

Measurements of top quark production cross-sections with the ATLAS detector

Marco Vanadia, on behalf of the ATLAS collaboration ICHEP 2024 July 18th 2024, Praga (Czech Republic)

<u>Top quark</u>:

- **Heaviest** elementary particle: special connection with Higgs Boson
- $au_{top} \ll 1/\Lambda_{QCD} \rightarrow quasi-free particle$
- Enters in fundamental **SM** mechanisms
- Portal for **new physics**? (BSM)

<u>Measuring top cross section (σ)</u>:

- Many processes, several orders of magnitude
- Test for precision QCD/EW **predictions**, for MC **simulations**
- Study **fragmentation**, jet **substructure**, ...
- Provide inputs for fundamental SM parameters (e.g. m_{top}, α_s, V_{tb})
- Inputs for **PDFs**
- **Background** description for BSM

Top properties & mass @ ATLAS: Pavol Strizenec's talk

Top pairs σ measurements

<u>Jet observables in tt @ 13 TeV, full run-2</u>

NEW

arXiv:2406.19701 submitted to JHEP

- ℓ +*jets* selection; $t\bar{t}$, $t\bar{t}$ +1 jet, $t\bar{t}$ +2 jets
- Focus on **jets observables**, sensitive to ISR/FSR
- Pseudo-top reconstruction algorithm:
 - 2 highest p_T *b*-tagged jets: *b*-jets
 - 2 non-tagged jets with m_{ii} closest to m_{w} : *W*-jets
 - Neutrino from $E_T^{miss} + m_W^{"}$ constraint
 - W_{lep} and W_{had} can be thus reconstructed
 - Highest p_T jets not used in algorithm identified as **ISR jets** in $t\bar{t}$ +1 jet, $t\bar{t}$ +2 jets regions
- **Particle-level (Iterative Bayesian Unfolding, IBU)** differential cross sections
- Dominant uncertainties: *b*-tagging, jet energy scale/reso, modelling, background (depending on bin)

<u>Jet observables in tt @ 13 TeV, full run-2</u>

arXiv:2406.19701 submitted to JHEP

- Results compared with NLO+PS MC predictions
- Comparison also with **NNLO+PS setup** (MINNLOPS)
 - data/prediction improvement in several observables Ο
 - slightly worse description of $p_{\tau}^{jet-rad2}$ 0

pb/GeV

dσ/dp_T^{jet-W1} [

10

10

10

10

10-6

ATLAS

 Data POWHEG+PYTHIA8

√s = 13 TeV.140 fb $pp \rightarrow t\bar{t} (\rightarrow \ell + jets)$

POWHEG+HERWIG7

aMC@NLO+HERWIG7 ••••• SHERPA 2.2.12

1500

\~\~\~\~\~\~\~\~\~\~\~\~\~\~\~\~\~\~

p_T^{jet-W1} [GeV]

2000

2000 $p_{\tau}^{\text{jet-W1}}$ [GeV]

<u>Jet observables in tt @ 13 TeV, full run-2</u>

arXiv:2406.19701 submitted to JHEP

Data-MC agreement for normalised $\boldsymbol{\sigma}$

Data-MC agreement is quantified with a χ^2 calculated both for absolute and normalised cross sections for all observables

