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Abstract
Quantum machine learning provides a fundamentally different approach to analyzing data.
However, many interesting datasets are too complex for currently available quantum computers.
Present quantum machine learning applications usually diminish this complexity by reducing the
dimensionality of the data, e.g. via auto-encoders, before passing it through the quantum models.
Here, we design a classical-quantum paradigm that unifies the dimensionality reduction task with
a quantum classification model into a single architecture: the guided quantum compression model.
We exemplify how this architecture outperforms conventional quantum machine learning
approaches on a challenging binary classification problem: identifying the Higgs boson in
proton-proton collisions at the LHC. Furthermore, the guided quantum compression model shows
better performance compared to the deep learning benchmark when using solely the kinematic
variables in our dataset.

1. Introduction

Machine Learning (ML) is established as an invaluable tool for analysing data and assisting many physics
analyses at the Large Hadron Collider (LHC) [1–4]. Meanwhile, quantum computing is a fundamentally
different paradigm for information processing, that is known to provide computational speed-ups over
classical methods for a large class of problems [5–11]. Furthermore, QuantumMachine Learning (QML) has
the potential to enhance traditional ML methods [12–17] and yields various advantages in specific learning
tasks [18–24]. Recent studies have highlighted guarantees regarding the expressivity, generalisation power,
and trainability of quantummodels [25–30]. Moreover, the efficacy of applying QML models to High Energy
Physics (HEP) data analysis is exemplified in studies for classification [31–36], reconstruction [37–39],
anomaly detection [40–43], and Monte Carlo integration [44, 45]. A summary of advancements in QML
applied to HEP is found in [46].

However, for most realistic applications, the dimensionality of the dataset is usually too large to be
directly processed by commonly available quantum computers. Consequently, dimensionality reduction
techniques are typically employed and treated as a preprocessing step before the data is loaded into the QML
algorithm. Previous studies use manual feature selection, informed by prior knowledge about the given
problem [33, 34], feature extraction techniques, such as the popular Principal Component Analysis [31, 32,
41], or more recently, dimensionality reduction using deep learning models, e.g. simple auto-encoders [34,
43, 47]. However, there is no guarantee or even incentive for the lower-dimensional representation produced
by these methods to preserve original data structures that are relevant for the QML task, e.g. binary
classification.

Crucial information required in discriminating between the classes can be lost in the
dimensionality reduction. In extreme cases, the dimensionality reduction performed as a preprocessing step
can render impossible the Higgs classification task to be solved by the QML model. To address this challenge,
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we draw inspiration from the multi-task learning literature [48, 49] and design a model architecture that
generates lower dimensional representations which are suitable for classification by QML models. We call
this approach guided quantum compression.

In contrast with conventional techniques, the dimensionality reduction performed within the guided
quantum compression framework is not treated as a separate preprocessing step. For example, the usual
approach is to train an auto-encoder on the data, obtain a lower dimensional representation from its latent
space, and then train a QML algorithm on this latter representation [34]. Instead, guided quantum
compression simultaneously accomplishes the dimensionality reduction and classification tasks with a single
architecture. This way, the performance of the QML is not limited by the arbitrary choice of the reduction
method, be it manual, classical feature extraction, or deep learning.

We demonstrate this claim by considering a realistic and complex classification task: identifying the
Higgs boson in the t̄tH(bb̄) semi-leptonic channel for simulated proton collision data at the LHC. On this
data, the conventional reduction methods mentioned earlier fail relative to the guided quantum compression
method, i.e. independently compressing the dataset before training the QML model leads to poor
classification performance. In contrast, the guided quantum compression method is able to solve the
classification problem, reaching competitive accuracy with state-of-the-art classical methods [50].
Furthermore, we observe an improved performance of our algorithm compared to the classical benchmark
when using only the particle kinematics, suggesting that for QML one should use features representative of
the quantum process that generated the data [41, 43, 51, 52].

2. Models

The guided quantum compression network shown in figure 1 is comprised of an auto-encoder (figure 1(a))
and a variational quantum circuit (VQC) (figure 1(b)) that are coupled. In the following, we describe these
two elements and how they are simultaneously trained.

