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We present the first numerical implementation of the massive symmetric-momentum-subtraction
(mSMOM) renormalization scheme and use it to calculate the charm-quark mass. Based on ensembles
with three flavors of dynamical domain-wall fermions with lattice spacings in the range 0.11–0.08 fm, we
demonstrate that the mass scale which defines the mSMOM scheme can be chosen such that the
extrapolation has significantly smaller discretization effects than the SMOM scheme. Converting our
results to the MS scheme we obtain m̄cð3 GeVÞ ¼ 1.008ð13Þ GeV and m̄cðm̄cÞ ¼ 1.292ð12Þ GeV.
DOI: 10.1103/PhysRevD.110.054512

I. INTRODUCTION

Nonperturbative massive renormalization schemes, such
as the ones introduced in Ref. [1], yield renormalized
correlators that satisfy vector and axial Ward identities
independent of the value of the quark masses and are
expected to reabsorb some of the lattice artifacts that come
in powers of am and can be large for heavy-quark masses.
These schemes are therefore interesting candidates to
renormalize quantities that are affected by large cutoff
effects, leading to milder extrapolations to the continuum
limit compared to the usual massless schemes that are
currently used.
In this paper, we present the first numerical implementa-

tion of the renormalization conditions that were spelled out
in Ref. [1] and extract the renormalization constants that are
needed in order to compute the renormalized charm-quark
mass in these massive symmetric-momentum-subtraction
(mSMOM) schemes. The schemes are labeled by the
momentum scale of the subtraction point and by the value
of the renormalized quarkmass at which the renormalization
conditions are imposed. Lattice artifacts depend on the
choice of this mass, which can be tuned in order to obtain

flatter extrapolations. We use lattice QCD ensembles gen-
erated by the RBC/UKQCD Collaboration, with 2þ 1
dynamical flavors and inverse lattice spacings ranging from
a−1 ¼ 1.73 to 2.79 GeV. We compute all the lattice
correlators that enter the renormalization conditions and
spell out in detail the workflow to implement and solve the
correct set of equations.
Results in different mSMOM schemes are converted to

MS using one-loop conversion factors and show a pleasing
consistency. The main result of this first study confirms the
theoretical expectation motivating massive schemes. They
provide a (simple) way to absorb some of the mass-
dependent lattice artifacts and yield more reliable extrap-
olations to the continuum limit.
The remainder of this paper is organized as follows. In

Sec. II we remind the reader of the details of the massive
nonperturbative renormalization scheme. In Sec. III we
provide details of our numerical setup before presenting the
details of our analysis and our final results in Sec. IV. We
conclude with an outlook in Sec. V. An early stage of this
analysis was reported in Ref. [2].

II. MASSIVE NONPERTURBATIVE
RENORMALIZATION

Before discussing the numerical analysis that was
performed for this paper, we summarize the main ideas
behind massive renormalization schemes. To keep our
presentation self-contained, we quote below the renormal-
ization conditions defining mSMOM schemes, which were
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originally spelled out in Ref. [1]. To match the numerical
simulations, we work in Euclidean space. In our conven-
tions, bare quantities are written without any suffix, while
their renormalized counterparts are identified by a suffix R.
The renormalization conditions are usually expressed in
terms of amputated correlators of fermion bilinears

Λa
Γðp2; p3Þ ¼ Sðp3Þ−1Ga

Γðp3; p2ÞSðp2Þ−1; ð2:1Þ

where SðpÞ is the fermion propagator,

SðpÞ ¼
Z

d4xe−ip·xhψðxÞψ̄ð0Þi; ð2:2Þ

and Ga
Γðp3;p2Þ ¼ hOa

ΓðqÞψ̄ðp3Þψðp2Þi with Oa
Γ ¼ ψ̄Γτaψ .

The superscript a, which will be dropped henceforth,
denotes that we consider flavor nonsinglet bilinears, with
τa a generic flavor-rotation generator. In the following we
will also suppress the superscript mSMOM unless it is
required to avoid ambiguity.
We choose the same symmetric-momentum configura-

tions as those chosen in the massless SMOM [3] scheme
(which is a generalization of the MOM scheme [4]), i.e.,
q2 ≡ ðp2 − p3Þ2 ¼ p2

2 ¼ p3
3 ¼ μ2, where μ is the renorm-

alization scale. The massive scheme requires the introduc-
tion of another scale m̄R, a renormalized mass at which the
renormalization conditions are imposed. The massless
scheme is recovered in the limit m̄R → 0. For the
mSMOM scheme in Euclidean space the renormalization
conditions, to be evaluated with the symmetric-momentum
configuration imposed and at mR ¼ m̄R, read

1 ¼ 1

12p2
Tr½−iSRðpÞ−1=p�; ð2:3Þ

1 ¼ 1

12mR

�
Tr½SRðpÞ−1� þ

1

2
Tr½ðiq · ΛA;RÞγ5�

�
; ð2:4Þ

1 ¼ 1

12q2
Tr½ðq · ΛV;RÞ=q�; ð2:5Þ

1 ¼ 1

12q2
Tr½ðq · ΛA;R þ 2mRΛP;RÞγ5=q�; ð2:6Þ

1 ¼ 1

12i
Tr½ΛP;Rγ5�; ð2:7Þ

1 ¼ 1

12
Tr½ΛS;R� þ

1

6q2
Tr½2mRΛP;Rγ5=q�: ð2:8Þ

The renormalized quantities are defined as follows:

ψR ¼ Z1=2
q ψ ; mR ¼ Zmm; OΓ;R ¼ ZΓOΓ; ð2:9Þ

where m denotes a quark mass. The renormalized propa-
gator and amputated vertex functions are

