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One-point correlators of conserved charges are argued to be perturbatively IR safe in quantum
chromodynamics (QCD), which includes not only the density of energy, but also those of electric charge,
isospin, and baryon number. Theoretical and phenomenological aspects of the density matrix of one-point
correlators are discussed in the context of the states produced by a chiral current, as in the decay of a
polarized electroweak boson. Densities of some nonconserved charges such as energy with arbitrary non-
negative powers, despite their incalculability, are shown to obey an infinite set of consistency constraints.
QCD is observed to live near a kink in the allowed parameter space of one-point correlators.
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I. INTRODUCTION

The S-matrix in QCD is a theoretically well-defined
observable thanks to the mass gap. However, due to the
large multiparticle production, the measurement of the
production rate of each individual state is unfeasible. It is
convenient therefore to coarse grain the Hilbert space and
measure instead the cross section to produce an ensemble of
states, namely jets of particles [1], integrating over the
individual constituents of those.
Another avenue for extracting useful information of

the underlying physics is to measure the correlation
among energy fluxes. These are a set of event shape
observables proposed long ago in the context of eþe−
annihilations [2–5], later connected with correlators of the
stress-energy tensor [6–10] and observed to obey an
operator product expansion [11]. Recent analytic progress
of energy correlators in QCD and N ¼ 4 SYM appeared
in [12–18]. While event shape observables do not depend
on a jet algorithm, looking into specific patterns of energy
fluxes within an energetic jet at the LHC has proven
powerful for understanding QCD [19–22].
In this article, we initiate a phenomenological explora-

tion of correlators of conserved charges and discuss a
theoretical connection with a class of nonconserved ones.
Charge correlators have been considered in N ¼ 4 SYM
and QCD at leading order [11–14,23]. At the phenomeno-
logical level, a related quantity is given by the jet charge as

defined in [24], given byQκ ¼
P

i∈ jet QiðpT;i=pT;jetÞκ. The
energy weight makes the assigned jet charge stable against
the radiation of soft particles. This definition of the jet
charge has been extensively used by experimental collab-
orations [25–32] and explored theoretically [33–42]. In this
paper, we explore charge correlators as a way to study the
charge density of a chiral current. While Qκ is defined
event-by-event and the measurement aims to extract the
production rate of different values of Qκ, correlation
functions of charge fluxes are defined as an average over
an ensemble of events. We argue that it is this fact what
makes them infrared-safe (IR-safe) perturbatively, even
though there is no energy weight. In QCD, this includes
the energy density, but also the one-point correlators of the
other global charges: electric charge, isospin and quark
flavors, and baryon number. We compute such densities
perturbatively and explore nonperturbative corrections due
to the hadronization and weak interactions, and observe
how the different densities carry an incredible amount of
information about the dynamics despite the simplicity of
the observable. We comment on when higher point corre-
lators are also IR-safe.
We show that Lorentz invariance, unitarity and the

positivity of the energy lead to stringent constraints on
the analytic structure and behavior of the one-point corre-
lator. While it includes the bounds of [11], our approach
provides a detailed view on it, and trivially extends to
nonconserved fluxes like Ek for k ≠ 1. We further present
the complete and optimal set of constraints that the densities
among different kmust obey. An interesting application is to
constrain experimentally challenging observables with low
k, like the particle number density, from experimentally
clean observables with a large k≳ 1. We discovered that,
when extrapolating to low k, the numerical simulation of the
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data sits close to a kink in the allowed parameter space. We
interpret this as an indication that the distribution in k is
close to a power law.

II. DENSITIES OF CONSERVED CHARGES

Measuring the asymptotic charge of a conserved current
means to place a detector Dn at spatial infinity in some
direction n⃗, which can be thought of as an operator [6–8]
acting on physical multiparticle states jαi as

Dnjαi ¼
X
i

ωiδ
ð2ÞðΩn −ΩiÞjαi; ð1Þ

where Ωi is the infinitesimal solid angle in the direction of
pi and ωi the quantum number of the particle imeasured by
the detector, that is, the detector measures the quantum
numberωi of the particle i of the multiparticle state jαi only
if the 3-momentum direction coincides with n⃗. In the
presence of an operator O exciting the QCD vacuum, the
expected average of measurements of the detector, namely
the one-point correlator, can be extracted from the three
point correlator hO†DnOi as

hDni ¼
1

N

Z
d4xeip·xhO†ðxÞDnOð0Þi; ð2Þ

with the normalization N ¼ R
d4xeip·xhO†ðxÞOð0Þi. By

inserting a complete set of states, it is clear that this
measures the average charge in the direction n⃗ in the
presence of a source OðxÞ,

hDni¼
1

N

X
α;i

ð2πÞ4δð4Þðp−pαÞωiδ
ð2ÞðΩn−ΩiÞjhαjOj0ij2;

ð3Þ

where jαi runs over all multiparticle states in the theory,
and i runs over all particles in each state.

