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Abstract

We study the large N matrix model for the index of 4d N = 4 Yang-Mills theory

and its truncations to understand the dual AdS5 black holes. Numerical studies of the

truncated models provide insights on the black hole physics, some of which we investigate

analytically with the full Yang-Mills matrix model. In particular, we find many branches

of saddle points which describe the known black hole solutions. We analytically construct

the saddle points dual to the small black holes whose sizes are much smaller than the AdS

radius. They include the asymptotically flat BMPV black holes embedded in large AdS

with novel thermodynamic instabilities.
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1 Introduction

In this paper, we study the matrix model [1, 2] for the index of the 4d maximal super-Yang-

Mills theory with U(N) gauge group at large N . Our goal is to better understand the black

holes in AdS5×S5 [3, 4, 5, 6]. There have been some recent works on this subject: see [7, 8, 9]

and references thereof. Many of these works are not directly based on the matrix model of

[1, 2], except those on large black holes [8], because this matrix model is difficult to study.

Recently, [10] discussed the truncated versions of this matrix model. The truncations keep

finite numbers of terms (among infinitely many) appearing in the potential of the matrix model.

The simplest truncation keeps only one term, closely related to the Gross-Witten-Wadia model
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[11, 12] at complex coupling. Improved truncations include more terms in the potential, forming

an infinite sequence of truncated matrix models. Strictly speaking, the truncations are justified

only at low temperature. In practice, [10] showed that the truncations provide fairly good

descriptions of some physics even at finite temperature. [10] demonstrated it by studying

the confinement-deconfinement transition [13, 14, 15] of the truncated model which keeps two

terms. This model ‘approximates’ the Hawking-Page transition [16] of black holes fairly well.

Higher truncated models will describe the physics with more precision. Also, one can get

valuable qualitative insights from the truncated models with relatively simpler computations.

In this paper, we explain some progress along these lines.

We start by explaining the truncated matrix model analysis in a streamlined fashion. We

employ the analysis of the truncated models of [15], slightly generalized to cover our problem.

This is equivalent to the setup explored in [10]. We numerically study the physics of the first

three truncated models. We first study the deconfinement transitions, repeating [10], and semi-

quantitatively explain how they describe the Hawking-Page transition. We also study the black

hole saddle points at fixed charge, by numerically performing the Legendre transformation. For

higher models, there appear multiple branches of saddle points whose physics is close to the

known AdS black holes. The fine structures revealed by our studies are delicate. See section 3

for the details, and also sections 4 and 5 for partial analytic accounts.

With insights from the numerical studies, we find the exact analytic saddle points for small

black holes, whose sizes are much smaller than the AdS radius. Our primary interest is the

2-parameter free energy as a function of the inverse-temperature β and an angular chemical

potential γ. (See section 5.3 for a 4-parameter generalization.) Small black holes are reached

by taking β ≪ 1. The 1-parameter free energy at γ = 0 will account for the black holes of

[3]. In the truncation keeping p terms in the matrix model potential, we find the exact leading

saddle point solutions. From this, we can take the p → ∞ limit to study the full Yang-Mills

matrix model without truncations. The leading free energy at p→∞ is given by

logZ ≈ −4N
2

π2
β3 . (1.1)

Its Legendre transformation yields the following entropy at fixed charge q:

S(q) = logZ(β) + qβ → π

[

q3

27N2

]
1
2

. (1.2)

This accounts for the Bekenstein-Hawking entropy of the small BPS black holes in AdS5 × S5

[3] from the canonical saddle point analysis. See section 5.2 for the generalization to γ 6= 0

with an extra spin, with logZ ≈ −4N2β3

π2+γ2
and S(q, j) = π

√

q3

27N2 − j2.

Our results on small black holes are interesting for many reasons. First of all, the black holes

much smaller than the AdS radius locally behave like asymptotically flat black hole solutions.
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The black holes explained above reduce to the 5d asymptotically flat black holes of Strominger,

Vafa [17] and BMPV [18]. The microscopic details of the small AdS black holes also exhibit

similarities with [17, 18]. Namely, [2] made a heuristic account for the entropy (1.2) with D3-

branes in AdS5 × S5, in close parallel to the counting of [17]. Our work can be regarded as

counting asymptotically flat black holes of [17] from first principles, with an IR regularization

by AdS, without ad hoc assumptions like D-branes in quantum gravity.

The details of the small black hole saddles are also interesting. The saddle point is given by

a distribution function ρ(θ) of matrix eigenvalues. (See section 2 for the precise definition.) For

large black holes, it was found [8, 19, 20, 21, 22] that ρ(θ) ∼ δ(θ) asymptotically. Its physics

is understood from the deconfinement of the gauge theory: at high temperature for large black

holes, the system wants to maximally liberate the deconfined gluons. This is realized by putting

all eigenvalues asymptotically on top of each other, ρ(θ) ∼ δ(θ) [15]. On the other hand, it is a

priori unclear what ρ(θ) should be for small black holes. While large black holes represent the

exotic high temperature phase of gravity, small black holes represent microstates of gravity in

the conventional phase such as D-branes [2]. For the 1-parameter small black holes of [3], we

find (at p→∞) the following triangular eigenvalue distribution,

ρ(θ) =
1

π2
(π − |θ|) for − π < θ < π , ρ(θ) = ρ(θ + 2π) . (1.3)

This is different from the small black hole limit of the Bethe ansatz [9].

We further study the QFT duals of the small spinning black holes at γ 6= 0, related to the

BMPV black holes [18]. We emphasize the appearance of a curious thermodynamic instability

in AdS which extends that of [23]. It is analogous to the well-known instability of the Kerr-AdS

black holes [24]. We microscopically study these unstable saddle points. We expect this to be

a ubiquitous aspect of asymptotically flat spinning black holes embedded in large AdS.

Combining our numerical and analytic insights, we expect the small AdS black holes to

provide a novel and powerful route to study the challenging problems of asymptotically flat

BPS black holes. Studying different parameter regimes and the saddle point ansatz, hopefully

more interesting asymptotically flat black holes can be identified and studied.

The remaining part of this paper is organized as follows. In section 2, we explain the matrix

model, its truncations and the saddle point analysis. In section 3, we study the deconfinement

and the Hawking-Page transition. We then study the black hole saddle points at fixed charges.

Section 4 provides a short analytic explanation on the large black hole limit, clarifying its

universality. In section 5, we construct the exact saddle points for small black holes and

explore the physics, also discussing the thermodynamic instabilities. Section 6 concludes with

discussions. Appendix A explains the saddle point analysis related to section 2. Appendix B

explains the BPS black hole solutions and the small BMPV black hole limit.
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2 The matrix models and the saddle points

The index of the N = 4 Yang-Mills theory on S3 × R [1, 2] is defined by

Z(∆I , ωi) = Tr
[

(−1)F e−
∑3

I=1RI∆I−
∑2

i=1 Jiωi

]

, (2.1)

with chemical potentials constrained by ∆1+∆2+∆3−ω1−ω2 = 0. The three charges RI are for

the U(1)3 ⊂ SO(6) R-symmetry, and the two angular momenta Ji are for the U(1)2 ⊂ SO(4)

which rotates the spatial S3. With the constraint satisfied by the chemical potentials, the

exponential measure inside the trace commutes with two of the 32 supercharges of this system.

Calling the commuting Poincare supercharge as Q, it satisfies [RI , Q] = +1
2
Q, [Ji, Q] = −1

2
Q.

Its conjugate conformal supercharge S ≡ Q† carries RI = −1
2
and Ji = +1

2
. The index counts

BPS states which are annihilated by Q and S. The BPS states saturate the bound coming

from the following algebra:

r{Q,Q†} ∼ rE − (R1 +R2 +R3 + J1 + J2) ≥ 0 , (2.2)

where E is the energy and r is the radius of S3. We are also interested in the following 1-

and 2-parameter unrefined versions of this index. After the 1-parameter unrefinement e−∆1 =

e−∆2 = e−∆3 ≡ x2 and e−ω1 = e−ω2 ≡ x3, the index is given by

Z(x) = Tr
[

(−1)Fx6(
R1+R2+R3

3
+

J1+J2
2 )

]

≡ Tr
[

(−1)Fx6(R+J+)
]

, (2.3)

where R ≡ R1+R2+R3

3
, J+ ≡ J1+J2

2
. q ≡ 6(R + J+) is quantized to be integers. This index

will be used in sections 3, 4 and 5.1 to study the 1-parameter BPS black holes of [3] and the

related asymptotically flat black holes [17]. The 2-parameter index with equal e−∆I ≡ x2 and

e−ω1 = x3y, e−ω2 = x3y−1 is given by

Z(x, y) = Tr
[

(−1)Fx6(R+J+)y2J−
]

, (2.4)

where J− ≡ J1−J2
2

. This index will be used in section 5.2 to study the 2-parameter black holes

of [5] (also [6] at equal µI ’s) and the related BMPV black holes [18].

For N = 4 Yang-Mills theories with weak coupling limits, the index admits a unitary matrix

integral representation. For the U(N) gauge group, one obtains [1, 2]

Z(∆I , ωi) =
1

N !

N
∏

a=1

∫ 2π

0

dαa
2π
·
∏

a<b

(

2 sin
αab
2

)2

· exp
[

N
∑

a,b=1

∞
∑

n=1

an(∆I , ωi)

n
einαab

]

an ≡ 1−
∏3

I=1(1− e−n∆I )

(1− e−nω1)(1− e−nω2)
(2.5)

where αab ≡ αa−αb. The variables eiαa are eigenvalues of a U(N) unitary matrix. This integral

can also be written as

Z(∆I , ωi) =
1

N !

N
∏

a=1

∫ 2π

0

dαa
2π

exp

[

N

∞
∑

n=1

an
n

]

exp

[

−
∑

a<b

V (αa − αb)
]

, (2.6)
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with the 2-body eigenvalue potential V (θ) given by

V (θ) ≡ − log

[

4 sin2 θ

2

]

−
∞
∑

n=1

an
n
(einθ + e−inθ) . (2.7)

The first factor in the integrand of (2.6) comes from the N Cartans of the adjoint fields, and

will be irrelevant for studying the large N free energy proportional to N2.

Since its discovery, this index used to be studied at real chemical potentials ∆I , ωi until

recently. The recent studies [7, 8, 9] demand studying this index at complex chemical potentials.

The physical reasonings are explained in [8, 25, 26, 27], with gradual upgrades, until [28]

provided very concrete interpretations and evidences. Here we summarize the interpretation

comprehensively. The discussions can be made from the microcanonical viewpoint or the grand

canonical viewpoint. Although the two are closely related, we provide both interpretations for

the sake of completeness. For simplicity, we discuss the 1-parameter unrefined index (2.3).

In the microcanonical viewpoint, the index (2.3) is a generating function for the degeneracies

Ωq at fixed integral charges q ≡ 6(R + J+):

Z(x) =

∞
∑

q=0

Ωqx
q . (2.8)

We consider Ωq at large charge q. Large charge could mean either q ≫ 1 at finite N , or q ∼ N2

at large N . |Ωq| grows macroscopically at large q. For instance, one can be confident about

its macroscopic growth by computing (2.3) numerically in a series expansion [29, 28] at various

values of N . Here, note that Z(x) is an index which grades fermionic states with −1. So Ωq

may, and actually does, make sign oscillations as a function of discrete q [28].

Ωq can be obtained from Z(x) by the following integral,

Ωq =

∮

dx

2πix
x−qZ(x) , (2.9)

where the integral contour may be taken to be a small circle at constant |x|. One can compute

the integral at large q by the saddle point approximation, which is the Legendre transformation.

How can this approximation compute macroscopic numbers Ωq with sign oscillations? The

answer is by having a pair of mutually complex conjugate saddles [28]. Namely, if a complex

saddle x = x∗ and its conjugate x̄∗ are equally dominant, the approximation yields

Ωq ∼ eS(q)+··· + eS(q)+··· ∼ eRe[S(q)]+··· cos [Im[S(q)] + · · · ] . (2.10)

Here S(q) is the complex saddle point action, and · · · are possible subleading terms at large

q. Re(S(q)) at the complex saddles measures the leading entropy of the index, while Im(S(q))

measures the sign oscillations of Ωq. So it is crucial to know Z(x) at complex fugacity x, at

least in the region where we expect the saddles to be. This is the microcanonical reason to
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consider complex chemical potentials: to extract sign-oscillating macroscopic degeneracies at

large charges from the Legendre transformation.

It is also illustrating to understand the role of complex fugacities in the grand canonical

ensemble. The key ideas are already presented in [25]. In the summation over q in (2.8) at

fixed x, Ωq at nearby q’s may undergo partial cancelations if Ωq sign-oscillates fast enough.

Therefore, although each Ωq may be macroscopic, the sum over q in (2.8) may apparently look

much smaller due to this cancelation. With the macroscopic Ωq taking the form of (2.10), one

can estimate when to expect more/less cancelations. For each term appearing in (2.10), the

corresponding contribution to (2.8) will take the form of

Z(x)←
∑

q

eRe(S(q))e±iIm(S(q))−µq , (2.11)

where x ≡ e−µ. The oscillating phase e±iIm(S(q)) can cause destructive interference of nearby

terms. Note here that, if µ has nonzero imaginary part, and if the corresponding term −Im(µ)q

combines with either ±Im(S(q)) to yield a slower phase oscillation, the cancelation can be

obstructed to certain extent. In fact [25] found that, by turning on Im(µ) to various values, Z

with less cancelation can show apparent phase transitions at lower temperatures. (See [10] for

a more precise statement about the transition, which we shall review in section 3.1.)

One can ask the optimal value of Im(µ) which maximally obstructs the cancelation. In

general the optimal choice of Im(µ) can be made only locally, since it depends on the region of

q one wishes to study. Namely, for a destructive interference near a given q to be maximally

obstructed, the phase e±iIm(S(q))−iIm(µ)q should locally remain constant near the chosen q. This

amounts to demanding Im(µ) to satisfy the stationary phase condition in q:

± d

dq
Im(S(q)) = Im(µ) . (2.12)

This is nothing but the imaginary part of the Legendre transformation, which is either dS(q)
dq

= µ

or dS(q)
dq

= µ depending on the saddle point. Therefore, to summarize, the grand canonical view-

point is more general than the microcanonical one. Imaginary chemical potential is introduced

to obstruct the cancelation of the nearby terms of (2.8), which is related to the microcanonical

picture only when Im(µ) is chosen optimally to maximally obstruct the cancelation.

With these understood on the complex parameters, let us now review the procedures of [15]

to construct the large N saddle point solutions, somewhat generalized to accommodate our

setup. This is also completely equivalent to the procedures of [10]. In the large N limit, the

integral (2.6) can be evaluated using the saddle point approximation. The saddle point consists

of N eigenvalues forming distributions along certain ‘cuts,’ which are intervals in the complex

αa plane. The distribution is complex since our chemical potentials are, which complexify the

potential V in (2.6). In this paper, we only consider the eigenvalue distributions forming a
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single cut. The single cut saddle points will include the known BPS black hole solutions in

AdS [3, 4, 6, 5]. Using the translation symmetry of αa’s, and also the symmetry of flipping

all αa → −αa, we seek for a single cut distribution which is symmetric under the reflection

α → −α. We take the two endpoints of the cut I to be θ0 and −θ0. where θ0 is a O(N0)

complex number.

The saddle point equation for αa is given by

∑

b(6=a)
V ′(αa − αb) = 0 . (2.13)

We introduce the eigenvalue density function ρ(θ) defined by

ρ(αa) ≡
1

N

∆a

∆αa
, (2.14)

with a = 1, · · · , N . ∆αa ≡ αa+∆a − αa is the difference between the two complex eigenvalues

in the infinitesimal neighbor. ρ(θ) defined in this way for θ ∈ I is in general complex since αa’s

are. Using this ρ(θ), the saddle point equation (2.13) can be written as

∫ θ0

−θ0
dθρ(θ)V ′(α− θ) = 0 (2.15)

where the θ integral is over the contour I that ends on −θ0 and θ0. Inserting (2.7), one obtains

−
∑

a

V ′(α− αa) =
∫ θ0

−θ0
cot

(

α− θ
2

)

ρ(θ)dθ − 2
∞
∑

n=1

anρn sin(nα) = 0 , (2.16)

where ρn are the moments of the distribution ρ(θ) defined by

ρn ≡
∫ θ0

−θ0
dθρ(θ) cos(nθ) , n = 1, 2, · · · . (2.17)

Here we used the fact that ρ(θ) is an even function so that the sin(nθ) moments are zero,

∫ θ0

−θ0
dθρ(θ) sin(nθ) = 0 . (2.18)

At this point, we comment on some generalization that we made for complex ρ(θ) defined on a

complex cut I. In [15], real ρ(θ) for real θ was considered. There one could Fourier expand

ρ(θ)
real−→ 1

2π
+

1

π

∞
∑

n=1

ρn cos(nθ) . (2.19)

Namely, ρ(θ) was extended beyond the real interval (−θ0, θ0) as ρ(θ) = 0, and the Fourier

expansion of an even function was made on the whole circle θ ∈ [−π, π]. Unlike this, we

abstractly define ρn as the moments (2.17) of the complex ρ(θ) defined only on the cut I.
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Before proceeding, we explain the invertibility of the map between ρ(θ) and the distribution

of αa in the complex case. Obtaining ρ(θ) at a given complex distribution of αa is obvious,

as given by (2.14). Conversely, suppose that a complex ρ(θ) is given on the complex plane of

θ. (This is what we shall obtain by the saddle point analysis, after following the procedures

analogous to [15].) Then defining s ≡ a
N
− 1

2
which satisfies −1

2
< s < 1

2
, αa in the continuum

limit can be written as a complex function α(s) for real s ∈ (−1
2
, 1
2
). This can be obtained by

integrating (2.14). Namely, ρ(αa) =
1
N

da
dαa

can be integrated to yield

s(α) =

∫

ρ(α)dα+ constant . (2.20)

One can obtain the curve α(s) on the complex α plane by demanding the last integral to be

real. Therefore, one can locally construct the αa distribution from complex ρ(θ). s(α) has to

be either an increasing or a decreasing function along the cut, and should terminate on s = ±1
2
.

Whether such a cut exists, starting from θ = −θ0, passing through θ = 0 and ending on θ = θ0,

is a nontrivial question. There will appear parameter regions in which the desired cuts do not

exist. Once such a cut exists, it will be guaranteed in our solution below that s(±θ0) = ±1
2
,

corresponding to
∫ θ0

−θ0 dθρ(θ) = 1.

Now we explain the single cut saddle point solutions, following [15]. As in [15], we treat ρn

as independent variables and solve for (2.16) and (2.17). We first solve (2.16) for ρ(θ) at fixed

independent ρn’s.
1 For the single cut distribution, the solution to this linear equation is [30, 15]

ρ(θ) =
1

π

√

sin2 θ0
2
− sin2 θ

2

∞
∑

n=1

Qn cos
[(

n− 1
2

)

θ
]

(2.21)

where

Qn ≡ 2
∞
∑

l=0

an+lρn+lPl(cos θ0) , (2.22)

and Pl are the Legendre polynomials given by

∞
∑

l=0

Pl(x)z
l = (1− 2xz + z2)−

1

2 . (2.23)

An extra condition, as part of the solution to (2.16), is given by

Q1 = Q0 + 2 , (2.24)

where Q0 is defined from (2.22) by starting the summation from l = 1. Strictly speaking, the

solution (2.21), (2.22), (2.24) is derived in [30] at real anρn’s. In Appendix A, we explain that

the results can be extended to the case with complex couplings.