Prediction		Pwg+Py8		PwG+Hw7		aMC@NLO+Hw7		Sherpa 2.2.12		Pwg+Py8 MiNNLOPS	
Observable	NDF	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	<i>p</i> -value	χ^2	p-value
$p_{\mathrm{T}}^{\mathrm{jet-W1}}$	9	12.0	0.21	16.0	0.074	13.0	0.19	19.0	0.024	14.0	0.13
y ^{jet-W1}	9	63.0	< 0.01	76.0	< 0.01	65.0	< 0.01	56.0	< 0.01	13.0	0.17
$p_{\mathrm{T}}^{\mathrm{jet-W2}}$	7	7.9	0.34	9.8	0.20	8.0	0.33	13.0	0.064	8.2	0.31
y ^{jet-W2}	9	134.0	< 0.01	220.0	< 0.01	219.0	< 0.01	103.0	< 0.01	25.0	< 0.01
$ \Delta y^{\text{jet-W1}-\text{jet-W2}} $	9	7.0	0.63	8.2	0.52	7.9	0.54	6.1	0.73	5.2	0.81
$ \Delta \phi^{\text{jet-W1} - \text{jet-W2}} $	9	9.5	0.39	12.0	0.21	13.0	0.17	11.0	0.25	8.7	0.47
$p_{\mathrm{T}}^{\mathrm{jet-radI}}$	10	9.4	0.50	9.5	0.48	8.5	0.58	10.3	0.42	12.0	0.29
y ^{jet-rad1}	9	49.0	< 0.01	80.0	< 0.01	68.0	< 0.01	42.0	< 0.01	21.0	0.011
$ \Delta \phi^{\text{toplep} - \text{jet-rad1}} $	6	2.8	0.83	3.0	0.80	2.7	0.85	2.9	0.82	2.5	0.87
$ \Delta \phi^{\text{tophad} - \text{jet-rad1}} $	6	2.6	0.86	2.9	0.82	2.2	0.90	2.6	0.85	2.1	0.91
$ \Delta \phi^{\text{jet-W1}-\text{jet-rad1}} $	9	7.7	0.56	11.0	0.27	6.3	0.71	8.6	0.47	5.6	0.78
$m^{t\bar{t} - jet-rad1}$	7	9.1	0.24	9.8	0.20	7.9	0.35	7.8	0.35	8.2	0.31
$p_{\mathrm{T}}^{\mathrm{jet-rad2}}$	8	12.0	0.13	13.0	0.11	11.0	0.22	10.5	0.23	14.0	0.072
y ^{jet-rad2}	9	24.0	< 0.01	45.0	< 0.01	38.0	< 0.01	30.0	< 0.01	16.0	0.069
$ \Delta y^{\text{jet-rad1} - \text{jet-rad2}} $	9	5.6	0.78	15.0	0.090	7.7	0.57	5.9	0.75	6.4	0.70
$ \Delta \phi^{\text{jet-rad1} - \text{jet-rad2}} $	9	25.0	< 0.01	69.0	< 0.01	33.0	< 0.01	15.0	0.084	26.0	< 0.01
$ \Delta \phi^{\text{toplep}-\text{jet-rad2}} $	6	12.0	0.072	15.0	0.018	12.0	0.062	13.0	0.036	8.5	0.21
$ \Delta \phi^{\text{tophad} - \text{jet-rad2}} $	6	4.7	0.59	5.5	0.49	4.8	0.57	4.6	0.59	2.6	0.86
$ \Delta \phi^{\text{jet-W1}-\text{jet-rad2}} $	9	12.0	0.23	22.0	< 0.01	18.0	0.040	14.0	0.13	11.0	0.26
m ^{jet-rad1 – jet-rad2}	8	14.0	0.094	16.0	0.042	12.0	0.15	10.0	0.26	14.0	0.085

Observation of tt in p+Pb @ 8.16 TeV

arXiv:2405.05078 Submitted to JHEP

- tt in *HI* different wrt *pp* due to:
 - initial state (nPDFs vs PDFs)
 - **final** state (QGP properties)
- *p+Pb* provides nPDF data in poorly constrained **high x** region
- MC/data overlay for better underlying event description

Sauraa	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$				
Source	unc. up [%]	unc. down [%]			
Jet energy scale	+4.6	-4.1			
$t\bar{t}$ generator	+4.5	-4.0			
Fake-lepton background	+3.1	-2.8			
Background	+3.1	-2.6			
Luminosity	+2.8	-2.5			
Muon uncertainties	+2.3	-2.0			
W+jets	+2.2	-2.0			
<i>b</i> -tagging	+2.1	-1.9			
Electron uncertainties	+1.8	-1.5			
MC statistical uncertainties	+1.1	-1.0			
Jet energy resolution	+0.4	-0.4			
tī PDF	+0.1	-0.1			
Systematic uncertainty	+8.3	-7.6			

- ℓ +*jets* and $\ell\ell$ channels
- **6 regions** depending on ℓ and b-jet multiplicity
- μ_{tt} from **binned likelihood fit** to $H_T^{\ell,j}$, i.e. scalar sum of lepton and jets p_T

