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One-point correlators of conserved charges are argued to be perturbatively IR safe in QCD, which
includes not only the density of energy, but also those of electric charge, isospin and baryon number.
Theoretical and phenomenological aspects of the density matrix of one-point correlators are discussed
in the context of the states produced by a chiral current, as in the decay of a polarized electroweak
boson. Densities of some non-conserved charges such as energy with arbitrary non-negative powers,
despite their incalculability, are shown to obey an infinite set of consistency constraints. QCD is
observed to live near a kink in the allowed parameter space of one-point correlators.

INTRODUCTION

The S-matrix in QCD is a theoretically well-defined
observable thanks to the mass gap. However, due to
the large multiparticle production, the measurement
of the production rate of each individual state is un-
feasible. It is convenient therefore to coarse grain the
Hilbert space and measure instead the cross section
to produce an ensemble of states, namely jets of par-
ticles [1], integrating over the individual constituents
of those.

Another avenue for extracting useful information of
the underlying physics is to measure the correlation
among energy fluxes. These are a set of event shape
observables proposed long ago in the context of e+e−

annihilations [2–5], later connected with correlators of
the stress-energy tensor [6–10] and observed to obey
an operator product expansion [11]. Recent analytic
progress of energy correlators in QCD andN = 4SYM
appeared in [12–18]. While event shape observables do
not depend on a jet algorithm, looking into specific
patterns of energy fluxes within an energetic jet at
the LHC has proven powerful for understanding QCD
[19–22].

In this Letter, we initiate a phenomenological explo-
ration of correlators of conserved charges and discuss
a theoretical connection with a class of non-conserved
ones. Charge correlators have been considered in
N = 4SYM and QCD at leading order [11–14, 23].
At the phenomenological level, a related quantity is
given by the jet charge as defined in [24], given by
Qκ =

∑
i∈JetQip

κ
T,i. The energy weight makes the

assigned jet charge stable against the radiation of soft
particles. This definition of the jet charge has been
extensively used by experimental collaborations [25–
32] and explored theoretically [33–42]. In this Let-
ter, we explore charge correlators as a way to study
the charge density of a chiral current. While Qκ is

defined event-by-event and the measurement aims to
extract the production rate of different values of Qκ,
correlation functions work in the opposite way and are
defined as an average over an ensemble of events. We
argue that it is this fact what makes them infrared-
safe (IR-safe) perturbatively. In QCD, this includes
the energy density, but also the one-point correlators
of the other global charges: electric charge, isospin and
quark flavors, and baryon number. We compute such
densities perturbatively and explore non-perturbative
corrections due to the hadronization and weak interac-
tions, and observe how the different densities carry an
incredible amount of information about the dynamics
despite the simplicity of the observable. We comment
on when higher point correlators are also IR-safe.

We show that Lorentz invariance, unitarity and the
positivity of the energy lead to stringent constraints on
the analytic structure and behavior of the one-point
correlator. While it includes the bounds of [11], our
approach provides a detailed view on it, and trivially
extends to non-conserved fluxes like Ek for k ̸= 1.
We further present the complete and optimal set of
constraints that the densities among different k must
obey. An interesting application is to constrain ex-
perimentally challenging observables with low k, like
the particle number density, from experimentally clean
observables with a large k ≳ 1. We discovered that,
when extrapolating to low k, the numerical simulation
of the data sits close to a kink in the allowed parame-
ter space. We interpret this as an indication that the
distribution in k is close to a power law.