A. IR safety of charge densities

The fact that Dn measures a conserved quantity implies
two important properties: (i) IR finiteness against soft and
collinear radiation and (ii) connection between different
phases of the theory. We explore both aspects in the
following.
In gauge theories, exclusive rates to produce a single

state have IR divergences signaling that the theory has
nontrivial IR dynamics. Such divergences, via the KLN
theorem [43,44], are canceled after summing over a set of
degenerate states. This suggests an introduction of IR safe
observables as those that do not spoil the cancellation of IR
divergences and therefore are dominated by the short
distance dynamics [1,45,46]. We now argue that one-point
correlators of conserved charges belong to this category.

Since the conserved charge is preserved under collinear
radiation, the detectorDn acts homogeneously on the set of
particles collinear to the direction n⃗ measuring their total
charge. Moreover, the correlator is inclusive in the other
collinear sectors, ensuring the cancellation of IR divergen-
ces due to the collinear radiation.
Soft radiation, instead, is annihilated by the detector of

conserved charges. Soft photons and gluons couple uni-
versally to the rest of the amplitude [47]. This implies that
the one-point correlator receives a contribution from an off-
shell photon of a momentum q2 that splits into a qq̄ pair
proportional to the matrix element squared for the photon
splitting into a quark pair,

Z
dΦ2

pμ
qpν

q̄ þ pν
qp

μ
q̄ − q2=2ημν

q2
X
i¼qq̄

wiδ
ð2ÞðΩi − ΩnÞ; ð4Þ

which vanishes since the integrand is symmetric under
pμ
q ↔ pμ

q̄ due to the vectorlike nature of the gauge boson
coupling and wq ¼ −wq̄ due to gauge bosons carrying no
charge. While at the event-by-event level the detector does
receive contributions from soft particles, those average out
in an ensemble of events. The fact that the correlator
computes the expected average over an inclusive set of
states is what makes it insensitive to the soft radiation and
to the appearance of nonglobal logarithms [48,49].
A second aspect that highlights the importance of

considering detectors of conserved charges is the fact that,
operatorially, those are defined as

Dn ¼ lim
r→∞

Z
∞

0

dt r2niJiðt; rn⃗Þ; ð5Þ

where Jμ is a conserved current, given by T0μ or qff̄γμf for
a detector measuring the energy or the charge qf of a
fermion. In QCD, the fact those are conserved currents
implies that the detector can be expressed and measured in
terms of hadrons, while at the same time can be expressed
and computed in terms of quarks and gluons. If we were to
measure instead a nonconserved quantity, e.g., the energy
squared, this would be associated to an operator which
develops an anomalous dimension [11], and generically
would be mapped to an unkown operator at parton level.

B. Beyond one-point correlators

The arguments for the correlator to be IR-safe perturba-
tively are not necessarily constrained to one-point correla-
tors. As long as the detectors Dni consist of conserved
charges, the correlator hDn1 � � �Dnmi for well separated
directions n⃗1;…; n⃗m is collinear safe. Each detector acts
on a different collinear sector. By the same reasoning
described above, they act homogeneously measuring the
total charge on each sector and it is collinear safe. The fact
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that the detector measures a conserved charge is crucial, in
contrast to a generic detector as explored in e.g., [50].
IR-safety under soft emissions puts instead restrictions

on the type of detectors, as they are forced to annihilate the
soft sector, similar to Eq. (4) but with a weight proportional
to wqwq̄ to signal that each detector measures a quark from
the soft splitting. This is annihilated whenever one of the
detectors measures the energy, or when one of the detector
measures a charge that is not produced or highly suppressed
during the perturbative evolution, like c- and b-flavor.
In this way, for instance, the electric charge-electric