1In the context of [10], making ρn independent and fixed for a while corresponds to introducing the Hubbard-

Stratonovich parameters and integrating over αa’s first.
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The remaining equation (2.17) to be solved becomes a linear equation of ρn’s, after inserting

the solution (2.21) to (2.16). This linear equation and (2.24) take the form of [15]

R~ρ = ~ρ , ~A · ~ρ = 1 , (2.25)

where ~ρ = (ρ1, ρ2, · · · ) is an ∞ dimensional column vector, and the ∞ dimensional matrix R

and vector ~A are defined by

Rml = al

l
∑

k=1

[

Bm+k− 1
2 (s2) +B|m−k+ 1

2 |(s2)
]

Pl−k(1− 2s2)

Am = am
[

Pm−1(1− 2s2)− Pm(1− 2s2)
]

. (2.26)

Here s and Bn− 1
2 are defined by s2 ≡ sin2 θ0

2
and

Bn− 1
2 (s2) =

1

π

∫ θ0

−θ0
dθ

√

s2 − sin2 θ

2
cos
[(

n− 1
2

)

θ
]

∞
∑

n=0

Bn+ 1
2 (x)zn =

√

(1− z)2 + 4zx+ z − 1

2z
. (2.27)

The variables to be determined by these equations are ρn and θ0. The first equation of (2.25)

admits an eigenvector with eigenvalue 1 if the matrix R− 1 is degenerate,

det(R− 1) = 0 . (2.28)

This equation determines θ0 in terms of an’s (which in turn depend on chemical potentials).

After θ0 is determined this way, ~ρ is given by [15]

~ρ =M−1~e1 , (2.29)

where M is a matrix obtained by replacing the first row of the matrix (1 − R) by the vector
~A, and ~e1 is a column vector given by (1, 0, 0, · · · ).

As explained in [15], the above procedures become more tractable in truncated matrix

models, in which all an>p with an integer cutoff p are taken to be zero by hand. This defines

the p’th entry in the sequence of the truncated matrix models, in which only p out of infinite

terms are kept in the second term of the potential given by (2.7). In this case, the matrix M

takes the form of

M =

(

Mp×p 0p×∞

L∞×p 1∞×∞

)

. (2.30)

Therefore, ~ρ is given by

~ρ =

(

M−1
p×p 0p×∞

−L∞×pM
−1
p×p 1∞×∞

)

~e1 . (2.31)

The first p lowest moments ρn≤p can be determined by just knowing the inverse of the finite

matrix Mp×p. This suffices to determine the eigenvalue distribution in this truncated model
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with an≥p = 0, since in this case (2.21) and nonzero Qn≤p’s depend only on ρn≤p. Similarly, the

equation (2.28) determining the cut size θ0 also effectively reduces to a p×p matrix determinant

equation. It turns out that this is a degree p2 + p polynomial equation in s2. Choosing one of

these p2 + p solutions for s2, one can in principle solve for ρ(θ) by a linear procedure in the

truncated matrix models. So in the p’th truncated model, there are at most p2 + p distinct

saddle points in the single-cut setup. (We shall see in section 3 with the examples of p = 1, 2, 3

that not all these branches are physical.) In particular, the finite p models will make the

numerical analysis of the saddle points easier, as we shall study in section 3. Also, in section

5, we shall obtain exact analytic solutions for arbitrary p’th truncated models in the so-called

small black hole limit. This will allow us to eliminate the truncation by taking the limit p→∞
and obtain the analytic saddle point solutions for the full matrix model.

Once the saddle point values of ρn≤p and ρ(θ) are known, the saddle point effective action

logZ can be computed from

logZ =
N2

2

∫ θ0

−θ0
dθ1dθ2 log

(

4 sin2 θ1 − θ2
2

)

ρ(θ1)ρ(θ2) +N2

p
∑

n=1

an
n
|ρn|2 , (2.32)

where we used the moment formula (2.17), and one should insert (2.21) for ρ(θ). In practice,

this can be computed more easily in the following way. One first integrates the saddle point

equation (2.16) in α to obtain

µ =

∫ θ0

−θ0
dθρ(θ) log

[

4 sin2 α− θ
2

]

+

p
∑

n=1

2an
n
ρn cos (nα)) , (2.33)

where µ is the integration constant. Then one can insert the solution ρ(θ) and ρn≤p to compute

µ for the solution of one’s interest. This can be computed by evaluating the right hand side at

any value of α, say at α = 0. With µ computed this way, one integrates both sides of (2.33)

with N2

2

∫ θ0

−θ0 dαρ(α), which yields

logZ =
N2µ

2
. (2.34)

Therefore, one can compute the free energy logZ by knowing the constant µ from (2.33).

The function ρ(θ) can be integrated to obtain s(θ), which determines the cut by the condition

Im(s(θ)) = 0. As we explained above, our ansatz seeks for a single cut solution which is

invariant under θ → −θ flip: it passes through θ = 0, and ends on the two branch points

θ = ±θ0. Whether such a cut exists is a nontrivial question, whose answer depends on the

parameters of the matrix model such as x. Even if the single cut solution exists for certain x’s,

it may cease to exist after x passes through a wall. This means that the part of line Im(s) = 0

which connects ±θ0 will suddenly change, so that the Im(s) = 0 line starting from one end

θ0 will escape to infinity rather than ending on −θ0. This can happen when two Im[s(θ)] = 0

lines meet. This is illustrated in Fig. 1, where the cut connecting θ = ±θ0 (red dots) suddenly

disappears after meeting other parts of the Im(s) = 0 lines. These are for a particular branch

10



(a) x ≈ .721e2.296i: ∃cut (b) x ≈ .744e2.252i: marginal (c) x ≈ .769e2.214i: ∄cut

Figure 1: Illustrating how the critical point θ∗ (yellow dots) satisfying ρ(θ∗) = 0 can destroy

the cut as x crosses a wall. The blue lines are Im[s(θ)] = 0 lines, red dots the branch points

θ = ±θ0, and the black dots the origin θ = 0. The background contour plots are those for

Im[s(θ)]. (Green lines are the branch cuts of s(θ) chosen by mathematica’s convention.)

of saddle points in the p = 2 model with one parameter x. See section 3.2 for more details.

Fig. 1(b) shows the cut when x is on the wall. If x crosses the wall, the single-cut saddle point

disappears as illustrated in Fig. 1(c).

If two Im(s) = 0 lines meet at a point θ = θ∗, it means that Im[s(θ)] remains constant along

two independent directions at θ = θ∗. This can happen only if s(θ) is extremal at θ = θ∗. This

is because, making a Taylor expansion

s(θ) ≈ s(θ∗) + s′(θ∗)(θ − θ∗) +
1

2
s′′(θ∗)(θ − θ∗)2 + · · · , (2.35)

the presence of the second term s′(θ∗)(θ−θ∗) would give a unique direction along which Im(s(θ))

remains constant if s′(θ∗) 6= 0. Therefore, if two such lines meet, this implies ρ(θ∗) = s′(θ∗) = 0.

Therefore, a necessary condition for the wall in x space is the critical point satisfying ρ(θ∗) = 0

meeting the cut. The yellow dots of Fig. 1 are the points satisfying ρ(θ∗) = 0. The critical

point θ∗ meeting the cut is only a necessary condition for the cut to disappear, since the cut

may continue to exist after the critical point crosses the cut. Such an example can be found in

the p = 1 model, although we shall not illustrate it here.

The critical point θ∗(x) satisfying ρ(θ∗) = 0 is a function of x. A further necessary condition

for θ∗(x) to meet the cut is

Im[s(θ∗(x))] = 0 . (2.36)

This is just a necessary condition because θ∗(x) may cross the line Im[s(θ)] = 0 either through

the finite segment [−θ0, θ0] or through the other part of this line. Fig. 2 shows an example

of θ∗ meeting an irrelevant part of the line Im[s(θ)] = 0, thus not destroying the cut. This

figure describes another branch of saddle points in the p = 2 model: see section 3.2. Therefore,

in concrete models of section 3, one should first draw the lines in the x space defined by

11



(a) x ≈ .766e2.215i (b) x ≈ .742e2.255i (c) x ≈ .721e2.304i

Figure 2: Illustrating why (2.36) is only a necessary condition for the wall, by the critical point

meeting the Im[s(θ)] = 0 line not through the cut. Color conventions are all same as Fig. 1.

(2.36). Then one should investigate the behaviors of the cuts near these lines (by studying the

configurations like Figs. 1 and 2) to determine which part of (2.36) are the boundaries of a

region admitting the saddle points.

For p = 1, one finds

s(θ) =
1

π
arcsin

[

sin θ
2

t
1
2

]

+
1

πt
sin

θ

2

√

t− sin2 θ

2
. (2.37)

The only critical point of this model is θ∗ = π. After solving for t(x) and investigating Im[s(θ)]

by changing x, one finds that the cut is never destroyed by θ∗. See section 3.1 for the results.

For p = 2, one finds

s(θ) =
1

π
arcsin

[

sin θ
2

t
1
2

]

+
1

π
sin

θ

2

√

t− sin2 θ

2

[

1

t
− a2(2− 8t+ 14t2 − 7t3) + 2a2(1− t)2 cos θ

]

(2.38)

which satisfies s(0) = 0, s(±θ0) = ±1
2
. The critical points satisfying ρ(θ∗) = 0 are given by

θ∗ = π, θ1,−θ1 , where cos θ1 ≡ 1− Q1

Q2
= − 1

2a2t(1− t)2
+

4− 10t+ 12t2 − 5t3

2(1− t)2 . (2.39)

The critical point θ∗ = π can destroy the cut in certain branches of saddle points. However,

this will happen in a region in the x space that we are not interested in. Only the critical points

θ = ±θ1 will play important roles in this paper. At θ = θ1, one finds

s(θ1) =
1

π
arcsin

[
√

a−1
2 − 2t+ 6t2 − 10t3 + 5t4

2t(1− t)

]

(2.40)

+
1 + t

2πt

√

−1 + 2a2(2t−4t2+6t3−3t4)− a22(4t2−16t3+36t4−44t5+36t6−20t7+5t8) .

Here t = t(x) is one of the six solutions solving the equation (2.28). The two critical points ±θ1
meet the cut at the same time, from the symmetry of the cut. As illustrated in Fig. 1, these

12



critical points create nontrivial walls, beyond which the saddle point solutions cease to exist

within our single-cut ansatz. See section 3.2 for the details. On the wall, such as x of Fig. 1(b),

ρ(θ) becomes zero at the two points ±θ1 on the wall (except the cut boundaries ±θ0). This

means that the single-cut distribution is making a phase transition to a triple cut distribution

on the wall. We shall not study the triple cut distributions beyond the walls. However, our

findings predict the existences of large N saddle points beyond the single cut ansatz.

Similar phenomena also happen at p = 3, but in a more complicated manner. There are

five possible values of critical points θ∗(x) at each x. We shall not explicitly show the formulae

here, and just show the final numerical results in section 3.3.

3 Numerical studies

The key objective of this section is to study deconfinement and the black hole like saddles

in the truncated models. To this end, we start by reviewing the ideas of [25, 10] about the

confinement-deconfinement phase transition of this system. For conceptual discussions here, it

is helpful to change the real integral variables αa’s of (2.6) to the eigenvalue distribution ρ(θ)

on a circle θ ∼ θ + 2π [15, 2]. The effective action of this matrix integral can be written as

Seff =
N2

2

∫

dθ1dθ2V (θ1 − θ2)ρ(θ1)ρ(θ2) . (3.1)

ρ(θ) is a real function, constrained to be (1) periodic: ρ(θ) = ρ(θ + 2π), (2) normalized:
∫ 2π

0
dθρ(θ) = 1 and (3) non-negative: ρ(θ) ≥ 0. In particular, condition (3) demands the

allowed domain for ρ(θ) to have a boundary. ρ(θ) can be written in terms of its Fourier modes

ρn, ρ(θ) =
1
2π

+ 1
2π

∑

n 6=0 ρne
inθ. One imposes ρ−n = ρn for the reality of ρ(θ). The conditions

(1), (2) above are also met. In terms of ρn, The effective action is given by

Seff = N2

∞
∑

n=1

1− an
n
|ρn|2 . (3.2)

The condition (3) introduces a boundary of the allowed domain for {ρn}. This boundary has a

complicated shape, as one can easily check from finite dimensional subspaces of {ρn}.

An important question is whether the large N partition function confines or deconfines, and

when the confinement-deconfinement phase transition happens. This phase transition is dual

to the Hawking-Page transition of the AdS quantum gravity [13], which happens due to the

thermal competition of large black holes and thermal gravitons. An order parameter of this

transition is the Polyakov loop operator, which is the Wilson loop along the thermal circle [31].

It is particularly important in our context to consider the Polyakov loop in the fundamental

representation [15]
1

N
Trfund

[

P exp

(

i

∮

dτAτ

)]

. (3.3)
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This quantity is zero/nonzero when the system confines/deconfines, respectively. − log of its

normalized expectation value is the extra free energy cost for inserting an external quark loop.

So vanishing Polyakov loop implies that the system abhors this insertion. In our matrix variables

or those of [15], this operator is given by

1

N

N
∑

a=1

eiαa = ρ1 , (3.4)

which is nothing but the first Fourier coefficient ρ1 [15]. See section 5.7 of [15] for a more

careful definition of this order parameter. Strictly speaking, if one wishes to compute its strong

coupling expectation value using SUSY, one has to supersymmetrize (3.3) and insert it in

the path integral. Since (3.3) is not supersymmetric, inserting (3.4) into our matrix model

integrand yields the expectation value of (3.3) at weak coupling only, unprotected by SUSY

non-renormalization. The weak-coupling behavior of (3.3) will still provide useful guidance

along the spirit of [15]. In particular, it is natural to expect deconfinement when ρ1 (or |ρ1|2)
wants to condense at weak coupling. This is because Seff of (3.2) will then acquire a nonzero

contribution N2(1− a1)|ρ1|2 proportional to N2, which implies deconfinement unless this term

precisely cancels with others. This is also true in the setup of section 2, from the formula (2.32).

Integrals with the effective action (3.2) is subtler than it naively looks. Although the

integrand is Gaussian in ρn’s, the integral domain would have a boundary which is a nontrivial

hypersurface. Inspired by [15] in which the role of the fundamental Polyakov loop ρ1 was

crucial, consider integrating over ρ1 first,

Z ∼
∫ ∞
∏

n=2

dρndρ−n exp

[

N2

∞
∑

n=2

an(x)− 1

n
|ρn|2

]

∫ f+(ρn)

f−(ρn)

dρ1 exp
[

N2(a1(x)− 1)ρ21
]

. (3.5)

Here we took ρ1 to be real using the translation symmetry of θ [15]. Due to the presence of

the boundary of the integral domain, ρ1 is constrained in a range f−(ρn) ≤ ρ1 ≤ f+(ρn) which

depends on other variables ρn≥2. In particular, f+(ρn = 0) = 1
2
, f−(ρn = 0) = −1

2
when all the

other variables are at the confining saddle ρn≥2 = 0. We consider whether the first integral

∫ f+(ρn)

f−(ρn)

dρ1 exp
[

N2(a1(x)− 1)ρ21
]

(3.6)

can exhibit a condensing behavior to ρ1 6= 0. As this is simply expressible as the error functions

at complex coefficient a1(x) − 1, it is easy to derive that the dominant contribution to this

integral comes from either ρ1 = f± when Re(a1(x)− 1) > 0. So supposing that we consider the

1 dimensional integral (3.6) rather than (3.5), the integral can be approximated as

∼ exp
[

N2(a1(x)− 1)(max |f±|)2
]

(3.7)

when Re(a1(x) − 1) > 0. The complex number (3.7) has large absolute value at large N . So

the 1 dimensional integral (3.6) exhibits a deconfining behavior.
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Let us call the region Re(a1(x) − 1) > 0 the tachyonic region of ρ1, for an obvious reason.

As explained in [25], the Hawking-Page ‘temperature’ of known BPS black holes in AdS5 × S5

is higher than the tachyon threshold Re(a1(x) − 1) = 0. This led [25] to conjecture new

hypothetical black holes with a lower Hawking-Page temperature. However, [10] suggested a

much simpler resolution of this discrepancy, basically by showing that the integral (3.5) may not

acquire dominant contribution at ρ1 = f± due to the integral of other ρn≥2’s. Namely, although

(3.7) has a large absolute value, it also has a fast-oscillating phase factor depending on ρn≥2’s at

complex x. This phase factor can render extra cancelations during the ρn≥2 integrals, which may

invalidate the dominance of the region ρ1 = f± for the full integral. This way, the deconfinement

transition can be delayed relative to the tachyon threshold [10]. So the tachyon threshold need

not agree with the deconfinement point. Rather, it is a lower bound of deconfinement. This

will be a useful guidance of where to seek for black holes and deconfinement.

The viewpoint of the previous 4 paragraphs, directly regarding ρ(θ) or {ρn}’s as the integral
variables, is cumbersome in practice since the integral domain has boundaries. Note that

in section 2, we introduced ρ(θ) and its complexification rather conservatively, only for the

purpose of estimating saddle point quantities. From now we go back to the setup of section

2 and investigate deconfinement and black holes in the truncated models. In this setting, all

procedures are linear except solving the degree p2 + p polynomial equation det(R− 1) = 0 for

the gap t ≡ sin2 θ0
2
. For the lowest truncation at p = 1, one can exactly solve the quadratic

polynomial equation. For the higher models at p ≥ 2, the polynomial equations are solved

numerically in general. At p = 1, 2, 3, we find solutions which describe the known black holes.

For p ≥ 2, there appear multiple solutions which combine to describe the known black holes.

The interpretations of these multiple branches are discussed in section 5 and 6.

3.1 The p = 1 model

This model is related to the complex Gross-Witten-Wadia (GWW) model. Namely, the inter-

mediate model of section 2 which keeps ρ1 independent and fixed is the complex GWW model.

In the setup of section 2, R and ~A are numbers at p = 1, given by

R = a1(2t− t2) , A = 2a1t , (3.8)

where t ≡ s2 = sin2 θ0
2
is the gap parameter. The degree p2 + p equation det(R − 1) = 0 of t

and the solutions are given by

t2 − 2t+
1

a1
= 0 → t

(

= sin2 θ0
2

)

= t± ≡ 1∓
√

1− 1

a1
. (3.9)
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(a) 1
N2Re(log Z+) for the p = 1 model (b) 1

N2Re(logZBH)

Figure 3: The contour plots of: (a) 1
N2Re(logZ+), (b)

1
N2Re(logZBH). The red curves denote

Re(logZ+) = 0 lines. The black dotted curve is the tachyon threshold Re(a1 − 1) = 0, right of

which is the tachyonic region. The dashed blue curves denote Re(logZBH) = 0 lines.