2.1. The auto-encoder
The auto-encoder (AE) is a machine learning model that has been used for decades across the historical
landscape of neural networks [47, 53, 54]. The most commonly used type of AE consists of two feed-forward
neural networks: the encoder Eω and the decoderDρ. The encoder Eω maps the input feature space x to a
latent space z of lower dimension ℓ. Conversely, the goal of the decoderDρ is to reconstruct the input x
from z. A schematic of an AE neural network is shown in figure 1(a). The objective of the AE training is to
minimise the difference between the input data and the reconstructed data; this difference can be quantified
by various functions. There exist many types of AEs, based on how this difference is quantified or on
architectural extensions [55–58]. The mean squared error (MSE) is the standard function used to quantify
the difference between the input data x and its reconstructed counterpart:

LR =
1

M

M∑
m=1

[xm −Dρ ◦ Eω (xm)]2 , (1)

whereDρ is the decoder network with weights ρ, Eω is the encoder network with weights ω, andM is the size
of the training dataset. The conventional AE learns as any other feed-forward neural network, with one
subtlety: the reconstruction loss is not only propagated through the decoder network, but through the
encoder as well. Therefore, the latent space and the reconstructed data evolve simultaneously as the AE
model is learning.

2.2. The VQC classifier
The VQC [14, 59] is a QML model based on parametrized quantum circuits that are trained variationally to
undertake tasks such as classification [32–35], regression [60], and generative modelling [61–64]. The
classifier output, in the VQC implementation, is the expectation of an observableM. This expectation is
interpreted as the likelihood of the input sample to belong in a certain data class, e.g. the sample contains a
Higgs boson or not, and is extracted from the quantum computer via doing measurements. Specifically, the
model output fϑ(z), for a given input data vector z and gate parameters ϑ, is defined as

fϑ (z) =
〈
0
∣∣∣U†

ϑ (z)MUϑ (z)
∣∣∣0〉= ⟨Mϑ (z)⟩, (2)
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Figure 1. The GQC network. The architecture of the Guided Quantum Compression (GQC) network is shown in (a) and (b). The
auto-encoder receives data from simulated LHC proton-proton collisions and produces a lower dimensional representation
z ∈ Rℓ via the encoder network Eω , where ℓ is called the latent space dimension. The decoder networkDρ, receives z and aims to
reconstruct the original data x. The distinct segments z1, . . . , zi, . . . , zd of the latent space vector z are encoded sequentially in the
quantum circuit by using the feature map U(·); the dimension of zi is equal to the number of qubits n in the circuit. The trainable
gates G(·) are placed between the quantum encoding gates U(·). The output of the decoder network and quantummodel are used
to minimize different parts of the total loss function L from equation (7). (c) The data encoding circuit U(·) [15] described in
section 2.2. (d) The variational ansatz G(·). The indices j = 1, . . . , n enumerate the elements of zi. Moreover, the indices
l= 1, . . . , 2nr pertain to the trainable parameter of the corresponding kth parametrised circuit block G(ϑk), where r are the
repetitions of the trainable ansatz.

where Uϑ(z) is the whole quantum circuit of the model,M is the observable whose expectation value we
measure, and |0⟩= |0⟩⊗n the initial n qubit state. Furthermore, the label predicted by the VQC, ŷ ∈ {0,1}, is
given by

ŷ=
sign [⟨Mϑ (z)⟩] + 1

2
, (3)

where one can assume that ⟨Mϑ(z)⟩ ∈ [−1,1] without any loss of generality.
We design a VQC architecture as shown in figure 1(b). The input data vector z is split into d sub-vectors

z= (z1,z2, . . . ,zd), each zi being of dimensionality n. Furthermore, each sub-vector is encoded into the
quantum circuit sequentially by using the feature map U(·); between each U(·) there is a set of trainable gates
G(·). Hence, the whole quantum circuit of the model is

Uϑ (z) =
d∏

k=1

G(ϑk)U(zk) . (4)

The proposed architecture design is theoretically motivated by how the VQCmodel expressivity increases
with the circuit depth [25, 65]. Furthermore, through our encoding strategy, we are able to tune the number
of qubits and the number of gate operations in the VQC circuit. This way, we ensure d= ℓ/n, where d is the
number of segments of the latent vector z and ℓ is the dimensionality of the latent space produced by the
auto-encoder.