SRðpÞ ¼ ZqSðpÞ; ΛΓ;Rðp2;p3Þ ¼
ZΓ

Zq
ΛΓðp2;p3Þ: ð2:10Þ

As discussed in the original publication [1], these con-
ditions ensure that renormalized correlators satisfy the
Ward identities of the continuum theory, which in turn
lead to useful constraints on the renormalization constants,1

namely

ZV ¼ ZA ¼ 1; ZP ¼ ZS; ZmZP ¼ 1: ð2:11Þ

Substituting Eqs. (2.9) and (2.10) into the renormaliza-
tion conditions (2.3)–(2.8) and solving the system of
equations gives access to the renormalization factors Zq,
Zm, ZA, ZV , ZS and ZP. In practice we find it convenient to
replace the renormalization condition (2.3) by a direct
determination of ZA from ratios of conserved and local
axial currents. Combined with Eqs. (2.4)–(2.8) this still
gives access to all the required renormalization constants.
Note that by construction the renormalization constants

in a massive scheme depend on both the coupling and the
dimensionless product am̄, where m̄ is the bare value of the
mass m̄R on a given ensemble and a is the lattice spacing.
The mSMOM schemes are defined by tuning the renor-
malized quark mass to some arbitrary scale m̄R, where the
renormalization conditions need to be satisfied.
The arbitrariness in the choice of m̄R can be turned into a

useful tool when extrapolating lattice QCD results to the
continuum limit. Indeed, the ideal choice of m̄R is deter-
mined by requiring that the observables of interest have a
mild dependence on the lattice spacing in that particular
scheme. Different observables may dictate different values
of m̄R; this is not a problem, since we know how to connect
schemes corresponding to different choices of m̄R to a
common reference scheme such as, e.g., MS, using the
one-loop perturbative expressions in Ref. [1] and in
Appendix B.
The focus of this paper is to compute the renormalized

charm-quark mass in mSMOM, which is defined as

mmSMOM
c;R ðμ; m̄RÞ ¼ lim

a→0
ZmSMOM
m ðg; aμ; am̄ÞðamcÞa−1;

ð2:12Þ

where the mass scale m̄R defining the renormalization
scheme is obtained through

m̄Rðμ; m̄RÞ ¼ lim
a→0

ZmSMOM
m ðg; aμ; am̄Þðam̄Þa−1; ð2:13Þ

1In [1] it was checked that the last condition in Eq. (2.8)
ensured ZS ¼ ZP at one loop in continuum perturbation theory in
the Feynman gauge. For other gauge choices, this condition
should be modified. This renormalization condition is not used in
the analysis presented in this paper.
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and the bare-quark mass in lattice units (am) is the sum of
the input quark mass amq and the additive mass renorm-
alization amres

am≡ ðamq þ amresÞ; ð2:14Þ

ZmSMOM
m ðg; aμ; am̄Þ is the renormalization constant defined

by the renormalization conditions above and the bare mass
of the charm quark is set by requiring that the mass of the
heavy-heavy pseudoscalar meson coincides with the mass
of the physical ηc meson.
After taking the continuum limit, the mSMOM renor-

malized mass can be converted to MS,

mMS
R ðμ̃Þ¼RMS←mSMOMðμ̃;μ;m̄RÞmmSMOM

R ðμ;m̄RÞ; ð2:15Þ

where the dimensionful scale μ̃ stems from dimensional
regularization and will in practice be set equal to μ. The

conversion factor RMS←mSMOM ¼ ZMS
m =ZmSMOM

m is evalu-
ated at one loop in perturbation theory in Appendix B.

III. SIMULATION SETUP AND STRATEGY

We use RBC/UKQCD’s ensembles [5–9] with Iwasaki
gauge action [10,11] and domain-wall fermion action
[12,13]. They include the dynamical effects from degen-
erate up and down quarks as well as the strange quark. The
main ensemble properties are listed in Table I. For each of
the three lattice spacings we have one ensemble with the
Shamir domain-wall kernel [12] (last letter “S”) and one
with the Möbius domain-wall kernel [14–16] (last letter
“M”). The parameters of these kernels are chosen such that
a combined continuum limit with all ensembles is possible
[6]. In addition we have data around the physical charm-
quark mass on the physical pion mass ensemble M0M
which differs from M1M only in pion mass and volume.
We implement the SMOM momentum configuration by

choosing momenta p2 ¼ ðp; p; 0; 0Þ and p3 ¼ ðp; 0; p; 0Þ
where p ¼ 2π

L ðnþ θÞ. Since our aim is to comprehensively
cover the region 2≲ q≲ 3 GeV we use twist angles

θ∈ f0; 0.25; 0.5; 0.75g in combination with Fourier modes
n∈ f3; 4; 5g for the coarse and medium and n∈ f4; 5; 6g
for the fine ensembles.
We map out the parameter space by simulating at several

quark masses amq between the light-quark mass and the
largest quark mass we can reach on a given ensemble while
maintaining good control over the residual-mass determi-
nation and the domain-wall formalism [17]. Since we
expect sea-pion mass and finite volume effects to be
negligible for the determination of the charm-quark mass,
the main numerical analysis is based on the computation-
ally cheaper nonphysical pion mass ensembles. However,
in order to assess these effects, we simulated a small
number of heavy-quark masses in the charm region on the
M0M ensemble which can be directly compared with the
equivalent M1M data points. As we will see in Sec. IVA,
sea-pion mass effects are at the subpermille level.
The chosen quark masses are listed in Table II. The

measurements were carried out using the Grid and Hadrons

libraries [18–20].
For each input quark mass amq we compute vertex

functions [see Eq. (2.1)] as well as several mesonic
flavor-diagonal quark-connected two-point correlation
functions. For the latter we use a mild Jacobi smearing
to improve the overlap with the ground state for heavy
masses, in particular for the pseudoscalar density P, the
midpoint pseudoscalar density J5q [13] and the local (L)
and conserved (C) [6,21,22] versions of the temporal com-
ponent of the axial current. We determine the residual mass
amres and the renormalization constant ZA from the late
time behavior of ratios of these correlation functions via

ameff
resðtÞ ¼

hPJ5qiðtÞ
hPPiðtÞ ; ð3:1Þ

and

Zeff
A ðtÞ ¼ 1

2

�
Cðtþ 1

2
Þ þ Cðt − 1

2
Þ

2LðtÞ þ 2Cðtþ 1
2
Þ

LðtÞ þ Lðtþ 1Þ
�
:

ð3:2Þ
Throughout this work we set the quark mass using the

quark-connected flavor-diagonal pseudoscalar meson Mηh ,
TABLE I. Summary of the main parameters of the ensembles
used in this work. In the ensemble name the first letter (C, M or F)
stands for coarse, medium and fine, respectively. The last letter
(M or S) stands for Möbius and Shamir kernels, respectively.

Name L=a T=a a−1 (GeV) Mπ (MeV) aml ams

C1M 24 64 1.7295(38) 276 0.005 0.0362
C1S 24 64 1.7848(50) 340 0.005 0.04

M0M 64 128 2.3586(70) 139 0.000678 0.02661
M1M 32 64 2.3586(70) 286 0.004 0.02661
M1S 32 64 2.3833(86) 304 0.004 0.03

F1M 48 96 2.708(10) 232 0.002144 0.02144
F1S 48 96 2.785(11) 267 0.002144 0.02144

TABLE II. Heavier input quark masses that were simulated in
addition to aml, 2aml, ams=2 and ams.

