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Abstract

The search for New Physics (NP) beyond the Standard Model (SM) has been a central
focus of particle physics, including in the context of B-meson decays involving b → sℓℓ
transitions. These transitions, mediated by flavour-changing neutral currents, are highly
sensitive to small NP effects due to their suppression in the SM. While direct searches at
colliders have not yet led to NP discoveries, indirect probes through semi-leptonic decays
have revealed anomalies in observables such as the branching fraction B(B → Kµµ) and
the angular observable P ′

5(B → K∗µµ). In order to assess the observed tensions, it is
essential to ensure an accurate SM prediction. In this review, we examine the theoretical
basis of the B → K(∗)ℓℓ decays, addressing in particular key uncertainties arising from
local and non-local form factors. We also discuss the impact of QED corrections to the
Wilson coefficients, as well as the effect of CKM matrix elements on the predictions and
the tension with the experimental measurements. We discuss the most recent results,
highlighting ongoing efforts to refine predictions and to constrain potential signs of NP in
these critical decay processes.
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1 Introduction

The discovery of the Higgs boson at the LHC in 2012 [1, 2] marked a significant milestone
in validating the Standard Model (SM) of particle physics. However, the SM remains an
incomplete theory; thus, the search for New Physics (NP) signals including NP particles has
been ongoing at colliders. Although direct searches have not yet led to discoveries, several hints
of potential NP have been observed via indirect searches. Semi-leptonic B-meson decays via
b→ sℓ+ℓ− transitions have been prime candidates for probing NP indirectly. These transitions
mediated by flavour-changing neutral currents are forbidden at the tree level in the SM and are
further suppressed by elements of the Cabibbo–Kobayashi–Maskawa (CKM) matrix, making
them particularly sensitive to small NP effects. Numerous deviations from SM predictions,
often referred to as anomalies, have been observed in these decays. An intriguing tension was
found in the lepton flavour universality ratios RK(∗) of B → K(∗)ℓ+ℓ− where the ratio is between
a final state with a muon pair and an electron pair. However, recent results from LHCb now
indicate an SM-like behaviour with no significant deviations observed [3]. Still, deviations
remain in other observables such as the branching fraction B(B → Kµ+µ−) [4–7], and the
angular observable P ′

5(B → K∗µ+µ−) [8–13] at low q2 where q2 denotes the invariant squared
mass of the dilepton in the final state. Recent measurements by CMS [7, 13] confirm previous
observations by LHCb [6,8, 9], indicating a persistent tension with the theoretical predictions.

However, branching fractions and, to a lesser degree, the optimised angular observables Pi,
are more challenging to predict than the RK(∗) ratios and suffer from larger uncertainties.

In this review, we address the calculation of B → K(∗)ℓℓ observables. In Section 2, we
introduce the notations and key observables. We then turn to the current state of local and
non-local form factors in Sections 3 and 4, which constitute the primary sources of uncertainty
in these calculations. In Section 5, we address the impact of QED corrections to Wilson
coefficients as well as the effect of CKM matrix elements, which become increasingly significant
as precision increases. Section 6 presents a quantitative assessment of the implications of
different theoretical predictions. Finally, Section 7 provides our conclusions.

2 Theoretical Framework

B → K(∗)ℓ+ℓ− decays are well described in the Weak Effective Theory. In this formalism,
the transition b → sℓ+ℓ− is described by an effective Hamiltonian, where degrees of freedom
above the electroweak scale have been integrated out [14–16]:

Heff = −4GF√
2

λt

( i=2∑
i=1

CiOc
i +

i=6∑
i=3

CiOi +
∑

i=7,8,9,10

(CiOi + C
′
iO

′
i)

)
+ λu

( i=2∑
i=1

Ci(Oc
i −Ou

i )

)+ h.c.

(2.1)

The CKM factor λj denotes λj = VjbV
∗
js and GF is the Fermi coupling constant. The lo-

cal operators Oi and their associated Wilson coefficients Ci are given in the standard basis
introduced in [17] by
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Oq
1 =(s̄LγµT

aqL)(q̄Lγ
µT abL) ,

O3 =(s̄LγµbL)
∑
q′

(q̄′γµq′) ,

O5 =(s̄Lγµ1γµ2γµ3bL)
∑
q′

(q̄′γµ1γµ2γµ3q′) ,

O7 =
e

16π2
mb(s̄σ

µνPRb)Fµν ,

O9 =
e2

16π2
(s̄γµPLb)(l̄γ

µl) ,

Oq
2 =(s̄LγµqL)(q̄Lγ

µbL) ,

O4 =(s̄LγµT
abL)

∑
q′

(q̄′γµT aq′) ,

O6 =(s̄Lγµ1γµ2γµ3T
abL)

∑
q′

(q̄′γµ1γµ2γµ3T aq′) ,

O8 =
gs

16π2
mb(s̄σ

µνPRT
ab)Ga

µν ,

O10 =
e2

16π2
(s̄γµPLb)(l̄γ

µγ5l) ,

(2.2)

where gs is the strong coupling constant; the quark flavour q = u, c; the lepton flavour
l = e, µ, τ ; and mb is the running b-quark mass in the MS scheme. We use the conventions
PL,R = (1∓ γ5)/2 and σµν = i

2
[γµ, γν ]. The primed local operators Oi are obtained by per-

forming the exchange PL ↔ PR.
The term proportional to λu in the definition (2.1) is often neglected as it is strongly

CKM-suppressed with respect to the term proportional to λt. However, it can be relevant for
observables that are specifically sensitive to complex phases of decay amplitudes. We discard
it in the following.

The decay amplitude reads as follows:

A(B → K(∗)ℓ+ℓ−) = −⟨K(∗)(k)ℓ+ℓ−|Heff |B(pB = k + q)⟩ , (2.3)

which leads to the expression [18–20]

A(B → K(∗)ℓ+ℓ−) ≡ GF αVtbV
∗
ts√

2π

{
(C9 L

µ
V + C10 L

µ
A)F

B→K(∗)

µ

− LµV
q2

[
2imbC7FB→K(∗)

T,µ + 16π2HB→K(∗)

µ

]}
. (2.4)

Here, α denotes the electromagnetic coupling constant, LµV,A are leptonic currents, and F(T ),µ

and Hµ are, respectively, local and non-local hadronic matrix elements. They are given by

LµV ≡ ūℓ(q1)γ
µvℓ(q2) , (2.5)

LµA ≡ ūℓ(q1)γ
µγ5vℓ(q2) , (2.6)

FB→K(∗)

µ ≡ ⟨K̄(∗)(k)| s̄γµPLb |B̄(pB = k + q)⟩ , (2.7)

FB→K(∗)

T,µ ≡ ⟨K̄(∗)(k)| s̄σµνqνPLb |B̄(pB = k + q)⟩ , (2.8)

HB→K(∗)

µ ≡
∑
q′

HB→K(∗)

q′,µ . (2.9)

In the last term HB→K(∗)
µ , the sum runs over the accessible quark flavours (at the typical

scale µb = mb) q
′ = u, d, s, c, b.
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For a given quark flavour,

HB→K(∗)

q′,µ (q, k) ≡iQq′

∫
d4xeiq·x

× ⟨K̄(∗)(k)|T
{
q̄′γµq

′(x),
( i=2∑
i=1

CiOc
i +

i=6∑
i=3

CiOi + C8O8

)
(0)

}
|B̄(k + q)⟩ ,

(2.10)

where Qq′ denotes the electric charge of the quark q
′. The local operators Oc

1 and Oc
2 have been

singled out in (2.1) and (2.10), as they numerically contribute more than the other hadronic
operators O3−6.