charge hQn1Qn2i or isospin-baryon number hIn1Bn2i
correlators are sensitive to the soft radiation. Examples
of IR-soft safe correlators are the energy-electric charge
hEn1Qn2i or in the case of jets of heavy quarks, charm-
isospin hcn1In2i, or b-flavor-baryon number hbn1Bn2i.
Once those are shown to be IR safe, any higher point
correlator where all pairs are IR-safe will be IR-safe as
well, e.g., hEn1En2Qn3i.
This opens up a large, unexplored space of IR-safe

correlators. An interesting system to compute and measure
those is a top quark decay, since the chiral nature of the top
and the richness of its decays leads to nontrivial correla-
tions among the different quantum numbers. We leave this
to future explorations.

III. CHARGEDENSITIES OF A CHIRAL CURRENT

In the following we focus on the simplest phenomeno-
logically relevant operator that can excite the QCD vacuum,
given by a chiral fermion current,

JhðxÞ ¼ εμhq̄γμPLqðxÞ; ð6Þ

where PL gives the left chiral fermion current. To simplify
notation we consider a left handed current unless otherwise
specified, and comment the difference from a right handed
current. The projection on the polarization vectors εμh allows
us to write a density matrix, that will become relevant for
collider quantities,

hDnihh0 ¼
1

N

Z
d4xeip·xhJ†h0 ðxÞDnJhð0Þi; ð7Þ

with the normalization given by tracing over polari-
zations of the matrix element without a detector N ¼
−
R
d4xeip·xhJμ†ðxÞJμð0Þi, equal to the inclusive produc-

tion of hadrons from Jμ. This density matrix represents the
average charge measured in the direction n⃗ in the presence
of the decay of a massive vector with a momentum pμ and a
helicity of h; h0 ¼ þ;−; 0.
The three point JDJ correlator,

Hμν
D ¼

Z
d4xeip·xhJμ†ðxÞDnJνð0Þi; ð8Þ

can be decomposed in terms of three independent tensor
structures that depend on the injected momentum pμ and
the null detector’s direction nμ as

Hμν
D ¼ ð−ημν þ pμpν=Q2ÞH0

D

þ
�
Q2nμnν þ pμpν

Qn · p
−
nμpν þ pμnν

Q

�
Hn

D

−
i
Q
ϵμναβpαnβHo

D; ð9Þ

whereH0
D,H

n
D, andH

o
D are generically functions of p2 and

p · n. The different components may be extracted by
computing the contractions of Hμν with ημν, nμnν, and
ϵμνabpanb. Notice that the scalars HDðp2; p · nÞ are
Lorentz-covariant and inherit the transformation properties
ofD. We are interested in the dependence on the direction n⃗
of the detector. For a generic pμ and a generic direction nμ,
p · n does depend on the polar and azimuthal angles
θ and ϕ.
In the rest frame, pμ ¼ ðQ; 0⃗Þ and nμ ¼ ð1; n⃗Þ, so that

p · n ¼
ffiffiffiffiffi
p2

p
and the dependence on n⃗ is entirely on the

tensor structure. Contracting Hμν with ϵμhϵ
�ν
h0 , leads to δhh0 ,

ðϵ⃗h · n⃗Þðϵ⃗�h0 · n⃗Þ, and −iϵijkϵ�h0;injϵh;k from the first, second,
and third row of Eq. (9), respectively. The most general
form that the density matrix of correlators can take is
given by

hDnihh0 ¼
hDi
4π

�
δhh0 þ aD

�
ðϵ⃗h · n⃗Þðϵ⃗�h0 · n⃗Þ −

δhh0

3

��

−
i
4π

bDϵijkϵ�h0;injϵh;k; ð10Þ

where hDi is the total charge of the operator measured by
integrating over the solid angle. The parameters aD and bD
control the parity-even and parity-odd parts of the corre-
lator, are determined by the dynamics of the theory and are
independent of the helicity projected from the operator. In
terms of the Lorentz structures in Eq. (9), the overall
normalization is given by N ¼ 4πðH0

1 þ 1
3
Hn

1Þ≡ 4πN
where 1 denotes the insertion of the identity in place of
a detector, that is, it computes the inclusive production rate.
The coefficients in Eq. (10) are given by

hDi¼H0
Dþ 1

3
Hn

D

N
; aD¼ Hn

D

H0
Dþ 1

3
Hn

D

; bD ¼Ho
D

N
: ð11Þ

The angular dependence of each element in the density
matrix is determined by Eq. (10). For instance, given the
polarizations ϵμ� ¼ 1ffiffi