The two solutions with upper/lower signs are called the saddles g± in [10], respectively. ρ1 is

given by ρ1 =
1

2a1t
. The function ρ(θ) is given by

ρ(θ) =
cos θ

2

πt

√

t− sin2 θ

2
. (3.10)

Integrating this, one obtains s(θ) =
∫

dθρ(θ) given by (2.37). Demanding Im[s(θ)] = 0 deter-

mines the cut. For all x in the range |x| < 1, the cut connecting ±θ0 through θ = 0 exists. The

‘free energy’ at these saddles can be computed from (2.33) and (2.34). The result is

logZ± =
N2µ±
2

=
N2

2

[

−1 + log t± +
1

t±

]

(3.11)

at the two saddle points g± given by (3.9). Throughout this section, we study the 1-parameter

index (2.3), for which a1 = 1− (1−x2)3
(1−x3)2 with a complex x. To study the grand canonical phases,

we study Re [logZ] which determines the dominant saddle point. We also compare it with the

free energy Re(logZBH) of the BPS black holes of [3], in the form presented in [32, 28]:

logZBH =
N2

2

∆3

ω2
, x = e−

ω
3
+ 2πi

3 = −e−∆
2 . (3.12)

Fig. 3(a) shows the contour plots of Re(logZ+) for the saddle g+, as a function of x = |x|eiφ.
We have only shown the plots in the region 0 < φ < π, since the remaining region −π < φ < 0

is the complex conjugate region related by the map φ → −φ. The free energy Re(logZBH) of

the AdS black hole is plotted in Fig. 3(b). Fig. 4 shows a similar plot for the saddle g−.

We start by mentioning that, in both Yang-Mills matrix model and the truncated models,

there are confining saddle points in which ρ(θ) is constant along the real θ circle. This is an
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ungapped distribution, not captured by the ansatz of section 2. Its free energy is logZ = 0

at N2 order. This is dual to the thermal graviton saddle. We physically believe this is the

dominant saddle at sufficiently low |x| [15, 2]. Note here that the truncation to p = 1 is a

very good approximation at small |x|, since |a1| ≫ |a2| ≫ |a3| ≫ · · · . So the confining saddle

should be dominant also for the p = 1 model at low |x|. With these understood, let us discuss

Fig. 3(a). There are four regions separated by three red lines for Re(logZ+) = 0. In the low

temperature region bounded by the leftmost red line, one finds N−2Re(logZ+) > 0. Had this

saddle g+ been physical there, it would have been more dominant than the graviton saddle.

This should not be correct. So the saddle g+ should be irrelevant for small enough |x|, not
being on the matrix integration contour.

On the other hand, consider the region in Fig. 3(a) near the middle red line. If this saddle

point is relevant in this region, the red curve is the deconfinement transition point. Comparing

this curve with the blue dashed curve representing the Hawking-Page transition, one finds that

they exhibit fairly good qualitative agreement. So we empirically learn that the saddle point g+

near this region should be on the integration contour. Combining this with our observation in

the previous paragraph, we conclude that there should be a Stokes’ phenomenon of this saddle

point at certain intermediate value of |x|. Namely, as we increase |x| at given φ, we expect the

steepest descent contour to pass through g+ beyond certain threshold. Checking this is beyond

our scope, so we shall leave it as a conjecture.

Both deconfinement and the Hawking-Page transition happen within the tachyonic region

of ρ1, enclosed by the black dotted curve of Fig. 3(a). The transition of the p = 1 model is

delayed relative to the tachyon threshold [10], but still lower than the Hawking-Page transition.

The gap between the two transition points will decrease in the higher p models. As we change

φ, the apparent transition temperatures ∼ − log |x| change as shown by the middle red line or

the blue dashed line. As explained in section 2, this is just an apparent delay of the transition

caused by the cancelations of the nearby Ωq’s at non-optimal φ. The transition temperature

is minimal at certain optimally tuned φ. These minima are the actual transition points of the

p = 1 model and the black holes as seen by the index.

Related to the apparent delay at different φ’s, one also finds a strange region in Fig. 3(a)

at high temperature, on the right side of the rightmost red curve. Since Re(logZ)+ < 0 in

this region, the system looks apparently confining. We also interpret this as coming from the

non-optimal choice of φ. The optimal choice is φ = 2π
3
when |x| → 1−, which is the large black

hole region [8, 25]. Similar non-optimal region at high temperature with Re(logZ) < 0 will

continue to appear in the higher p ≥ 2 models, which we shall interpret similarly. One may be

unconfident about this because a similar high temperature region does not exist in Fig. 3(b),

so that the qualitative agreement between g+ and the black hole saddle seems to break down

here. This apparent mismatch is an artifact of the p = 1 truncation. We shall study the higher

p ≥ 2 model in detail, with p2 + p branches of saddle points. There the branches analogous to
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Figure 4: The contour plots of 1
N2Re(logZ−) for the saddle point g−. The solid red curves

denote Re(logZ−) = 0 lines. The dashed red curve is the deconfinement line Re(logZ+) = 0.

g+ have no apparently confining high temperature region and behave like Fig. 3(b). We find

that the exotic high temperature confining region shows up in a different branch.

We also discuss the saddle g−. The contour plot of Re(logZ−) is shown in Fig. 4. We find

that there are no reasons to trust that this saddle point is relevant for the large N physics in any

temperature range. Firstly, Re(logZ−) is positive at very low temperature, meaning that g−

should not be on the integration contour at low |x|. As we increase the temperature, Re(logZ−)

just remains positive all the way to infinite temperature, except in some small corners of the

parameter space which will never be important. In particular, one finds Re(logZ−) > 0 on the

deconfinement curve Re(logZ+) = 0 of this model. See the dashed red line of Fig. 4. So the

presence of g− on the integration contour in the intermediate temperature region would spoil

the deconfinement physics of the g+ saddle. So we conjecture that the saddle g− will have no

relevance to the large N physics at any temperature region. In the higher p ≥ 2 models, many

of the p2 + p solutions partly behave like g−.

We now discuss the Legendre transformation of logZ at real positive charge q ≡ 6(R+J+).

|x| and φ are determined in terms of q. One can understand this calculus in two different ways.

Firstly, this can simply be regarded as considering the microcanonical ensemble. Secondly, one

can interpret the results in the grand canonical ensemble at fixed |x|. Holding |x| fixed and

letting q to vary, phase transitions can happen by absorbing latent heat. In this picture, φ(q)

is viewed as a function of |x|. φ(|x|) is optimally tuned to minimize the cancelations of nearby

Ωq’s at fixed |x|. As explained in section 2, this freezing of φ allows one to extract the proper

information of |Ωq|’s without the phase factors obscuring the physics.

We consider the g+ saddle only, inside or near the tachyonic region of ρ1. We extremize

logZ+(x)− q log x (3.13)
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Figure 5: Saddles of Legendre transformation at real charges 0 < q < ∞ for the g+ saddle

(solid red) and the black holes (solid blue). We also show the red/blue dashed lines for the

deconfinement and the Hawking-Page transitions, respectively. Plots shown only near the

tachyonic region of ρ1 (2π
3
< φ < π), whose boundary is the black dotted line.

in x. The resulting x(q) is a curve in the |x|-φ space. This is shown as the red solid line of

Fig. 5. For comparison, we also show x(q) obtained by Legendre transforming the black hole

free energy logZBH by the blue solid line. We have also shown the deconfinement and the

Hawking-Page transition points by the red/blue dashed lines, respectively. Both solid curves

start from |x| = 1, φ = π at q = 0, and ends at |x| = 1, φ = 2π
3

at q = ∞. For black

holes, they are the small/large black hole limits, respectively. As the charge q increases, on

both curves the temperature decreases for certain while until |x| reaches its minimum. After

passing the minimum, the temperature increases. On the two branches, the specific heat (or

more precisely the susceptibility) of the system is negative/positive, respectively. One finds

that the saddle points of the p = 1 model shows similar behaviors as the black holes. When the

solid curve crosses the dashed line with same color, a phase transition happens in the grand

canonical ensemble which holds |x| fixed and φ(|x|) tuned. For black holes, this defines the

Hawking-Page transition. For the p = 1 model, this is the deconfinement transition. For both

black holes and the matrix model, the transitions happen precisely at the minimal transition

temperature on the dashed lines.

Now in the microcanonical viewpoint, the saddles x(q) of the p = 1 model end precisely on

the large and small black hole limits. The large black hole limit is well understood analytically

[8, 25] from QFT. The small black hole limit is not well understood so far. So we expect the

truncated models to provide useful insights, on which we shall elaborate in section 5. Defining

19



x ≡ −e−β , the small black hole limit is given by β → 0. At small β, one finds

(t− 1)2 ≈ −2β3 , logZ ≈ −N
2

2
β3 . (3.14)

We call the branch with these scalings in β as the ‘standard’ branch for the small black holes,

as there will always exist such a branch at arbitrary p. (The coefficients will depend on p.)

3.2 The p = 2 model

In this case, the matrix R and the vector A are given by

R =

(

a1(2t− t2) 4a2t(1− t)2
2a1t(1− t)2 a2t(4− 14t+ 20t2 − 9t3)

)

, ~A =
(

2a1t , 2a2(2t− 3t2)
)

. (3.15)

The degree p2 + p = 6 polynomial equation for t is given by

1− 2(a1 + 2a2)t+ (a1 + 14a2)t
2 − 20a2t

3 + 3a2(3 + 2a1)t
4 − 6a1a2t

5 + a1a2t
6 = 0 . (3.16)

One finds six distinct one-cut saddle points for the six solutions ta(x), a = 1, · · · , 6. We shall

study them numerically below. At each saddle point with given t = ta(x), one finds

ρ1 =
1− 4a2t + 14a2t

2 − 20a2t
3 + 9a2t

4

2a1t(1− 4a2t3 + 3a2t4)
, ρ2 =

(1− t)2
1− 4a2t3 + 3a2t4

(3.17)

and

Q1 = 2a1ρ1 + 2a2ρ2(1− 2t2) , Q2 = 2a2ρ2 . (3.18)

The free energy logZ is given by

logZ =
N2

2

[

(

tQ1 + (t− t2)Q2

)

log t−
(

tQ1 + (t + t2

2
)Q2

)

+ 2a1ρ1 + a2ρ2

]

. (3.19)

Before proceeding, we comment on labeling the six solutions ta(x). Numerically solving

(3.16) at various x, Wolfram Mathematica labels the six roots in the order of increasing real

part, which causes discontinuities in x. We want to label the six branches so that ta(x) are all

continuous functions of x. To do so, we discretize the |x|-φ space into small grids and solve

the polynomial equation to get ta(x) in each grid. (We use 1001 × 1001 grids for p = 2 plots

in this subsection, and less refined 40 × 34 grids for more demanding p = 3 plots in the next

subsection.) Then we reorder them if necessary to make ta(x) to behave ‘continuously’ within

our discretized setup. This strategy exhibits ambiguities in some regions, because branch cuts

may develop from the degenerate roots. This problem did not arise at p = 1 since the branch

points were all at |x| = 1, so that we can choose the branch cuts in the unphysical region

|x| > 1 and ignore them. For the internal branch cuts, quantities are continuous only after
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Figure 6: ‘Local’ transition points Re(logZa) = 0 for the saddles g1, g2. We also display the

points of: Hawking-Page transition (black dashed), transition of the p = 1 model (purple), ρ1

tachyon threshold (black dotted). Branch cut which mixes g1, g2 are also shown.

branch mixings. At p = 2, degenerate roots can be found by solving (3.16) together with the

equation obtained by taking t derivative of this polynomial to vanish,

−(a1 + 2a2) + (a1 + 14a2)t− 30a2t
2 + 6(3 + 2a1)t

3 − 15a1a2t
4 + 3a1a2t

5 = 0 . (3.20)

Solving these equations, one finds two internal branch points for the triple roots of t:

t ≈ .2727 + .1198i : x ≈ .8503 exp [.3793πi] ≡ x1 (3.21)

t ≈ .0016 + .2655i : x ≈ .8003 exp [.7256πi] ≡ x2 .

Three of the six branches mix around each branch point.

As explained at the end of section 2, the eigenvalue distribution within our ansatz should

form a cut ending on θ = ±θ0, passing through θ = 0. Depending on the choice of the branch

ga (where a = 1, · · · , 6), such a cut does not exist in some region of x. We shall only show

the two branches, which we label a = 1, 2, which exhibit nontrivial physics near the ρ1 tachyon

region (which we take to be 0.6 < |x| < 1 and 2π
3
< φ < π). Some branches do not exist

in this region, and other branches do not exhibit proper physics (like the g− saddle of the

p = 1 model). For simplicity, in Fig. 6 we only display the Re(logZa) = 0 lines for the g1

and g2 saddles around the ρ1 tachyon region. These are the lines above which the saddle ga

locally becomes more dominant than the thermal graviton saddle. At each φ, the curve with

lower |xa|(φ) would determine the deconfinement transition temperature. One finds that the

minimum curve min(|x1|(φ), |x2|(φ)) is closer to the Hawking-Page temperature (dashed line)

than the deconfinement temperature of the p = 1 model.

We note that the saddle g1 does not exist in the lower-right region of the figure, since the

eigenvalue cut connecting ±θ0 does not exist. Along the line Re(logZ1) = 0 (solid red line for
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Figure 7: Legendre transformation lines with macroscopic entropies.

g1), the cut does not exist beyond the red point of Fig 6. The shapes of the cuts along this

line are illustrated by Fig. 1. In particular, Fig. 1(b) shows the cut when x is on the red point

of Fig. 6. The cut is just about to disappear at this point. As explained in section 2, this

does not mean that this saddle point suddenly disappears. It rather implies that the single

cut distribution should undergo a phase transition to a triple cut distribution beyond the red

point. Beyond this point, we find that the g2 branch describes the Hawking-Page transition

(black dashed) fairly well. Also, before g1 disappears, the two transition temperatures for g1, g2

are very close. (g2 is slightly more dominant.) We therefore do not attempt to construct the

triple cut solution after g1 disappears. To conclude, we find that multiple branches are patched

to describe the deconfinement transition of this model. This feature will be more important

below, when we study the saddle points of the Legendre transformation.

Now we study the Legendre transformation, extremizing Sa(q; x) = logZa(x) − q log x at

q ≡ 3(2R+J1+J2) > 0. Again, we show the results for a = 1, 2 around the tachyonic region of

ρ1. The results are shown in Fig. 7, when the corresponding macroscopic entropies Sa(q) are

positive. Let us first explain the aspects of two branches g1 (red), g2 (blue) in turn.

The red curve denotes the Legendre transformation curve in the g1 branch. The curve starts

from |x| = 1, φ = π on the upper right corner at small charge q = 0. As we move along the

curve from this point, q increases until it ends on the red point. Just like Fig. 6, the eigenvalue

cut does not to exist beyond this point. This happens at a finite nonzero charge q. Section 4

will analytically explain why this saddle cannot exist all the way up to the large charge limit

q →∞. The gap and the free energy in the small charge limit are given by

(t− 1)2 ≈ −2β3 , logZ1 ≈ −
N2

2
β3 . (3.22)

The coefficients are accidentally same as the p = 1 model, which will not be true for p ≥ 3.
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The blue curve denotes the Legendre transformation curve in the g2 branch. We start to

consider this curve from its end |x| = 1, φ = 2π
3

on the lower right corner at large charge

q → ∞. As we move along the curve from this point, q decreases until we stop displaying

the curve at a finite nonzero charge (also at |x| < 1). The saddle point continues to exist

beyond this endpoint, but the entropy S2(q) becomes negative beyond the part shown in Fig.

7. The saddle point with negative entropy may still play some role to describe the subleading

corrections to the large N free energy, but will not describe any black holes.

At small q, only one saddle g1 exists. This qualitatively describes the black hole (black

dashed line) better than the g+ saddle of the p = 1 model. As q is increased, the red and blue

curves approach very close to each other before the red curve disappears. At the charge of the

red point, the entropies of the two saddles are very close to each other. The combination of

the red curve (when it exists) and the blue curve (when the red one does not exist) describes

the black hole (black dashed) better than the purple curve of the p = 1 model. It is again very

crucial that multiple branches have to be combined to describe the known black holes. We will

show that this will continue to be true, perhaps in a more dramatic manner, in the p = 3 model

(section 3.3) and the p =∞ model (section 5.1, small charge limit).

Although we do not explicitly show the results here, we have also found the saddle points of

the Legendre transformation in the region outside Fig. 7. In particular, we find saddle points

in the small charge limit |x| = 1, φ = π
2
around the tachyonic region of ρ2. The solutions we

report here all have one cut. We think one also has to consider the two cut saddle points to fully

understand the structures of possible black hole like saddles in the ρ2 tachyon region. Although

it is likely that the ρ1 tachyon region plays the most important role in the AdS thermodynamics,

ρ2 tachyon region may also host interesting black holes. We hope to come back to this subject

in the near future, with more quantitative and analytic understandings.

3.3 The p = 3 model

The matrix R and the vector A are given by

R =







a1(2t− t2) 4a2t(1− t)2 3a3t(1− t)2(2− 5t)

2a1t(1−t)2 a2t(4−14t+20t2−9t3) 6a3t(1−t)2(1−4t+6t2)

a1t(1−t)2(2−5t) 4a2t(1−t)2(1−4t+6t2) a3t(6−51t+200t2−366t3+312t4−100t5)







~A =
(

2a1t , 2a2(2t− 3t2) , 2a3t(3− 12t+ 10t2)
)

. (3.23)
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(a) Re(logZa) = 0 lines (b) Legendre transformations

Figure 8: Two branches g1, g2 around the tachyonic region of ρ1. Blue curves are imprecise

near the large charge limit due to the coarse resolution. Two branch cuts are also shown. The

upper cut mixes g2 and other branches, while the lower cut mixes g1, g2 and other branches.

The degree p2 + p = 12 polynomial equation for t is given by

0 = 1− 2(a1 + 2a2 + 3a3)t + (a1 + 14a2 + 51a3)t
2 − 20(a2 + 10a3)t

3 (3.24)

+(9a2 + 6a1a2 + 366a3 + 64a1a3 + 50a2a3)t
4 − (6a1a2 + 312a3 + 224a1a3 + 250a2a3)t

5

+(a1a2 + 100a3 + 288a1a3 + 535a2a3)t
6 − a3(152a1 + 640a2)t

7 + a3(25a1 + 470a2)t
8

−20a2a3(10 + a1)t
9 + a2a3(36 + 30a1)t

10 − 12a1a2a3t
11 + a1a2a3t

12 .

ρn and Qn are given by (2.29) and (2.22), respectively. logZ is given from (2.33) and (2.34) by

logZ =
N2

2

[{

tQ1 + (t− t2)(Q2 + (1− 2t)Q3)
}

log t− t(Q1 + (1 + t
2
)Q2 + (1 + 3

2
t− 5

3
t2)Q3)

+2a1ρ1 + a2ρ2 +
2
3
a3ρ3

]

. (3.25)

Using these formulae, we computed the 12 branches of ta(x) and logZa numerically. Although

all not explicitly shown below, we carefully chose the directions of various branch cuts.

Around the tachyonic region of ρ1, we find 2 branches which exhibit nontrivial black hole

like behaviors. See Fig. 8. Other branches are all irrelevant either in the sense of the g−

saddle of the p = 1 model, or because the cut does not exist in this region. Again we name

the two branches g1 (red), g2 (blue). We first take a look at the local deconfinement points

Re(logZa) = 0. The lower |x| between the two at each φ describes the known black hole’s

Hawking-Page transition (black dashed) much better than the p = 1 model as shown in Fig.