The expression (2.4) is obtained at leading order in QED. The QED effects have been
discussed in [21–23] where the O(α) corrections have been computed. For the partial width,
the reduction is estimated to be up to 10% at high q2 for muons in the final state, while it is
even larger when considering electrons in the final state. Such effects are accounted for on the
experimental side with software like PHOTOS [24] before comparison with the theoretical predic-
tions.

In the following, we describe briefly the calculation of B → Kℓ+ℓ− and B → K∗ℓ+ℓ−

observables. For detailed descriptions, we refer the reader to the SuperIso manual [25].

2.1 B → Kℓ+ℓ−

The full differential distribution of the B → Kℓ+ℓ− decay can be expressed in the SM as [26,27]

d2Γ(B̄ → K̄ℓ+ℓ−)

dq2d cos θ
= aℓ(q

2) + cℓ(q
2) cos θ2 , (2.11)

where θ is defined as the angle between the directions of the lepton ℓ− and the B̄-meson in the
rest frame of the lepton pair. The boundaries of the phase space are given by

4m2
ℓ ≤ q2 ≤ (mB −mK)

2, −1 ≤ cos θ ≤ 1 . (2.12)

The functions aℓ and cℓ in Equation (2.11) are defined in the SM as follows:

aℓ(q
2) = C(q2)

[
q2|FP (q2)|2 +

λ(m2
B,m

2
K , q

2)

4

(
|FA(q2)|2 + |FV (q2)|2

)
+ 4m2

ℓm
2
B|FA(q2)|2 + 2mℓ

(
m2
B −m2

K + q2
)
Re

(
FP (q

2)F ∗
A(q

2)
) ]
, (2.13)

cℓ(q
2) = C(q2)

[
− λ(m2

B,m
2
K , q

2)

4
β2
ℓ (q

2)
(
|FA(q2)|2 + |FV (q2)|2

) ]
, (2.14)

with the prefactor

C(q2) ≡ G2
Fα

2|VtbV ∗
ts|2

512π5m3
B

βℓ(q
2)
√
λ(m2

B,m
2
K , q

2) , (2.15)

where βℓ(q
2) ≡

√
1− 4

m2
ℓ

q2
for ℓ = e, µ, τ , and λ is the Källén function:

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz) . (2.16)
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In the above equations, FV , FA, and FP can be written in the SM as [26]

FV (q
2) = (C9 + C

′

9)f+(q
2) +

2mb

mB +mK

(Ceff
7 + C

′

7)fT (q
2) + δFV , (2.17)

FA(q
2) = (C10 + C

′

10)f+(q
2) , (2.18)

FP (q
2) = −ml(C10 + C

′

10)
[
f+(q

2)− m2
B −m2

K

q2
(f0(q

2)− f+(q
2))

]
, (2.19)

where Ceff
7 is defined in Equation (5.2). The local form factors f+, f0, and fT are defined in

Appendix A and their calculations are discussed in Section 3. The term δFV corresponds to
non-local contributions and is addressed in more detail in Section 4. Appendix C introduces the
alternative form factor basis proposed in [20], establishing the correspondence between their
transversity amplitudes and the Fi functions, as well as the correspondence of the non-local
term.

Observables

It is customary to introduce the q2-integrated coefficients [26,27]

Aℓ =

∫ q2max

q2min

dq2aℓ(q
2) , Cℓ =

∫ q2max

q2min

dq2cℓ(q
2) , (2.20)

to express the observables. The decay rate can then be written as

Γ(B → Kℓ+ℓ−) = 2
(
Aℓ +

1

3
Cℓ

)
, (2.21)

and the flat-term is

F ℓ
H =

2

Γℓ
(Aℓ + Cℓ) . (2.22)

In the SM, the forward–backward asymmetry is null and the flat term is proportional to mℓ.
However, they can receive sizeable NP contributions, which make them relevant observables.

2.2 B → K∗ℓ+ℓ−

For B̄ → K̄∗ℓ+ℓ−, the process that is measured is B̄ → K̄∗(→ Kπ)ℓ+ℓ−. The subsequent decay
K∗ → Kπ can be described with the effective Hamiltonian [28]:

Heff = gK∗Kπ(pK − pπ) · εK∗ , (2.23)

where gK∗Kπ is the coupling constant and εK∗ is the polarisation of the K∗ meson. It is
convenient to consider the K∗-meson on the mass-shell when using a narrow-width approxima-
tion [28–30] and to replace the squared K∗ propagator by

1

(p2K∗ −m2
K∗)2 + (mK∗ΓK∗)2

−→
ΓK∗≪mK∗

π

mK∗ΓK∗
δ(p2K∗ −m2

K∗) . (2.24)

Since the width of the K∗ meson can be written as

ΓK∗ =
g2K∗Kπ

48π
mK∗β3, (2.25)
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where β is related to the Källén function as

β =
1

m2
K∗
λ(m2

K∗ ,m2
K ,m

2
π)

1/2 , (2.26)

the final result in this narrow-width limit is independent of the coupling gK∗Kπ which cancels
out. The impact of the finite width of the K∗-meson is addressed in Section 3.

In the narrow-width approximation, summing over the lepton spins, the full differential
distribution can be written as [28,29,31–33]

d4Γ

dq2d cos θℓd cos θK∗dϕ
=

9

32π
J(q2, θℓ, θK∗ , ϕ) . (2.27)

We work in the convention where θℓ is defined as the angle between the directions of the
lepton ℓ− and the B̄-meson in the rest frame of the lepton pair, θK∗ is the angle between the
directions of the K-meson and the B̄-meson in the Kπ rest frame, and ϕ is the angle between
the normals of the plane of Kπ and the plane of the lepton pair. In [29,31], the convention for
θℓ is slightly different. More details about the angles and conventions are given in Appendix B.

The boundaries of the phase space are

4m2
ℓ ≤ q2 ≤ (mB −mK∗)2 , −1 ≤ cos θℓ ≤ 1 , −1 ≤ cos θK∗ ≤ 1 , 0 ≤ ϕ ≤ 2π . (2.28)

The explicit expression of J is

J(q2, θk, θl, ϕ) =J
c
1 cos

2 θk + Js1 sin
2 θk + (J c2 cos

2 θk + Js2 sin
2 θk) cos 2θl + J3 sin

2 θk sin
2 θl cos 2ϕ

+ J4 sin 2θk sin 2θl cosϕ+ J5 sin 2θk sin θl cosϕ+ J6 sin
2 θk cos θl

+ J7 sin 2θk sin θl sinϕ + J8 sin 2θk sin 2θl sinϕ+ J9 sin
2 θk sin

2 θl sin 2ϕ .
(2.29)

The angular coefficients Jai with i = 1, . . . , 9 and a = s, c can be expressed with the transver-
sity amplitudes A0, A∥, A⊥:

J c1 = |AL0 |2 + |AR0 |2 +
4m2

l

q2
(
|At|2 + 2Re(AL0A

L∗
0 )

)
, J c2 = −β2

l (|AL0 |2 + |AR0 |2) ,

Js1 =
2 + β2

l

4

(
|AL⊥|2 + |AL∥ |2 + (L↔ R)