Here, we set the observableM≡ σz, where σz is the Pauli–Z operator acting on the first qubit. The data
encoding U(·) used herein is the feature map from [15]. This consists of Rz rotation gates, which encode one
data feature per qubit, and nearest-neighbor entanglement between these qubits, as presented in figure 1(c).
The data encoding blocks include interactions between the features:

ϕ
(
z( j)i ,z( j+1)

i

)
=

n∏
j=1

(
π− z( j)i

)(
π− z( j+1)

i

)
, (5)

where the symbols are described in figures 1(c) and (d). A single repetition of the variational ansatz applies
RY rotations on each qubit and nearest-neighbor entanglement via the CNOT (CX) gates, as in figure 1(d).

We choose these general purpose data encoding and trainable circuits to highlight the effectiveness of the
GQC network in solving classification tasks that conventional methods would struggle with. Hence, we do
not focus on an extensive search for a quantum circuit that would yield the best classifier performance; our
results do not depend on a specific VQC architecture choice.

All classifiers in this work are trained to minimise the binary cross entropy loss function:

LC =− 1

M

M∑
m=1

[ym log(ŷm)+ (1− ym) log(1− ŷm)] , (6)
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whereM is the number of data points, e.g. in a batch, ym is the true label of the data pointm, and ŷm is its
predicted label, as in equation (3). This includes the VQC algorithm presented in section 3.2, any traditional
methods, defined in section 3.1, and the VQC part of the guided quantum compression paradigm,
introduced in section 3.3. All of these are precisely defined in the following section. This scoring rule dates
back to 1952 [66], albeit introduced in a different context, and is the most popular loss function used for ML
classification tasks.

3. Training paradigms

Different training methods are investigated to solve the binary classification problem of the t̄tH(bb̄)
dataset [67], in order to contrast and exemplify the dimensionality reduction advantages of the guided
quantum compression algorithm introduced in this work. Specifically, we study two processes occurring in
proton-proton collision events at the LHC: the signal t̄tH(bb̄) process, in which a Higgs boson is produced,
and the background t̄t(bb̄) process, where it is not produced. These two processes lead to the same final-state
particles, generating similar high-dimensional signatures in the detector. The task of distinguishing these two
processes is challenging [34, 67]. However, accurate classification of such events is crucial for enhancing the
sensitivity of LHC experiments, enabling study Higgs boson processes with high precision. Furthermore, we
assume that this dataset is representative of common high-dimensional datasets in which the probability
distributions of the features for the two classes have substantial overlap. For these reasons, this dataset and
the corresponding classification task is well-suited for ML and QML methods. It enables us to demonstrate
that the proposed guided quantum compression paradigm generates a better latent space compared to
conventional techniques in a challenging real-world problem, important to fundamental physics research.

To this end, we use three distinct training paradigms. First, the so-called classical approach, which serves
as our baseline benchmark. Second, the 2Step method, which represents the usual way to perform
dimensionality reduction when using QML for classifying complex data. Finally, the GQC paradigm
developed in this work, which performs the dimensionality reduction and classification objectives at the
same time.

Note, the three aforementioned strategies pertain to different computational requirements: it is less
computationally intensive to train and robustly optimise the hyperparameters of a classical algorithm
compared to a quantum one. Thus, while we are able to find the optimal values for the parameters of the
classical network, this is not technically achievable for the quantum models presented in this work. The
amount of compute time required to find the optimal hyperparameters for the quantum circuit is simply
unfeasible. Furthermore, a vast amount of computational resources (cf appendix A) are also required to find
the best quantum hyperparameter combination, including the best number of ansatz repetitions, the best
number of qubits, or the best learning rate.

We present the classical and 2Step methods since they contrast and highlight the advantages our method
brings in performing the needed dimensionality reduction. The classical baseline is used to disambiguate the
performance of the quantum algorithm and classical component of the guided quantum compression
paradigm. Meanwhile, the 2Step method is used to contrast the guided quantum compression with the
conventional way of applying QML to our high-dimensional data.