2
p ð0; 1;�i; 0Þ and ϵμ0 ¼ ð0; 0; 0; 1Þ, the

parity-even terms are obtained from ϵ⃗� · n⃗ ¼ e�iϕffiffi
2

p sin θ and

ϵ⃗0 · n⃗ ¼ cos θ while the nonvanishing contractions for the
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parity-odd term are given by −iϵijkϵ��;injϵ�;k ¼ � cos θ,

and −iϵijkϵ�0;injϵ�;k ¼∓ e�iϕffiffi
2

p sin θ.

Consider the left handed current injected via a positively
charged W boson at rest decaying to ud̄, with the d̄ having
positive helicity due to the left coupling. The total charge
hDi, for the case of a conserved charge, is obviously
determined to all orders by the charge of the operator. The
total charges are given by hEi ¼ mW, hQi ¼ 1, hIi ¼ 1,
and hBi ¼ 0 for the energy, electric charge, isospin, and
baryon number.
The aD and bD coefficients depend on the dynamics and

are computed perturbatively. At leading order these are
simply determined by the different decay amplitudesAh. In
the vector rest frame, these are simply proportional to the
Wigner-d matrices, Ah ¼ gVmVeihϕd11;hðθ⋆Þ, with d11;�1 ¼
1�cos θ⋆

2
and d11;0 ¼ − 1ffiffi

2
p sin θ⋆, where θ� is the angle

between the spin of the vector and the helicity-plus fermion
in the vector rest frame.
In the case of the energy correlator, one has bE ¼ 0 and

aE ¼ −3=2 [2–4], which saturates the lower bound of [11].
In the case of the isospin, since both d̄ and u quarks carry
the same quantum number, at leading order one has bI ¼ 0

and aI ¼ aE . The baryon number is more interesting, since
while hBi ¼ 0, the individual quarks do carry baryon
number and therefore a nontrivial distribution is predicted.
One has aB ¼ 0 and bB ¼ −3Bq where Bq ¼ 1=3 is the
absolute value of the baryon number of the individual
quarks. For the electric charge, the parity-even coefficients
depend on the sum of charges of the light quarks which
coincides with the sum of isospins, namely aQ ¼ aI. The
parity-odd coefficients depend on the difference of quark
charges, and therefore bQ ¼ bB=2.
At NLO, whenever the detector measures the charge of

one of the quarks, two types of diagrams contribute,
corresponding to the square of the real emission diagram
and the virtual correction to the vertex. In dimensional
regularization, both contain soft and collinear divergences
that cancel in the sum. For the charge correlators, the
cancellation is similar to the case of the inclusive cross
section, since the detector acts homogeneously on the
diagrams, simply fixing the quark direction. In the energy
correlators, the cancellation of the collinear divergence
only takes place after adding the third contribution coming
from placing the detector on the radiated massless gauge
boson, as it is required due to energy conservation of the
collinear splitting. This third contribution does not have
virtual correction and it does not contain any soft diver-
gence due to the extra energy insertion in the gauge boson’s
energy integral. The vectorlike nature of the gluon coupling
implies that the parity-odd structure in Eq. (9) is not
modified at one loop. The only contribution to bQ and
bB is via the correction of the total rate. The summary of the
results is reported in Table I.

A. Perturbative and nonperturbative corrections

In the following we present a comparison between the
analytical calculation and the numerical simulation. We
simulate an eþνe collision in MadGraph [51], producing a W
decaying to ud̄ final state, and implement the parton shower
and the hadronization via PYTHIA8 [52]. Given the left
handed nature of the lepton current, the W spin is aligned
with the beam and only the plus helicity is produced, i.e., the
production density matrix is ρðlνÞ ∝ diagð1; 0; 0Þ, which
implies that the W spin axis is aligned with the beam axis
and the only relevant decay is ρWþþ, with θ being the angle
between the positron’s momentum and the detector. The
Cabibbo angle is set to zero at this level since we are
interested in the u − d̄ chiral current, so no s-quark is
injected by the operator. The result is shown in Fig. 1. From
left to right and top to bottom, the densities of energy,
electric charge, isospin and baryon number as functions of
the angle cos θ between the W spin axis and the detector.
The dark- and light-colored lines denote the LO and NLO
predictions, respectively. The dark- and light-colored data
points the PYTHIA8 output with only parton shower without
hadronization (P.S. only) and including hadronization
(P.S.+hadr.). We simulate a total of 2.5 million events,
and the quoted uncertainties refer only to the statistical
uncertainty.
In all cases the NLO calculation does provide an