)
Js2 =

β2
l

4

(
|AL∥ |2 + |AL⊥|2 + (L↔ R)

)
,

+
4m2

l

q2
(
Re(AL∥A

R∗
∥ ) + Re(AL⊥A

R∗
⊥ )

)
, J3 =

β2
l

2

(
|AL⊥|2 − |AL∥ |2 + (L↔ R)

)
,

J4 =
β2
l√
2

(
Re(AL0A

L∗
∥ ) + (L↔ R)

)
, J5 =

√
2βl

(
Re(AL0A

L∗
⊥ )− (L↔ R)

)
,

J6 = 2βl
(
Re(AL∥A

L∗
⊥ )− (L↔ R)

)
, J7 =

√
2βl

(
Im(AL0A

L∗
∥ )− (L↔ R)

)
,

J8 =
β2
l√
2

(
Im(AL0A

L∗
⊥ ) + (L↔ R)

)
, J9 = β2

l

(
Im(AL∗∥ A

L
⊥) + (L↔ R)

)
,

(2.30)

where, again, βℓ(q
2) =

√
1− 4

m2
ℓ

q2
.
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The transversity amplitudes can be written as follows:

AL,R0 = − N

2mK∗
√
q2

[(
(C9 − C

′
9)∓ (C10 − C

′
10)

)
[(m2

B −m2
K∗ − q2)(mB +mK∗)A1

−
λ(m2

B,m
2
K∗ , q2)

mB +mK∗
A2] + 2mb(C

eff
7 − C

′
7)[(3m

2
K∗ +m2

B − q2)T2 −
λ(m2

B,m
2
K∗ , q2)

m2
B −m2

K∗
T3]

]
+ δAL,R0 ,

AL,R⊥ = N
√

2λ(m2
B,m

2
K∗ , q2)

[(
(C9 + C

′
9)∓ (C10 + C

′
10)

)
V

mB +mK∗
+ 2mb

Ceff
7 + C

′
7

q2
T1

]
+ δAL,R⊥ ,

AL,R∥ = −N
√
2

[(
(C9 − C

′
9)∓ (C10 − C

′
10)

)
(mB +mK∗)A1 + 2mb

Ceff
7 − C ′

7

q2
(m2

B −m2
K∗)T2

]
+ δAL,R∥ ,

At = 2N(C10 − C
′
10)

√
λ(m2

B,m
2
K∗ , q2)√

q2
A0 , (2.31)

with the prefactor

N = VtbV
∗
ts

[
α2G2

F

3× 210π5m3
B

q2βl

√
λ(m2

B,m
2
K∗ , q2)

]1/2
.

The local form factors V,A0, A1, A2, T1, T2, and T3 are defined in Appendix A and their
calculations are discussed in Section 3. The terms δAi correspond to non-local contributions,
which are addressed in more detail in Section 4. Appendix C introduces the alternative form
factor basis suggested in [20], and establishes the correspondence between their transversity
amplitudes and the ones introduced in this section, as well as the correspondence of the non-
local terms.

For the CP-conjugated decay B → K∗ℓ−ℓ+, the full differential distribution can be written
as [32,34]

d4Γ̄

dq2d cos θℓd cos θK∗dϕ
=

9

32π
J̄(q2, θℓ, θK∗ , ϕ) . (2.32)

The explicit expression of J̄(q2, θℓ, θK∗ , ϕ) can be derived from that of J(q2, θℓ, θK∗ , ϕ) in
Equation (2.29) while performing the following replacements:

J
(a)
1,2,3,4,7 → J̄

(a)
1,2,3,4,7 , J5,6,8,9 → −J̄5,6,8,9 , (2.33)

where J̄
(a)
i is obtained by conjugating all weak phases in J

(a)
i .

The relative signs when going from J
(a)
i to J̄

(a)
i can be understood from transforming the angles

as (θl, θK∗ , ϕ) → (π − θl, π − θK∗ , 2π − ϕ), which is the usual convention.

Observables

We introduce below some of the key observables for the B̄ → K̄∗ℓ+ℓ− decay. The dilepton-
invariant mass spectrum is obtained by integrating the full differential distribution over all
three angles [32]:

dΓ

dq2
=

3

4

(
J1 −

J2
3

)
, (2.34)

where, for convenience,
J1,2 ≡ 2Js1,2 + J c1,2 . (2.35)
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The normalised forward–backward asymmetry is defined as [35]

AFB(q
2) ≡

[∫ 0

−1

−
∫ 1

0

]
d cos θl

d2Γ

dq2d cos θl

/
dΓ

dq2

= −3

8

2J6
dΓ/dq2

. (2.36)

In [29, 32, 36–38], the global sign is different in the definition of the forward–backward-
asymmetry.

The K∗-meson polarisation fractions FL and FT are given by [31,35,36,38]

FL(q
2) =

3J c1 − J c2
4dΓ/dq2

, FT (q
2) =

4Js2
dΓ/dq2

, (2.37)

and the K∗-meson polarisation parameter reads as follows [31]:

αK∗(q2) = 2
FL
FT

− 1 . (2.38)

A set of theoretically clean angular observables has been introduced in [31, 35], designed
to be less sensitive to form factors. Primed angular observables were later introduced in [39].
They are defined in the SM as

P1(q
2) =

J3
2Js2

, P2(q
2) = βℓ

J6
8Js2

,

P3(q
2) = − J9

4Js2
, P4(q

2) =

√
2J4√

−J c2(2Js2 − J3)
,

P5(q
2) =

βℓJ5√
−2J c2(2J

s
2 + J3)

, P6(q
2) = − βℓJ7√

−2J c2(2J
s
2 − J3)

,

P ′
4(q

2) =
J4√
−J c2Js2

, P ′
5(q

2) =
J5

2
√

−J c2Js2
,

P ′
6(q

2) = − J7

2
√

−J c2Js2
. (2.39)

For all of the observables given in this section, one can define the CP-average quantities,
which are often the ones measured experimentally.

3 Local Form Factors

Local form factors can be computed in lattice QCD or with QCD sum rules on the light-cone.
Lattice QCD determinations, based on first principles, are typically more accurate and reliable
but are mostly limited to the low-recoil region (high q2). Light-Cone Sum Rules (LCSRs) can
bridge that gap, as they allow for determinations in the low-q2 region, although they suffer
from systematic uncertainties that are challenging to evaluate.

We present in the following predictions the full set of local form factors. Instead, one can
introduce a reduced set of form factors (soft form factors) in the heavy quark limit within the
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large recoil region. Under this approximation, only two independent form factors remain for
B → K∗ and only one for B → K [40]. This significantly reduces the uncertainties related
to the form factors. Nonetheless, considering the correlations among the full form factors, a
similar cancellation of the uncertainties can be obtained.

3.1 Lattice QCD
3.1.1 B → K

The latest lattice results for the hadronic B → K form factors are given in [41] for the
FNAL/MILC collaboration, and in [42] for the HPQCD collaboration. The FNAL/MILC
results are obtained directly for the range q2 ≥ 17 GeV2, and expanded to the whole q2 range
using the Boyd, Grinstein, and Lebed (BGL) parameterisation [43]. The total errors, which
encompass both the statistical and the systematic uncertainties, are below 4% at high q2.
For lower q2, the errors are of the order of 10% for f+ and around 30% for fT .