3.1. Classical
A fully-connected feed-forward network is our classical benchmark. This network is trained to minimise the
binary cross entropy loss, in equation (6), via stochastic gradient descent. In essence, the classical paradigm
represents the most conventional way to address our classification task.

The hyperparameters of the feed-forward network, such as the learning rate, are optimized via a
grid search. This is the only type of model and paradigm for which an exhaustive hyperparameter
optimisation is feasible; see appendix A for more details.

3.2. 2Step
In the 2Step paradigm, the dimensionality reduction algorithm, namely the AE from section 2.1, is trained
independently from the VQC classifier presented in section 2.2. As the name suggests, the classification task
is performed in two separate steps. First, the hyperparameters of the AE are optimised and the resulting
architecture is trained with the goal of minimising the MSE loss between the input data and the output of the
decoder. Secondly, the VQC is trained by using the latent space representation z of each sample that the AE
produces. This way, the VQC acts on a lower dimensional input and consequently its quantum circuit can be
smaller. As mentioned in section 1, the dimensionality reduction allows us to employ a reasonable amount of
resources in simulating quantum circuits in classical devices and in implementing our quantum models in
currently available quantum computers. Hitherto, we outlined the most common way in which AEs are used
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for dimensionality reduction in the context of a classification task [68]; in the following, a paradigm which
integrates the two steps is introduced.

3.3. Guided quantum compression
Our strategy aims to address the problem of generating a low-dimensional representation that ensures the
discrimination of the classes by the quantum model. The GQC network implements a trainable data
encoding map Uϑ (Eω(x)). The lower-dimensional representation learned by the encoder network is guided
by the quantum classification algorithm.

The guidance is performed during the training of the GQC network by coupling the auto-encoder and
VQC models through the following loss function:

L= (1−λ)LR +λLC, (7)

where LR is the MSE loss as defined in equation (1), LC is the loss of the VQC classifier defined in
equation (6), and λ ∈ (0,1) is the hyperparameter that specifies the coupling between the reconstruction and
classification optimisation tasks. The λ is fine-tuned separately to maximise the classification accuracy on the
validation dataset, see appendix A.

The simultaneous learning of the two objectives improves the generalisation power of the classifier [69,
70]. This synergy arises from the regularisation imposed through equation (7) of the quantum classifier.
Namely, the classifier performance is enhanced by the additional task of reconstructing data from the latent
space [70].

In our algorithm, we train the GQC network via stochastic gradient descent with the Adam
optimizer [71]. The gradients of the classical parts of the model are computed using backpropagation, while
the quantum circuit gradients are computed via the adjoint differentiation method [72], for efficient training
of the model on classical processors used to simulate the quantum software. The proposed GQC architecture
can also be trained on quantum hardware using the parameter-shift rule [73] instead of the adjoint
differentiation method used here. The hyperparameters of the GQC network are tuned using a sequential
grid search for each hyperparameter while keeping all the rest fixed. For more details on the hyperparameter
tuning procedure, see appendix A.

4. Results

The classification performance of the three training paradigms described in section 3 is benchmarked using
the same simulated dataset consisting of t̄tH(bb̄) (signal) and t̄t(bb̄) (background) events [67, 74, 75]. For all
models except the AE used in the 2Step paradigm, the training data consists of 20 000 samples; meanwhile,
the AE uses 1.44× 106 samples for training. The test dataset consists of 5 k-folds, with 20 000 samples for
each fold. The number of samples is balanced across the two classes for all datasets. Additionally, a validation
dataset of 1500 samples is used during training to monitor for overfitting and to fix the hyperparameters of
the models. Specifically, at the end of each training epoch, the validation loss is computed on the the
validation dataset for each model: the classification loss in equation (6) for the classifier models, the
reconstruction loss in equation (1) for the AE, or the combined loss in equation (7) for GQC model. In each
case, the model that yields the minimum validation loss is selected after the training.