Ensemble amq

C1M 0.05, 0.1, 0.15, 0.2, 0.3
C1S 0.05, 0.1, 0.15, 0.2, 0.3, 0.33

M1M 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34
M1S 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34, 0.36, 0.375

F1M 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36
F1S 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36, 0.396
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since the quantity we are ultimately interested in is the
charm-quark mass and the contribution from quark-
disconnected pieces to the mass of the ηc meson has been
estimated to be negligibly small [23]. We explore reference
masses in the range 1

2
MPDG

ηc –MPDG
ηc ¼ 2.9839ð4Þ GeV [24].

The strategy of our calculation is as follows:
(a) For each mass amq on each ensemble, determine amres

and hence am as well as aMηhðamÞ, ZAðg; amÞ,
Zmðg; aμ; amÞ.

(b) Interpolate Zmðg; aμ; amÞ to a common momentum
scale μ̂ to obtain Zmðg; aμ̂; amÞ on all ensembles.

(c) Fix two mass scales: the scale m̄ at which the renorm-
alization conditions are imposed and the quark mass m
to be determined. These do not have to be the same.
In practice we define a set of meson massesMi such

that Mi=MPDG
ηc ∈ f0.5; 0.6; 0.7; 0.75; 0.8; 0.9; 1g. We

interpolate amðaMÞ to each choice of Mi to obtain
ami and similarly interpolate Zmðg; aμ̂; amÞ to obtain
Zmðg; aμ̂; amiÞ. We note that the heaviest two and three
values ofMi are not directly accessible on the C1S and
C1M ensembles, respectively.
Then, we define the mass scale m̄ of the renormal-

ization condition by fixing amesonmass M̄ to be one of
theMi and set the bare-quarkmassm by fixing a meson
mass M to a potentially different Mi.

(d) For the given choice of M and M̄, combine
Zmðg; aμ̂; am̄Þ and am to obtain the right-hand side
of Eq. (2.12) on each ensemble. Take the continuum
limit to obtainmRðμ̂; m̄RÞ. Finally (sinceM and M̄ can
differ), also take the continuum limit to obtain
m̄Rðμ̂; m̄RÞ [cf. Eq. (2.13)]. This last step is required
in order to know the mass scale of the renormalization
condition which is needed to relate it to other schemes
such as SMOM or MS.

(e) Our choice of domain-wall parameters does not allow
for direct simulations at the physical charm-quark
mass on the coarse lattice spacing. Hence we repeat
this procedure for different values of M, but at fixed
M̄. This yields valuesmmSMOM

i;R ðμ̂; m̄RÞ as a function of
Mi, which can be parametrized to finally obtain the
value of mmSMOM

c;R ðμ̂; m̄RÞ.
(f) Finally, repeat the entire analysis for different choices

of μ̂ and M̄ in order to determine the ideal choice of m̄
for a given μ̂.

IV. RESULTS

In this section we carry out the analysis outlined above.

A. From correlators to observables

We first determine amres, ZA and aM on all ensembles
and for each choice of quark mass. The plots in Fig. 1
illustrate the time behavior of the data on the M1M
ensemble [cf. Eqs. (3.1) and (3.2)] from which these
quantities can be determined at late times. As expected

from our previous work [17], we find that, for large quark
masses, the residual mass grows and eventually becomes
unbounded. We conservatively discard any data where this
might be the case and only show data points for which the
residual mass reaches a plateau at late times. We observe
stable plateaus for all data points that are included in the
analysis. Since the data are very precise and the plateaus are
unambiguous, we do not perform fits to the data, but simply
take the midpoint value (rightmost points in the plots in
Fig. 1). Numerical values for all data points are presented in
Tables V–X in Appendix A. Figure 3 shows the spectrum as
a function of the bare-quark mass m. Combining the
determination of ZA for each simulated mass point with
the system of equations (2.4)–(2.8) we obtain the corre-
sponding values of ZmSMOM

m at each mass point for the
simulated renormalization scales μ.
Before performing the required interpolations and con-

tinuum extrapolations, we consider the size of potential

FIG. 1. Representative effective amres (top) and ZA (middle)
and aMηh (bottom) values on the M1M ensemble.
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effects afflicting simulations which do not take place at the
physical pion mass. Table III contrasts the values for aM,
amres and ZA on the M0M and the M1M ensembles for two
choices of the heavy-quark mass that bracket the physical
charm-quark mass. These two ensembles only differ in their
volume and pion mass. We observe that the respective
values on M0M and M1M are compatible with each other
and hence their ratios are compatible with unity. We further
observe that the relative (albeit not statistically resolved)
effect on the hadron mass is at the subpermille level. We
therefore conclude that any chiral effects in the data can be
safely neglected.

B. Interpolations

Having obtained ZmSMOM
m ðg; aμ; amÞ,MðamÞ and am at

each simulated mass point, we now perform the interpo-
lations listed in steps (b) and (c). Given the broad range
covered by our data (cf. Figs. 2 and 3), we perform these
interpolations locally as polynomial fits to the closest data
points. In order to estimate any systematic uncertainties
stemming from these interpolations we perform them in
multiple ways:

(i) linear interpolation between the two closest brack-
eting data points;

(ii) quadratic interpolations between the two data points
which bracket the target value and the nearest other
data point to the left (right);

(iii) a cubic interpolation between the closest four points.
We take the quadratic interpolation with the third data point
closest to the target value as our central value and in
addition to its statistical uncertainty assign half the spread
between these values as a systematic uncertainty. Figure 2
illustrates this for step (b), i.e., the interpolation of Zm at
fixed mass (amq ¼ 0.15) to the scale of μ ¼ 2 GeV. Since
we want to contrast the approach to the continuum limit
between the massless (SMOM) and the massive (mSMOM)
scheme, we also compute ZSMOM

m .
For completeness, we list the numerical values for

ZmSMOM
m and ZSMOM

m at μ ¼ 2 GeV in Tables V–X. We
compute ZSMOM

m only in the light and strange sector and use
these values to extrapolate ZSMOM

m to the massless limit,
prior to applying it.