DENSITIES OF CONSERVED CHARGES

Measuring the asymptotic charge of a conserved
current means to place a detector Dn at spatial in-
finity in some direction n⃗, which can be thought of
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as an operator [6–8] acting on physical multiparticle
states |α⟩ as

Dn|α⟩ =
∑
i

ωiδ
(2)(Ωn − Ωi)|α⟩ , (1)

where Ωi is the infinitesimal solid angle in the direc-
tion of pi and ωi the quantum number of the particle
i measured by the detector, that is, the detector mea-
sures the quantum number ωi of the particle i of the
multiparticle state |α⟩ only if the 3-momentum direc-
tion coincides with n⃗. In the presence of an operator
O exciting the QCD vacuum, the expected average of
measurements of the detector, namely the one-point
correlator, can be extracted from the three point cor-
relator ⟨O†DnO⟩ as

⟨Dn⟩ =
1

N

∫
d4xeip·x⟨O†(x)DnO(0)⟩ , (2)

with the normalization N =
∫
d4xeip·x⟨O†(x)O(0)⟩.

By inserting a complete set of states, it is clear that
this measures the average charge in the direction n⃗ in
the presence of a source O(x),

⟨Dn⟩ =
1

N
∑
α,i

δ(d)(p−pα)ωiδ
(2)(Ωn−Ωi)|⟨α| O|0⟩|2 ,

(3)
where |α⟩ runs over all multiparticle states in the the-
ory, and i runs over all particles in each state.

IR safety of charge densities

The fact that Dn measures a conserved quantity im-
plies two important properties: i) IR finiteness against
soft and collinear radiation and ii) connection between
different phases of the theory. We explore both aspects
in the following.
In gauge theories, exclusive rates to produce a sin-

gle state have IR divergences signaling that the the-
ory has nontrivial IR dynamics. Such divergences, via
the KLN theorem [43, 44], are canceled after sum-
ming over a set of degenerate states. This suggests an
introduction of IR safe observables as those that do
not spoil the cancellation of IR divergences and there-
fore are dominated by the short distance dynamics
[1, 45, 46]. We now argue that one-point correlators
of conserved charges belong to this category.

Since the conserved charge is preserved under
collinear radiation, the detector Dn acts homoge-
neously on the set of particles collinear to the direction
n⃗ measuring their total charge. Moreover, the correla-
tor is inclusive in the other collinear sectors, ensuring

the cancellation of IR divergences due to the collinear
radiation.
Soft radiation, instead, is annihilated by the detec-

tor of conserved charges. Soft photons and gluons cou-
ple universally to the rest of the amplitude [47]. This
implies that the one-point correlator receives a con-
tribution from an off-shell photon of a momentum q2

that splits into a qq̄ pair proportional to∫
dΦ2

pµq p
ν
q̄ + pνqp

µ
q̄ − q2/2ηµν

q2

∑
i=qq̄

wiδ
(2)(Ωi − Ωn) ,

(4)
which vanishes since the integrand is symmetric under
pµq ↔ pµq̄ due to the vector-like nature of the gauge
boson coupling and wq = −wq̄ due to gauge bosons
carrying no charge. While at the event-by-event level
the detector does receive contributions from soft par-
ticles, those average out in an ensemble of events. The
fact that the correlator computes the expected aver-
age over an inclusive set of states is what makes it
insensitive to the soft radiation and to the appearence
of non-global logarithms [48, 49].
A second aspect that highlights the importance of

considering detectors of conserved charges is the fact
that, operatorially, those are defined as

Dn = lim
r→∞

∫ ∞

0

dt r2niJ
i(t, rn⃗) , (5)

where Jµ is a conserved current, given by T 0µ or
qf f̄γ

µf for a detector measuring the energy or the
charge qf of a fermion. In QCD, the fact those are
conserved currents implies that the detector can be ex-
pressed and measured in terms of hadrons, while at the
same time can be expressed and computed in terms of
quarks and gluons. If we were to measure instead a
non-conserved quantity, e.g. the energy squared, this
would be associated to an operator which develops an
anomalous dimension [11], and generically would be
mapped to an unkown operator at parton level.