The initial dimensionality of each data sample is 67 (60), if high-level, classically preprocessed, features
pertaining to the collision event are included (excluded). This is always reduced to a final dimensionality of
16 by the AE, except in the classical training workflow from section 3.1, which does not use dimensionality
reduction. The initial 60 features are the kinematic variables of the particles included in the collision event,
e.g. their energy, angle of incidence on the detector, and so on [67]. These kinematic variables describe the
quantum interaction of colliding particles and can be calculated from first-principles within the framework
of quantum field theory. Furthermore, the additional 7 features that introduce high-level properties of the
collision event are the so called btag variables. These determine the likelihood of a certain particle, the b
quark, being produced in the event. These likelihoods are conventionally obtained using classical ML models
when producing this dataset.

The dataset is preprocessed using physical criteria before the training and testing of the investigated
models. The exact requirements can be found in [34, 67]. These preprocessing steps accommodate for the
geometric acceptance of the detector used to record the proton collision data and ensure that each collision
event has the desired characteristics for the study, e.g. at least one detected lepton. Subsequently, we
normalise all data features to the range [0,1].

The lower dimensional latent spaces produced through the conventional 2Step method and the GQC
paradigm are shown in figure 2. As clearly visible in this figure, the GQC network learns a better separation
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Figure 2. Latent representation. The one- and two-dimensional projections of the t̄tH(bb̄) dataset latent space z ∈ Rℓ generated by
(a) the 2Step training paradigm and (b) GQC model. The probability distributions of the latent features z7 and z10 are shown in
the histogram plots. The joint two-dimensional probability distributions P(z7,z10) are displayed in the density plots. Notice that
the latent space separation of signal and background is better in the GQC algorithm; furthermore, the GQC latent distributions
are more regularly shaped. The latent features z7 and z10 are arbitrarily chosen to show the structure of the latent vector z in one
or two dimensions. These joint distributions are symmetric: P(z7,z10) = P(z10,z7).

Table 1.Model performances. The first two columns present the Area Under the Curve (AUC) values of the three training paradigms with
and without the b-tag variable in the training data, respectively. The largest difference between the GQC and conventional methods is
highlighted in bold. The last two columns show the inverse FPR at TPR= 0.8.

Model AUC w/ b-tag AUC w/o b-tag FPR−1 w/ b-tag FPR−1 w/o b-tag

GQC 0.733± 0.003 0.720± 0.005 2.134± 0.028 2.045± 0.049
2Step 0.561± 0.003 0.508± 0.002 1.263± 0.004 1.368± 0.007
Classical 0.734± 0.002 0.699± 0.004 2.107± 0.029 1.921± 0.035

between the two data classes in its latent space. Hence, it is favorable to use the GQC paradigm when
performing dimensionality reduction on the input data. In appendix B, we quantify the class separation and
the GQC improvement using feature-wise Kullback–Leibler divergences (KLD) [76].

The receiver operating curve (ROC) produced through each paradigm from section 3 is shown
in figure 3. The 5 k-folds of the test data are used to compute these ROC curves and their corresponding
uncertainties. The uncertainty is represented as error bands with a width of one standard deviation around
the ROC curves. The conventional 2Step method performs the worst. Meanwhile, the classical and the GQC
methods yield a similar classification accuracy when the btag is included in the dataset, cf figure 3(b);
excluding the btag, i.e. keeping only the kinematic variables of the particles, leads to the GQC significantly
outperforming the classical approach. The advantage in classification performance appears in the relevant
range of True Positive Rate between 0.4 and 0.9, which is a typical choice for physics analyses at the LHC. The
results in figure 3 are condensed in table 1, where summary performance metrics derived from these ROCs
are shown. The GQC latent space allows for a competitive performance with the classical benchmark.

5. Conclusions

The choice of the compression method can have a significant impact on the classifier performance. We show
that for the t̄tH(bb̄) classification task, applying dimensionality reduction as a preprocessing step renders the
problem impenetrable for a currently applicable VQC classifier algorithm, as highlighted in
figure 3 and table 1. In contrast, when an identical VQC is used as part of the GQC training paradigm, its
classification performance drastically increases. Furthermore, the GQC model achieves a consistent
enhanced classification accuracy without an increase in its training time complexity compared to the 2Step
approach; it inherits its training time complexity from its components: the autoencoder and the VQC. Thus,
integrating the dimensionality reduction and classification tasks is shown to provide a better low
dimensional latent space for our problem.
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Figure 3. Receiver operating curves. The ROC curves of the models with (a) the btag features and (b) without the btag features
included in the training data. The 2Step training procedure yields the worst performance. At the bottom panel of each plot the
difference between the GQC ROC and the classical ROC is displayed. When the btag is absent from the dataset, the GQC model
outperforms the classical benchmark in the TPR range of 0.4 to 0.9, as shown in the lower panel of (b).