The recent determination by HPQCD [42] supersedes their previous results [44] and covers
the entire q2 range, sending the lattice spacing a→ 0 and simultaneously fitting them using the
Bourreley–Caprini–Lellouch (BCL) parameterisation [45]. This determination is highly precise,
with quoted errors of less than 4% for f+ and f0 and less than 7% for fT . Their results at
q2 = 0 GeV2 read as follows:

f+(q
2 = 0) = f0(q

2 = 0) = 0.332± 0.012 , (3.1)

fT (q
2 = 0, µ = 4.8 GeV) = 0.332± 0.024 . (3.2)

Confirmation of this new determination using the new approach is still awaited from other
lattice collaborations.

The Flavour Lattice Averaging Group [46] performed an average of the results from [41]
and [44], which has not yet been updated to incorporate the latest HPQCD results.

3.1.2 B → K∗

Lattice QCD results for the B → K∗ local form factors are given in [47] and updated in [48].
These results are obtained directly at low recoil and extrapolated using their parameterisation.
At q2 = 0 GeV2, the results read as follows:

V (q2 = 0) = 0.31± 0.15 , A0(q
2 = 0) = 0.351± 0.074 ,

A1(q
2 = 0) = 0.303± 0.051 , A12(q

2 = 0) = 0.251± 0.053 ,

T1(q
2 = 0) = 0.291± 0.044 , T2(q

2 = 0) = 0.291± 0.044 ,

T3(q
2 = 0) = 0.50± 0.10 . (3.3)

The total error can reach up to O(50%) at q2 = 0 GeV2 due to the extrapolation, but it
remains below 10% in the low-recoil region.

3.2 LCSR

LCSRs for hadronic transition form factors are derived from a vacuum-to-hadron correlation
function, with two intermediate quark currents. In given kinematical conditions, this correlation
function can be expanded through an operator product expansion near the light-cone (LCOPE),
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in terms of the hadron Light-Cone Distribution Amplitudes (LCDAs). For B → K(∗) transi-
tions, the hadron can be either the light meson (here K(∗)) [49–54] or the B-meson [18,55–62].
The other hadron is then interpolated between the two quark currents which allows for the
extraction of the form factor of interest. The light-meson LCDAs are generally known with a
better accuracy, and higher-order corrections have been included. The use of B-meson LCDAs
is more recent and carries larger uncertainties. There have been discrepant predictions for the
B-meson LCDAs [63–67] with significant implications as demonstrated in [60], with an increase
of up to 50% in AB→K∗

2 at q2 = 0 GeV2. Nonetheless, they allow for a direct computation of
a large set of form factors for different processes. Using B-meson LCDAs makes it possible to
take into account in addition the effects of the finite width of the K∗-meson.

LCSRs rely on the semi-global quark–hadron duality [68], which induces a systematic error
that is difficult to quantify. In [60], a regime of the LCSR method was introduced to mitigate
this error; however, conclusive results for these form factors are still awaited.

3.2.1 B → K

Form Factor Value at q2 = 0 Ref.

f+

0.331± 0.041± δf+
† [51]∗

0.395± 0.033 [54]∗

0.27± 0.08 [58]∗∗

0.325± 0.085 [57]∗∗

fT

0.358± 0.037± δfT
† [51]∗

0.351± 0.027 [54]∗

0.25± 0.07 [58]∗∗

0.351± 0.097 [57]∗∗

Table 1: LCSR predictions for B → K form factors at q2 = 0, where f0(q
2 = 0) = f+(q

2 = 0).
†: δf+,T

accounts for the uncertainty in the first Gegenbauer moment.
∗: using K-meson LCDAs.
∗∗: using B-meson LCDAs.

In [51], the form factors are obtained directly for q2 ≤ 14 GeV2 before extrapolating to the
entire physical range. The results in [54] are expected to supersede those of [51], due to up-
dates in inputs and the inclusion of higher-order corrections. In [54], results are directly derived
for q2 < 12 GeV2 and extrapolated to the entire physical range using the BCL parameterisa-
tion [45]. The LCSR results were later fitted in [20] by adding lattice points and using the
parameterisation given in [53].

The results in [58] are computed for q2 ≤ 5 GeV2 and are then fitted with the z-expansion [53],
including additional points from the lattice determination [44] to constrain the high-q2 region.
The inclusion of lattice data does change the central values presented in Table 1. In a sub-
sequent work [20], the authors advise against using their previous results [58] for B → K
due to issues with the determination of the sum rule thresholds that are not yet understood.
The authors of [57] work in the Soft-Collinear Effective Theory (SCET) framework, in which
they computed the next-order QCD corrections that have not been included in [58]. However,
they do not necessarily supersede the results of [58] where the framework is the Heavy Quark

10



Effective Theory (HQET) and not SCET. Their results are obtained directly for q2 ≤ q2cut
where q2cut varies between 8 GeV2 and 10 GeV2. The extrapolation is performed using the BCL
parameterisation [45], including the lattice results of [41,42].

3.2.2 B → K∗

Form Factor Value at q2 = 0 Ref.

A1

0.282± 0.028± δA1
† [50]∗

0.27± 0.03 [53]∗

0.25+0.16
−0.10 [18]∗∗

0.26± 0.08 [58]∗∗

A2

0.259± 0.027± δA2
† [50]∗

0.23+0.19
−0.10 [18]∗∗

0.24± 0.09 [58]∗∗

A12 0.26± 0.03 [53]∗

V

0.411± 0.033± δV
† [50]∗

0.34± 0.04 [53]∗

0.36+0.23
−0.12 [18]∗∗

0.33± 0.11 [58]∗∗

T1

0.333± 0.028± δT1
† [50]∗

0.28± 0.03 [53]∗

0.31+0.18
−0.10 [18]∗∗

0.29± 0.10 [58]∗∗

T3
0.202± 0.018± δT3

† [50]∗

0.22+0.17
−0.10 [18]∗∗

T23
0.67± 0.08 [53]∗

0.58± 0.13 [58]∗∗

Table 2: LCSR predictions for B → K∗ form factors at q2 = 0 where T2(q
2 = 0) = T1(q

2 = 0).
The linear combinations A12 and T23 are introduced in Appendix A.
†: δX accounts for the uncertainty in the first Gegenbauer moment.
∗: using K∗-meson LCDAs.
∗∗: using B-meson LCDAs.

In [50], the form factors are obtained directly for q2 ≤ 14 GeV2 before being extrapolated to
the whole physical range. These results are superseded in [53] due to the updated inputs. They
are also determined directly for q2 below 14 GeV2 and fitted using their modified z-expansion
(BSZ). The numerical values presented in Table 2 are the result of the fit using only their LCSR
results. Additional results for a fit adding lattice points from [48] are also presented, which
slightly shift the values presented in Table 2.

In [18], the form factors are obtained at q2 < 12 GeV2 and are then fitted using the BCL-
parameterisation [45]. These results are superseded in [58] due to the updated inputs and the
inclusion of higher order in the LCOPE. They are computed for q2 ≤ 5 GeV2 and are then fitted
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with the BSZ z-expansion [53], including additional points from the lattice determination [47,48]
to constrain the high-q2 region. The inclusion of lattice data does change the central values
presented in Table 2.