C. Continuum extrapolations

Having determined am, am̄ and Zmðg; aμ̂; am̄Þ on each
ensemble, we can now perform the continuum limit of the
renormalized quark mass am using the mSMOM scheme at
a renormalization scale μ̂ and mass scale m̄. The most
general ansatz that we consider for our continuum extrap-
olations is given by

mðaΛ; aμ̂Þ ¼ mðμ̂Þ þ Cχamres þ C1ðaΛÞ2; ð4:1Þ

where the coefficient Cχ captures scaling violations stem-
ming from the residual chiral symmetry breaking in our
data. We tried adding a term proportional to a4 but in
practice we find that the term proportional to a4 is
compatible with zero and not needed to describe the data
and we hence do not include it in the ansatz. Contrary to
this, the coefficient Cχ is typically resolved from zero and
tends to be of Oð1Þ. However, the size of amres is typically
small (cf. Tables V–X).
We present an example continuum limit fit in the

top panel of Fig. 4 for the choice M̄ ¼ 0.7 ×MPDG
ηc and

TABLE III. Comparison of observables between the M0M
(Mπ ¼ 139 MeV) and the M1M (Mπ ¼ 286 MeV) ensembles for
two mass points bracketing the physical charm-quark mass.

0.32 M0M M1M M0M/M1M

aM 1.23636(19) 1.23593(61) 1.00035(53)
amres 0.0006613(18) 0.0006617(21) 0.9993(41)
ZA 0.824110(43) 0.824154(95) 0.99995(12)

0.34 M0M M1M M0M/M1M

aM 1.28092(18) 1.28049(61) 1.00033(50)
amres 0.0009049(26) 0.0009004(28) 1.0050(43)
ZA 0.833863(42) 0.833897(100) 0.99996(13)

FIG. 2. Interpolation of Zm to a scale of μ ¼ 2 GeV for various
input quark mass amq on the M1M ensemble. The stars indicate
the value of ZmSMOM

m interpolated to μ̂ ¼ 2 GeV.

C1M
M1M
F1M

C1S
M1S
F1S

FIG. 3. Coverage of the quark mass dependence of our data.
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M ¼ 0.6 ×MPDG
ηc . In addition to the mSMOM data points

(blue circles) we also show the approach to the continuum
limit using the chirally extrapolated value of Zm in the
SMOM scheme (orange diamonds). We clearly see that the
data have smaller discretization effects in the mSMOM
scheme than the SMOM scheme. The continuum extrapo-
lated values are not expected to agree with each other, since
they are not converted to the same scheme yet. However,
when evaluating the conversion factors for the scale and
mass at hand (compare the right-hand panel of Fig. 10 in
Appendix B), we find the conversion factor to be very close
to unity. In order to determine the exact parameters of the
scheme it remains to determine the value of m̄, i.e., to take

the continuum limit where M ¼ M̄. This is shown for the
value 0.7 ×MPDG

ηc in the bottom panel of Fig. 4.
In both plots, the original mSMOM data points are shown

as partially transparent blue symbols; the opaque blue
symbols present the value once the residual-mass contribu-
tion is corrected for. We notice that this only significantly
affects the C1S data point, which is expected since residual
chiral symmetry breaking effects are known to decrease as
the lattice spacing is reduced and when increasing the
Möbius scale which is one for the Shamir kernel and two
for theMöbius kernel we are using.2 In addition, the residual
mass is known to increase as the input quark mass amq

increases as can be seen, e.g., in the top panel of Fig. 1.
In order to assess the systematic uncertainties associated

with the continuum limit extrapolation we repeat the fit for
several variations. In particular Fig. 5 shows this for the
case of the combination of masses ðM; M̄Þ presented in the
top panel of Fig. 4. We consider

(i) fitting all ensembles on which the hadron mass M
can be simulated including the terms proportional to
amres and ðaΛÞ2;

(ii) fitting all except the C1S ensemble (which has by far
the largest amres value) only including the term
proportional to ðaΛÞ2;

(iii) fitting only the Möbius ensembles (which have
smaller amres values) only including the term pro-
portional to ðaΛÞ2.

We quote the first of these fits as our central value and
additionally assign half the spread of the variations as a
systematic uncertainty from the choice of continuum limit.

FIG. 4. Top: example continuum limit extrapolation comparing
the approach to the continuum for the SMOM scheme to the that
of the mSMOM scheme. The quark masses mR (that is being
extrapolated) and m̄R (defining the mSMOM scheme) are chosen
to reproduce mesons of mass 0.6 ×MPDG

ηc and 0.7 ×MPDG
ηc ,

respectively. Bottom: continuum limit determining the renorm-
alization mass scale m̄R at which the renormalization conditions
are imposed.

FIG. 5. Variations of the continuum limit extrapolation pre-
sented in the bottom panel of Fig. 4.

2The residual chiral symmetry breaking of our choice of
Möbius kernel is expected to be the same as that of the Shamir
kernel with twice the extent of the fifth dimension Ls. Since
LsðC1SÞ ¼ 16 and LsðC1MÞ ¼ 24 the C1M ensemble effec-
tively has a 3 times larger extent of the fifth dimension.
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D. Varying the renormalization scales

We stress that the renormalization mass scale m̄R set by
M̄ is a scale that can be varied freely within the range where
we have data. In Fig. 6 we presents fits to the ansatz (4.1)
M ¼ 0.6 ×MPDG

ηc but for a variety of choices of M̄. We
emphasize again that the extrapolated values do not have to

agree as they are still in different schemes. It is however
clearly visible that the approach to the continuum is well
described by a fit linear in a2 but that the slope varies
strongly with the choice of M̄. For the largest values of M̄
we lose coverage on the coarsest ensembles and hence
remove them from the fit. For the remaining analysis we
restrict ourselves to values of M̄ that allow direct simu-
lations on all considered ensembles.
We also vary the renormalization scale μ between 2.0,

2.5 and 3.0 GeV. We observe that for increasing values of μ
the values of M̄ which are required to significantly flatten
the continuum limit are beyond the range where we can
determine m̄ from all three lattice spacings. We therefore
base our final results on continuum limit extrapolations at
μ ¼ 2 GeV and only show the corresponding mSMOM
results obtained from larger scales for comparison
(cf. Table IV).

E. The charm-quark mass

We now vary the choice of M using the various Mi and
repeat the continuum limit fit for each case, keeping M̄
fixed in order to remain in the same scheme. For each
choiceMi we assemble the error budget of this fit to obtain
values mmSMOM

i ð2 GeV; m̄Þ. We now combine these results
to perform an inter- or extrapolation to the physical charm-
quark mass. This is not strictly speaking necessary, since
we already have a direct result for this quark mass from the
continuum limit at Mi ¼ MPDG

ηc , however since this con-
tinuum limit is only based on the medium and fine
ensembles we prefer to supplement it by a parametrization
using different values (in the continuum) of mR

i =Mi as a
function of Mi. This is shown in Fig. 7. Of our choices for
Mi we consider the ranges Mi=MPDG

ηc [0.6, 1.0], [0.7, 1.0],
[0.6, 0.9] and [0.6, 0.8]. In each case we parametrize the
dependence of the quark mass as a polynomial in Mi via

FIG. 6. Variations of the renormalization mass scale M̄ at fixed
value ofM. The data are fitted to Eq. (4.1) and the plot displays it
after correcting to vanishing residual mass. The black data points
show the approach to the continuum for the case of the massless
SMOM scheme. We stress that different values of m̄ define
different schemes, hence these numbers are not expected to agree
in the continuum limit.