Additionally, the hyperparameter optimisation procedure employed for each network in this work leads
to a potential bias towards the classical paradigm when comparing the model performances:
it is computationally feasible to perform an extensive hyperparameter optimisation for the classical
algorithm, while this is currently not the case for the GQC model. Thus, the hyperparameters of the
presented networks that include a QML element are only approximately optimal while the hyperparameters
of the classical algorithm are the best they can possibly be. Nevertheless, the conclusions we draw from our
results are not affected by these limitations.

For simple datasets, dimensionality reduction and classification tasks can potentially be decoupled,
i.e. they can be treated as independent problems [31, 32, 34, 41]. However, for realistic datasets it is possible
that such a separate treatment yields worse results. The dimensionality reduction algorithm can obfuscate
the class structure of the original problem, apparent in our results. The GQC encoding strategy ensures that
the VQC is both expressive and flexible for choosing the desired circuit width and depth, while retaining its
overall accuracy. The training paradigms presented in this work show the benefits of carefully constructing
hybrid QML models. These advantages stem from aligning the goals of the dimensionality reduction
algorithm, typically chosen a priori and arbitrarily, with that of the quantum model. Hence, the use of
classical methods for dimensionality reduction can facilitate current quantum computing applicability in
realistic settings.

As seen in figure 3(a), in the worst case the performance of the GQC network is equivalent to that of the
classical benchmark. The GQC network outperforms both the classical model and the quantum model in the
2Step approach when the highly processed btag feature is not used in the training, shown in figure 3(b).
Moreover, it is competitive with state-of-the-art results on this data subset [50]. This suggests that for
improved QML performance on particle physics data, features that are representative of the quantum process
that generated it [51] are preferred, e.g. the angular distribution of particles [41, 43]. Investigating this in
more detail is left for future work.

Data availability statement

The data that support the findings of this study are openly available at the following DOI: https://doi.org/10.
5281/zenodo.7267942.

Code availability

The code developed for this paper is available publicly in the GitHub repository: https://github.com/CERN-
IT-INNOVATION/gqc. A combination of PyTorch and PennyLane [77] were used to implement and train
the GQC, 2Step, and the classical model architectures. The website in [78] was used for figure 1(a) to distort
the reconstructed high-energy physics event schematic.
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Appendix A. Model hyperparameter selection

The classical autoencoder used in this study for the 2Step paradigm has an encoder network consisting of six
layers with nodes [67, 64, 44, 32, 24, 16], respectively. The decoder network mirrors the architecture of the
encoder: [16, 24, 32, 44, 64, 67]. The ReLU activation function is applied to all layers except for the layer
corresponding to the latent space, i.e. the one with 16 nodes, and the output layer, i.e. the last layer of the
decoder with 67 nodes. For the latent and output layers both the sigmoid and tanh activation functions have
been assessed providing similar results.

The hyperparameters of all the classical models are found through exhaustive grid search. Specifically, we
repeat the training and k-fold testing of each model, as described in section 4, for each hyperparameter
combination. The considered hyperparameter combination is {32, 64, 128, 256, 512, 1024, 2048} for the
batch size and {10−3, 10−2, 10−1 } for the learning rate.

For the AE, we firstly identify that a batch size of 128 and a learning rate of 10−3 yields the best
performance. With the batch size fixed at 128, we subsequently perform a finer hyperparameter tuning for
the learning rate in the neighborhood of [10−3,10−2], using the Optuna hyperparameter optimisation
framework [79]. Following this procedure, we find an optimal learning rate of 0.0012.

