influence the predictions, with the tension reduced when using the HPQCD
form factor set. Optimised angular observables such as P′

5 are less sensitive to local form
factors, and furthermore, the discrepancies among various determinations of local B → K∗

form factors are smaller. However, it is crucial to note that LCSRs with B-meson LCDAs
heavily rely on B-LCDA parameters, which currently exhibit discrepancies and can lead to
substantial variations in the local form factors at q2 = 0 GeV2, up to O(50%).

Both types of observables are impacted by the non-local effects, although different
estimates of these effects are in agreement. While the QCD factorisation framework initially
provided an estimate of these non-local effects, more recent methods have emerged such as
the z-expansion, which computes charm-loop contributions using an LCOPE at negative
q2, and the hadronic dispersion relation, evaluated predominantly at the hadronic level
within the physical range, and have yielded consistent results. It is worth noting that,
in this stage, the different evaluations of the non-local contributions do not resolve the
discrepancies between theoretical predictions and experimental results; nonetheless, it is
not excluded that some contributions (e.g., the rescattering of intermediate hadronic states)
with potentially significant effects have been overlooked.

Finally, we discussed the impact of QED corrections on the Wilson coefficients. While
their effect on branching fractions is negligible, this is less the case for angular observables.
Furthermore, careful consideration is warranted regarding the CKM matrix elements, given
that the assumptions used to determine them have a substantial impact on branching
fractions and other observables that are sensitive to them.

In recent years, there have been remarkable improvements in the predictions of
B → K(∗)ℓℓ, and we expect this progress to continue, leading to increasingly precise
predictions, and further constraints or hints on New Physics signatures.
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Appendix A. Definition of Local Hadronic form Factors

A suitable form factor basis for the B → K transition is f B→K
0 , f B→K

+ , and f B→K
T , which

are defined as

⟨K(k)|q̄1γµb|B(pB)⟩ =
[

(pB + k)µ − m2
B − m2

P

q2
qµ

]

f B→K
+ +

m2
B − m2

P

q2
qµ f B→K

0 ,

⟨K(k)|q̄1σµνqνb|B(pB)⟩ =
i f B→K

T

mB + mP

[

q2(pB + k)µ −
(

m2
B − m2

P

)

qµ
]

.

(A1)

For B̄ → K̄∗, we used the form factors VB→K∗
, AB→K∗

0 , AB→K∗
1 , AB→K∗

2 , TB→K∗
1 , TB→K∗

2 ,

and TB→K∗
3 , which can be defined as

⟨K∗(k, η)|q̄1γµb|B(pB)⟩ =ϵµνρση∗
ν pBρkσ

2VB→K∗

mB + mK∗
,

⟨K∗(k, η)|q̄1γµγ5b|B(pB)⟩ =iη∗
ν

[

qµqν 2mK∗

q2
AB→K∗

0 +

(

gµν − qµqν

q2

)

(mB + mK∗)AB→K∗
1

−
(

(pB + k)µqν

mB + mK∗
− qµqν

q2
(mB − mK∗)

)

AB→K∗
2

]

,

⟨K∗(k, η)|q̄1iσµνqνb|B(pB)⟩ =− ϵµνρση∗
ν pBρkσ2TB→K∗

1 ,

⟨K∗(k, η)|q̄1iσµνqνγ5b|B(pB)⟩ =iη∗
ν

[(

gµν
(

m2
B − m2

K∗
)

− (pB + k)µqν
)

TB→K∗
2

+ qν

(

qµ − q2

m2
B − m2

K∗
(pB + k)µ

)

TB→K∗
3

]

,

(A2)

The variables pB, k, and q represent the momenta of the B-meson, the K(∗)-meson,
and the momentum transfer, respectively. η denotes the polarisation of the K∗-meson. We
adopt the convention ϵ0123 = +1.

It is convenient to introduce the following linear combination of form factors A12 and
T23 as

A12 ≡ (mB + mK∗)2(m2
B − m2

K∗ − q2)A1 − λ(m2
B, m2

K∗ , q2)A2

16mBm2
K∗(mB + mK∗)

, (A3)

T23 ≡ (m2
B − m2

K∗)(m2
B + 3m2

K∗ − q2)T2 − λ(m2
B, m2

K∗ , q2)T3

8mBm2
K∗(mB − mK∗)

. (A4)

Appendix B. Angular Conventions

We collect below more precise definitions of the angles relevant to the B̄ → K̄∗ℓℓ decay.
Let us define the symmetric and antisymmetric momenta:

−→
P i

ℓ−ℓ+ = −→pℓ− +−→pℓ+ ,
−→
P i

Kπ = −→pK +−→pπ ,

−→
Q i

ℓ−ℓ+ = −→pℓ− −−→pℓ+ ,
−→
Q i

Kπ = −→pK −−→pπ ,
(A5)

where the superscript i indicates in which particle’s rest frame the momenta are evaluated.
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The angles defined with the convention in Section 2.2 can then be expressed as

cos θℓ =

−→
Q ℓℓ

ℓ−ℓ+ .
−→
P ℓℓ

Kπ

|−→Q ℓℓ

ℓ−ℓ+ ||
−→
P ℓℓ

Kπ |
,

cos θK = −
−→
Q K∗

Kπ .
−→
P K∗

ℓ−ℓ+

|−→Q K∗
Kπ ||

−→
P K∗

ℓ−ℓ+ |
,

cos ϕ =
(
−→
Q B̄

ℓ−ℓ+ ×−→
P B̄

ℓ−ℓ+)