TABLE IV. Summary of our final results for the charm-quark mass. We quote the renormalization mass scale m̄mSMOM
R defining the

given mSMOM scheme, as well as the charm-quark mass in that scheme, converted to MS at the same scale and to MS at m̄c. For
comparison we also quote the results obtained from the SMOM renormalization conditions. All quark masses are given in units of GeV.

μ=GeV M̄=MPDG
ηc m̄Rðμ; m̄RÞ mRI

c;Rðμ; m̄RÞ m̄MS
c ðμÞ m̄MS

c ð3 GeV ← μÞ m̄MS
c ðm̄cÞ

2.0 0.60 0.5046(15) 1.127(7)(12) 1.112(7)(12)(4) 1.005(6)(11)(4) 1.289(6)(10)(3)
2.0 0.70 0.6559(16) 1.129(7)(12) 1.115(7)(12)(4) 1.008(6)(11)(4) 1.292(5)(10)(4)
2.0 0.75 0.7371(16) 1.130(6)(13) 1.118(6)(13)(4) 1.010(6)(11)(4) 1.294(5)(10)(4)
2.0 SMOM � � � 1.136(9)(12) 1.114(9)(12) 1.007(8)(10) 1.291(8)(10)

2.5 0.60 0.4698(14) 1.052(7)(14) 1.038(7)(14)(3) 0.995(7)(14)(3) 1.280(6)(13)(3)
2.5 0.70 0.6124(16) 1.057(6)(15) 1.043(6)(15)(3) 1.000(6)(14)(3) 1.284(6)(13)(3)
2.5 0.75 0.6894(16) 1.059(6)(15) 1.046(6)(15)(3) 1.003(6)(15)(3) 1.287(5)(13)(3)
2.5 SMOM � � � 1.066(11)(12) 1.048(10)(12) 1.004(10)(12) 1.288(9)(11)

3.0 0.60 0.4450(14) 0.998(7)(15) 0.986(7)(15)(3) 0.986(7)(15)(3) 1.271(6)(14)(2)
3.0 0.70 0.5811(15) 1.004(6)(15) 0.992(6)(15)(3) 0.992(6)(15)(3) 1.277(5)(14)(2)
3.0 0.75 0.6549(16) 1.008(6)(16) 0.995(6)(16)(3) 0.995(6)(16)(3) 1.280(5)(15)(2)
3.0 SMOM � � � 1.018(8)(12) 1.002(8)(12) 1.002(8)(12) 1.287(8)(11)
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mR

M
¼ αM−1 þ β þ γM: ð4:2Þ

The result to these variations is shown in the right-hand
panel of Fig. 7. We take the direct determination at the
charm quark mass (i.e., Mi ¼ MPDG

ηc ) as central value and
in addition to its uncertainty we conservatively associate a
systematic uncertainty of half the spread of the variation.
These fit results that determine this uncertainty are shown
on the right-hand side of Fig. 7. We quote the two
uncertainties separately, since the latter only arises since
we require our final number to be based on continuum
limits from more than two lattice spacings. With addi-
tional finer ensembles, this last uncertainty would be
completely removed, since a continuum limit with three
lattice spacings could be obtained directly at the charm-
quark mass. We then repeat the analysis for different
choices of M̄ (and hence m̄R) as well as the massless
SMOM scheme.
Finally, it remains to convert these results into a com-

mon scheme where they can be directly compared to each

other. Using the conversion factor RMS←mSMOM
m given in

Eq. (B18), we can convert the results frommmSMOM
c;R ðμ; m̄RÞ

to mMS
c;RðμÞ. Unfortunately, for the mSMOM scheme, this is

currently only known at one loop. In order to quantify the
truncation effects in the temporary absence of perturbative
two-loop calculations, we investigate the difference
between one- and two-loop corrections for the massless
scheme [25,26] and assign the relative difference between
them as a systematic truncation uncertainty. In practice we
find that for μ ¼ 2.0 GeV (2.5, 3.0 GeV) the difference
between one- and two-loop conversion to MS is a 0.38%
(0.31%, 0.27%) effect. Within the MS scheme we then run
the results up to 3 GeVas well as down to the charm-quark

scale to quote m̄cðm̄cÞ. To compute the strong coupling
and running of the MS quark mass we make use of RunDec
[27–29], which in turn relies on five-loop results for the β
function and for the mass anomalous dimension [30–35].
We list these results for some choices of M̄ and μ in

Table IV where the first uncertainty is the result from the
pure mSMOM calculation at a chosen quark mass, the
second uncertainty list encapsulates the charm-mass inter-
polation, and the last uncertainty estimates the truncation
effect due to performing the matching at one loop. In
principle one could also quote a fourth uncertainty encap-
sulating the uncertainties of the inputs to the running and
the truncation of the running factor, however these are
found to be negligible.
Our final results for the charm-quark mass converted

to MS and then (where necessary) run to 3 GeV within
the MS scheme are shown in Fig. 8. As mentioned above, in
the massive scheme the continuum limit is well controlled
for determinations at μ ¼ 2 but values of M̄ which
significantly decrease the slope of the continuum limit
are not reachable on our current dataset for larger values
of μ and we therefore exclude them. We find good agree-
ment between the SMOM and the mSMOM schemes
as well as among different values for m̄R within the
mSMOM scheme. As our final number we quote our
results obtained from mSMOM at μ̂ ¼ 2 GeV from the
choice M̄ ¼ 0.7MPDG

ηc which corresponds to m̄mSMOM
R ¼

0.6559ð16Þ GeV. We find

mmSMOM
c;R ð2 GeV; m̄RÞ ¼ 1.129ð7Þð12Þ GeV; ð4:3Þ

mMS
c;Rð2 GeVÞ ¼ 1.115ð7Þð12Þð4Þ GeV; ð4:4Þ

FIG. 7. Extrapolation of different intervals of the various
reference values M to the physical value MPDG

ηc at fixed M̄.
The right side shows results for these interval choices. The red
data point to the very right and the corresponding band represents
our final value of mc;R in the mSMOM scheme at M̄ ¼ 0.7MPDG

ηc .