improvement with respect to the LO calculation and an
accurate prediction of the density after the parton shower, as
it is expected from IR-safe quantities, confirming the
arguments of the previous section. For the energy correlator,
the contribution from the gluon tends to flatten out the
distribution, and the fitted aE parameter without the hadro-
nization is aE ¼ −1.232� 0.003. The parity-even part of
both isospin and electric charge distribution have the same
coefficient at NLO, and compatible with the fitted values
aI ¼ −1.335� 0.005 and aQ ¼ −1.334� 0.005. Up to
NLO, the isospin distribution is symmetric since u and d̄
carry positive isospin. At two loops a nonzero bI receives a
potential contribution from a nonplanar diagram. The
parity-odd coefficient electric charge bQ does receive a
tree-level contribution, and the NLO correction pushes it to
higher values compatible with bQ ¼ −0.475� 0.001. The
baryon density is completely asymmetric and positive

TABLE I. Coefficients of Eq. (10) at one loop for the densities
of energy E, electric charge Q, isospin I , and baryon number B
for a positively charged W-boson.

hDi aD bD

E mW − 3
2
þ 9αS

2π
0

Q 1 − 3
2
þ 6αS

2π
− 3

2
Bqð1 − αS

π Þ
I 1 − 3

2
þ 6αS

2π
0

B 0 0 −3Bqð1 − αS
π Þ
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(negative) in the region with predominantly a quark
(antiquark). The baryon asymmetry bB is twice the electric
charge one, and observed to be bB ¼ −0.939� 0.001 with
parton shower only.
The hadronization and weak interactions induce a series

of corrections to the densities. First of all, isospin is not
preserved by weak interactions, which induce K0 − K̄0

mixing. This implies an asymmetry between the u-quark
and the d̄-quark since up-quarks hadronize into charged
kaons of definite isospins and reach the detector whereas
down-quarks hadronize into neutral kaons, either KS
decaying into pions or KL reaching the detectors. These
effects generate an asymmetry, predicted to be bI ¼
−0.013� 0.002 by the PYTHIA8 simulation. Moreover, this
also generates a total isospin charge larger that the W-
boson’s isospin, hIi ¼ 1.023� 0.0007.
The baryon asymmetry gets a large correction due to

nonperturbative effects. At the perturbative level, it is
predicted that the baryon number carried by a quark and
its collinear radiation is ∼1=3. This would suggest that the
average baryon number observed tends to 1=3. However,
string formation spoils factorization between the collinear
sectors, and the asymptotic baryon number observed
strongly depends on the details of how the QCD string
breaks. The hadronization model used in PYTHIA8 is based
on the Lund string model [53,54], which controls the
baryon production through the ratio between the rate of
diquark-antidiquark production relative to the quark-
antiquark production in the string breaking [55–57]. In

PYTHIA, this is controlled by the parameter StringFlav:
probQQtoQ, and set to the default value of 0.081 in Fig. 1,
which leads to bB ¼ −0.128� 0.001. In the range between
∼0.04 and ∼0.16 for the PYTHIA parameter, the asymptotic
baryon asymmetry behaves close to linear, bB ≃ −0.128×
StringFlav : probQQtoQ=0.081.
The electric charge receives nonperturbative corrections

already mentioned. Since pions have equal charge and
isospin, measuring only pions would lead to a symmetric
electric charge distribution. The asymmetry in the charge at
the hadron level should be driven by the baryons and kaons.
Indeed, the cos θ < 0 region is populated by protons and
neutrons with vanishing average isospin and positive
average electric charge while the cos θ > 0 region is
populated by antiprotons and antineutrons. This only
accounts partially for the electric charge asymmetry though
since only baryons would lead to bQ ¼ bB=2. The rest
comes from positively charged kaons predominantly gen-
erated at cos θ < 0.
Lastly, a nonzero strangeness density is generated