|−→Q B̄
ℓ−ℓ+ ||

−→
P B̄

ℓ−ℓ+ |
.
(
−→
Q B̄

Kπ ×−→
P B̄

Kπ)

|−→Q B̄
Kπ ||

−→
P B̄

Kπ |
,

sin ϕ =

(

(
−→
Q B̄

ℓ−ℓ+ ×−→
P B̄

ℓ−ℓ+)

|−→Q B̄
ℓ−ℓ+ ||

−→
P B̄

ℓ−ℓ+ |
× (

−→
Q B̄

Kπ ×−→
P B̄

Kπ)

|−→Q B̄
Kπ ||

−→
P B̄

Kπ |

)

.

−→
P B̄

Kπ

|−→P B̄
Kπ |

.

(A6)

We refer to [34] for a detailed discussion on the different conventions, both theoretical
and the ones used by LHCb, and how to convert between them.

Appendix C. Alternate Basis

We relate the usual form factor basis that we use to the one presented in [20], as well
as the equivalence between the Fi functions for B → Kℓℓ and the transversity amplitudes
for B̄ → K̄∗ℓℓ with the transversity amplitudes in [20].

Appendix C.1. B → K

The transversity amplitudes introduced in [20] for the B → Kℓℓ transition read
as follows:

AKℓℓ
λ,L(R) = N Kℓℓ

{

(C9 ∓ C10)FB→K
λ +

2mbmB

q2

[

C7FB→K
T,λ − 16π2 mB

mb
HB→K

λ

]}

, (A7)

where N Kℓℓ =
√

λ(m2
B, m2

K, q2)× C(q2) and λ = 0, t refers to the longitudinal or timelike

polarisation, respectively, with FB→K
T,t = HB→K

t = 0. The form factor basis in [20] is related
to the one we use and introduced in Appendix A by

F0 = f B→P
+ ,

Ft = f B→P
0 ,

FT,0 =
q2

mB(mB + mK)
f B→P
T . (A8)

The Fi functions introduced in Section 2.1 are related to the transversity ampli-
tudes (A7) as:

FV(q
2) =

1

N Kℓℓ

A0,L +A0,R

2
, FA(q

2) =
1

N Kℓℓ

A0,R −A0,L

2
,

FP(q
2) = − mℓ

N Kℓℓ

(A0,R −A0,L

2
+

m2
B − m2

K

q2

(At,L −At,R

2
+

A0,R −A0,L

2

)

)

, (A9)

and

δFV = −32π2m2
B

q2
HB→K

0 . (A10)

Appendix C.2. B → K∗

The transversity amplitudes introduced in [58] for the B → K∗ℓℓ transition read
as follows:

AK∗ℓℓ
λ,L(R) = N K∗ℓℓ

{

(C9 ∓ C10)FB→K∗
λ +

2mbmB

q2

[

C7FB→K∗
T,λ − 16π2 mB

mb
HB→K∗

λ

]}

, (A11)

where N K∗ℓℓ = N ×mB and λ =⊥, ∥, 0, t refers to the different polarisations, with FB→K∗
T,t =

HB→K∗
t = 0. We further introduce AK∗ℓℓ

t = AK∗ℓℓ
t,L −AK∗ℓℓ

t,R . Their form factor basis is related
to the one we use and introduced in Appendix A by
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F⊥ =

√

2 λ(m2
B, m2

K∗ , q2)

mB(mB + mK∗)
V, F∥ =

√
2(mB + mK∗)

mB
A1,

F0 =
(m2

B − m2
K∗ − q2)(mB + mK∗)2 A1 − λ(m2

B, m2
K∗ , q2)A2

2mK∗m2
B(mB + mK∗)

,

Ft = A0, FT,⊥ =

√

2 λ(m2
B, m2

K∗ , q2)

m2
B

T1, FT,∥ =

√
2(m2

B − m2
K∗)

m2
B

T2,

FT,0 =
q2(m2

B + 3m2
K∗ − q2)

2m3
BmK∗

T2 −
q2λ(m2

B, m2
K∗ , q2)

2m3
BmK∗(m2

B − m2
K∗)

T3. (A12)

The transversity amplitudes AK∗ℓℓ
λ,L(R) introduced in Section 2.2 are related to the

transversity amplitudes AK∗ℓℓ
λ,L(R) by

AK∗ℓℓ
⊥,L(R) = AK∗ℓℓ

⊥,L(R), AK∗ℓℓ
∥,L(R) = −AK∗ℓℓ

∥,L(R),

AK∗ℓℓ
0,L(R) = − mB

√

q2
AK∗ℓℓ

0,L(R), AK∗ℓℓ
t = − 1

mB

√

λ(m2
B, m2

K∗ , q2)

q2
AK∗ℓℓ

t .
(A13)

Similarly,

δAK∗ℓℓ
⊥,L(R) = −32π2N

m3
B

q2
HK∗ℓℓ

⊥,L(R), δAK∗ℓℓ
∥,L(R) = +32π2N

m3
B

q2
HK∗ℓℓ

∥,L(R),

δAK∗ℓℓ
0,L(R) = +32π2N

m4
B

q2
√

q2
HK∗ℓℓ

0,L(R).

(A14)
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