8(a). Although we did not display the p = 2 curves together, one can notice an improvement

by comparing with Fig. 6, especially in the upper region.

Fig. 8(b) shows the Legendre transformation curves of both branches. Both curves start

from |x| = 1, φ = π at q = 0. As will be explained in more detail in section 5.1, the small q
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or β behaviors of these two saddles are somewhat different. The saddle g1 exhibits the small β

scaling rather similar to the g+ saddle of the p = 1 model and the g1 saddle of the p = 2 model:

(t− 1)2 ≈ −β3 , logZ ≈ −9N
2

20
β3 . (3.26)

On the other hand, the g2 saddle will exhibit a gap with (t − 1)4 ∝ β3, while logZ is still

proportional to β3 with a different coefficient. We shall analytically study both types of small

charge limit at general p in section 5.1.

As we move along the Legendre transformation curves, q increases. For g1, the eigenvalue

cut does not exist beyond the red point of Fig. 8(b). On the other hand, g2 continues to exist

all the way to the large charge limit q → ∞. We find that both branches are rather close to

the black hole curve (black dashed) when they exist.

4 Large black holes

The large charge limit has been analytically studied in the literature, at p =∞. We reconsider

this problem in the setup of section 2, at general finite p (which admits the limit p → ∞).

Among others, we shall gain better insights on the numerical results of section 3.

In the grand canonical viewpoint, the large charge limit amounts to taking temperature large

|x| → 1− while tuning the phase to φ = 2π
3
[8, 25]. We shall study the degree p2+ p polynomial

equation (2.28), det(R − 1) = 0, approximately at small β, defined by x = e
2πi
3 e−β.2 We first

summarize the small β scalings of the roots t = sin2 θ0
2
, which we learn by studying sufficiently

many cases of p. We are interested in the cases in which the cut length asymptotically shrink

to zero, θ0 → 0. This is natural since the system would want to maximally deconfine in the

high temperature limit [15, 8]. To make a general classification of the roots with this behavior,

let us call p = 3l+m, where l ∈ Z≥0 and m = 0, 1, 2. At the leading order in the β → 0+ limit,

one finds that the polynomial behaves like

det(R− 1) ∼ t(2l+m)2(1− t)l2+l × [degree (2l + 1)(2l +m) polynomial] . (4.1)

Namely, there is a (2l +m)2-fold degeneracy at t = 0. We study how this degeneracy at t = 0

splits at small nonzero β. One finds that the (2l +m)2 roots of t(2l+m)2 = 0 are split into

1 root : t ∼ β2 (4.2)

3 roots : t3 ∼ β2

...

2(2l +m)− 3 roots : t2(2l+m)−3 ∼ β2

2(2l +m)− 1 roots : t2(2l+m)−1 ∼ β2 .

2β in this section is different from β in sections 3 and 5 for small black holes, x = −e−β.
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For instance, at p = 1 (i.e. l = 0, m = 1), there is only one root having small t at t ∼ β2.

This is the g+ branch of section 3.1. At p = 2 (l = 0, m = 2), there are 4 roots with small t.

One root at t ∼ β2 is the g2 branch of section 3.2. Also, there are three roots at t ∼ β
2
3 , one

of which being the g1 branch of section 3.2. At p = 3 (l = 1, m = 0), again there are 4 roots

with small t. One root at t ∼ β2 is the g2 branch of section 3.3, while there are three roots at

t ∼ β
2
3 . One of these three is the g1 of section 3.3.

For all p’s, there is a unique root at t ∼ β2, or θ0 ∼ β1. This is the natural splitting that one

expects from the eigenvalue dynamics. To explain this, we first note the divergent behaviors of

an(x) in the small β limit. One finds

an(x) = 1− (1− x2n)3
(1− x3n)2 = 1− (1− e 4πin

3 e−2nβ)3

(1− e−3nβ)2
∼
{

(1−e
4πin
3 )3

9n2β2 if n /∈ 3Z

1 if n ∈ 3Z
. (4.3)

With these in mind, we study the potential (2.7) between two eigenvalues separated at distance

θ, and also its force V ′(θ) given by

V ′(θ) = − cot
θ

2
+ 2

p
∑

n=1

an(x) sin(nθ) . (4.4)

The first term, coming from the Haar measure of the matrix model, diverges if the eigenvalues

get close to each other. On the other hand, the second term becomes large for n /∈ 3Z in the

large black hole limit from an ∼ 1
β2 . The large N saddle point equation in the small β limit

thus demands

0 =
∑

b(6=a)
V ′(αab) =

∑

b(6=a)

[

− cos
αab
2

+ 2

p
∑

n=1

an(x) sin(nαab)

]

∼
∑

b(6=a)

[

− 2

αab
+

#pαab
β2

]

(4.5)

with certain p-dependent coefficient #p. We used the fact that αa’s want to coalesce in the

small β limit, and made small αab expansions. The balance of the two terms in (4.5) naturally

demands αab ∼ β for most of the pairs. This is why the θ0 ∼ β scaling is natural. The p→∞
version of this analysis exhibits slightly different intermediate steps, but still leads to the θ0 ∼ β

scaling in the large black hole limit [33]. This unique root with t ∼ β2 scaling yields the Cardy

limit of this partition function. For p = 1, 2, 3, we have explicitly seen that the cut exists in

section 3 (g+ or g2 saddles). We expect this to be true for general p.

For all other roots with small t, one finds that θ0 approaches zero at much slower rates than

θ0 ∼ β1. If one investigates the structure of the force balancing equation (4.5), such a slow

coalescence appears to be impossible. This is compatible with the numerical results of section

3. Namely, for the g1 branches of the p = 2, 3 models with t ∼ β
2
3 scalings, we have found that

the cut does not exist in a region which contains the large black hole limit. We expect that

this phenomenon will continue to be true for higher p.

It appears that this illustrates the universality of the Cardy limit of [8] near the large black

hole point |x| = 1, φ = 2π
3
. Namely, although the matrix model can have multiple branches of
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saddle points at given x in general, their structures tend to be simpler in the large black hole

limit. This morally sounds somewhat similar to the universality of the 2d Cardy limit. This is

in sharp contrast to the situations away from the large black hole limit. In section 3, we already

saw that multiple black hole like saddle points may exist at fixed x or fixed q. In section 5.1,

this will be more concretely illustrated in the small black hole limit.

However, we should comment that there are possible caveats of the Cardy universality in

4d gauge theories. Firstly, the universal behavior we explained above (by having all but one

saddle points forbidden) is strictly within the single cut ansatz. Although the single cut saddle

point provides the dominant physics in some region of x (probably the most interesting region),

multi-cut saddles may be more dominant in other regions. Curiously, this possibility exists near

the Cardy point |x| = 1, φ = 2π
3
. Note that in section 3 we studied the physics of the single

cut saddles in the ρ1 tachyon region. This region exists for φ > 2π
3
. However, if one approaches

the Cardy limit |x| → 1, φ→ 2π
3
from the φ < 2π

3
side, there is a reason to believe that physics

is richer. In terms of the chemical potential ω appearing in (3.12), φ < 2π
3

corresponds to

Im(ω2) > 0. It has been first noticed in [20] that there can be nontrivial holonomy saddle

issues in this region, where the eigenvalues αa do not necessarily want to coalesce. In fact such

issues exist in a wide class of 4d N = 1 SCFTs studied in [21]. Although the main focus of

[21] was the region Im(ω2) < 0 in which the eigenvalues all want to coalesce, the sign-flipped

matrix model potentials of [21] can be studied to conclude that there are issues of nontrivial

holonomies when Im(ω2) > 0. At least for the maximal super-Yang-Mills theory, we think that

a natural class of large N solutions in this region is the two-cut saddles. Note also that the

tachyonic region of ρ2 is within φ < 2π
3
.

To summarize, we found that there is a certain sense of Cardy universality in our matrix

models, but with possible caveats which could make the large charge physics richer. We wish

to study this problem in more detail as a separate project.

5 Small black holes

5.1 1-parameter solutions

We study the small black hole limit of the 1-parameter index (2.3) analytically. Defining

x ≡ −e−β , this limit is defined by β → 0 with Re(β)→ 0+. In both large and small black hole

limits, the ‘inverse temperature’ asymptotically vanishes, Re(log x−1) → 0+. This means that

both limits are the BPS analogues of the high temperature limit. Large black holes represent

the new deconfined high temperature phase of the full quantum gravity in AdS. Small black

holes, whose sizes are much smaller than the AdS radius, locally behave as asymptotically flat

black holes in many ways. Like Schwarzschild black holes in flat spacetime, they have negative
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specific heat (susceptibility). This is why the temperature diverges in the small black hole limit.

We again start by expanding the polynomial equation (2.28) in small β → 0 for the small

black hole. At the leading β0 order, we find that all p2 + p roots are degenerate at t = 1.

Namely, the polynomial reduces to det(R−1) ∼ (t−1)p
2+p. Investigating how this degeneracy

is split at small but nonzero β, we find the following patterns at generic p, which are organized

into two classes (A) and (B):

2 roots : (t− 1)2 ∼ β3

4 roots : (t− 1)4 ∼ β3

...

2
⌈

p

2

⌉

roots : (t− 1)2⌈
p
2
⌉ ∼ β3























(A)

(5.1)

2
⌈

p

2

⌉

+ 2 roots : (t− 1)2⌈
p
2
⌉+2 ∼ β1

2
⌈

p

2

⌉

+ 4 roots : (t− 1)2⌈
p
2
⌉+4 ∼ β1

...

2p roots : (t− 1)2p ∼ β1























(B)

where ⌈x⌉ is the ceiling function. (For instance, ⌈1⌉ = 1, ⌈1.5⌉ = 2, etc.) At p = 1, there

are only 2 roots at (t − 1)2 ∼ β3, corresponding to the first line of (5.1). One of these roots

describe the small black holes in the region φ < π, while another describes the mirror branch

at φ > π related by φ→ 2π − φ. From p ≥ 2, both classes (A) and (B) shown in (5.1) appear.

For both p = 2, 3, we empirically observe from our numerical studies of section 3 that the roots

of the class (B) at (t− 1)2p ∼ β1 do not exhibit interesting black hole like behaviors. We shall

disregard the roots of the class (B) and study only the roots of the class (A) throughout this

paper. For both p = 2, 3, the saddle g1 exhibits the scaling (t − 1)2 ∼ β3 in the small charge

limit. For p = 3, g2 also reaches the small charge limit, with the scaling (t − 1)4 ∼ β3. Just

for the technical reason, we call the first branch at (t − 1)2 ∼ β3 the ‘standard’ small black

hole branch. However, as far as we can see, there is no fundamental reason to believe that this

branch is more important. In fact, in the p → ∞ limit, we shall explain that infinitely many

branches of the class (A) degenerately describe the physics of the known black hole solutions.

(Its possible interpretation will be discussed at the end of this subsection.)

We expand the functions Pl and B
l+ 1

2 appearing in the analysis of section 2. We learned in

the previous paragraph that u ≡ t− 1 is small at small β. The functions can be written as

Pl(1− 2t) = (−1)l
l
∑

n=0

(l + n)!

(n!)2(l − n)!u
n , Bl+ 1

2 (t) = δl,0 + (−1)l
l
∑

n=0

(l + n)!

(n+ 1)!n!(l − n)!u
n+1 .

(5.2)

To study various branches of small black holes, we make double expansions of the matrix
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elements Rml in small u and β. We first expand

rml(u) ≡
l
∑

k=1

[

Bm+k− 1
2 +B|m−k+ 1

2
|
]

Pl−k (5.3)

= δm,l − (−1)l+mml2
[

u2 + m2+l2−2
3

u3 + 11−8(m2+l2)+m4+l4+3m2l2

24
u4 +O(u5)

]

.

The terms shown above will be sufficient for concrete illustrations. All one needs to know

about the general un order at n ≥ 3 is that its coefficient is given by ml2 times a degree n− 2

polynomial of m2 and l2. The equation (R− 1) · ρ = 0 which determines ρn can be written up

to u4 order as

0 = Rmlρl − ρm =
[

rml(u)− a−1
m δml

]

(alρl) (5.4)

= m

[

1− a−1
m

m3
δm,l − (−1)l+m

(

u2 + m2+l2−2
3

u3 + 11−8(m2+l2)+m4+l4+3m2l2

24
u4 +O(u5)

)

]

l2alρl .

Now we use the expansions a−1
m − 1 ≈ 2m3β3 for odd m and a−1

m − 1 ≈ 8mβ
9

for even m, and

rephrase the above zero eigenvector equation in terms of the even and odd blocks. (−1)ll2alρl ≡
(vodd, veven) has to satisfy the following equations:

0 ≈ 2β3(vodd)m + u2nm(n · v) + u3(M1 · v)m + u4(M2 · v)m +O(u5) , (5.5)

0 ≈ 8β

9m2
(veven)m + u2nm(n · v) + u3(M1 · v)m + u4(M2 · v)m +O(u5) ,

where

nm = 1 , (M1)ml =
m2 + l2 − 2

3
, (M2)ml =

11− 8(m2 + l2) +m4 + l4 + 3m2l2

24
. (5.6)

From this equation, one can construct various leading order solutions at small β. They will

exhibit various scalings of (5.1), as we shall explain shortly. Or more generally, starting from

(5.4), one can iteratively construct the small β expansions of ρm and other physical quantities.

Before getting into the details, let us first comment on the nature of the expansion that

one can make in this setup. There is no particular subtlety at finite and fixed p. However, we

are ultimately interested in the large p limit to reach the full Yang-Mills matrix model. So we

consider the double expansion of physical quantities in small 1
p
and β. Physically, we want to

take 1
p
to approach zero first, and then take β to be small. In practice, we fix p and make a

small β calculus first. Changing the order of the two limits may cause a subtle structure, which

we want to clarify first. In particular, making the double expansion, we find that one obtains a

series in small 1
p
and pβ. In other words, the radius of convergence for β appears to be at order

1
p
at any given p, so that the double series expansion makes good sense in the rather unphysical

setting β . 1
p
≪ 1. Let us briefly explain why this structure appears, and how one can make

physically meaningful approximations in this situation.
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The radius of convergence in the p’th matrix model can be understood as follows. The

matrix integral contains the measure given by the truncated 2-body potential,

V (α) = − log
[

4 sin2 α

2

]

− 2

p
∑

n=1

an(x)

n
cos(nα) (5.7)

with x = −e−β . V diverges when any an(−e−β) does. Note that

an(−e−β) =







1− 2 sinh3(nβ)

sinh2 3nβ
2

for even n

1− 2 sinh3(nβ)

cosh2 3nβ
2

for odd n
, (5.8)

so that only an’s for even n can diverge near β = 0 if n is large enough. The closest pole to

β = 0 for even an is β = ±2πi
3n

. Among them, the closest poles are located at β = ± πi
3⌊ p

2
⌋ . This

explains why the radius of convergence of the β expansion is proportional to 1
p
for large p.

So in the framework of this subsection, we shall make double expansions of physical quan-

tities in 1
p
and pβ,

f(p, β) =
∑

a,b

fa,b

(

1
p

)a

(pβ)b , (5.9)

where a and b label infinite towers of terms. At given a with fixed small 1
p
, the sum over b

should be a Taylor series with its radius of convergence for β at order 1
p
. In the Yang-Mills

matrix model at p → ∞, which is our ultimate interest, we can find poles arbitrarily close

to β = 0. So the small β expansion of physical quantities should be an asymptotic series at

zero radius of convergence. The last asymptotic series is related to the summation of b above

in a nontrivial manner. Namely, since the series (5.9) in pβ involves positive powers pb−a at

large enough order in b, it does not make sense in the strict p → ∞ limit. To relate it to the

asymptotic series at infinite p, one has to resum over b and take the p→∞ limit. This implies

that the series (5.9) before the resummation is useless in general for studying the matrix model

at p → ∞ of our interest. In particular, the series is useless for studying certain subleading

corrections in the small β expansion, by having explicit positive powers in p.

However, the series (5.9) is still useful for computing certain leading small β contributions at

p =∞. This is the case if the physical quantity f has a smooth 1
p
= 0 and pβ = 0 limit. In our

discussions below, the observable f having the smooth limit will be the eigenvalue distribution

ρ(θ) and its coefficients ρn. If the series (5.9) has its lowest order term at a = b = 0, then

f0,0 provides the strict p = ∞, β = 0 value of that observable. This will be the case for ρ(θ).

Knowing the strict β = 0 limit of ρ(θ) at p =∞, we will derive below other important quantities

such as logZ at strict p =∞, at its leading order in small β.3

3The series (5.9) that can be computed using our framework here will not be directly useful for computing

the subleading corrections in β. In fact the situation is similar for the calculus of [8] in the large black hole

limit. The calculus of [8] is reliable only for the leading Cardy limit, while for subleading corrections one should

use a more elaborate approach [33].
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With these understood, let us first study the ‘standard’ small charge branch at the leading

order in β. We shall then study other ‘non-standard’ small charge branches of the class (A).

To get the standard solution, we set u = u0β
3
2 + · · · , where · · · are higher order terms in

small β. From (5.5), this scaling of u admits a solution by balancing the first two terms,

0 ≈ 2β3(vodd)m + u2nm(n · vodd) , 0 ≈ 8β

9m2
(veven)m + u2nm(n · vodd) (5.10)

and taking the leading odd/even moments to be

vodd = v0β
0 + · · · , veven = w0β

2 + · · · . (5.11)

In this scaling, all the ignored terms of (5.5) are subleading. Inserting u ≈ u0β
3
2 , w0 will be

determined in terms of v0, which should meet the following eigenvector equation:

2v0 + u20n(n · v0) = 0 . (5.12)

One therefore finds that v0 has to be proportional to n = (1, · · · , 1). In particular, the eigenvalue

of this equation should be

u20 = −
2

⌈p
2
⌉ . (5.13)

We have thus determined the leading order values of the moments ρm up to an overall

scaling, by computing vm = (−1)mm2amρm ≈ (−1)mm2ρm at the leading order. We found that

veven is at order β2, so can be ignored at the leading β0 contributions to ρ(θ). vm for odd m

are required to be m independent, being proportional to nm. So ρm should be proportional to
1
m2 . The overall coefficient can be determined by the second equation of (2.25), which at the

leading order is given by

2

⌈ p
2
⌉

∑

l=1

ρ2l−1 ≈ 1 . (5.14)

Therefore, one finally obtains the leading order moments to be

ρ2n−1 =

1
2(2n−1)2

∑⌈ p
2
⌉

l=1
1

(2l−1)2

(5.15)

at fixed p. We are interested in the limit p→∞, which yields

ρ2n−1 =

1
2(2n−1)2

∑∞
l=1

1
(2l−1)2

=
4

π2

1

(2n− 1)2
. (5.16)

In the rest of this subsection, we shall only consider the full matrix model at p → ∞, with

the understanding that only the leading order calculus is reliable. As for ρ2n, it will suffice to

remember ρ2n ∼ O(β2).
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It is easy to compute the eigenvalue distribution ρ(θ) for (5.16). The quickest way to

find it is to note that (5.16) defines a real positive function for real θ ∈ (−π, π), so that the

interpretation of ρn as the Fourier transformation on a circle applies. (Note also that the gap

t = sin2 θ0
2
→ 1 closes in this limit.) So ρ(θ) is given by

ρ(θ) =
1

2π
+

1

π

∞
∑

n=1

ρn cos(nθ) =
1

2π

[

1 +
8

π2

∞
∑

n=1

cos(2n− 1)θ

(2n− 1)2

]

=
1

π2
(π − |θ|) (5.17)

for −π < θ < π. This is a triangular distribution centered around θ = 0. One can obtain the

same result by starting from the more abstract definition of ρ(θ) in terms of ρn as explained

in section 2, based on ρn defined as the moments on the complex interval. In particular, the

eigenvalue cut at the leading order is given by (−π, π) on the real axis. Note that this triangular

distribution is different from the so-called ‘Bethe root’ distribution [9] in the small black hole

limit, which is given by

ρ(θ)Bethe
β→0−→

{

1
π

for |θ| < π
2

0 for π
2
< |θ| < π

(5.18)

on the unit circle. This is a rectangular distribution which fills half of the circle. There is no

contradiction here, because [9] does not use our matrix model for this problem.