nonperturbatively. The mechanism is exactly the one
described for the isospin, as it is the production of kaons
that are responsible for both effects. The generated
strangeness charge of the current is predicted to be hSi ¼
0.043� 0.001 by PYTHIA8, indeed twice the observed
excess of isospin. The asymmetry is observed to
be bS ¼ −1.66� 0.002.
This explains the aforementioned charge asymmetry

since the different quantum numbers satisfy the relation

FIG. 1. Density of QCD global charges for a W boson decay, as a function of the angle cos θ between the W spin and the detector.
From left to right and top to bottom, energy, electric charge, isospin and baryon number. The dark- and light-colored lines denote the LO
and NLO prediction. The dark- and light- colored data points the PYTHIA8 output with only parton shower (P.S. only) and including
hadronization (P.S.+hadr.). In the inset, the fitted values for aD and bD of the P.S.+hadr. sample.
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hQni ¼ hIni þ 1
2
hBni þ 1

2
hSni at a fixed direction n⃗, as

long as no other quantum numbers are present. Therefore,
the different parity-odd parameters are related by
bQ ≃ bI þ bS=2þ bB=2. The density of strangeness is
illustrated in Fig. 2.

IV. BOUNDS ON ONE-POINT CORRELATORS

The coefficients in Eq. (10) are subject to constraints
stemming from the unitarity and the positivity of the
energy. The spatial components of the hadronic tensor
Hμν in Eq. (8) form a positive definite matrix, as can be
seen by inserting a complete set of states,

Z
d4xeip·xhJi†ðxÞEnJjð0Þi

¼
X
α;i∈α

δð4Þðpα−pÞEiδ
ð2ÞðΩi−ΩnÞh0jJi†jαihαjJjj0i: ð12Þ

Therefore, the positivity of the energy implies that the
matrix spanned by the components of J⃗ is positive
definite. Using the decomposition of Eq. (9), this positive
definiteness implies two inequalities for the scalar terms
independent of n⃗, and given by

H0
E ≥ 0; H0

E þHn
E ≥ 0: ð13Þ

This implies, obviously, that hEi > 0, but also that aE in
Eqs. (10) and (11) is bounded by

−
3

2
≤ aE ≤ 3; ð14Þ

with the lower and upper bound saturated when Hn
E ¼

−H0
E and when H0

E=H
n
E ¼ 0, respectively. This is the

bound discussed in [11], obtained here as a simple
consequence of Lorentz invariance, unitarity, and posi-
tivity of the energy.
The upper bound is saturated by two particle states with

total angular momentum j ¼ 1 and projection m ¼ 0, so
the distribution is proportional to 1 − cos2 θ, while the

lower bound is saturated by two particle states with
j ¼ 1 and m ¼ �1, so the distribution is proportional
to 1þ cos2 θ. It is often stated [11] that such cases are
obtained by considering weakly coupled scalars and

fermions, respectively, so that Jμ ¼ ϕ�D
↔

μϕ and
Jμ ¼ ψ̄γμψ . However, the upper bound can be saturated
by both fermions and scalars, if those are nonmini-
mally coupled, for example, with L ⊃ ψ̄σμνψFμν and
L ⊃ Dμϕ�DνϕFμν.
From the discussion above it is clear that the same string

of reasoning applies to any observable which is positive
definite, in particular to a detector measuring the energy to
any real power k ≥ 0, Ek, see [58] for an equivalent
statement for CFT. Consequently, one has that H0

Ek > 0

and H0
Ek
þHn

Ek > 0, which implies not only hEki > 0, but
also that − 3

2
≤ aEk ≤ 3 in exact analogy with the k ¼ 1

case. Again, the bounds are saturated by two particle states
with m ¼ �1 and m ¼ 0.
Since QCD has a mass gap, the restriction of k ≥ 0 can

be lifted and consider k to be any real number as the
measurement will be finite. However, QED corrections lead
to soft photons and the observable formally diverges for
negative k, even though one could assume a finite reso-
lution. Different values of k explore the theory in different
regimes. We provide in Fig. 3 the coefficients aEk from
k ¼ 0 to k ¼ 5 extracted from a sample ofW-boson decays
as specified in the previous section. For k ¼ 1, aE indeed
corresponds to the value in Table I and the distribution in
Fig. 1. For large k, data tends to saturate the unitarity
bound. This is due to the fact that in this region collinear
and hard splittings are suppressed and only events with few
highly energetic particles plus a soft sector dominate,
looking more and more like the tree-level process, corre-
sponding to free fermions. For smaller k, softer particles
start to contribute and for k ¼ 0 the Ek detector becomes
the particle number detector and the distribution is the
number density distribution.