An advantage of LCSRs with B-meson LCDAs is the possibility of computing form factors
for decays such as B → Kπ, where the final state is a dimeson state, which allows us to study
of the impact of the finite width of the K∗-meson. This computation has been carried out
in [61] for the P -wave Kπ system, and then updated in [62] to add the contribution of the
S-wave Kπ. In [61], a correction to the B → K∗ form factors (using B-meson LCDAs) was
obtained as a multiplicative factor of WK∗ ∼ 1.1. It corresponds to an enhancement in the
decay rate B → K∗(→ Kπ)ℓℓ ofO(20%) but has a negligible impact on P ′

5(B → K∗(→ Kπ)ℓℓ).
In [62], the additional S-wave corrections are claimed to be small. This WK∗ ∼ 1.1 correction
is valid only in the low-q2 region, where it has been computed, and when using LCSR with
B-meson LCDAs.

Since form factors are real analytic functions in the q2 complex plane, up to a branch
cut and a pole at the resonance, it is customary to use parameterisations respecting these
constraints, such as the Caprini, Lellouch, and Neubert (CLN) parameterisation [69]; the Boyd,
Grinstein, and Lebed (BGL) parameterisation [43]; the Bourrely, Caprini, and Lellouch (BCL)
parameterisation [45]; the Bharucha, Straub, and Zwicky (BSZ) parametrisation [53]; and the
Gubernari, van Dyk, and Virto (GvDV) parameterisation [19]. These parameterisations are
used to extrapolate the results obtained for a limited range to the entire physical q2 range.
The z-expansions are in practice truncated and only the first terms are considered for the fits,
which induces a systematic truncation error. Dispersive (or unitarity) bounds allow for the
control of said truncation errors for a given parameterisation and have been used for B-meson
decays [19,20,43,70–73].

The latest dispersive bound results for local B → K(∗) form factors have been obtained
in [73] to which we refer for more details.

4 Non-Local Contributions

The long-distance effects in the B → K(∗)ℓℓ decays generated by four-quark and chromo-
magnetic dipole operators, sometimes referred to as charm-loop effects, are technically more
challenging to derive than the local contributions. These long-distance effects were traditionally
accounted for in the QCD factorisation framework and in the heavy quark limit for q2 < 7 GeV2.
This calculation included up to weak annihilation, some non-factorisable contributions, and the
hard spectator scattering [74, 75]. However, in [20], it is suggested that this approach is re-
liable only below 4 GeV2 and may overlook potentially significant power corrections. Even
outside of the resonance region, intermediate and/or virtual cc̄ states still contribute. An ag-
nostic approach to take into account the effect of the power corrections is to consider a q2- and
transversity-dependent polynomial whose relative size is guesstimated [76].

Two approaches have emerged in recent years to take into account these effects in a more
comprehensive manner, which we refer to in the following as the z-expansion [20] and the
hadronic dispersion relation [77–81]. Both approaches start from a dispersion relation; how-
ever, they differ in their evaluation methods. The z-expansion approach evaluates the dispersion
relation using an LCOPE at negative q2 before extrapolating it to the physical range. In con-
trast, the hadronic dispersion relation is evaluated directly at the hadronic level within the
physical range.

12



4.1 The z-Expansion

In the sum over accessible quark flavours in Equation (2.9), HB→K(∗)
u,µ and HB→K(∗)

d,µ are usually
neglected as they are suppressed by CKM subleading matrix elements and/or small Wilson

coefficients. The necessary formulas for HB→K(∗)
s,µ and HB→K(∗)

b,µ have been derived in [74,75,82]
in the QCD factorisation framework and in the heavy quark mass limit, and are given in
Appendix C of [20].

The most significant and challenging contributions of HB→K(∗)
c,µ , however, have been treated

differently. In the z-expansion approach [20], the non-local contributionsHB→K(∗)
c,µ are computed

at negative values of q2 using an LCOPE. At q2 = m2
J/ψ these contributions are obtained from

data on branching ratios and angular observables. This non-local form factor is then fitted via
a z-expansion over the region 0 < q2 < m2

J/ψ.

The LCOPE computation was performed in [19] considering only the dominant contributions
from Oc

1 and Oc
2. In [20], contributions from penguin operators were added, but not from O8 as

its contribution is considered negligible in this stage. The LCOPE expansion reads as follows:

HB→K(∗)

c,λ = − 1

16π2

(
q2

2m2
B

∆C9FB→K(∗)

λ +
mb

mB

∆C7FB→K(∗)

T,λ

)
+ 2Qc

(
C2 −

C1

2Nc

)
ṼB→K(∗)

λ

+ higher-power corrections ,
(4.1)

where the basis of local form factors FB→K(∗)

(T ),λ is introduced in Appendix C, the matching coef-

ficients ∆C7,9 correspond to the leading power of non-local contributions, and ṼB→K(∗)

λ denotes
subleading contributions that are not proportional to the local form factors. The matching
coefficients ∆C7,9 have been computed to NLO in QCD [4, 82–86] and are sometimes incorpo-
rated into the effective Wilson coefficients Ceff

7,9 which then become q2-dependent. The term

ṼB→K(∗)

λ was initially found to be sizeable in [18], but this computation has been superseded
by that in [19] where it was determined to be negligible due to a more complete calculation
which included the missing three-particle distribution amplitudes and updated the necessary
inputs. Thus, in [20], to account for ṼB→K(∗)

λ , only the uncertainty of the non-local form factors
was increased.

The LCOPE results and the residue extracted from the data at q2 = m2
J/ψ are then fitted

with the z parameterisation described in [19]. The result is data-driven but can also be used
with only the LCOPE results for extrapolation, although this leads to larger uncertainties.

Dispersive bounds for the non-local contributions were first derived in [20]. Imposing this
dispersive bound for the long-distance effects significantly reduces the uncertainties. This dis-
persive bound can be further saturated by considering additional channels such as Λb → Λµ+µ−.
The final results agree with the QCD factorisation approach; however, they exhibit larger un-
certainties for the z-expansion method, especially near the J/ψ pole, which is not accounted
for in QCD factorisation. Assuming that the z-expansion accounts for the whole amplitude,
a careful assessment of the uncertainties is required to include all contributions.

4.2 The Hadronic Dispersion Relation

The evaluation of the long-distance effect in [80] for B → Kℓℓ and its subsequent exten-
sion in [81] to B → K(∗)ℓℓ follows a slightly different and predominantly data-driven ap-
proach. This strategy can be viewed as an extension of the procedures suggested in [77–79].
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ForB → Kµµ [80], the long-distance effects are incorporated into the effective Wilson coefficient:

Ceff
9 = C9 + Ycc̄(q

2) + Ylight(q
2) + Yτ τ̄ (q

2) , (4.2)

where Yi(q
2) stands for the long-distance effect caused by the intermediate state i. Specifically,

Ycc̄ accounts for the dominant contributions from Oc
1 and Oc

2 only, Ylight corresponds to the
contributions from the subleading operators O3−6,8 and of Ou

1−2, and Yτ τ̄ corresponds to the
tau loop. Instead of using an LCOPE to evaluate the dispersion relations at negative q2,
as performed in [18–20], the dispersion relations here are evaluated directly at the hadronic level
for positive q2. For Ycc̄, single-particle intermediate states (J/ψ, ψ(2S), etc.) and two-particle
states (DD̄, D∗D̄, etc.) are considered. For Ylight, given the loop or CKM suppression and the
inclusion of intermediate states with charm valence quarks in Ycc̄, only vector single-particle
states with light valence quarks (ρ, ω, ϕ) are taken into account. The hadronic contributions for
single-particle intermediate states are modelled using Breit–Wigner distributions, while a more
complex approximation is used for two-particle intermediate states. The relevant amplitude
and phase parameters are extracted from experimental measurements. The dispersion relation
for Ycc̄ is subtracted at q2 = 0 to ensure convergence of the two-particle term, with the term
at q2 = 0 evaluated in QCD factorisation. The tau loop contribution is fully computed in
perturbation theory.