We next compute the free energy of our saddle point, which will allow us to count the dual

black hole microstates. Again, we only consider the full Yang-Mills partition function Z = Z∞

at p→∞. The general large N free energy logZ is given by

logZ = −N
2

2

∫ θ0

−θ0
dθ1dθ2V (θ1 − θ2)ρ(θ1)ρ(θ2) (5.19)

= N2

∞
∑

n=1

1

n

∫ θ0

−θ0
dθ1dθ2 [an − 1] ein(θ1−θ2)ρ(θ1)ρ(θ2) = N2

∞
∑

n=1

an − 1

n
(ρn)

2 .

The last expression is an exact formula at p = ∞, supposing that the infinite sum converges.

(And it does converge in our problem.) Here recall that at the leading order, ρodd ∼ O(β0) and

ρeven ∼ O(β2). Also, an − 1 at small β are given by

an(β)− 1 ≈
{

−2n3β3 for odd n

−8nβ
9

for even n
. (5.20)

Of course these expansions are invalid at very large n, but the fast damping of (ρn)
2 ∝ n−4

allows the calculation of the leading term at β ≪ 1 using (5.19). The last expression of (5.19)

acquires leading O(β3) contribution from odd n’s, while the terms with even n are at the

subleading order O(β5). One obtains

logZ ≈ −2N2β3
∞
∑

n=1

(2n− 1)2 ·
(

4

π2

1

(2n− 1)2

)2

= −4N
2β3

π2
. (5.21)
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This precisely agrees with the free energy of the small black holes in AdS5 × S5 [32]. To see

this, the general free energy of the 1-parameter black holes of [3] in our convention is given by

logZ ∼ N2

2

(2β)3

(−πi+ 3β)2
. (5.22)

See [28] for converting the result of [32] to the convention we use here. In this setting, β → 0

is the small black hole limit, which precisely yields (5.21).

logZ ≈ −4N2β3

π2 is negative at real positive β. This means that the small black hole saddle

will never be more dominant than the graviton saddle. Anyway, small black hole saddles are

unstable in the grand canonical ensemble, with negative specific heat. We should consider this

saddle point in the microcanonical ensemble. We Legendre transform logZ at fixed charge q,

which is N2 times an independently small number which does not scale in N . The Legendre

transformation of this free energy at fixed q = 6(R + J+)≪ N2 yields the entropy

−4N
2

π2
β3 + βq

extremize−→ S(q) = π

√

q3

27N2
= π

√

8(R + J+)3

N2
, (5.23)

which precisely agrees with the Bekenstein-Hawking entropy of small BPS black holes in AdS5×
S5. See appendix B for the details of taking the limit. Generalizing this, the saddle points with

three independent RI is derived in section 5.3. At J1 = J2, the entropy is given by

S = π

√

8(R1 + J+)(R2 + J+)(R3 + J+)

N2
. (5.24)

This again completely agrees with the Bekenstein-Hawking entropy of the small black holes of

[4]. On the known black hole solutions at J1 = J2, the angular momentum is much smaller

than the electric charges, J+
N2 ∼

(

R
N2

)2 ≪ R
N2 , in the small black hole limit. With this extra

input, the entropy can be written as

S ≈ π

√

8R1R2R3

N2
. (5.25)

In the local region of spacetime including the black hole whose size is much smaller than

the AdS radius ℓ, the small black hole solution is precisely the same as the asymptotically flat

5d BPS black holes of Strominger and Vafa [17]. There, the embedding into the 10d string

theory is different from ours. We embed the small black hole into large AdS5, also keeping

the black holes rather ‘uniform’ in the large internal S5 at the same radius ℓ. In this picture,

the quantized charges RI are realized as momenta along the large S5. On the other hand,

the black holes of [17] are traditionally embedded into type IIB string theory compactified on

K3 × S1 or T 5 = T 4 × S1. We compare our studies with the T 4 × S1 embedding. The size

of the internal T 5 can be much smaller than the size of the black holes. The three charges

carried by the same 5d gravity solution are quantized differently. The first two charges may

be Q1 D1-branes wrapping S1 and Q2 D5-branes wrapping T 5. Alternatively, they can be Q1
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D3-branes wrapping a T 3 and Q2 D3-branes wrapping a different T 3. The third charge is the

quantized momentum p along S1. In this realization, the same black hole entropy is written as

S = 2π
√
pQ1Q2. The different prefactor in front of (R1R2R3)

3
2 or q

3
2 in our formulae is due to

the different charge quantizations. With different realizations of charges, different size of the

internal manifold and also the presence/absence of the AdS gravitational wall, various aspects

of the black holes are different in the two setups. See our section 5.2 for one such example, for

the BMPV black holes embedded in AdS. However, as for explaining near-horizon properties

of a given black hole such as the area law, we are studying precisely the same object as [17].

We emphasize that we made a first-principle counting of the same black hole solutions of [17],

without extra ad hoc assumptions like D-branes.

Ironically, precisely because of this abstract nature of our approach, it is not even clear

whether the notion of D-branes is relevant at all for the microstates of small black holes. We

believe that D-branes will be the relevant degrees of freedom, from an interesting D-brane-based

argument [2] for the entropy (5.23). See the section 5.4 of [2]. The idea is to use D3-brane giant

gravitons in S5, and to distribute the charges RI suitably to these branes and the momentum

on their worldvolumes. This approach has a technical limitation, in that it uses an unjustified

2d QFT approach. However, we feel that their results illustrate an essential nature of small

black holes. Namely, as far as we are aware of, the small black holes are not expected to be

described by the fully deconfined plasma of gluons. For instance from Fig. 5, the Legendre

transformation line at small charge is always outside the deconfining region. Rather, it is

natural to expect their microstates to consist of more conventional objects of gravity in the

traditional low temperature phase. Quantum gravity at low temperature phase shows rich

towers of states, which are the ‘confining spectrum’ from the gauge theory point of view. In

this sense, D-branes (∼ baryons) are the most natural objects which make it possible for the

entropy to see N in the high energy confining spectrum. It will be nice to clarify how one can

concretely see these D3-branes within our abstract approach. To this end, perhaps studying

the Polyakov loop [31] operators at higher rank symmetric representations may be useful, since

they are related to D3-branes. They could be studied rather intuitively from our triangular

distribution (5.17), or perhaps more rigorously by inserting the BPS Polyakov loop operators

in S3 × S1 [34].

As the final subject of this subsection, we study the ‘non-standard’ small black hole branches,

defined by the scalings of the gap parameter u ≡ t− 1 in (5.1) other than u2 ∝ β3 in the class

(A). We discuss the branches on the second line of (5.1) in some detail, at u ≈ u0β
3
4 , after

which the other cases can be understood more easily.

After carefully inspecting various terms appearing in (5.5), one finds that the first/fourth

terms of the first equation can be balanced by making these terms to be at the leading β3

order. Also, the first/fourth terms of the second equation can be balanced at the leading β3

order as well. This is achieved by taking vodd ∼ O(β0) and veven ∼ O(β2). There are apparently
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more leading terms than β3, from the second and third terms containing vodd. These terms

have to cancel for our non-standard ansatz to work. The last requirement will impose further

constraints on vodd. Let us explain this with the first equation of (5.5), since the second equation

can be understood in exactly the same manner. Consider the following expansions:

vodd = v0 + v1β
3

4 + v2β
3

2 + · · · , u = β
3

4

(

u0 + u1β
3

4 + u2β
3

2 + · · ·
)

. (5.26)

Then in the first equation of (5.5), the terms which are apparently more leading than or at β3

order are given by

2β3v0 + u20β
3

2n
(

n · (v0 + β
3

4 v1 + β
3

2 v2)
)

+ 2u0u1β
9

4n
(

n · (v0 + β
3

4 v1)
)

+ (2u0u2+u
2
1)β

3n(n · v0)

+u30β
9
4M1 · (v0 + β

3
4v1) + 3u20u1β

3M1 · v0 + u40M2 · v0 . (5.27)

There is only one term at β
3

2 order, ∝ n(n · v0). For this term to vanish, one should demand

n · v0 = 0 . (5.28)

This equation has solution only if v0 has more than one components. Therefore, we expect this

non-standard solution to exist only for p ≥ 3. This is compatible with the general structures of

(5.1) and the explanations provided below this equation. At the next order O(β 9
4 ), there are

three terms which should cancel. After imposing (5.28), one obtains

n(n · v1) + u0M1 · v0 = 0 (5.29)

Here, v1 can be decomposed to components parallel and orthogonal to n. Let us write v1 =

v1‖ + v1⊥ and further define v1‖ = c1n. Using (5.28), (5.29) can be written as

0 = Dc1n+
u0
3
n
∑

l∈odd
l2 · (v0)l → c1 = −

u0
3D

∑

l∈odd
l2(v0)l , (5.30)

where D ≡ ⌈p
2
⌉. Finally, the terms at β3 order demand the following equation,

0 = 2(v0)m + u20nm(n · v2) + 2u0u1nm(n · v1) + u30(M1 · v1)m + 3u20u1M1 · v0 + u40(M2 · v0)m

=

[

2(v0)m +
Du30c1

3
m2 +

u40
8
m2

∑

l∈odd
l2(v0)l

]

(5.31)

+nm

[

u20(n · v2)− u0u1(n · v1) +
u30
3

∑

l∈odd

(

l2(v1⊥)l + c1(l
2 − 2) + u0

8
(l4 − 8l2)(v0)l

)

]

.

We explicitly decomposed the terms into those parallel to n (third line) and those containing

orthogonal components to n (second line). The parallel components on the third line can be

canceled by tuning v2. The orthogonal component extracted from the second line determines

v0. This equation is given by

0 = 2(v0)m +
u40
72

∑

l∈odd
qml

2(v0)l (5.32)
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where we defined

qm ≡ m2 − 1

D

∑

l∈odd
l2 = m2 − 4D2 − 1

3
(5.33)

which satisfies n · q = 0. Therefore, the eigenvector equation to be satisfied by v0 is given by

Mml(v0)l ≡
∑

l∈odd
(m2 − 4D2−1

3
)l2(v0)l = −

144

u40
(v0)m . (5.34)

The only nonzero eigenvector (unnormalized yet) satisfying this equation is given by

(v0)m ∝ qm = m2 − 4D2 − 1

3
, (5.35)

with the eigenvalue

−144
u40

=
∑

l∈odd
l2
(

l2 − 4D2 − 1

3

)

=
16

45
D(D2 − 1)(4D2 − 1) . (5.36)

All other eigenvectors have zero eigenvalues. Recalling that (vodd)m ≈ (v0)m = (−1)mm2amρm ≈
−m2ρm for odd m at the leading order, one obtains

ρm ≈ −
vm
m2
∝ 1− 4D2 − 1

3m2
. (5.37)

The normalized ρm can be computed from the condition A · ρ = 1. Noting that Am ≈ 2 for odd

m’s, one obtains

ρ2m−1 =
1− 4⌈ p

2
⌉2−1

3(2m−1)2

2
∑⌈ p

2
⌉

l=1

(

1− 4⌈ p
2
⌉2−1

3(2l−1)2

) . (5.38)

At large p, one obtains

ρ2m−1 =
1− 4D2−1

3(2m−1)2

2D − π2(4D2−1)
12

D→∞−→ 4

π2(2m− 1)2
. (5.39)

Thus, although the distribution in this non-standard branch is different from the standard one

at finite p, the large p limit is precisely the same as the standard solution. The free energy

logZ and entropy are also same in the p→∞ limit.

Although the calculus is more involved in the non-standard branch at finite p, the large p

limit only uses basic structures. The large p analysis can thus be easily generalized to other

non-standard solutions. We discuss the cases with scaling u = u0β
3
2n , where n is a finite positive

integer. That is, either p is finite, or p is large but n does not scale in large p. In this case, we

need to expand (5.3) up to u2n order. Here, we only need to know that fact that the coefficient

of ud in (5.4) is ml2 times a degree d−2 polynomial in m2 and l2. The last statement is true for

finite p, and also true at large p if d ≪ p. If d ∝ p ≫ 1, the coefficients will contain factorials
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rather than polynomials, in which case our simple procedures below will not hold. One can

show that the condition to be met by the leading O(β0) part v0 of vodd are

∑

l∈odd
l2k(v0)l = 0 for k = 0, 1, · · · , n− 2 . (5.40)

The matrixM appearing in the eigenvector equationM · v0 = u−2n
0 v0 is proportional to

(M)ml ∝
(

m2(n−1) + an−2m
2(n−2) + · · · a1m2 + a0

)

l2(n−1) , (5.41)

where a0, · · · , an−2 are chosen to satisfy

∑

m∈odd
m2k

(

m2(n−1) + an−2m
2(n−2) + · · · a1m2 + a0

)

= 0 for k = 0, 1, · · · , n− 2 . (5.42)

v0 satisfying this eigenvector equation is proportional to

(v0)m ∝ m2(n−1) + an−2m
2(n−2) + · · ·a1m2 + a0 . (5.43)

In the largeD limit, note that the coefficients are proportional to a0 ∝ D2(n−1), a1 ∝ D2(n−2), · · · ,
an−2 ∝ D2. So in this limit, v0 is determined by the last term proportional to a0, implying that

v0 ∝ n. (We have checked that the coefficients of D2(n−1) in a0 are nonzero with increasing

absolute values, till n ≤ 5.) This leads to

ρ2m−1
D→∞−→ 4

π2(2m− 1)2
(5.44)

for the non-standard solution u ∝ β
3
2n at finite n which does not scale in p → ∞. Therefore,

for infinitely many branches labeled by finite n = 1, 2, · · · which do not scale with large p,

we obtain precisely the same eigenvalue distribution and the free energy, logZ ≈ −4N2β3

π2 . We

find an infinite degeneracy of small black hole saddle points. In general, n can grow until

n ≤ D =
⌈

p

2

⌉

for the class (A). The computation at p → ∞ and fixed nonzero n
p
is currently

beyond our scope.

A possible scenario at large p and nonzero n
p
is that the free energies logZ may exhibit

a ‘dense spectrum,’ depending on an effectively continuous parameter n
p
. It would be very

interesting to check if this scenario is true, because in this case the extra continuous parameter

might be identified as that of the small hairy black holes in AdS5×S5 [35, 36]. If this is true, the

reason why we got the same large p free energies at finite n is because the effective continuous

parameter n
p
is all at the same value n

p
→ 0. Physically, this would be because the graviton

hair outside the event horizon carries much smaller charges than the black hole, so that their

effects to the thermodynamics are negligible.4

4It would be also interesting if some of these saddles are related to the fully localized 10d black holes in

AdS5 × S5 [37, 38, 39, 40].
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5.2 Small black holes with extra spin

We introduce one more fugacity conjugate to J1 − J2 and extend the small black hole analysis

of the previous subsection. For simplicity, we only consider the standard branch. The small

black hole limits will correspond to the spinning BMPV black holes [18] in flat spacetime.

This apparently trivial extension exhibits significantly new physics. There appear ‘entropic

instabilities’ at J1 6= J2, which are very similar to the super-radiant instabilities of spinning

non-BPS black holes in AdS. This demands a special consideration to properly define and

compute the physical quantities of the BPS black holes from QFT. We explain the situations

in some detail before our microscopic studies.

In non-BPS cases, the instability of spinning black holes in AdS is a long-standing question.

A classic problem is the instability of Kerr-AdS black holes. Due to the super-radiance and the

reflection by the AdS wall, over-spinning Kerr-AdS black holes exhibit both thermodynamic

instabilities [24] and dynamical instabilities of the quasi-normal modes [41, 42, 43, 44, 45]. The

two instabilities are related, in that the time evolution of the tachyonic unstable modes obeys

the second law of black hole thermodynamics. The thermodynamic instability happens due to

the divergence of the thermal partition function of the radially quantized dual CFT,

Z(β,Ωi) = Tr
[

e−β(H−
∑

i ΩiJi)
]

, (5.45)

where i runs over all possible angular momenta. The trace diverges when Ω2
i > 1 for some i,

since then a derivative acquires the fugacity factor e−β(1−|Ωi|) greater than 1. Namely, let us

call ∂ a derivative weighted by a fugacity greater than 1. If a local operator Ô contributes

to this partition function, then all its conformal descendants taking the form of ∂nÔ will also

contribute. The fugacities carried by this infinite tower of operators can be indefinitely large

at large n, making the trace ill-defined.5 If the fugacity factor of an operator becomes 1, this

means that this operator can assume a nonzero expectation value, implying a Bose-Einstein

condensation. This is a signal of the formation of hairy black holes in AdS. See [46, 47] and

references therein, for instance. An odd aspect of the unstable Kerr-AdS black holes is that

infinitely many operators want to condense at the same time.

In the BPS sector, dynamical instabilities due to tachyonic quasi-normal modes are absent.

But there can be thermodynamic instabilities of BPS black holes at fixed charges, which are

very similar to the Kerr-AdS instability. This instability is simply the entropic subdominance

of the black hole in the ensemble sum. Thermodynamic instabilities in a similar sense were

studied in [23] for the BMPV black holes. Since we realize the BMPV black holes as small

black holes in AdS, there appear more thermodynamic instabilities than [23]. As a familiar

non-BPS analogue, Kerr black holes may be unstable only in AdS. It happens even for the

5The conformal descendant viewpoint of the Kerr-AdS instability, as well as the related novel features

explained around (5.52), were all explained to us by Shiraz Minwalla. We thank him for sharing the insights.
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small Kerr black holes in AdS because the large AdS plays the role of a reflecting wall for the

super-radiance of an over-spinning black hole, which causes the instability. This means that,

even if we can regard large AdS as an infrared regulator of the asymptotically flat gravity,

stability issues can depend on the presence of AdS. The thermodynamic stability of BPS black

holes also depends on the AdS embedding. Since we expect this to be a generic phenomenon

of AdS embedding, we elaborate on both the QFT and gravity aspects of the instabilities.