Beyond one-point correlators

The arguments for the correlator to be IR-safe per-
turbatively are not necessarily constrained to one-
point correlators. As long as the detectors Dni

consist
of conserved charges, the correlator ⟨Dn1

· · · Dnm
⟩ for

well separated directions n⃗1, . . . , n⃗m is collinear safe.
Each detector acts on a different collinear sector. By
the same reasoning described above, they act homo-
geneously measuring the total charge on each sector
and it is collinear safe. The fact that the detector
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measures a conserved charge is crucial, in contrast to
a generic detector as explored in e.g. [50].
IR-safety under soft emissions puts instead restric-

tions on the type of detectors, as they are forced to
annihilate the soft sector, similar to Eq. 4 but with a
weight proportional to wqwq̄ to signal that each de-
tector measures a quark from the soft splitting. This
is annihilated whenever one of the detectors measures
the energy, or when one of the detector measures a
charge that is not produced or highly suppressed dur-
ing the perturbative evolution, like c- and b-flavor.
In this way, for instance, the electric charge-electric

charge ⟨Qn1
Qn2
⟩ or isospin-baryon number ⟨In1

Bn2
⟩

correlators are sensitive to the soft radiation. Exam-
ples of IR-soft safe correlators are the energy-electric
charge ⟨En1

Qn2
⟩ or in the case of jets of heavy quarks,

charm-isospin ⟨cn1In2⟩, or b-flavour - baryon number
⟨bn1Bn2⟩. Once those are shown to be IR safe, any
higher point correlator where all pairs are IR-safe will
be IR-safe as well, e.g. ⟨En1

En2
Qn3
⟩.

This opens up a large, unexplored space of IR-safe
correlators. An interesting system to compute and
measure those is a top quark decay, since the chiral
nature of the top and the richness of its decays leads
to nontrivial correlations among the different quantum
numbers. We leave this to future explorations.

CHARGE DENSITIES
OF A CHIRAL CURRENT

In the following we focus on the simplest phe-
nomenologically relevant operator that can excite the
QCD vacuum, given by a chiral fermion current,

Jh(x) = εµh q̄γµPLq(x) , (6)

where PL gives the left and right chiral fermion cur-
rent. To simplify notation we consider a left handed
current unless otherwise specified, and comment the
difference from a right handed current. The projec-
tion on the polarization vectors εµh allows us to write
a density matrix, that will become relevant for collider
quantities,

⟨Dn⟩hh′ =
1

N

∫
d4xeip·x⟨J†

h′(x)DnJh(0)⟩ , (7)

with the normalization given by tracing over polar-
izations of the matrix element without a detector
N = −

∫
d4xeip·x⟨Jµ†(x)Jµ(0)⟩, equal to the inclusive

production of hadrons from Jµ. This density matrix
represents the average charge measured in the direc-
tion n⃗ in the presence of the decay of a massive vector
with a momentum pµ and a helicity of h, h′ = +,−, 0.

The three point JDJ correlator,

Hµν
D =

∫
d4xeip·x⟨Jµ†(x)DnJ

ν(0)⟩ , (8)

can be decomposed in terms of three independent ten-
sor structures that depend on the injected momentum
pµ and the null detector’s direction nµ as

Hµν
D =

(
−ηµν + pµpν/Q2

)
H0

D

+

(
Q2nµnν + pµpν

Qn · p
− nµpν + pµnν

Q

)
Hn

D

− i

Q
ϵµναβpαnβH

o
D ,

(9)

where H0
D, H

n
D, and H

o
D are generically functions of p2

and p ·n. The different components may be extracted
by computing the contractions of Hµν with ηµν , nµnν
and ϵµνabp

anb. Notice that the scalars HD(p
2, p · n)

are Lorentz-covariant and inherit the transformation
properties of D. We are interested in the dependence
on the direction n⃗ of the detector. For a generic pµ

and a generic direction nµ, p · n does depend on the
polar and azimuthal angles θ and ϕ.
In the rest frame, pµ = (Q, 0⃗) and nµ = (1, n⃗), so

that p · n =
√
p2 and the dependence on n⃗ is entirely

on the tensor structure. Contracting Hµν with ϵµhϵ
∗ν
h′ ,

leads to δhh′ , (⃗ϵh · n⃗)(⃗ϵ∗h′ · n⃗) and −iϵijkϵ∗h′,injϵh,k from
the first, second, and third row of Eq. 9, respectively.
The most general form that the density matrix of cor-
relators can take is given by