For the classical benchmark, we evaluate the performance of a fully connected feed-forward network.
This network has the same architecture as the encoder network of the AE model, with the addition of a
single-node layer with a sigmoid activation function serving as the output of the classifier. For studies
excluding the btag variable, the model architectures stay the same, except that the input layer is changed to 60
nodes. Additionally, for the AE, the output layer is also set to 60. Furthermore, we investigate a shallower
architecture with three layers in total [67, 16, 1] that yielded similar classification performance. Hence, fos
simplicity, we choose the shallower architecture. To maintain consistency with the classical benchmark, the
classical components of the hybrid GQC network (cf figure 1), Eω andDρ, also have the shallow architectures
of [67, 16] and [16, 67], respectively.

In the following, the sequential grid search we employed to tune the hyperparamters of the GQC network
is described; in bold we present the hyperparameter values found to be optimal following our procedure. For
our simulations and numerical studies, we used specialized nodes at the CERN and Paul Scherrer Institut PSI
(PSI) computing clusters. At each step of the sequential grid search the models are retrained and evaluated
using k-fold testing, as discussed in section 4. Firstly, we choose the best performing batch size out of
{128, 256, 512, 1024, 2048}, afterwards we do a scan on the learning rate {10−3, 10−2, 10−1}, then we
optimize for the repetitions of the trainable gates (cf figure 1) of the VQC with r ∈ 2, 4, 8 . Lastly, we fix all
the above hyperparameters and optimize the coupling λ (see equation (7)) in the range [0.3, 0.9] with a step
of 0.1 finding the best performing value at λ= 0.7. The λ is fine-tuned to maximise the classification
accuracy on the validation dataset.

An exhaustive grid search, as the one performed for the classical model (cf section 4), would require
assessing all possible combinations of the above hyperparameters leading to a drastic increase of compute
time. Specifically, it would increase the current quantum simulation runtime, which is at the order of days, to
multiple weeks.

Appendix B. Quantifying the class separation in the latent distributions

The KLD, also called relative entropy, is a measure that quantifies the difference between a probability
distribution P and a reference probability distribution Q [76]. Specifically, given a continuous random
variable x ∈ X , over a sampling space X , the KLD is defined as

DKL (P ||Q) =
ˆ
X
P(x) log

(
P(x)

Q(x)

)
dx. (B1)

The KLD approaches zero as the distributions become more similar. In general, one does not have access to
an analytical expression for P and Q but only to finite samples from these distributions. In such cases, the
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Table 2. Quantifying the separation between the background B(zi) and signal S(zi) distributions in the latent space produced by the
2Step and GQC methods, respectively, using the KL divergence DKL. The presented values correspond to each latent space feature zi,
where i = 0,1, . . . ,15.

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15

D(2Step)
KL (S(zi) ||B(zi)) 0.16 0.09 0.31 0.16 0.34 0.23 0.12 0.05 0.07 0.04 0.07 0.10 0.03 1.81 0.08 1.42

D(GQC)
KL (S(zi) ||B(zi)) 3.53 3.84 17.60 6.25 2.17 2.77 3.12 23.40 7.06 6.06 7.23 5.89 4.94 2.73 0.41 2.29

KLD can be computed by constructing histograms from the P and Q samples,

DKL (P ||Q) =
N∑
i=k

Pk log

(
Pk
Qk

)
, (B2)

where N is the number of bins, and Pk and Qk represent the probabilities of observing values that fall into the
kth bin.

In our work, we are interested in quantifying the separation between the background B and signal S
distributions in the latent space produced by the conventional 2Step method and the proposed GQC
network, as seen in figure 2 and discussed in section 3. Specifically, using equation (B2), we compute the
difference between the background B(zi) and signal S(zi) latent distributions for each latent feature zi, where
i = 0,1, . . . ,15 enumerates here the latent features. The obtained values are presented in table 2. By
computing the average ratio of KL divergences D(GQC)

KL and D(2Step)
KL , obtained from the GQC network and

2Step latent distributions, respectively, over all features we arrive at

R=
1

16

15∑
i=0

D(GQC)
KL (S (zi) ||B (zi))

D(2Step)
KL (S (zi) ||B (zi))

≈ 79.58. (B3)

Hence, we observe a significant improvement by a factor of 79.58 with the GQC over the 2Step method in
terms of signal and background separation in the latent representations, as quantified by the KL divergence.
This in turn also leads to higher classification accuracy for the GQC network, as presented in section 4.
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