FIG. 2. Density of strangeness generated nonperturbatively.

FIG. 3. Coefficient aEk as defined in Eq. (10) as a function of k
for a vector current decaying into quarks. Red and blue denote
PYTHIA8 output without and with hadronization, respectively.
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A. Relation with moments

Beyond the positivity of H0
Ek

and of H0
Ek
þHn

Ek , which
we denote either as HðkÞ from now on for simplicity, there
are a further infinite set of constraints that such quantities
satisfy. They stem from the fact that both can be written as

HðkÞ ¼
Z

dΦρðΦÞðEðΦÞÞk; ð15Þ

i.e., as integrals over some kinematic configuration Φ, a
positive distribution ρðΦÞ ≥ 0 and a positive function of
such kinematics EðΦÞ ≥ 0, normalized in such a way that
EðΦÞ ≤ 1, raised to some power k > 0. This implies that
the derivatives obey

ð−1ÞN dNHðkÞ
dkN

> 0; ð16Þ

and therefore HðkÞ (i.e., both HEk and H0
Ek
þHn

Ek) is a
completely monotonic function in k. The fact thatHðkÞ is a
completely monotonic function means that its functional
form is constrained. The problem we will be interested in is
whether the measurement of HðkÞ in some interval for k
can be used to extrapolate the function outside such
interval. We do this not by assuming a certain functional
form for HðkÞ, but by finding the complete set of
constraints that the values fHðk1Þ;…g, obtained by evalu-
ating the function on a discrete set fk1;…g, have to satisfy.
For N ¼ 0, Eq. (16) reduces to the positivity of HðkÞ.

The constraints from N > 0 can be efficiently posed by
considering a discrete sequence k; kþ δ; kþ 2δ;…. It can
be shown [59] (see also Chapter IV of [60]) that the set of
constants HðkÞ; Hðkþ δÞ; Hðkþ 2δÞ;… form a com-
pletely monotonic sequence,

ð−1ÞNΔNHðkþmδÞ ≥ 0; ð17Þ

for any N;m ≥ 0, and with Δ being the discrete derivative,
Δ0HðkÞ ¼ HðkÞ and ΔnHðkÞ ¼ Hn−1ðkþ δÞ −Hn−1ðkÞ.
The full set of linear constraints imply that the set ofHðkþ
mδÞ can be identified with moments of a positive distri-
bution, and therefore making an equivalence with the
Hausdorff moment problem [61,62], see [63] for a recent
discussion in the context of scattering amplitudes. In
particular, HðkÞ is completely monotonic in k if for any
δ > 0 the following matrices HðpÞ with entries ðHpÞij ¼
Hðkþ ðiþ jþ p − 2ÞδÞ are positive definite:

H0≻0; H1≻0;

H0 −H1≻0; H1 −H2≻0: ð18Þ

The advantage of this formulation of the constraints on
HðkÞ is that a finite set of the nonlinear constraints of
Eq. (18) is equivalent to a class of infinite set of linear
constraints of Eq. (17). Therefore the moment structure of
HðkÞ constrains the behavior of hEki and aEk as a function
of k and Eq. (18) provides the complete, optimal set of
constraints.
Given a set of moments, the space of higher moments

allowed by the requirements in Eq. (18) is exponentially
small. We illustrate this point with the following. We
extract hEki and aEk for k ¼ 1; 1.25;…; 3 from a numerical
simulation used in Fig. 3. The best fit points are used to
extract H0

Ek
and H0

Ek
þHn

Ek from the relations in Eq. (11).
Note that N is an overall normalization independent of k
and does not affect the constraints. Now we can set up a
simple Semidefinite programming (SDP) routine that
extremizes the allowed values for k ¼ 3.25 up to k ¼ 5,
by requiring that the quantities H0