FIG. 8. Results for the continuum-extrapolated renormalized
charm-quark mass converted to MS from regularization invariant
RI/SMOM and RI/mSMOM with variation in M̄ at renormaliza-
tion scale of 3 GeV using results from μ ¼ 2.0; 2.5; 3.0 GeV.
Numerical values are presented in Table IV.
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mMS
c;Rð3 GeVÞ ¼ 1.008ð6Þð11Þð4Þ GeV; ð4:5Þ

mMS
c;RðmMS

c;RÞ ¼ 1.292ð5Þð10Þð4Þ GeV; ð4:6Þ

mMS
c;Rð1.292 GeVÞ ¼ 1.292ð7Þð14Þð6Þ GeV: ð4:7Þ

The first uncertainty comes from the determination directly
at the charm-quark mass, the second from the inter-/
extrapolation taking smaller than physical reference values,
and the third from the perturbative truncation uncertainty
when converting to MS. In Eq. (4.6) we give the MS charm-
quark mass evaluated at its own scale, that is, the μ for

which mMS
c;RðμÞ ¼ μ, starting from the MS charm-quark

mass, with error, at the fixed scale 2 GeV in (4.4). Since this
mass and scale are identical, with identical uncertainties,
we also give, in Eq. (4.7), the MS charm-quark mass run
to the fixed scale 1.292 GeV. We have not applied any
additional uncertainties associated with the running
within MS.

F. Comparison to the literature

The charm-quark mass has been previously computed by
various collaborations in various schemes. In Fig. 9 we
compare our result to the results in the literature which enter
the FLAG average in the MS scheme at 3 GeV.3 We find
good agreement with other Nf ¼ 2þ 1 calculations and
obtain similar uncertainties. The leading uncertainty in our
calculation arises from the fact that not all the ensembles

we currently use allow for direct simulation at the physical
charm-quark mass. Using an additional finer lattice spacing
will allow one to eliminate this uncertainty in the future.

V. SUMMARY AND OUTLOOK

We have presented the first numerical implementation of
the massive nonperturbative renormalization scheme which
was first suggested in Ref. [1]. We find that varying the
mass scale at which the renormalization conditions are
imposed can be used to significantly modify the approach
to the continuum limit and in particular to flatten it. We
observe good agreement between different renormalization
mass scales (and hence continuum limit approaches),
further substantiating that the continuum limit is controlled.
This scheme can be applied to any observable and hence

can be used to provide more reliable continuum limits. A
nontrivial test is that the continuum results obtained with
different choices of the renormalization mass scale should
agree once converted to a common renormalization
scheme, such as MS. This idea should be useful for any
observable with large discretization effects compared to the
desired statistical precision.
The joint continuum limit fits to the chosen Möbius and

Shamir domain-wall kernels with very similar lattice spac-
ings agree well with only fitting the Möbius ensembles and
(at the present level of precision) are well described by an
ansatz that is linear in a2. We obtain the charm-quarkmass in
the MS scheme at 3 GeV with a precision of 1.3% in good
agreement with the literature. This uncertainty can be
significantly reduced by using additional finer ensembles.
By direct computation, we find the sea-pion effect on the
charmed meson massMηc between a pion mass of 286 MeV
and the physical pion mass to be below the permille level.
For the future, we envisage applications of the mSMOM

scheme to other observables and an extension to four quark
operators.
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APPENDIX A: NUMERICAL RESULTS

In Tables V–X we summarize the numerical data for
the residual mass ZA and the hadron mass aM as well
as the renormalization constant Zm interpolated to a scale
of 2 GeV.

TABLE V. Summary of numerical results on the C1M ensemble used for the analysis. The values of Zm are given
after interpolation to μ ¼ 2 GeV.

C1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0050 0.601(12) 0.1642(34) 0.71302(34) 1.5754(65) 1.5428(15)
0.0100 0.574(11) 0.2203(22) 0.71337(19) 1.6088(36) 1.5442(12)
0.0181 0.5330(95) 0.2886(14) 0.71443(12) 1.6211(22) 1.5425(11)
0.0362 0.4642(79) 0.40331(87) 0.717257(77) 1.6232(15) 1.5362(10)
0.0500 0.450(17) 0.4769(22) 0.71979(19) 1.6185(14) � � �
0.1000 0.361(12) 0.6877(14) 0.72921(11) 1.5996(12) � � �
0.1500 0.3210(100) 0.8637(11) 0.74087(11) 1.5725(10) � � �
0.2000 0.3172(94) 1.01971(85) 0.75528(13) 1.53813(93) � � �
0.3000 0.599(16) 1.28930(50) 0.79647(16) 1.44377(74) � � �

TABLE VI. Summary of numerical results on the C1S ensemble used for the analysis. The values of Zm are given
after interpolation to μ ¼ 2 GeV.

C1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0050 3.162(19) 0.1885(29) 0.71796(44) 1.3145(75) 1.5410(19)
0.0100 3.085(18) 0.2367(21) 0.71822(28) 1.4381(35) 1.5411(14)
0.0200 2.938(16) 0.3129(15) 0.71942(17) 1.5245(18) 1.5392(12)
0.0400 2.720(12) 0.4304(10) 0.72235(12) 1.5706(12) 1.5325(12)
0.0500 2.644(22) 0.4829(18) 0.72413(27) 1.5772(14) � � �
0.1000 2.427(15) 0.6904(14) 0.73344(23) 1.5763(12) � � �
0.1500 2.420(11) 0.8636(11) 0.74507(19) 1.5542(11) � � �
0.2000 2.6192(92) 1.01733(94) 0.75960(15) 1.5210(10) � � �
0.3000 4.530(18) 1.28409(79) 0.80194(14) 1.42069(78) � � �
0.3300 6.455(18) 1.35527(38) 0.821474(90) 1.37464(67) � � �

TABLE VII. Summary of numerical results on the M1M ensemble used for the analysis. The values of Zm are
given after interpolation to μ ¼ 2 GeV.