For B → K∗ℓℓ [81], the correction to C7 is treated as a universal shift estimated using
perturbation theory [74]. The corrections Y (q2) to C9 were evaluated as

Y λ(q2) = Y λ
cc̄(q

2) + Y
[0]
qq̄ (q

2) + Y
[0]

bb̄
(q2) , (4.3)

where λ denotes the polarisation. The charm-loop contribution Y λ
cc̄ was evaluated hadronically,

similar to the approach in [80], while the other contributions were taken from perturbation
theory at the lowest order in αs. For explicit expressions, we refer the reader to [80].

The hadronic dispersion relation method has been implemented by LHCb in [87–89], reveal-
ing a persistent tension between Standard Model predictions and measurements. Overall, there
is a strong agreement between the z-expansion and hadronic dispersion relation approaches.
For visual comparisons, we refer the reader to the plots in [89].

In [90], the impact of the rescattering of intermediate hadronic states is discussed. These
contributions are particularly challenging to estimate. Based on a data-driven analysis, it is
argued in [90] that these contributions can potentially resolve the tension between SM predic-
tions and experimental measurements, although a consensus has not yet been reached. In [91],
an estimate of the rescattering of charmed and charmed-strange mesons has been performed for
the B0 → K0ℓℓ decay, which finds at most a 10% shift to C9, insufficient to resolve the tension.

5 Other Sources of Uncertainties

In this section, we discuss the impact of QED corrections on the Wilson coefficients and the
influence of CKM matrix elements on predictions and their discrepancies with experimental
measurements. These effects are often overlooked but are becoming increasingly relevant given
the current precision of both measurements and predictions.
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5.1 Wilson Coefficients

The Wilson coefficients are calculated in perturbative theory and have been computed to NNLO
in QCD [15,92,93]:

Ci(µ) = C
(0)
i +

αs(µ)

4π
C

(1)
i +

(αs(µ)
4π

)2

C
(2)
i +O(α3

s) , (5.1)

where C
(n)
i is the nth order of the Wilson coefficient in the αs expansion. These coefficients

are initially calculated at the electroweak scale µ0 ∼ MW using a two-loop level computation,
followed by the resummation of large logarithms and the evolution to the relevant scale µb ∼ mb

using the three-loop Anomalous Dimension Matrix to account for operator mixing. Due to this
operator mixing, it is customary to introduce the effective Wilson coefficients through the
following combinations:

Ceff
7 (µ) = C7(µ)−

1

3
C3(µ)−

4

9
C4(µ)−

20

3
C5(µ)−

80

9
C6(µ) , (5.2)

Ceff
8 (µ) = C8(µ) + C3(µ)−

1

6
C4(µ) + 20C5(µ)−

10

3
C6(µ) . (5.3)

We emphasise that the notation Ceff
7 used here arises solely from renormalisation and should

not be confused with the use of effective Wilson coefficients in the context of non-local con-
tributions, where “effective” refers to the inclusion of these non-local contributions within the
Wilson coefficients.

QED corrections can also be computed and have been accounted for in [94,95]. Introducing

the variable κ(µ) = α(µ)
αs(µ)

, the perturbative expansion in both QED and QCD can be written
as

Ci(µ) =
2∑

n,m=0

αs(µ)
nκ(µ)mC

(n,m)
i (µ) +O(α3

s, κ
3) . (5.4)

Numerical values of the Wilson coefficients including NNLO QCD and NLO QED 1 correc-
tions at the scale µb = 5 GeV are reported in Table 3.

Wilson Coefficient Value (QCD) Correction (QED)

C1(µb) −0.2477 −0.0030

C2(µb) 1.0080 0.0056

C3(µb) −0.0049 −0.0000

C4(µb) −0.0763 −0.0003

C5(µb) 0.0003 0.0000

C6(µb) 0.0009 0.0000

C7(µb) −0.3180 0.0037

C8(µb) −0.1710 0.0000

C9(µb) 4.1764 −0.1305

C10(µb) −4.1494 −0.1445

Table 3: Wilson coefficients at the scale µb = 5.0 GeV. We use sin2 θW = 0.231160.

1We note that for C9 and C10 the QED corrections are said to be at NNLO in [95], but the definition of the
operators O9 and O10 is different from the one used here.
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The QED contributions induce small corrections to the Wilson coefficients, up to ∼3.5%
for C9,10 which are often neglected. Nevertheless, given the current precision, their inclusion is
becoming increasingly relevant.

5.2 CKM

The determination of the CKM factor λt = VtbV
∗
ts is particularly relevant for branching fractions,

where the predictions scale with |VtbV ∗
ts|2.

We use values from the Particle Data Group [96] where the Wolfenstein parameter fit was
performed with over-constraining measurements (and for which unitarity of the CKM matrix
is implied):

λ = 0.22500± 0.00067 , A = 0.826+0.018
−0.015 ,

ρ̄ = 0.159± 0.010 , η̄ = 0.348± 0.010 , (5.5)

which sets the following values:

|Vts| = 0.04110+0.00083
−0.00072 , |Vtb| = 0.999118+0.000031

−0.000036 . (5.6)

Very similar results were obtained in the CKMfitter 2023 update [97] and the UTfit 2023
update [98], with differences in the CKM factor λt being well under a percent.
While the uncertainties in the CKM matrix elements are relatively small compared to the un-
certainty on local and non-local form factors, and only amount to O(2%) for |Vts|, they can still
have a significant impact on the predictions due to the dependence on |VtbV ∗

ts|2. Between 2021
and 2022, the prediction of the B → K(∗)µµ branching fraction has been shifted by O(5%)
due to the update of the CKM values. Moreover, if we reconsider the assumptions of BSM
physics or unitarity, the CKM matrix elements are not immune to further shifts or changes. In
addressing constraints in the presence of BSM physics, a fit with tree-level inputs alone led to
shifts of O(5%) and larger uncertainties in [96].

Therefore, given the precision of measurements and predictions, careful consideration of
the CKM matrix elements and the assumptions under which they are obtained is crucial when
discussing SM predictions. Notably, P ′

5 serves as an ideal probe for NP due to its independence
from CKM matrix elements by construction.

6 Impact on Predictions

We discuss in this section the impact of local form-factors and long-distance effects on the
branching fraction B(B+ → K+µµ) and the angular observable P ′

5(B
0 → K∗0µµ) using the

SuperIso public program [25, 99–101]. For reference, we also plot the experimental results of
LHCb [6] and CMS [7] for B(B+ → K+µµ) and LHCb [9] and CMS [13] for P ′

5(B
0 → K∗0µµ).

The grey vertical bands starting at q2 = 6 GeV2 denote the region approaching the resonances,
which is less reliable and sometimes disregarded. The error bars on the figures in this sec-
tion represent the 1σ errors computed by considering the propagated uncertainties across all
parameters and inputs.
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6.1 Impact of Local Form Factors

As expected, the branching fraction B(B+ → K+µµ) is significantly influenced by the local
form factors. The predictions shown in Figure 1a, based on form factors from [42], agree within
the error bars with those from [54]. However, the observed tension with the measurements
clearly depends on the specific set of form factors employed. Using the form factors from [42],
for instance, reveals a reduced tension. In both cases, non-local contributions are adopted
from [20].