Ek¼1 ;…; H0
Ek¼5 obey the

constraints in Eq. (18), and similarly for H0
Ek
þHn

Ek. We

find that hE3.25i is constrained at the level of 10−5 while
hE5i is determined within 2 × 10−2. Therefore, for k close
to the region where the parameters are known, the hEki are
very efficiently constrained by the moment structure while
larger k have slightly more freedom. For instance, the
intermediate hE4i is constrained at the 10−3 level. A similar
observation applies to aEk , but with stronger relative
constrains by an order of magnitude. In this case, for k ¼
3.25 the bounds are at the 2 × 10−6 level, 10−4 for k ¼ 4

and 2 × 10−3 for k ¼ 5.
Ideally, the fit on aEk and hEki should be performed

together with the requirement of the moment constraints.
While low values of k are limited by systematic uncer-
tainties, large values of k are of easier experimental access
but suffer of larger statistical uncertainties.
While the constraints on higher moments are quite

stringent, the constraints on lower moments are significantly
looser. We consider a similar setup, where the moments for
k ¼ 1; 1.25;…; 3 are fixed to the best fit points, and we run
an SDP that extremizes the allowed values for k ¼ 0.75.
Running the SDP with onlyH0

Ek¼0.75 as free parameter finds a
lower bound, but the problem is unbounded by above. The
same is true for H0

Ek¼0.75 þHn
Ek¼0.75. This is illustrated in

Fig. 4, where we show in teal the allowed space in aEk and
hEki=hEi for k ¼ 0.75 once the values for k ≥ 1 are fixed to
their best fit values. The lower bounds for H0

Ek¼0.75 and

H0
Ek¼0.75 þHn

Ek¼0.75 leads to a sharp boundary for the allowed
space. The fact that those have no upper bounds lead to the
unbounded region in the right of the plot. What is most
striking, is that the actual extracted values for k ¼ 0.75 are
extraordinarily close to the kink of the allowed space. This
suggests that both H0

Ek
and H0

Ek þHn
Ek have a power law

behavior that is close to saturate the moment structure.
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The phenomenological value of this class of constraints
is that allows to use experimentally clean, IR-safe data for
k≳ 1, in order to constrain experimentally challenging,
non-IR-safe data at low k. In particular, number density
corresponds to k ¼ 0, which can be constrained by IR-safe
observables with k > 0.
We end with a speculative note: while from the argu-

ments presented here one cannot rule out points in the bulk
of Fig. 4, in particular points with arbitrarly large hE3=4i, in
order to be in that region a dramatic change in HðkÞ must
occur. We find reasonable that there should exist extra
constraints, possibly linked with full unitarity of the
S-matrix, that would rule out such extreme behaviors,
since this is what forbids large hierarchies among moments
associated with scattering amplitudes [64]. For instance, in
theories with a mass gap mπ, hEk¼0i has the upper bound
Q=mπ , with Q being the hard scale.

V. CONCLUSIONS AND OUTLOOK

In this paper we have explored the use of one-point
correlators in order to understand the density matrix of
conserved and nonconserved charges in QCD. We observe
that the one-point correlators of conserved charges are
IR-safe perturbatively, which includes not only the energy

density, but also the densities of electric charge, isospin and
other flavors, and baryon number. We compare the ana-
lytical result with the numerical simulation in Fig. 1. We
remark that despite the simplicity of the observables, the
densities carry an incredible amount of information on the
underlying dynamics. The functional form of the different
densities is fixed by Lorentz invariance. We present a
complete and optimal set of constraints that the densities of
Ek should satisfy. This allows to constrain the allowed
space of aEk and hEki as in Fig. 4. The fitted value from
simulation is close to the kink, which indicates that the
actual distribution is close to a power law.
The most interesting avenue is an experimental meas-

urement of such densities, and the extraction of the
parameters hDi, aD, and bD. A promising context to
perform such measurements at the LHC is in semileptonic
tt̄, as it offers a relatively clean sample of hadronically
decaying W bosons [65,66] and the statistical sample of
semileptonic tt̄ is reaching the level of hadronic Z-decay at
LEP. Combined with charm jet identification [67], charm
densities might be a target.
In the future, FCC-ee is expected to provide around

1013 Z-bosons and 108 W-boson pairs [68], which would
allow us to perform measurements of the different densities
to an unprecedented precision.
In the same way the energy density can be used to extract

the W spin density matrix [69], the family of observables
proposed here may boost the discriminating power and
allow to better characterize a jet.
While focused on one-point correlators, the arguments

presented apply to a subset of correlators beyond one-point.
This opens up the space of calculable correlators, with a
network of connections to other correlators via theoretical
constraints and the operator product expansion. The theo-
retical and phenomenological exploration of this network
may lead to new perspectives on collider physics.
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