M1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0040 0.3116(61) 0.1196(26) 0.74376(24) 1.5167(51) 1.5743(21)
0.0080 0.3018(56) 0.1651(16) 0.74421(13) 1.5635(26) 1.5722(23)
0.0133 0.2907(51) 0.2113(12) 0.744798(86) 1.5820(20) 1.5709(20)
0.0266 0.2709(39) 0.29939(79) 0.746330(56) 1.5955(18) 1.5667(18)
0.0500 0.2527(54) 0.4178(17) 0.749495(88) 1.5970(16) � � �
0.1000 0.2414(40) 0.6163(11) 0.757548(60) 1.5851(15) � � �
0.1500 0.2523(35) 0.78311(79) 0.767843(47) 1.5612(14) � � �
0.2250 0.3173(27) 1.00082(63) 0.788084(41) 1.5093(11) � � �
0.3000 0.5277(20) 1.19017(57) 0.815321(43) 1.44227(90) � � �
0.3200 0.6634(21) 1.23610(64) 0.824062(46) 1.42193(84) � � �
0.3400 0.8998(26) 1.28063(63) 0.833810(56) 1.39986(79) � � �
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TABLE VIII. Summary of numerical results on the M1S ensemble used for the analysis. The values of Zm are
given after interpolation to μ ¼ 2 GeV.

M1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0040 0.6727(72) 0.1290(24) 0.74486(27) 1.5055(58) 1.5720(26)
0.0080 0.6561(64) 0.1714(16) 0.74542(15) 1.5557(28) 1.5708(21)
0.0150 0.6319(55) 0.2283(11) 0.746212(91) 1.5802(19) 1.5690(19)
0.0300 0.5977(42) 0.32118(69) 0.747987(58) 1.5930(18) 1.5639(18)
0.0500 0.5767(52) 0.42023(76) 0.75062(11) 1.5951(18) � � �
0.1000 0.5479(35) 0.61780(44) 0.758721(100) 1.5838(17) � � �
0.1500 0.5602(29) 0.78382(43) 0.769158(89) 1.5596(15) � � �
0.2250 0.6677(29) 1.00056(52) 0.789767(76) 1.5066(13) � � �
0.3000 1.0409(41) 1.18880(56) 0.817587(74) 1.43775(99) � � �
0.3200 1.2562(65) 1.23385(41) 0.826456(79) 1.41695(97) � � �
0.3400 1.6053(82) 1.27801(40) 0.836317(81) 1.39437(87) � � �
0.3600 2.189(11) 1.32043(39) 0.847392(85) 1.36951(81) � � �
0.3750 2.936(12) 1.35187(55) 0.857047(90) 1.34809(77) � � �

TABLE IX. Summary of numerical results on the F1M ensemble used for the analysis. The values of Zm are given
after interpolation to μ ¼ 2 GeV.

F1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0021 0.2399(56) 0.0865(21) 0.75927(21) 1.4816(57) 1.5797(23)
0.0043 0.2390(52) 0.1172(16) 0.75952(11) 1.5229(31) 1.5802(21)
0.0107 0.2343(43) 0.1795(10) 0.760226(53) 1.5766(21) 1.5792(19)
0.0214 0.2286(36) 0.25287(54) 0.761281(42) 1.5924(20) 1.5759(18)
0.0330 0.2244(31) 0.31620(38) 0.762536(41) 1.5942(19) � � �
0.0660 0.2201(21) 0.46183(32) 0.766829(40) 1.5935(19) � � �
0.0990 0.2248(15) 0.58391(32) 0.772132(39) 1.5838(18) � � �
0.1320 0.2378(12) 0.69368(30) 0.778456(38) 1.5683(16) � � �
0.1980 0.29064(77) 0.88979(25) 0.794371(35) 1.5243(14) � � �
0.2640 0.39970(57) 1.06271(21) 0.815121(32) 1.4682(11) � � �
0.3300 0.66808(62) 1.21606(19) 0.841614(31) 1.40308(87) � � �
0.3600 1.0280(12) 1.27967(19) 0.856367(32) 1.36962(80) � � �

TABLE X. Summary of numerical results on the F1S ensemble used for the analysis. The values of Zm are given
after interpolation to μ ¼ 2 GeV.

F1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0021 0.9769(95) 0.0994(18) 0.76231(18) 1.4979(67) 1.5802(18)
0.0043 0.9722(88) 0.1263(13) 0.76263(11) 1.5265(38) 1.5809(18)
0.0107 0.9565(62) 0.18387(86) 0.763139(55) 1.5759(23) 1.5802(17)
0.0214 0.9393(43) 0.25453(57) 0.764180(44) 1.5918(19) 1.5768(17)
0.0330 0.9291(36) 0.31626(41) 0.765486(42) 1.5935(20) � � �
0.0660 0.9188(24) 0.45975(34) 0.769873(38) 1.5923(19) � � �
0.0990 0.9251(18) 0.58074(34) 0.775231(37) 1.5822(17) � � �
0.1320 0.9463(14) 0.68965(34) 0.781619(36) 1.5662(16) � � �
0.1980 1.0427(11) 0.88429(32) 0.797730(37) 1.5208(13) � � �
0.2640 1.2577(11) 1.05584(28) 0.818823(38) 1.4630(10) � � �
0.3300 1.7485(18) 1.20763(25) 0.845736(38) 1.39618(82) � � �
0.3960 3.1873(46) 1.34062(22) 0.880386(40) 1.31942(65) � � �
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APPENDIX B: MASS CONVERSION FACTOR

Here we determine the mSMOM to MS conversion
factor for the mass at one loop in continuum perturbation
theory, with an arbitrary choice of the gauge parameter ξ.
We work in Minkowski space, with fermion propagator

SðpÞ ¼ i
=p −m − ΣðpÞ þ iϵ

: ðB1Þ

We use dimensional regularization in d ¼ 4 − 2ϵ dimen-
sions, denoting by μ̃ the dimensionful scale introduced
(to distinguish it from the scale μ defining the mSMOM
symmetric-momentum point). We compute the fermion
self-energy to find the wave function renormalization and

then determine ZmSMOM
m by using the mSMOM renormal-

ization from Eq. (2.4), which in Minkowski space reads

1 ¼ 1

12mR

�
Tr½−iSRðpÞ−1�p2¼−μ2 −

1

2
Tr½q · ΛA;Rγ5�sym

�
:

ðB2Þ

The conversion factor is given by

RMS←mSMOM
m ¼ ZMS

m =ZmSMOM
m : ðB3Þ

The one-loop self-energy integral is

−iΣð1ÞðpÞ ¼ −g2μ̃2ϵCF

Z
ddk
ð2πÞd

�
γμð=p − kþmÞγμ
k2ððp − kÞ2 −m2Þ − ð1 − ξÞ kð=p − kþmÞk

ðk2Þ2ððp − kÞ2 −m2Þ
�
; ðB4Þ

where CF ¼ 4=3 is the SU(3) quadratic Casimir operator in the fundamental representation. This can be evaluated by
standard techniques, using Mathematica [49] to perform the Feynman-parameter integrals. The result is