Recall from section 2 the definition of the 2-parameter index,

Z(β, γ) = Tr
[

(−1)F (−e−3β)(2R+J1+J2)e−γ(J1−J2)
]

, (5.46)

where we took x = −e−β , y = e−γ. The BPS black holes carrying the extra spin J1 − J2 are

known from [5, 6]. The entropy of such black holes can be understood by Legendre transforming

the following ‘large N free energy’ [32],

logZ =
N2

2

∆3

ω1ω2
= −N

2

2

8β3

(π + 3iβ)2 + γ2
, (5.47)

where ω1 = −πi+3β+γ, ω2 = −πi+3β−γ and ∆ = 2β. The small black hole limit corresponds

to keeping the leading term at |β| ≪ 1, at finite γ. This yields

logZ → − 4N2β3

π2 + γ2
. (5.48)

We make the Legendre transformation at fixed charges q ≡ 3(2R + J1 + J2), j ≡ J1 − J2,

S(β, γ; q, j) = logZ + βq + γj → q =
12N2β2

π2 + γ2
, j = − 8N2β3γ

(π2 + γ2)2
. (5.49)

The solution for β, γ is given by

β =
πq2

6N2

√

q3

27N2 − j2
, γ = − πj

√

q3

27N2 − j2
, (5.50)

and the entropy is given by

S(q, j) = π

√

q3

27N2
− j2 . (5.51)

This is a familiar expression for the BMPV black hole entropy [18], except that q assumes a

different normalization from the more canonical one. γ should be finite and real for typical

BMPV black holes. For instance, the second term −j2 inside the square root of the entropy

formula is comparable to the first term q3

27N2 only when γ is finite. To reach the extreme case

of vanishing entropy, or the closed time-like curve (CTC) bound j2 → q3

27N2 , one should take

γ → ±∞.6 So the general BMPV black holes are realized as small AdS black holes with |β| ≪ 1

and γ ∈ (−∞,∞). See Appendix B for taking this limit on the AdS black hole solution.

6From (5.50), β would diverge if the limit j2 → q3

27N2 is applied literally, violating the small black hole setup.

So this limit should be understood as q4

N4 ≪ q3

27N2 − j2 ≪ q3

27N2 , where the first inequality ensures β ≪ 1.
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In the BMPV limit of the previous paragraph, it is easy to see that the index (5.46) has a

thermodynamic instability similar to that of (5.45). This is because if we take |β| ≪ 1, keeping

γ finite at a nonzero real value will make the trace to diverge. To be definite, let us take γ < 0.

We also define the two complex coordinates of the spacetime C2 ∼ R4 to be z1, z2 so that the

two BPS derivatives ∂z1 , ∂z2 carry spins (J1, J2) = (1, 0), (0, 1) respectively. Then consider the

conformal descendants of any gauge invariant BPS operator Ô contributing to the index, given

by (∂z1)
nÔ with n = 1, 2, · · · . The extra fugacity factors carried by these new operators are

en(|γ|−3β), which in the BMPV limit become en|γ| > 1. This factor can grow indefinitely large

at large n, making the trace ill-defined. The arguments are in complete parallel to those for

the over-rotating Kerr-AdS black holes at |Ωi| > 1. Let us take |γ| = −γ to be a very small

positive number, still satisfying |γ| ≫ β, going slightly beyond the onset of the instability. If Ô
is weighted by a fugacity e−µ < 1, the net fugacity for the n’th descendant is given by en|γ|−µ.

The trace diverges due to the sequence of operators at very large spin,

n >
µ

|γ| ≫ 1 . (5.52)

This is a characteristic feature of the instabilities of over-spinning AdS black holes: modes with

large angular momenta start to cause the instability at the onset point. Precisely the same

feature is found with Kerr-AdS black holes.

We explain this instability from the gravity side, with the BMPV small black holes in AdS.

An unstable black hole can increase its entropy by ‘emitting’ some of its charges as gravitons

outside its event horizon. For BPS black holes, the word ‘emission’ should be simply understood

as moving to a different configuration in the ensemble with graviton hairs outside the black

holes. After emitting charges at the same order as the black hole charge, it is in general difficult

to construct the full solution in which the black hole and the hair back-react to each other.

However, for small black holes in AdS, [46, 47] established a simple way to construct hairy

black holes. The nontrivial part of the metric of the small black hole is contained in a small

region, say of radial size r which is much smaller than the AdS radius ℓ. On the other hand,

the wavefunction of the emitted graviton hair carries small charges, which we take to be the

same order as the small black hole charges. This wavefunction extends over the AdS scale ℓ,

so their condensate density will be suppressed by r
ℓ
. From this, one can argue [46, 47] that

the back-reaction of the graviton wavefunction and the small black hole metric to each other

is negligible, to the leading order in the small charge parameter r
ℓ
≪ 1. This means that one

can superpose the two solutions at the leading order.

The arguments of [46, 47] can be applied to our BMPV small black holes in AdS. In the mi-

crocanonical ensemble at fixed net charges q and j, we consider thermodynamically competing

configurations in which BPS gravitons are superposed with the small black holes. The entropy

carried by the gravitons will be negligible compared to the entropy change of the small black

hole which scales like N2. This is true even if the portions of charges carried by the gravitons
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scale like N2 [2]. So if the entropy of the black hole can increase by losing the charges, this will

be a channel of the thermodynamic instability. We will show that such hairy small black holes

exist precisely for |γ| > 3β. Again we take γ < 0, meaning j ≡ J1 − J2 > 0.

Let us start by defining a function related to the BMPV entropy,

F (q, j) ≡
(

S

πN2

)2

=
1

27

( q

N2

)3

−
(

j

N2

)2

≡ q̂3

27
− ĵ2 . (5.53)

The normalized charges q̂ = q

N2 , ĵ = j

N2 are much smaller than 1 for small black holes. Now

consider the hairy BPS black hole which contains the gravitons at charges ∆R, ∆J1, ∆J2. Our

interest is simply finding a hairy configuration with larger entropy, rather than constructing

the configuration with maximal entropy at given q, j. We seek for such configurations when the

graviton charges are much smaller than q, j. Since the graviton hair is also BPS, their charges

should satisfy certain positivity bounds. The general conditions are RI +RJ ≥ 0, RI + Ji ≥ 0,

J1 + J2 ≥ 0 for the pair sums of distinct charges [2, 8]. These demand the following conditions

for the graviton charges:

∆R ≥ 0 , ∆J1 +∆J2 ≥ 0 , ∆R +∆Ji ≥ 0 . (5.54)

The charges carried by the new black hole core are given by

q′ = q − 3(2∆R +∆J1 +∆J2) , j′ = j − (∆J1 −∆J2) . (5.55)

So the entropy change by going to the hairy black hole is

∆F ≡ F (q′, j′)− F (q, j) ≈ 2ĵ(∆J1 −∆J2)−
q̂2

3
(2∆R +∆J1 +∆J2) . (5.56)

At the last step, we used the fact that ∆R, ∆Ji are small and made a linearized approximation.

If the graviton charges can be chosen to meet ∆F > 0, the hairy black hole has larger entropy.

q̂, ĵ for the black hole should first meet the CTC bound ĵ < q̂
3
2

3
√
3
. For the black hole in the

regime |γ| > 3β, one finds ĵ > q̂2

6
by using (5.50). So we study whether ∆F can be positive or

not in the range
q̂2

6
< ĵ <

q̂
3
2

3
√
3
. (5.57)

It suffices to consider the first inequality only, to study the thermodynamic instability.

We first consider the region |γ| < 3β, in which we do not expect any thermodynamic

instability. In this case, applying 0 < ĵ < q̂2

6
, one obtains

∆F < −4ĵ [∆R +∆J2] ≤ 0 (5.58)

from (5.56) and (5.54). Therefore, one indeed finds no instabilities at |γ| < 3β. On the other

hand, let us consider the region |γ| > 3β by setting q̂2

6
= ĵ(1 − ǫ) with ǫ ∈ (0, 1) not too close

to 1. In this case one obtains

∆F = 2ĵ [ǫ∆J1 − (2− 2ǫ)∆R − (2− ǫ)∆J2] . (5.59)
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At any ǫ, one can take the graviton system at large enough ∆J1 so that the quantity inside

the square bracket is positive. Taking ∆J1 arbitrarily large is possible because the graviton

wavefunctions in AdS exist at arbitrary large angular momentum. (In the CFT dual language,

they can be constructed from the conformal descendants with sufficiently many derivatives.)

So for |γ| > 3β, one can always construct small hairy black holes at larger entropies. For small

ǫ, one goes slightly beyond the stability bound. In this case, the value of ∆J1 >
2
ǫ
(∆R+∆J2)

required for the instability is very large. Therefore, at the onset of instability, the modes with

infinite angular momentum first cause the instability. This is precisely in accordance with the

conformal descendant picture that we presented around (5.52).

Now we make the following microscopic studies. Rather than searching for the entropically

most dominant black holes, we microscopically study the unstable BMPV small black hole from

the matrix model by going beyond the ‘legal regime’ |Re(γ)| > 3Re(β). Since we clearly expect

there to be interesting large N phenomena of BMPV black holes, one should be able to address

them from the index (2.4). So how can we compute the free energy at such unstable saddle

points? Clearly, the trace definition of the partition function is ill-defined at |γ| > 3β. Also, the

matrix model expressions involving the infinite sum over n like (2.5) do not make sense because

a fugacity factor is larger than 1. We can get hints from how the over-spinning BMPV black

hole solutions at q̂2

6
< ĵ < q̂

3
2

3
√
3
can be understood from the classical gravity dual. Consider the

solutions at ĵ < q̂2

6
. From these solutions without any instability, one can simply extend the

parameters carried by the solutions beyond the bound. No pathologies or singularities arise at

the level of semi-classical saddle point solutions. From QFT, we can similarly construct the

large N semi-classical saddle points in a stable region and then extend the large N semi-classical

results to the unstable region by changing γ. More concretely, if one wishes to compute within

the context of small black holes at |β| ≪ 1, it will be more convenient to first take γ ≡ iξ to

be pure imaginary for a while. The sum over the conformal descendants associated with the

fugacity factor einξ will not diverge. The infinite series in (2.5) is well defined, and one can also

consider the truncations at finite p. In this setting, we repeat the analysis of section 5.1. After

all the calculations, the free energy can be continued to real γ.

As in section 5.1, we first consider the p’th truncated model. We take the gap parameter

t = sin2 θ0
2
to assume the standard small β scaling, t = 1 + uβ

3
2 + · · · . One obtains

Rml − δml = (−1)m+l+1ml2
[

− 8(−eiξ)m
(1− (−eiξ)m)2

δml + u20

]

β3 +O(β 9
2 ) . (5.60)

From this, the determinant of R− 1p×p is given by

det(R − 1) = #

(

p
∏

n=1

−8(−eiξ)n
(1− (−eiξ)n)2

)(

1− u20
8

p
∑

m=1

(1− (−eiξ)m)2
(−eiξ)m

)

β3p + higher orders in β

(5.61)
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where # is a number independent of u0, β. So det(R− 1) = 0 demands

u20 = −
8

∑p

m=1 (2− (−eiξ)m − (−e−iξ)m) . (5.62)

To compute ρn≤p, the equation (R− 1)ρ = 0 is given at the leading order by

0 =

p
∑

l=1

(−1)ll2
(

u20 − 8
(−eiξ)m

(1− (−eiξ)m)2 δml
)

ρl . (5.63)

We want this to hold at u0 for which (5.61) vanishes at the leading order. The two equations

will take the same form if the l dependence of ρl is chosen to be (−1)l

l2
(1−(−eiξ)l)2

(−eiξ)l . Normalizing

it to satisfy A · ρ = 1, one obtains

ρn = −(−1)
n

2

2−(−eiξ)n−(−e−iξ)n

n2

∑p

m=1
2−(−eiξ)m−(−e−iξ)m

m2

+O(β 3

2 ) (5.64)

for n = 1, · · · , p.

We would now like to consider the Yang-Mills matrix model at p→∞. One finds

ρn = −(−1)
n

2

2−(−eiξ)n−(−e−iξ)n

n2

π2

3
− Li2(−eiξ)− Li2(−e−iξ)

, (5.65)

where we used the series definition of the dilogarithm function

Li2(x) ≡
∞
∑

n=1

xn

n2
(5.66)

which converges for |x| ≤ 1. Here, one can use the following identity

Li2(−eiξ) + Li2(−e−iξ) = −
(2πi)2

2!
B2

(

ξ+π
2π

)

=
ξ2

2
− π2

6
(5.67)

for −π < ξ < π, where B2(x) ≡ x2 − x+ 1
6
. Plugging this into (5.65), one obtains

ρn =
(−1)n−1

π2 − ξ2 ·
2− (−eiξ)n − (−e−iξ)n

n2
. (5.68)

At real ξ, the real ρn’s in the range −π < ξ < π yields a real non-negative function ρ(θ) for

real θ. In particular, the sums over n can be done explicitly to yield

ρ(θ) =
1

2π

(

1 + 2

∞
∑

n=1

ρn cos(nθ)

)

(5.69)

=
1

2π

[

1 +
1

π2 − ξ2
∑

±

(

Li2(e
i(ξ±θ)) + Li2(e

−i(ξ±θ))− 2Li2(−e±iθ)
)

]

.
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For real −π < θ < π, one can use (5.67) to simplify the last term
∑

± Li2(−e±iθ). Also, the

other Li2 functions can be simplified at real −π < ξ < π by using

Li2(e
ix) + Li2(e

−ix) = 2π2B2

(

x
2π
− n

)

(5.70)

for 2πn < x < 2π(n+ 1), n ∈ Z. From the identities at n = 0 and n = −1,

Li2(e
ix) + Li2(e

−ix) =







2π2
[

(

x
2π

)2 − x
2π

+ 1
6

]

for 0 < x < 2π

2π2
[

(

x
2π

)2
+ x

2π
+ 1

6

]

for − 2π < x < 0
, (5.71)

one obtains

|x| = x2

2π
+
π

3
− Li2(e

ix) + Li2(e
−ix)

π
(5.72)

for −2π < x < 2π. Applying all these identities, one obtains

ρ(θ) =
1

π2 − ξ2
(

π − |θ + ξ|+ |θ − ξ|
2

)

(5.73)

for real −π < ξ < π and real −π < θ < π.

The free energy logZ can be computed from

logZ = N2
∞
∑

n=1

an − 1

n
ρ2n . (5.74)

The function an − 1 in the BMPV limit is given by

an(β, γ)− 1 = − (1− e−2nβ)3

(1− (−1)ne−n(3β+iξ))(1− (−1)ne−n(3β−iξ)) → − 8n3β3

2− (−eiξ)n − (−e−iξ)n .
(5.75)

Plugging this in (5.74) and again using (5.67), one obtains

logZ = − 4N2β3

π2 − ξ2 . (5.76)

This finishes our calculations at real ξ. If one naturally assumes the analyticity of the free

energy in complex γ = iξ, one obtains the free energy

logZ = − 4N2β3

π2 + γ2
(5.77)

which precisely accounts for the BMPV black holes embedded in large AdS.

One would ultimately want to understand the complex eigenvalue distributions at complex

or real γ. This problem is very tricky, and presumably impossible within our computational

framework here. Let us just outline the subtleties of the problem.

Knowing all ρn’s, one may think that computing ρ(θ) at real ξ, θ and then analytically

continuing it would yield ρ(θ) in the complex θ plane. Then it may naively look that this
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would determine the complex cut, following the procedures of section 2. This is subtler than

it looks, as we explain now. The distribution function that we computed for real ξ, θ can be

complexified by going back to the last expression of (5.69). At real ξ, θ, we applied the identities

(5.67), (5.71) to derive (5.73). For complex ξ, θ, one can apply similar identities after replacing

the ranges of x by the ranges of Re(x) for complex x. Repeating the calculus, one obtains

ρ(θ) =
1

π2 − ξ2
[

π − sgn(Re(θ + ξ))(θ + ξ) + sgn(Re(θ − ξ))(θ − ξ)
2

]

(5.78)

for −π < Re(θ) < π and −π < Re(ξ) < π. The expression has branch cuts at Re(θ) = ±Re(ξ),
with the branch points θ = ±ξ. From this, the function s(θ) =

∫

dθρ(θ) is given by

s(θ) =











s1(θ) ≡ (θ+π)2

2(π2−ξ2) − 1
2

for − π < Re(θ) < −Re(ξ)
s2(θ) ≡ θ

π+ξ
for − Re(ξ) < Re(θ) < Re(ξ)

s3(θ) ≡ − (θ−π)2
2(π2−ξ2) +

1
2

for Re(ξ) < Re(θ) < π

(5.79)

where the integration constants are chosen to meet the requirements s(±π) = ±1
2
, s(0) = 0.

The Im[s(θ)] = 0 lines passing through either θ = −π, 0, π are locally straight lines. They

generally do not meet at the branch cuts, not forming a continuous cut. So blindly making an

analytic continuation of ρ(θ) with the data given, one generally finds a piecewise continuous cut

consisting of three straight lines. Furthermore, one finds that the total probability obtained by

integrating ρ(θ) along these straight lines is always less than 1, unless Im(ξ) = 0. This means

that there are missing eigenvalues which are not captured by this calculus. This phenomenon

happens because s(θ) of (5.79) has discontinuities across the branch cut Re(θ) = ±Re(ξ). This
is a singularity which occurs by taking the β → 0+ limit at complex ξ. Presumably at nonzero

small β, the singular function is resolved into a better behaved function with the resolution

size given by β. Probably, the missing eigenvalues are hidden in this singular region which

is beyond the scope of our computational framework. We leave this tricky question unsolved

in this paper. Anyway, we emphasize again that having computed the free energy (5.76) and

naturally assuming the analyticity in ξ = −iγ, one can convincingly compute the free energy

(5.77) for the BMPV black holes at real γ.

In section 5.3, we extend all the analysis above to unequal electric charges RI , leading to

the free energy logZ = −4N2β1β2β3
π2+γ2

and the entropy S = π
√

8(R1+J+)(R2+J+)(R3+J+)
N2 − (J1 − J2)2.

We finish this subsection by comparing our results to that of [23], which also discussed

thermodynamic instabilities of BMPV black holes. [23] considered two possible configurations

which can compete with the BMPV black holes, all in strictly asymptotically flat background.

One is the black ring, and another is the BMPV black hole surrounded by the smooth solutions

called ‘supertubes.’ The latter configuration may be regarded as a sort of graviton hair outside

the black hole event horizon. However, these hairs are different from those we studied in this

subsection in two qualitative manners. Firstly, our graviton hairs are extended in the AdS box
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of size ℓ much larger than the size r of the black hole. Therefore, the existence of our hairs

depends on putting AdS as a large IR regulator. The hairy black holes of [23] became more

dominant than the BMPV black holes very near the CTC bound, which is j ≈ q
3
2

3
√
3N

in our

setting. On the other hand, our hairs extended in AdS cause instabilities at much smaller values

of spin, j = q2

6N2 . The stability of a black hole depends on the presence/absence of the AdS box,

even if it is much larger than the black hole. Secondly, from our AdS embedding viewpoint,

the hairs discussed in [23] are localized in a small spatial region of size much smaller than ℓ. To

construct their solutions, the interaction of the hair and the black hole is important. This type

of hairs is excluded in our considerations by assumption, since we relied on the non-interacting

picture of [46, 47]. The results of [23] imply that, even for small AdS black holes, there could

be subtler localized graviton hairs for which interactions are important.