(a) (b)

Figure 1: Impact of local form factors on the prediction of (a) B(B+ → K+µµ) with local form
factors from [54] (KR) and from [42] (HPQCD); (b) P ′

5(B0 → K∗0µµ) with local form factors
from [58] (GKvD) and from [53] (BSZ). For both, non-local form factors from [20], denoted as
GRvDV, have been used.

The optimised angular observables such as P ′
5 are by construction less dependent on the

local form factors, which is confirmed by the relatively small uncertainty on the predictions
in Figure 1b. Moreover the different determinations of the local form factors [53, 58] are in
agreement and consistent in their tension with the experimental data.

6.2 Impact of Non-Local Form Factors

We compare the impact of non-local form factors obtained in QCD factorisation (QCDf) [74,75]
with those determined using the more recent z-expansion approach [20]. The differences in
central values for the branching fraction (Figure 2a) and the angular observable P ′

5 (Figure 2b)
are small in both implementations. However, since the QCDf approach does not account for
charm resonances, there is a noticeable difference in uncertainties for the branching fraction.
Consequently, in the implementation of long-distance effects in SuperIso, an error budget
was guesstimated to account for the yet unknown power corrections when using QCDf results
(see [76, 102–107] for more details).
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(a) (b)

Figure 2: Impact of non-local form factors on the prediction of (a) B(B+ → K+µµ) with local
form factors from [42] (HQPCD), and non-local form factors from [74,75] (QCDf) and from [20]
(GRvDV); (b) P ′

5(B0 → K∗0µµ) with local form factors from [58] (GKvD), and non-local form
factors from [74,75] (QCDf) and from [20] (GRvDV).

6.3 Impact of QED Corrections to Wilson Coefficients

We compare the impact of QED corrections to Wilson coefficients. These corrections are
relatively minor and the resulting shift observed in the branching fraction B(B+ → K+µµ) in
Figure 3a is negligible. However, their impact is more visible in P ′

5 as shown in Figure 3b,
where they tend to reduce the tension between predictions and measurements.

(a) (b)

Figure 3: Impact of QED corrections to Wilson coefficients on the prediction of (a) B(B+ →
K+µµ) with local form factors from [42] (HPQCD) and non-local form factors from [20]
(GRvDV); (b) P ′

5(B0 → K∗0µµ) with local form factors from [58] (GKvD) and non-local
form factors from [20] (GRvDV).

6.4 Impact of CKM Matrix Elements

We compare below the impact of the CKM matrix elements obtained from the fits in [96]:
One with the full data, and one taking only into account tree-level inputs (Figure 4). There
is a clear effect from the set of CKM parameters used when discussing the tension with the
experimental data.
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Figure 4: Impact of the CKM factor on the prediction of B(B+ → K+µµ) with local form
factors from [42] (HPQCD) and non-local form factors from [20] (GRvDV).

7 Conclusions

Hints of NP beyond the SM in semi-leptonic B decays, particularly in the branching fraction
B(B → Kµµ) and the angular observable P ′

5(B → K∗µµ) at low q2, still persist. However,
unlike the RK(∗) ratios, accurately assessing the level of tension with experimental measure-
ments for these observables is significantly more challenging. In this review, we addressed the
theoretical calculations of B → K(∗)ℓℓ and the main sources of uncertainties.

The primary elements contributing to the remaining uncertainty in B → K(∗)ℓℓ decays are
the local transition form factors and the long-distance contributions. Significant progress has
been achieved in lattice QCD, particularly by the HPQCD collaboration, which has provided
direct results for fB→K

+,T across the entire q2 range. Nevertheless, as we await similar results for
B → K∗, and a cross-check for B → K, LCSRs remain relevant. Despite all predictions for
the relevant form factors being consistent within their uncertainties, they significantly influence
the predictions, with the tension reduced when using the HPQCD form factor set. Optimised
angular observables such as P ′

5 are less sensitive to local form factors, and furthermore, the dis-
crepancies among various determinations of local B → K∗ form factors are smaller. However,
it is crucial to note that LCSRs with B-meson LCDAs heavily rely on B-LCDA parameters,
which currently exhibit discrepancies and can lead to substantial variations in the local form
factors at q2 = 0 GeV2, up to O(50%).

Both types of observables are impacted by the non-local effects, although different estimates
of these effects are in agreement. While the QCD factorisation framework initially provided an
estimate of these non-local effects, more recent methods have emerged such as the z-expansion,
which computes charm-loop contributions using an LCOPE at negative q2, and the hadronic
dispersion relation, evaluated predominantly at the hadronic level within the physical range,
and have yielded consistent results. It is worth noting that, in this stage, the different eval-
uations of the non-local contributions do not resolve the discrepancies between theoretical
predictions and experimental results; nonetheless, it is not excluded that some contributions
(e.g., the rescattering of intermediate hadronic states) with potentially significant effects have
been overlooked.

Finally, we discussed the impact of QED corrections on the Wilson coefficients. While
their effect on branching fractions is negligible, this is less the case for angular observables.
Furthermore, careful consideration is warranted regarding the CKM matrix elements, given
that the assumptions used to determine them have a substantial impact on branching fractions
and other observables that are sensitive to them.
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In recent years, there have been remarkable improvements in the predictions of B → K(∗)ℓℓ,
and we expect this progress to continue, leading to increasingly precise predictions, and further
constraints or hints on New Physics signatures.
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(ANR) under project ANR-21-CE31-0002-01.

A Definition of Local Hadronic form Factors

A suitable form factor basis for the B → K transition is fB→K
0 , fB→K

+ , and fB→K
T , which are

defined as

⟨K(k) |q̄1γµb|B(pB)⟩ =
[
(pB + k)µ − m2

B −m2
P

q2
qµ
]
fB→K
+ +

m2
B −m2

P

q2
qµfB→K

0 ,

⟨K(k) |q̄1σµνqνb|B(pB)⟩ =
ifB→K
T

mB +mP

[
q2(pB + k)µ −

(
m2
B −m2

P

)
qµ
]
.

(A1)

For B̄ → K̄∗, we used the form factors V B→K∗
, AB→K∗

0 , AB→K∗
1 , AB→K∗

2 , TB→K∗
1 , TB→K∗

2 ,
and TB→K∗

3 , which can be defined as

⟨K∗(k, η) |q̄1γµb|B(pB)⟩ =ϵµνρση∗νpBρkσ
2V B→K∗

mB +mK∗
,

⟨K∗(k, η) |q̄1γµγ5b|B(pB)⟩ =iη∗ν
[
qµqν

2mK∗

q2
AB→K∗

0 +

(
gµν − qµqν

q2

)
(mB +mK∗)AB→K∗

1

−
(
(pB + k)µqν

mB +mK∗
− qµqν

q2
(mB −mK∗)

)
AB→K∗

2

]
,

⟨K∗(k, η) |q̄1iσµνqνb|B(pB)⟩ =− ϵµνρση∗νpBρkσ2T
B→K∗

1 ,

⟨K∗(k, η) |q̄1iσµνqνγ5b|B(pB)⟩ =iη∗ν
[(
gµν

(
m2
B −m2

K∗

)
− (pB + k)µqν

)
TB→K∗

2

+ qν
(
qµ − q2

m2
B −m2

K∗
(pB + k)µ

)
TB→K∗

3

]
,

(A2)
The variables pB, k, and q represent the momenta of the B-meson, the K(∗)-meson, and the

momentum transfer, respectively. η denotes the polarisation of the K∗-meson. We adopt the
convention ϵ0123 = +1.