Σð1ÞðpÞ ¼ α

4π
CF

�
=pξ

�
−
1

ϵ̄
− 1þ uþ u2 ln

�
u

1þ u

�
þ lnð1þ uÞ þ lnðμ2=μ̃2Þ

�

þm

�
4þ 2ξþ ð3þ ξÞ

�
1

ϵ̄
þ u ln

�
u

1þ u

�
− lnð1þ uÞ − lnðμ2=μ̃2Þ

���

¼ α

4π
CF½=pAξ þmBξ�; ðB5Þ

where we have set u ¼ m2=μ2 and have defined

1

ϵ̄
≡ 1

ϵ
− γE þ lnð4πÞ: ðB6Þ

When ξ ¼ 1 the result for Σð1ÞðpÞ above agrees with Eq. (37) in Ref. [1]. From this, the mSMOM wave function
renormalization constant, up to one loop, is

ZmSMOM
q ¼ 1 −

α

4π
CFAξ: ðB7Þ

Now write the one-loop contribution to an amputated bilinear vertex as Λð1Þ
Γ ¼ Λð1Þ

Γ;ξ¼1 þ Λð1Þ
Γ;ξ≠1, with

Λð1Þ
Γ;ξ¼1 ¼ −ig2μ̃2ϵCF

Z
ddk
ð2πÞd

γμð=p3 − kþmÞΓð=p2 − kþmÞγμ
k2ððp3 − kÞ2 −m2Þððp2 − kÞ2 −m2Þ ; ðB8Þ

Λð1Þ
Γ;ξ≠1 ¼ ig2μ̃2ϵCFð1 − ξÞ

Z
ddk
ð2πÞd

kð=p3 − kþmÞΓð=p2 − kþmÞk=k2
k2ððp3 − kÞ2 −m2Þððp2 − kÞ2 −m2Þ : ðB9Þ

The renormalization condition above requires us to compute Tr½q · Λð1Þ
A γ5�, with Γν

A ¼ γνγ5. By tracing the numerators of
the two integrands for ξ ¼ 1 and ξ ≠ 1, we see that

Tr½Λð1Þ
A;ξ≠1γ5� ¼ −

1 − ξ

d
Tr½Λð1Þ

A;ξ¼1γ5�: ðB10Þ
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Hence we have to evaluate only the ξ ¼ 1 (Feynman gauge) term for Tr½Λð1Þ
A;ξ¼1γ5�. Using the notation

NΓ ¼ γμð=p3 − kþmÞΓð=p2 − kþmÞγμ; ðB11Þ

we have

Tr½q · NAγ5� ¼ 12mdq2 ðB12Þ

and we learn that Tr½q · Λð1Þ
A;ξ¼1γ5� can be expressed in terms of the finite integral

−ig2μ̃2ϵCF

Z
ddk
ð2πÞd

1

k2ððp3 − kÞ2 −m2Þððp2 − kÞ2 −m2Þ ¼ −
α

4π
CF

1

μ2
C0ðm2=μ2Þ; ðB13Þ

where C0ðuÞ comes from a Feynman-parameter integral and is given by

C0ðuÞ ¼
2iffiffiffi
3

p
�
Li2

�
−iþ ffiffiffi

3
p

ffiffiffi
3

p
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p
�
−Li2

�
iþ ffiffiffi

3
p

ffiffiffi
3

p
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p
�
þLi2

�
−iþ ffiffiffi

3
p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p þ ffiffiffi
3

p
�
−Li2

�
iþ ffiffiffi

3
p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p þ ffiffiffi
3

p
��

: ðB14Þ

Since the result is finite, we can set d ¼ 4 and find

Tr½q · Λð1Þ
A γ5�sym ¼

�
1 −

1 − ξ

4

�
Tr½q · Λð1Þ

A;ξ¼1γ5�sym ¼ 12m
α

4π
CFð3þ ξÞC0ðm2=μ2Þ: ðB15Þ

Now we have all we need to evaluate ZmSMOM
m from the renormalization condition in (B2), which we rewrite as

ZmSMOM
m ¼ lim

mR→m̄

1

12m
1

ZmSMOM
q

�
Trð−iSðpÞ−1Þp2¼−μ2 −

1

2
ZmSMOM
A Trðq · ΛAγ5Þsym

�
: ðB16Þ

Using the results in (B5), (B7) and (B15), together with (inMinkowski space) iSðpÞ−1 ¼ =p −m − ΣðpÞ, shows that to one loop,

ZmSMOM
m ¼ 1þ α

4π
CF

�
Aξ þ Bξ −

3þ ξ

2
C0ðm̄2=μ2Þ

�

¼ 1þ α

4π
CF

�
3
1

ϵ̄
þ ð4þ ξÞ − 3þ ξ

2
C0ðuÞ − 3 lnðμ2=μ̃2Þ

þ ξ

�
uþ u2 ln

�
u

1þ u

��
þ ð3þ ξÞu ln

�
u

1þ u

�
− 3 lnð1þ uÞ

�
; ðB17Þ

where now u ¼ m̄2=μ2. Finally, the conversion factor is

RMS←mSMOM
m ¼ 1þ α

4π
CF

�
−ð4þ ξÞ þ 3þ ξ

2
C0ðuÞ þ 3 lnðμ2=μ̃2Þ þ 3 lnð1þ uÞ

− ξ

�
uþ u2 ln

�
u

1þ u

��
− ð3þ ξÞu ln

�
u

1þ u

��
: ðB18Þ

When m̄ → 0 (u → 0), this agrees with Eq. (24) in Sturm et al. [3], after setting μ̃ ¼ μ. For ξ ¼ 1 the result for ZmSMOM
P ¼

1=ZmSMOM
m reproduces the Feynman-gauge result in Ref. [1]. We also computed ZmSMOM

P to one-loop order directly from the
renormalization condition of Eq. (2.7) (in Minkowski space) and confirmed that ZmSMOM

P ¼ 1=ZmSMOM
m for arbitrary ξ.

The lattice computations are performed using Landau-gauge-fixed configurations and hence we need the conversion
factor in Landau gauge, ξ ¼ 0,

RMS←mSMOM
m ¼ 1þ α

4π
CF

�
−4þ 3

2
C0ðuÞ þ 3 lnðμ2=μ̃2Þ þ 3 lnð1þ uÞ − 3u ln

�
u

1þ u

��
: ðB19Þ
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In Fig. 10, we show plots of the mass conversion factor as a function of m̄, in both Feynman and Landau gauge for two
choices of matching scale μ (taking μ̃ ¼ μ).
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