5.3 Three electric charges and extra spin

We consider small black hole saddle points of the matrix model at three independent R-charges

RI , I = 1, 2, 3. This will account for the small black holes with three independent electric

charges. Let us write x2I ≡ e−∆I , x1x2x2e
γ = e−ω1, and x1x2x3e

−γ = e−ω2 so that

an = 1−
∏3

I=1(1− e−n∆I )

(1− e−nω1)(1− e−nω2)
= 1−

∏3
I=1 1− x2nI

(1− xn1xn2xn3enγ)(1− xn1xn2xn3e−nγ)
. (5.80)

In the small black hole limit, we set xI = −e−βI where βI goes to zero in the same order. Then

note that

an = 1 +
8n3(−1)nenγ

((−1)n+1 + enγ)2
β1β2β3 +O(β5). (5.81)

In particular, the first correction term of order β3 is proportional to β1β2β3, while more com-

plicated terms appear in higher orders.

Recall from section 2 that ρn’s are determined by the equations

(R− 1)ρ = 0, A · ρ = 1, (5.82)

where

Rml = al

l
∑

k=1

(

Bm+k− 1
2 (t) +B|m−k+ 1

2
|(t)
)

Pl−k(1−2t) , Am = am (Pm−1(1− 2t)− Pm(1− 2t)) .

(5.83)

The existence of nontrivial solution implies det(R − 1) = 0, from which we can determine t

perturbatively by expanding it around t = 1. Since only the combination β1β2β3 appears at

the lowest order correction to an, the correction to t at the lowest orders also only depends on

β1β2β3 as far as they are not affected by the O(β5) correction to an. The general solution can
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be written in the form of t = 1+ t1(β1β2β2)
1
2 + t2β1β2β3+O(β

7
2 ), where the higher order terms

involve more complicated combinations of βI ’s. More explicitly, we expand

Pl(1− 2t) = (−1)l
[

1 + l(l + 1)
(

t1(β1β2β3)
1
2 + t2β1β2β3

)

+
l(l2 − 1)(l + 2)

4
t21β1β2β3

]

+O(β 7
2 ),

(5.84)

and

Bl+ 1
2 (t) = δl,0 + (−1)l

[

t1(β1β2β3)
1
2 + t2β1β2β3 +

l(l + 1)

2
t21β1β2β3

]

+O(β 7
2 ). (5.85)

We can argue t = 1+ t1(β1β2β3)
1
2 + t2β1β2β3+O(β

7
2 ) as follows. Let us start from more general

ansatz t = 1 + t1β
3

2 + t2β
3 + t3β

7

2 + t4β
4 + t5β

9

2 . Recall that an = 1 + a
(1)
n β1β2β3 + · · · . We

compute Rml up to the order of β
9
2 . If we choose 1 from an, t3, t4, and t5 in B and Pl could

contribute in principle. But an explicit computation shows that this is not the case and their

contributions actually vanish up to the order of Rml ∼ O(β
9
2 ). Then only t1 and t2 contribute,

so that they should be accompanied with (β1β2β3)
1
2 and β1β2β3 since only β1β2β3 appear from

an at this order.

By substituting these expressions into (5.83), we obtain

Rml − δml = (−1)m+l+1ml2
[ −8 (−eγ)m

(1− (−eγ)m)2
δml + t21

]

β1β2β3 +O(β
9
2 ) . (5.86)

The determinant takes the form of

det(R− 1) = #

(

p
∏

n=1

−8(−eγ)n
(1− (−eγ)n)2

)(

1− t21
8

p
∑

m=1

(1− (−eγ)m)2
(−eγ)m

)

(β1β2β3)
p + higher orders in β

= #

(

p
∏

n=1

−8(−eγ)n
(1− (−eγ)n)2

)(

1 +
t21
8

p
∑

m=1

(

2− (−eγ)m − (−eγ)−m
)

)

(β1β2β3)
p

+higher orders in β . (5.87)

Hence, we obtain

t21 = −
(∑p

m=1(2− (−eγ)m − (−eγ)−m
8

)−1

. (5.88)

Next, we solve the equations (5.82) for ρn. Note that these equations are linear, and thus

only has to be confirmed by direct substitution once the solution is given. Indeed, it can be

checked that the solution is

ρn = −(−1)
n

2

2−(−eγ)n−(−eγ)−n

n2

∑p

l=1
2−(−eγ)l−(−eγ)l)

l2

+O(β 3
2 ), n = 1, · · · , p, (5.89)
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by direct substitution. In the strict β = 0 limit, we have t = 1 and the gap closes. Then the

moments ρn’s get identified with the Fourier coefficients of the distribution. Thus we obtain

the distribution by the Fourier expansion formula, along with the limit p→∞ as

ρ(θ) =
1

2π

(

1 + 2
∞
∑

n=1

ρn cosnθ

)

=
1

2π

(

1−
∑∞

n=1
2−(−eγ)n−(−eγ)−n

n2 (−1)n cosnθ
∑∞

n=1
2−(−eγ)n−(−eγ)n)

n2

)

. (5.90)

The distribution is precisely the same as that studied in section 5.2. This can be summed to

yield the same closed-form expression.

Finally, we can easily compute the leading contribution to the free energy by

logZ

N2
= −

∞
∑

n=1

1− an
n

ρ2n = − 2β1β2β3
∑∞

n=1
2−(−eγ)n−(−eγ)−n

n2

= −4β1β2β3
π2 + γ2

. (5.91)

We extremize the function

S(βI , γ; qI , j) ≡ −
4N2β1β2β3
π2 + γ2

+

3
∑

I=1

βIqI + γj, (5.92)

to obtain the entropy, where qI = 2RI +J1+J2 and j = J1−J2 are integral quantized charges.

The solution for βI and γ is

βI =
π

2N2

q1q2q3
qI

1
√

q1q2q3
4N2 − j2

, γ = − πj
√

q1q2q3
N2 − j2

, (5.93)

and the entropy is given by

S(qI , j) = π

√

q1q2q3
N2

− j2. (5.94)

6 Conclusion

In this paper, we studied the large N saddle points of the matrix model for the index of 4d

maximal super-Yang-Mills theory on S3×R, and investigated the physics of the holographically

dual black holes. The study was made in two closely related directions.

Firstly, we studied the large N saddle points of the truncated matrix models. These trun-

cations were investigated in [15, 10] prior to our studies. The truncated models admit various

numerical and analytic approaches which would have been much more difficult in the full

Yang-Mills matrix model. We explored various saddle points of these matrix models. We found

the numerical saddles which microscopically account for the known AdS black holes in semi-

quantitative manners. In particular, we found that multiple branches of saddle points have

to be patched to describe the known black holes. It would be interesting to know how many

branches participate at larger values of p.
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Secondly, we analytically constructed the exact saddle points for the small black holes, at

charges much smaller than N2. The solutions are found for the whole infinite sequence of the

truncated models labeled by p ≥ 1, so one obtains the exact saddle points of the full Yang-Mills

theory by sending p → ∞. These saddles perfectly account for the thermodynamics of small

AdS black holes of [3, 5, 6]. Small AdS5 black holes are related to the 5d asymptotically flat

black holes. Thus we have provided a first-principle microscopic account for the black holes

of [17, 18]. For the BMPV black holes [18], we found their thermodynamic instabilities when

embedded into AdS, both from the gravity and QFT sides. This is in close parallel to the

instability of the over-spinning Kerr-AdS black holes [24].

There are many directions to be further explored. Firstly, we found infinitely many small

black hole saddles which exhibit the same large N thermodynamics. We speculated a scenario

in which these degenerate saddles are part of a continuous spectrum of saddles, motivated by

the small hairy black holes. However, further computations have to be done to confirm or rule

out this scenario, as explained at the end of section 5.1.

We would also like to better understand the possibilities of new black hole like saddle points

away from the tachyonic region of ρ1. The key motivation of studying the ρ1 tachyon region is

that it hosts the black holes which cause the Hawking-Page transition, determining the dom-

inant AdS thermodynamics in the grand canonical ensemble. However, in the microcanonical

ensemble, other saddle points could be meaningful as independent black hole solutions. In the

last viewpoint, there is no particular reason to focus only on the ρ1 tachyon region. We are

particularly interested in analytically constructing new small black hole solutions away from

the ρ1 tachyon region. One motivation for this study is that small black holes are likely to be

related to asymptotically flat black holes in 5d Minkowski background, and many results are

known for them. As briefly commented in section 3.2, we found some numerical evidences that

such small black holes could exist around the tachyonic regions of ρ2. They were obtained by

taking limits of the single-cut saddles, but we can also relax our ansatz to the multi-cut saddles.

Appendix A provides the technical backgrounds for such extensions. Presumably, constructing

analytic saddle points for small black holes will be possible, along the line of section 5. It will

be interesting to see if some of them quantitatively account for the physics of more nontrivial

asymptotically flat black holes, such as multi-centered black holes or black rings.

As a related matter, we also want to study various large black hole limits analytically.

Although large black holes enjoy certain degrees of universality, we strongly feel that there

could be more nontrivial large black hole saddles in the multi-cut sectors. We also expect that

their large black hole limits can be easily solvable analytically at p→∞, by slightly generalizing

the calculus of our section 4 or that of [8]. It will also be interesting to numerically check how

these new large black hole branches connect to the new small black hole branches.

We eagerly hope to come back in the near future with solutions to these questions.
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A Matrix model analysis

In this appendix, we study our matrix models at complex coupling constants. Let us write the

index in terms of za = eiαa , a = 1, · · · , N ,

Z =

∫ N
∏

a=1

dza exp

[

−
N
∑

a=1

log za +
∑

a6=b
log

(

1− zb
za

)

+
∞
∑

n=1

an
n

N
∑

a,b=1

znaz
−n
b

]

=

∫ N
∏

a=1

dza e
−N2[ 1

N

∑N
a=1 log za− 1

2N2

∑
a 6=b log(za−zb)2− 1

N2

∑∞
n=1

an
n

∑N
a,b=1 z

n
a z

−n
b ] . (A.1)

In the large N continuum limit, the eigenvalues za accumulate on a curve γ, with a certain

distribution ρ(z). In terms of ρ(z), the saddle point equation reads

0 = log z −
∫

γ

dz′ log(z − z′)2ρ(z′)−
∞
∑

n=1

an
n

∫

γ

dz′(znz′−n + z−nz′n)ρ(z′)

= log z −
∫

γ

dz′ log(z − z′)2ρ(z′)−
∞
∑

n=1

an
n
(znρ−n + z−nρn), (A.2)

where log(z − z′)2 should be understood as the principal value

log(z − z′)2 = log(z+ − z′) + log(z− − z′), z, z′ ∈ γ, (A.3)

which gets rid of the singularity at z = z′. Here, f(z±) is defined as the limit of f(z′) where z′

tends to z ∈ γ from the left and the right of z, with respect to the orientation of γ. We also

defined the moments of distribution ρn ≡
∫

γ
dz znρ(z), n ∈ Z.

The solutions to the saddle point equation are called equilibrium distributions or equilibrium

densities. Now, as a formal technique to solve this saddle point equation, it is convenient to

treat the moments as independent variables temporarily. In other words, the above saddle

point equation can be understood as the continuum limit of the saddle point equation of the

holomorphic matrix model with the potential

W (z) = log z −
∞
∑

n=1

an
n
(znρ−n + z−nρn). (A.4)
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This provides a systematic way of truncating the model up to a given number p, by restricting

the infinite summation up to p. From now on, we will consider this truncated holomorphic

matrix model, and find the equilibrium distribution from it. Then, we will reconnect to the

N = 4 index by solving further ρn =
∫

γ
dz znρ(z).

In our application, we will assume the equilibrium distribution is even, which means the

invariance of zρ(z) under the transformation z → z−1. This implies ρn = ρ−n for n ∈ Z, so in

this case the potential becomes

W (z) = log z −
p
∑

n=1

λn
n
(zn + z−n), (A.5)

where we defined the new couplings λn = anρn. Note that ρn =
∫

γ
dz znρ(z) =

∫

γ
dz z

n+z−n

2
ρ(z)

for even distributions.

Before we move on to find the equilibrium density by the matrix model analysis, we describe

how one can obtain the leading contribution to the free energy once the equilibrium distribution

is given. We simply evaluate the action at the given equilibrium density ρ(z),

− logZ
N2

=

∫

γ

dz ρ(z) log z − 1

2

∫

γ×2

dz dz′ log(z − z′)2ρ(z)ρ(z′)−
p
∑

n=1

an
n

∫

γ×2

dz dz′ znz′−nρ(z)ρ(z′)

=

∫

γ×2

dz dz′
∞
∑

n=1

1

n

(

z′

z

)n

ρ(z)ρ(z′)−
p
∑

n=1

an
n

∫

γ×2

dz dz′ znz′−nρ(z)ρ(z′)

=
∞
∑

n=1

1

n
ρnρ−n −

p
∑

n=1

an
n
ρnρ−n, (A.6)

where we expanded log(z−z′)2 in |z| > |z′| in the second line. Since the integrand is symmetric

in z and z′, there is no loss of generality. Note that we have taken the truncation number p.

By taking the limit p→∞ to this expression, we finally obtain the leading contribution to the

free energy from the given equilibrium density.

Let us consider the holomorphic matrix model

Z =
N
∏

a=1

∫

Γ

dza
∏

i<j

(za − zb)2 exp (−NW (za)) , (A.7)

where the W (z) possibly contains complex-valued coupling constants, and Γ is not necessarily

unit circle but the N -product of a contour γ in the complexified z-plane C, properly chosen to

make the above partition function convergent (We directly adopt the eigenvalue representation

without further explanation. For more detail on holomorphic matrix models and their complex

saddles, see [48, 49, 50, 51] for instance). This partition function can be written as

Z =
N
∏

a=1

∫

Γ

dza e
−N2SN , (A.8)
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with the action

SN ≡
1

N

∑

a

W (za)−
1

2N2

∑

a6=b
log(za − zb)2. (A.9)

The saddle point equation reads

NW ′(za) +
∑

b6=a

2

zb − za
= 0, a = 1, · · · , N. (A.10)

Let us give a parametrization f : [0, 1] −→ γ of the curve γ. Then we can denote the eigenvalue

density by

ρ(s) =
1

N

N
∑

a=1

δ(s− sa), s ∈ [0, 1], (A.11)

where f(sa) = za ∈ γ is the position of the a’th eigenvalue. Also with the solutions za to the

saddle point equation, let us define the discrete resolvent

ω(z) =
1

N

∑

a

1

z − za
. (A.12)

Note that we have

ω(z+)− ω(z−) = −
2πi

N

N
∑

a=1

δ(s− sa) = −2πiρ(s), f(s) = z ∈ γ, (A.13)

due to the property of the delta function. Now the saddle point equation (A.10) implies the

Riccati equation

1

N
ω′(z) + ω(z)2 −W ′(z)ω(z) =

1

N

∑

a

W ′(z)−W ′(za)

z − za
. (A.14)

We study the continuum limit N →∞ of the model (A.7). In the large N limit, the saddle

points za’s accumulate on the curve γ = γ1 ∪ · · · ∪ γs, where s is the number of cuts. Hence we

can define a normalized positive eigenvalue density ρ(z) supported on γ

1

N

N
∑

a=1

δ(s− sa) −→ ρ(s) ds = ρ(z) dz,

∫

γ

ρ(z) dz = 1. (A.15)

Now the action can be written by taking the limit to (A.9)

S[ρ] =

∫

γ

W (z)ρ(z)dz − 1

2

∫

γ×2

dz dz′ log(z − z′)2ρ(z)ρ(z′). (A.16)

Again, the integral on the second term is the principal value which removes the singularity of

log(z − z′)2 at z = z′.

Let us define the continuum limit of the resolvent (A.12),

ω(z) =

∫

γ

P
ρ(z′)dz′

z − z′ , (A.17)
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where P denotes the principal value. Note that ω(z) is the Cauchy transform of ρ(z) on γ, so

that ω(z) is an analytic function in C \ γ. Then the Sokhotski-Plemelj theorem states that

ω(z+) = ω(z)− πiρ(z)
ω(z−) = ω(z) + πiρ(z)

, z ∈ γ. (A.18)

In particular, we have

ω(z+)− ω(z−) = −2πiρ(z), z ∈ γ. (A.19)

This is just the large N limit of (A.13). Also, the continuum limit of the Riccati equation

(A.14), called the Dyson-Schwinger equation, is obtained as

ω(z)2 −W ′(z)ω(z) = −
∫

γ

W ′(z)−W ′(z′)

z − z′ ρ(z′)dz′ ≡ −P (z). (A.20)

Solving for the resolvent ω(z), we get

ω(z) =
1

2

(

W ′(z)±
√

W ′(z)2 − 4P (z)
)

. (A.21)

Recall that the eigenvalues are found at the singularities of the resolvent, which in large N

limit accumulate on the curve γ. This is precisely the square-root branch cut appearing in this

expression. Therefore, by using (A.19) we find

ρ(z) =
1

2π

√

4P (z)−W ′(z)2, z ∈ γ. (A.22)

Hence, the equilibrium density can be achieved by computing P (z) and substituting this into

this equation. It is more convenient to use the variable y(z) which we define by

y(z) ≡W ′(z)− 2ω(z). (A.23)

It is straightforward from (A.21) and (A.22) that

ρ(z) = ±y(z±)
2πi

, z ∈ γ. (A.24)

In terms of y(z), the Dyson-Schwinger equation (A.20) becomes

y(z)2 = (W ′(z))
2 − 4

∫

γ

W ′(z)−W ′(z′)

z − z′ ρ(z′)dz′. (A.25)

We solve this equation to obtain y(z), and therefore ρ(z). The detail of the procedure largely

depends on the problem we would like to address, determined by the potential W (z). We

present this procedure shortly, for our truncated models.

Before proceeding, we describe how to obtain the support γ of the equilibrium distribution.

First, the notion of probability should be well-defined from equilibrium density. In particular,
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the integral of the density along segments on the cut should be positive real number. Hence

for each zero a of y(z)2, we consider a function

G(z) ≡
∫ z

a

y(z′)dz′, (A.26)

and the Stokes lines defined by

0 = ReG(z). (A.27)

A Stokes line could end either at an endpoint, i.e., a zero of y(z)2, or at infinity. Due to the

constraint
∫

γ
dz ρ(z) = 1, the equilibrium distribution cannot have a non-compact support,

and we should only consider compact Stokes lines connecting endpoints. Moreover, due to the

positive-definiteness of the eigenvalue density, not all the compact Stokes lines support the

eigenvalue density. More specifically, the points in the neighborhood of a cut satisfy ReG(z) <

0, while other Stokes lines separates the region where ReG(z) < 0 and the region where

ReG(z) > 0. This can be seen as follows. For a given point z ∈ γ on the cut, let us consider

the points z+ + idz and z− − idz near z to the left and right of the cut respectively, where dz

is the line segment along the cut. Then we have

ReG(z+ + idz) = ReG(z)− Im (G′(z+)dz) = −Im (y(z+)dz)

ReG(z− − idz) = ReG(z) + Im (G′(z−)dz) = Im (y(z−)dz)
(A.28)

where we have used ReG(z) = 0 for z ∈ γ and the definition of G(z) in the second equality.

Since ρ(z) = ±y(z±)
2πi

, we obtain

ReG(z+ + idz) = ReG(z− − idz) = −2πRe (ρ(z)dz) < 0 (A.29)

due to the positive-definiteness of the density. Therefore, we conclude that the equilibrium

density is supported on the union of compact Stokes lines which satisfy ReG(z) < 0 on their

neighborhoods.