It is convenient to introduce the following linear combination of form factors A12 and T23 as

A12 ≡
(mB +mK∗)2(m2

B −m2
K∗ − q2)A1 − λ(m2

B,m
2
K∗ , q2)A2

16mBm2
K∗(mB +mK∗)

, (A3)

T23 ≡
(m2

B −m2
K∗)(m2

B + 3m2
K∗ − q2)T2 − λ(m2

B,m
2
K∗ , q2)T3

8mBm2
K∗(mB −mK∗)

. (A4)
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B Angular Conventions

We collect below more precise definitions of the angles relevant to the B̄ → K̄∗ℓℓ decay. Let us
define the symmetric and antisymmetric momenta:

−→
P i
ℓ−ℓ+ = −→pℓ− +−→pℓ+ ,
−→
P i
Kπ = −→pK +−→pπ ,

−→
Q i
ℓ−ℓ+ = −→pℓ− −−→pℓ+ ,
−→
Q i
Kπ = −→pK −−→pπ ,

(B1)

where the superscript i indicates in which particle’s rest frame the momenta are evaluated.
The angles defined with the convention in Section 2.2 can then be expressed as

cos θℓ =

−→
Q ℓℓ
ℓ−ℓ+ .

−→
P ℓℓ
Kπ

|
−→
Q ℓℓ
ℓ−ℓ+ ||

−→
P ℓℓ
Kπ|

,

cos θK = −
−→
QK∗
Kπ.

−→
P K∗

ℓ−ℓ+

|
−→
QK∗
Kπ||

−→
P K∗

ℓ−ℓ+ |
,

cosϕ =
(
−→
Q B̄
ℓ−ℓ+ ×

−→
P B̄
ℓ−ℓ+)

|
−→
Q B̄
ℓ−ℓ+ ||

−→
P B̄
ℓ−ℓ+|

.
(
−→
Q B̄
Kπ ×

−→
P B̄
Kπ)

|
−→
Q B̄
Kπ||

−→
P B̄
Kπ|

,

sinϕ =

(
(
−→
Q B̄
ℓ−ℓ+ ×

−→
P B̄
ℓ−ℓ+)

|
−→
Q B̄
ℓ−ℓ+||

−→
P B̄
ℓ−ℓ+|

× (
−→
Q B̄
Kπ ×

−→
P B̄
Kπ)

|
−→
Q B̄
Kπ||

−→
P B̄
Kπ|

)
.

−→
P B̄
Kπ

|
−→
P B̄
Kπ|

.

(B2)

We refer to [34] for a detailed discussion on the different conventions, both theoretical and
the ones used by LHCb, and how to convert between them.

C Alternate Basis

We relate the usual form factor basis that we use to the one presented in [20], as well as
the equivalence between the Fi functions for B → Kℓℓ and the transversity amplitudes for
B̄ → K̄∗ℓℓ with the transversity amplitudes in [20].

C.1 B → K

The transversity amplitudes introduced in [20] for the B → Kℓℓ transition read as follows:

AKℓℓ
λ,L(R) = NKℓℓ

{
(C9 ∓ C10)FB→K

λ +
2mbmB

q2

[
C7FB→K

T,λ − 16π2mB

mb

HB→K
λ

]}
, (C1.1)

where NKℓℓ =
√
λ(m2

B,m
2
K , q

2)× C(q2) and λ = 0, t refers to the longitudinal or timelike
polarisation, respectively, with FB→K

T,t = HB→K
t = 0. The form factor basis in [20] is related to

the one we use and introduced in Appendix A by

F0 = fB→P
+ ,

Ft = fB→P
0 ,

FT,0 =
q2

mB(mB +mK)
fB→P
T . (C1.2)

The Fi functions introduced in Section 2.1 are related to the transversity amplitudes (C1.1)
as:

FV (q
2) =

1

NKℓℓ

A0,L +A0,R

2
, FA(q

2) =
1

NKℓℓ

A0,R −A0,L

2
,

FP (q
2) = − mℓ

NKℓℓ

(A0,R −A0,L

2
+
m2
B −m2

K

q2

(
At,L −At,R

2
+

A0,R −A0,L

2

))
, (C1.3)

and

δFV = −32π2m2
B

q2
HB→K

0 . (C1.4)
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C.2 B → K∗

The transversity amplitudes introduced in [58] for the B → K∗ℓℓ transition read as follows:

AK∗ℓℓ
λ,L(R) = NK∗ℓℓ

{
(C9 ∓ C10)FB→K∗

λ +
2mbmB

q2

[
C7FB→K∗

T,λ − 16π2mB

mb

HB→K∗

λ

]}
, (C2.1)

where NK∗ℓℓ = N ×mB and λ =⊥, ∥, 0, t refers to the different polarisations, with FB→K∗
T,t =

HB→K∗
t = 0. We further introduce AK∗ℓℓ

t = AK∗ℓℓ
t,L − AK∗ℓℓ

t,R . Their form factor basis is related
to the one we use and introduced in Appendix A by

F⊥ =

√
2λ(m2

B,m
2
K∗ , q2)

mB(mB +mK∗)
V , F∥ =

√
2(mB +mK∗)

mB

A1 ,

F0 =
(m2

B −m2
K∗ − q2)(mB +mK∗)2A1 − λ(m2

B,m
2
K∗ , q2)A2

2mK∗m2
B(mB +mK∗)

,

Ft = A0 , FT,⊥ =

√
2λ(m2

B,m
2
K∗ , q2)

m2
B

T1 , FT,∥ =

√
2(m2

B −m2
K∗)

m2
B

T2 ,

FT,0 =
q2(m2

B + 3m2
K∗ − q2)

2m3
BmK∗

T2 −
q2λ(m2

B,m
2
K∗ , q2)

2m3
BmK∗(m2

B −m2
K∗)

T3 . (C2.2)

The transversity amplitudes AK
∗ℓℓ

λ,L(R) introduced in Section 2.2 are related to the transversity

amplitudes AK∗ℓℓ
λ,L(R) by

AK
∗ℓℓ

⊥,L(R) = AK∗ℓℓ
⊥,L(R) , AK

∗ℓℓ
∥,L(R) = −AK∗ℓℓ

∥,L(R) ,

AK
∗ℓℓ

0,L(R) = − mB√
q2
AK∗ℓℓ

0,L(R) , AK
∗ℓℓ

t = − 1

mB

√
λ(m2

B,m
2
K∗ , q2)

q2
AK∗ℓℓ
t .

(C2.3)

Similarly,

δAK
∗ℓℓ

⊥,L(R) = −32π2N
m3
B

q2
HK∗ℓℓ

⊥,L(R) , δAK
∗ℓℓ

∥,L(R) = +32π2N
m3
B

q2
HK∗ℓℓ

∥,L(R) ,

δAK
∗ℓℓ

0,L(R) = +32π2N
m4
B

q2
√
q2
HK∗ℓℓ

0,L(R) .

(C2.4)
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