Observation of tt in p+Pb@ 8.16 TeV

arXiv:2405.05078 Submitted to JHEP

$$\sigma_{t\bar{t}} = \mu_{t\bar{t}} \cdot A_{\rm Pb} \cdot \sigma_{t\bar{t}}^{\rm th}$$

- comparisons with *NLO MCFM* scaled to NNLO QCD σ for different **nPDF sets**
- σ measured with 9% uncertainty
- Compatible with CMS and with extrapolated pp σ

- Results in 6 regions and combined
- $> 5\sigma$ significance
- first observation in $\ell\ell$ channel

8

<u>Jet substructure in tt @ 13 TeV, full run-2</u>

- **Boosted** hadronic decays of tops → **large jets**
- **Substructure** of jets: sensitive to precision modelling of QCD effects, important for taggers
- Measurement performed in *l*+*jets* and *all-had*

PRD 109 (2024) 112016

ℓ +jets:

- use small-R jets + large **reclustered** (RC) jets
- top-jet p_T>350 GeV
- Bkg from MC (except fake leptons)

all-had:

- large-R trimmed jets + variable-R track jets for b-tagging
- top jets $p_T > 500, 350 \text{ GeV}$
- **top tagging applied**: tag& probe approach to avoid bias
- 16 regions depending on *b*and top-tagging multipl.

<u>Jet substructure in tt @ 13 TeV, full run-2</u>

PRD 109 (2024) 112016

Sets of *1D* and *2D* **differential** measurements compared with NLO ME+PS simulations

Measurements **unfolded** (IBU) to **particle level** for:

- N-subjettines variables τ_3 , τ_{32} , τ_{21}
- Energy-correlation variables ECF, D_2 and C_3
- Generalised angularities LHA and $p_T^{\bar{d},*}$ Dominant uncertainties: FSR, parton sh., jet energy meas.

<u>Jet substructure in tt @ 13 TeV, full run-2</u>

Ohaanvahla	PWG+PY8		PWG+H7		AMC@NLO+PY8		PWG+PY8(FSR UP)		PWG+PY8(FSR Down)	
Observable	χ^2 /NDF	p-value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	p-value	χ^2 /NDF	p-value	χ^2 /NDF	<i>p</i> -value
$ au_{32}$	54/12	< 0.01	19/12	0.09	15/12	0.24	165/12	< 0.01	40/12	< 0.01
$ au_{21}$	14/14	0.41	7/14	0.92	16/14	0.32	42/14	< 0.01	8/14	0.91
$ au_3$	36/11	< 0.01	42/11	< 0.01	14/11	0.23	130/11	< 0.01	23/11	0.02
ECF2	25/18	0.13	13/18	0.78	15/18	0.69	31/18	0.03	24/18	0.14
D_2	20/16	0.20	17/16	0.39	20/16	0.20	37/16	< 0.01	15/16	0.49
C_3	11/14	0.65	6/14	0.97	3/14	1.00	35/14	< 0.01	3/14	1.00
$p_{\mathrm{T}}^{\mathrm{d},*}$	27/12	< 0.01	10/12	0.58	11/12	0.53	56/12	< 0.01	24/12	0.02
$L\dot{H}A$	14/17	0.65	9/17	0.92	20/17	0.29	14/17	0.69	19/17	0.32
D_2 vs. m^{top}	61/42	0.03	62/42	0.02	59/42	0.05	118/42	< 0.01	44/42	0.37
D_2 vs. $p_{\rm T}^{\rm top}$	71/56	0.08	68/56	0.13	70/56	0.11	107/56	< 0.01	93/56	< 0.01
τ_{32} vs. m^{top}	153/42	< 0.01	72/42	< 0.01	56/42	0.07	413/42	< 0.01	77/42	< 0.01
τ_{32} vs. $p_{\rm T}^{\rm top}$	153/50	< 0.01	103/50	< 0.01	57/50	0.23	360/50	< 0.01	114/50	< 0.01

ℓ+jets channel (*all-had* in backup)