Now we specialize to our truncated model, i.e. the model with the potential

W (z) = log z −
p
∑

n=1

λn
n
(zn + z−n), (A.30)

where λn ∈ C, n = 1, · · · , p are complex-valued couplings (as we mentioned earlier, they will

be identified as λn = anρn in our application to the N = 4 index). A direct computation shows

that

∫

γ

W ′(z)−W ′(z′)

z − z′ ρ(z′)dz =

∫

γ

[

− 1

zz′
+

p
∑

n=1

λn

(

−
∑

i+j=n−2

ziz′j − z−n−1z′−n−1
∑

i+j=n

ziz′j

)]

ρ(z′)dz′

≡ −
p−2
∑

i=−p−1

ci
4
zi, (A.31)
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where in the last line we defined ci as the coefficient of zi. Hence the Dyson-Schwinger equation

(A.25) yields the following equation

y(z)2 = (W ′(z))
2
+

p−2
∑

i=−p−1

ciz
i. (A.32)

Note that the resolvent has the following asymptotic behavior at large z,

ω(z) =
1

z
+

p−1
∑

n=1

1

zn+1

∫

γ

z′nρ(z′)dz′ +O(z−p−1) . (A.33)

Then by the definition (A.23), y(z) has the following asymptotics as z →∞

y(z) = −1
z
−

p
∑

n=1

λnz
n−1 +

p−1
∑

n=1

λnz
−n−1 − 2

p−1
∑

n=1

ρnz
−n−1 +O(z−p−1), (A.34)

where we remind ρn ≡
∫

γ
znρ(z)dz for n ∈ Z is the n’th moment of the distribution. By

matching this with (A.32) up to the order of z−1, we get

ci = 4λi+2 + 4

p−i−2
∑

j=1

ρjλi+j+2, i = −1, · · · , p− 2. (A.35)

Also, the remaining ci’s can be computed as

c−i−3 = 4

p−i−1
∑

j=1

λi+1+jρ−j , i = −1, · · · , p− 2. (A.36)

All in all, this leads to an algebraic curve parametrized by z and y:

y(z)2 =

(

1

z
−

p
∑

i=1

λi(z
i−1−z−i−1)

)2

+4

p
∑

i=1

λiz
i−2+4

p−1
∑

i=1

p−i
∑

j=1

λi+j
(

zi−2ρj + z−i−2ρ−j
)

+4z−2

p
∑

j=1

λjρ−j .

(A.37)

This curve is referred to as the spectral curve. Note that the spectral curve is a double covering

of the z-plane C, upon which y(z) is single-valued. The two sheets of the covering are connected

through the square-root branch cut, and the equilibrium density is supported precisely on this

cut. Let us write the spectral curve into the factorized form,

y(z)2 = λ2p

∏2p
i=1(z − a−i )(z − a+i )

z2p+2
, (A.38)

where the endpoints a±i are determined by λi and ρi, from equating (A.37) and (A.38). In

practice, we first fix the endpoints depending on the phase that we are interested in, and then

solve them and ρi in terms of λi by equating the two expressions.

We focus on the one-cut gapped phase. We also require the equilibrium density to be even,

meaning that zy(z) is invariant under the transformation z 7→ z−1. First, note that only two of
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the 4p roots a±i above should be single roots while all the other roots have to be double roots,

since we want only one square-root branch cut connecting two endpoints to be created. Also,

we study the most generic case of such, requiring the 2p − 1 double roots are all distinct. To

meet the requirement for even distribution, a root should be accompanied with its reciprocal. In

particular, we have two single roots a and a−1, 2p−2 double roots di and d
−1
i , i = 1, · · · , p−1,

and one remaining double root. This last double root should be −1 due to the even property.

To sum up, we set

a±i = di for i = 1, · · · , p− 1,

a±i+p−1 = d−1
i for i = 1, · · · , p− 1

a±2p−1 = −1 and a±2p = a±1 . (A.39)

Then the spectral curve simplifies into

y(z)2 = λ2p
(z − a)(z − a−1)(z + 1)2

∏p−1
i=1 (z − di)2(z − d−1

i )2

z2p+2
. (A.40)

By equating the coefficients of zm, m = 0, · · · , 4p, of the numerator, we get 4p + 1 equations.

Applying the even property to (A.37), we get the equality ρi = ρ−i, i = 1, · · ·p− 1. The even

property reduces the number of nontrivial equations to 2p + 1, one of which is only a trivial

equation. In total, there are 2p nontrivial equations. Meanwhile, there are 2p undetermined

variables, ρ−i, i = 1, · · · , p, di, i = 1, · · · , p − 1, and a. Accordingly, the 2p undetermined

variables are fixed in terms of the couplings λi by the 2p equations.

It is rather difficult to solve them in the current form. We rewrite the polynomial appearing

in (A.40) as

(z + 1)

p−1
∏

i=1

(z − di)(z − d−1
i ) ≡ zp−

1
2

(

zp−
1
2 + z−p+

1
2 +

p−1
∑

i=1

Qi

2λp

(

zi−
1
2 + z−i+

1
2

)

)

, (A.41)

where we just changed p − 1 unknown variables from di to Qi, i = 1, · · · , p − 1. Let us also

define Qp = 2λp for notational convenience. Finally, let us change the unknown variable a to

A ≡ a+a−1

2
. Then we have to solve

z−
1
2

√
z2 + 1− 2Az

p
∑

i=1

Qi

2

(

zi−
1
2 + z−i+

1
2

)

=

√

√

√

√

(

1 +

p
∑

i=1

λi(zi + z−i)

)2

+ 4

p−1
∑

i=1

p−i
∑

j=1

λi+jρj(zi + z−i) + 4

p
∑

j=1

λjρj.

(A.42)

Note that (1 + z2 − 2Az)−
1

2 =
∑∞

l=0 Pl(A)z
l, i.e., the generating function of Legendre polyno-
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mials. Hence this equation can be rewritten as
p
∑

i=1

Qi

2

(

zi−
1
2 + z−i+

1
2

)

=

∞
∑

l=0

zl+
1
2Pl(A)

√

√

√

√

(

1 +

p
∑

i=1

λi(zi + z−i)

)2

+ 4

p−1
∑

i=1

p−i
∑

j=1

λi+jρj(zi + z−i) + 4

p
∑

j=1

λjρj .

(A.43)

Now we can solve for A and Qi by expanding in |z| < 1 and matching the p+ 1 coefficients of

zn, for n = −p+ 1
2
,−p+ 3

2
, · · · , 1

2
. The square root on the right hand side can be expanded up

to the order of z
1
2 as

z−p

√

√

√

√

(

zp
p
∑

i=1

λiz−i

)2

+ 2λpzp +O(zp+1) =

p
∑

i=1

λiz
−i + 1 +O(z). (A.44)

Therefore the right hand side of (A.43) is expanded as

p
∑

i=1

i
∑

l=0

λiPl(A)z
l−i+ 1

2 + z
1
2 +O(z) =

p
∑

i=1

p−i
∑

l=0

λl+iPl(A)z
−i+ 1

2 + z
1
2 +O(z). (A.45)

By comparing this with the left hand side of (A.43), we get

Qi = 2

p−i
∑

l=0

λl+iPl(A), i = 1, · · · p, (A.46)

from the coefficients of z−i+
1

2 , i = 1, · · · p, and

Q1 = 2

p
∑

i=1

λiPi(A) + 2, (A.47)

from the coefficient of z
1
2 . In particular, there are p+1 equations for p+1 variables, the width

of the cut A (≡ cos θ0) and Qi, i = 1, · · · , p, so that they are completely fixed in terms of the

couplings λi by these equations. From them, we finally achieve the following expression for the

equilibrium distribution,

ρ(θ) =
1

π

√

sin2 θ0
2
− sin2 θ

2

p
∑

n=1

Qn cos

(

n− 1

2

)

θ,
z = eiθ

a = eiθ0 .
(A.48)

(A.48), (A.46), (A.47) derive the equations (2.21), (2.22), (2.24) in section 2.

We can also compute the moments ρn, n = 1, · · · p, by either expanding the right hand side

of (A.43) to even higher orders of z or directly computing them from (A.48). In our application

of the truncated matrix model to the N = 4 index, we have to further relate λn = anρn, and

solve ρn =
∫

γ
dz znρ(z). Namely, even if we had solved the moments ρi in terms of the couplings

λi, the couplings are now given by the moments so that we have to solve ρn =
∫

γ
dz znρ(z) along

with (A.47) by substituting the equilibrium density (A.48). This is precisely the equations

(R− 1)ρ = 0, A · ρ = 1, (A.49)

which we explained and solved in sections 2 ∼ 5.
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B BPS black holes in AdS

We summarize the properties of the BPS black holes of [6] and [5]. We also explain the small

black hole limit of these solutions, identifying the charged asymptotically flat 5d black holes of

[17] and the spinning BMPV black holes [18].

We consider BPS black holes in AdS5 with one U(1)R electric charge R and two angular

momenta J1, J2. (In the notation of [6], we set µ1 = µ2 = µ3 ≡ µ.) We first present the

solutions in the notation of [6], and then relate it to the convention of [5] later. The black hole

metric is given by

ds2 = −f 2(dt+ ωψdψ + ωφdφ)
2 + f−1hmndx

mdxn (B.1)

hmndx
mdxn = r2

[

dr2

∆r

+
dθ2

∆θ

]

+Mijdφ
idφj , where i, j = 1, 2 , φi = (φ1, φ2) = (ψ, φ)

M = r2

(

c2
θ

Ξ2
b

(Ξb + c2θ(ρ
2g2+2(1+bg)(a+b)g))

s2
θ
c2
θ

ΞaΞb
(ρ2g2+2(a+b)g+(a+b)2g2)

s2
θ
c2
θ

ΞaΞb
(ρ2g2+2(a+b)g+(a+b)2g2)

s2
θ

Ξ2
a
(Ξa + s2θ(ρ

2g2+2(1+ag)(a+b)g))

)

∆r = r2
(

g2r2 + (1+ag+bg)2
)

, ∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ

Ξa = 1− a2g2 , Ξb = 1− b2g2 , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ

where

f−1 = 1 +

√
ΞaΞb(1 + g2µ)− Ξa cos

2 θ − Ξb sin
2 θ

g2r2
(B.2)

ωψ = −g cos
2 θ

r2Ξb

[

ρ4 + (2r2m + b2)ρ2 +
1

2

(

β2 − a2b2 + g−2(a2 − b2)
)

]

ωφ = −g sin
2 θ

r2Ξa

[

ρ4 + (2r2m + a2)ρ2 +
1

2

(

β2 − a2b2 + g−2(b2 − a2)
)

]

and

r2m =
a + b

g
+ ab , µ =

1

3
√
ΞaΞb

[

2r2m + 3g−2
(

1−
√

ΞaΞb

)]

(B.3)

β2 = 3ΞaΞbµ
2 − 6

√
ΞaΞb(1−

√
ΞaΞb)

g2
µ+

3(1−√ΞaΞb)2
g4

.

We defined (cθ, sθ) ≡ (cos θ, sin θ), and g ≡ ℓ−1 is the inverse-radius of AdS5 and S5. The

U(1)R ⊂ U(1)3 ⊂ SO(6) vector potential is given by

A = (f − 1)dt+ f(ωψdψ + ωφdφ) + Uψdψ + Uφdφ (B.4)

where

Uψ =
g cos2 θ

Ξb

[

ρ2 + 2r2m + b2 −
√

ΞaΞbµ+ g−2
(

1−
√

ΞaΞb

)]

(B.5)

Uφ =
g sin2 θ

Ξa

[

ρ2 + 2r2m + a2 −
√

ΞaΞbµ+ g−2
(

1−
√

ΞaΞb

)]

.
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Here we shifted the definition of A in [6] by a pure gauge −dt, which yields vanishing A at

the spatial infinity of AdS5. This solution is expressed in co-rotating coordinates. To get to

the canonical coordinates of asymptotic AdS, one should use the coordinates t̃, ψ̃, φ̃ defined by

t = t̃, ψ = ψ̃ − gt̃, φ = φ̃ − gt̃. Upon the coordinate transformation, the definition of energy

changes as E → Ẽ = E + g(J1 + J2), where J1 and J2 are angular momenta conjugate to

φ1 = ψ, φ2 = φ, respectively. The energy (mass) of the black hole is given by the BPS relation

Ẽ = g(R1 +R2 +R3 + J1 + J2), where R1 +R2 +R3 ≡ 3R is the U(1)R charge.

The charges R, J1 ≡ Jψ, J2 ≡ Jφ and the Bekenstein-Hawking entropy S are given by

R =
π

4Gg

[

µ+
µ2g2

2

]

(B.6)

J1 =
π

4G

[

3gµ2

2
+ g3µ3 + g−3

(√

Ξa

Ξb
− 1
)

(1 + g2µ)3
]

J2 =
π

4G

[

3gµ2

2
+ g3µ3 + g−3

(√

Ξb

Ξa
− 1
)

(1 + g2µ)3
]

S =
π2

2G

√

(1 + 3g2µ)µ3 − 9g2µ4

4
− (
√
Ξa −

√
Ξb)2

g6
√
ΞaΞb

(1 + g2µ)3 .

In the normalization of AdS5 × S5, N2 = π
2g3G

. We exchanged the definitions of J1, J2 relative

to [8]. We also multiplied g−1 to R relative to the definition of QI in [6]. Since these black

holes carry three charges depending on 2 parameters a, b, they satisfy a charge relation. The

following two expressions for the entropy S in terms of dependent charges R, J1, J2 are often

very useful [52, 8]:

S = 2π

√

3R2 − N2

2
(J1 + J2) = 2π

√

R3 + N2

2
J1J2

N2

2
+ 3R

. (B.7)

The equivalence of the two expressions is the charge relation.

[6] assumed a, b ≥ 0, but this condition is unnecessary. The only condition to be imposed

on a, b in the range −g−1 < a, b < g−1 is the absence of closed timelike curves (CTC), which

requires that the expression inside the square root of S in (B.6) is positive. It will be important

to understand that negative a or b is allowed. They provide solutions inequivalent to those with

a, b > 0. In particular, it will be shown that BMPV black holes in the small black hole limit

can have negative a or b. To clearly see the fundamental domain of the parameters (a, b), it is

helpful to compare them with the two parameters appearing in the solutions of [5]. The two

parameters of [5] are also called a, b. Let us call them ã, b̃ in order to distinguish them with a, b

of [6]. As explained in section 2.3 of [6], ã, b̃ and a, b are related by

g−2(1 + ag + bg)2

1− a2g2 =
g−1(ã + b̃+ ãb̃g) + g−2(1 + ãg + b̃g)2

1− ã2g2 (B.8)

g−2(1 + ag + bg)2

1− b2g2 =
g−1(ã + b̃+ ãb̃g) + g−2(1 + ãg + b̃g)2

1− b̃2g2
.
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Figure 9: Four equivalent fundamental domains in the parameter space for the CTC-free black

holes are shown in blue, red, orange and purple. The black hole entropy vanishes at the red

lines. The dashed lines at b = a and b = −a both describe black holes at J1 = J2.

These equations can be solved for ã, b̃ in terms of a, b, yielding the following unique solution:

ã =
13a2 + 8ab− 5b2 + (12a3 + 20a2b+ 8ab2)g + (12a3b+ 13a2b2)g2

12a+ 12b+ (13a2 + 20ab+ 13b2)g + (8a2b+ 8ab2)g2 − 5a2b2g3
(B.9)

b̃ =
−5a2 + 8ab+ 13b2 + (8a2b+ 20ab2 + 12b3)g + (13a2b2 + 12ab3)g2

12a+ 12b+ (13a2 + 20ab+ 13b2)g + (8a2b+ 8ab2)g2 − 5a2b2g3
.

The CTC-free condition reads ã+ b̃+ ãb̃g > 0 [5]. This in terms of (â, b̂) ≡ (ag, bg) is given by

(â+b̂+âb̂)2(32â3(1+b̂) + b̂(32+61b̂+32b̂2) + â2(61+118b̂+61b̂2) + 2â(16+59b̂+59b̂2+16b̂3))

(b̂(12 + 13b̂) + â2(13 + 8b̂− 5b̂2) + 4â(3 + 5b̂+ 2b̂2))2
> 0 .

(B.10)

(ã, b̃) satisfying (B.10) makes a 1-to-1 map to the black hole solutions. However, the parameters

(a, b) of [6] make a 4-to-1 map to (ã, b̃). So the CTC-free region −g−1 < a, b < g−1 can be

divided into four equivalent fundamental domains. These four regions are shown in Fig. 9. One

interesting point is about the black holes at equal rotations J1 = J2. From an obvious exchange

symmetry, such solutions are obtained at a = b. This also yields ã = b̃ from B.9. However, one

can easily check that a = −b also maps to ã = b̃. Since the solutions are obviously same if ã, b̃

are, a = −b also maps to black holes at J1 = J2. On these two lines, the maps between ã and

a are different:

ã(a) =

{

a(4+5a)
6+4a−a2 on the branch a = b
a2

6−5a2
on the branch a = −b . (B.11)

There are four branches in the four regions, shown as dashed blue lines in Fig. 9: (1) the a = b

branch for a > 0 in the blue region of Fig. 9, (2) the a = −b branch for a < 0 in the red region,
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(3) the a = −b branch for a > 0 in the orange region, and (4) the a = b branch for a < −4
5

in the purple region. In all these four branches, as one increases |a| from 0 to 1 or from 4
5
to

1, ã increases from 0 to 1. Below, we shall discuss the black hole solutions in the fundamental

domain shown by the blue color in Fig. 9. This domain includes all solutions at a, b > 0, but

it also includes some regions with a > 0, b < 0 or a < 0, b > 0.

Let us explain the small black hole limit in the blue domain of Fig. 9. There are many

equivalent ways of describing this limit. With our motivation to study the asymptotically flat

black holes from small AdS black holes, it is most convenient to view it as sending the AdS

size to infinity. Namely, we send the inverse-radius g of AdS to zero, while scaling a, b suitably.

The small black hole limit is given by

g → 0 , a+ ≡
a+ b

g
→ finite , a− ≡ a− b→ finite . (B.12)

If the radial coordinate r is much smaller than g−1, i.e. r ∼ O(g0), the black hole solution

reduces to

ds2 = −f 2(dt+ ω)2 + f−1
[

dr2 + r2
(

dθ2 + cos2 θdψ2 + sin2 θdφ2
)]

(B.13)

A = (f − 1)dt+ fω , f−1 = 1 +
a2− + 8a+

12r2
, ω = −a+a−

2r2
(

cos2 θdψ − sin2 θdφ
)

.

This is the BMPV black hole solution [18] written in the form of [53], except that we again

shifted A by a pure gauge −dt. Therefore, the solution in the scaling limit is approximately

given by the asymptotically flat BPS black hole solution if one keeps r to be much smaller than

large g−1. Note that the scaling limit (B.12) typically has one of a, b to be negative, unless

J1 − J2 is fine-tuned to be very small. The scaling limit amounts to approaching the red curve

of Fig. 9 from the blue domain, close to the origin due to the condition a + b ∼ O(g). If one

further takes a− = 0 at nonzero a+ > 0, one recovers the non-rotating 5d charged black holes

of [17]. (In fact the same black holes are obtained by setting a+ = 0 at nonzero a−, in the red

or orange regions of Fig. 9.)
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