- *l+jets* and *all-had* use different jets but results >90% correlated
- FSR Up PWG+Py8 in poor agreement with data, data favors lower FSR scale (higher α_s^{FSR})
- τ_{32} often poorly modelled by NLOME+PS
- aMC@NLO+Py8 compatible with data for all variables
- Results complement previous studies:
 - Focus on **boosted top**, with all-had channels giving access to **very high p**_T
 - Track-based substructure improves resolution and reduces uncertainties

tt /Z @ 13.6 TeV, run-3

- First measurement @ 13.6 TeV
- Sensitive to PDFs, test of pQCD
- $ee/\mu\mu$ for Z; $e\mu$ with 1 and 2 *b*-jets for $t\overline{t}$
 - In-situ *b*-tagging calibration
- Profiled likelihood fit in the 4 SRs

 $R_{t\bar{t}/Z} = 1.145 \pm 0.003$ (stat.) ± 0.021 (syst.) ± 0.002 (lumi.)

- 3% precision on $t\overline{t}$ and (fiducial) $Z\sigma$
 - dominated by **lumi uncertainty**
- 2% precision on ratio
 - Uncertainties cancel out, modelling and bkg dominant uncertainties

13

Single top σ measurements

<u>t-channel @ 13 TeV,</u> <u>full run-2</u>

<u>JHEP 05 (2024) 305</u>

- $PDF(u) \neq PDF(d) \rightarrow \sigma(tq) \neq \sigma(\overline{tq})$
- Measurement of the two σ , sum and ratio
- Events with exactly 1 e/μ, 1 b-jet with |η|<2.5, 1 non-b-jet |η|<4.5 +other kinematic cuts

• Neural Network (NN) to select signal

- Uses also a top reconstruction algorithm output
- 17 variables (see backup)
- most powerful: m_{ib}

 $p_{\mathrm{T}}(\ell) > 40 \,\mathrm{GeV} \cdot \frac{|\Delta \phi(j_1, \ell)|}{|\Delta \phi(j_1, \ell)|}$

- σ measured with **binned likelihood fit** to:
 - D_{NN} in SR (i.e. NN score)
 - $\Delta \varphi(E_T^{miss}, \ell)$ in low p_T muon CRs
 - *Yields* in low E_T^{miss} electron CRs

t-channel @ 13 TeV, full run-2

<u>IHEP 05 (2024) 305</u>

- Uncertainties for absolute σ dominated by modelling uncertainties: matching scale, parton shower, FSR
- Ratio dominated by uncertainties on *W+c* modelling and parton shower

$$\sigma(tq) = 137^{+8}_{-8} \text{ pb}$$
 and $\sigma(\bar{t}q) = 84^{+6}_{-5} \text{ pb}$
 $\sigma(tq + \bar{t}q) = 221^{+13}_{-13} \text{ pb}$ and $R_t = 1.636^{+0.036}_{-0.034}$

t-channel @ 13 TeV, full run-2: interpretations [HEP 05 (2024) 305

- **EFT** interpretation:
 - **4-quark operator** changes kinematics of events
 - Operator coupling with Higgs changes yields

$$-0.37 < C_{Qq}^{3,1} / \Lambda^2 < 0.06$$

$$-0.87 < C_{\phi Q}^3 / \Lambda^2 < 1.42$$

Assuming CKM unitarity, from total $\boldsymbol{\sigma}$ measurements it is found:

$$f_{\rm LV} \cdot |V_{tb}| = 1.015 \pm 0.031$$

Limits are presented also for scenarios where $|V_{ts}|$ and/or $|V_{td}|$ are not neglected

t-channel observation @ 5.02 TeV

PLB 854 (2024) 138726

- Independent measurement at **different energy**
- Analysis similar to previous slides, with BDT with 9 variables

- σ have stat~syst unc.
- Ratio is stat limited
- Comparison with different PDFs

$$f_{\rm LV} \cdot |V_{tb}| = 0.94^{+0.11}_{-0.10}$$

Conclusion

Presented recent tt and single-top cross section measurement from ATLAS

ATL-PHYS-PUB-2024-006

Results in *p+Pb* or 5/13.6 TeV *pp* provide info in **different regimes**

- High precision and thorough differential studies show strengths and limitations of current predictions
- **BSM interpretations** e.g. with EFT operators
- **Run-3** in progress, more stat being collected
 - Most measurements syst-limited, must use data to improve syst