⟨Dn⟩hh′ =
⟨D⟩
4π

[
δhh′ + aD

(
(⃗ϵh · n⃗)(⃗ϵ∗h′ · n⃗)−

δhh′

3

)]
− i

4π
bD ϵ

ijkϵ∗h′,injϵh,k , (10)

where ⟨D⟩ is the total charge of the operator. The
parameters aD and bD control the parity-even and
parity-odd parts of the correlator, are determined by
the dynamics of the theory and are independent of
the helicity projected from the operator. In terms of
the Lorentz structures in Eq. 9, the overall normaliza-
tion is given by N = 4π(H0

1 + 1
3H

n
1 ) ≡ 4πN where

1 denotes the insertion of the identity in place of a
detector, that is, it computes the inclusive production
rate. The coefficients in Eq. 10 are given by

⟨D⟩ =
H0

D + 1
3H

n
D

N
, aD =

Hn
D

H0
D + 1

3H
n
D
, bD =

Ho
D

N
.

(11)
The angular dependence of each element in the den-
sity matrix is determined by Eq. 10. For instance,
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given the polarizations ϵµ± = 1√
2
(0, 1,±i, 0) and ϵµ0 =

(0, 0, 0, 1), the parity-even terms are obtained from

ϵ⃗± · n⃗ = e±iϕ
√
2
sin θ and ϵ⃗0 · n⃗ = cos θ while the nonvan-

ishing contractions for the parity-odd term are given
by −iϵijkϵ∗±,injϵ±,k = ± cos θ, and −iϵijkϵ∗0,injϵ±,k =

∓ e±iϕ
√
2
sin θ.

Consider the left handed current injected via a pos-
itively charged W boson at rest decaying to ud̄, with
the d̄ having positive helicity due to the left coupling.
The total charge ⟨D⟩, for the case of a conserved
charge, is obviously determined to all orders by the
charge of the operator. The total charges are given
by ⟨E⟩ = mW , ⟨Q⟩ = 1, ⟨I⟩ = 1 and ⟨B⟩ = 0 for the
energy, electric charge, isospin, and baryon number.

The aD and bD coefficients depend on the dynam-
ics and are computed perturbatively. At leading or-
der these are simply determined by the different de-
cay amplitudes Ah. In the vector rest frame, these
are simply proportional to the Wigner-d matrices,
Ah = gVmV e

ihϕd11,h(θ⋆), with d11,±1 = 1±cos θ⋆
2 and

d11,0 = − 1√
2
sin θ⋆, where θ∗ is the angle between the

spin of the vector and the helicity-plus fermion in the
vector rest frame.

In the case of the energy correlator, one has bE = 0
and aE = −3/2 [2–4], which saturates the lower bound
of [11]. In the case of the isospin, since both d̄ and u
quarks carry the same quantum number, at leading or-
der one has bI = 0 and aI = aE . The baryon number
is more interesting, since while ⟨B⟩ = 0, the individual
quarks do carry baryon number and therefore a non-
trivial distribution is predicted. One has aB = 0 and
bB = −3Bq whereBq = 1/3 is the absolute value of the
baryon number of the individual quarks. For the elec-
tric charge, the parity-even coefficients depend on the
sum of charges of the light quarks which coincides with
the sum of isospins, namely aQ = aI . The parity-odd
coefficients depend on the difference of quark charges,
and therefore bQ = bB/2.

At NLO, whenever the detector measures the charge
of one of the quarks, two types of diagrams con-
tribute, corresponding to the square of the real emis-
sion diagram and the virtual correction to the vertex.
In dimensional regularization, both contain soft and
collinear divergences that cancel in the sum. For the
charge correlators, the cancellation is similar to the
case of the inclusive cross section, since the detector
acts homogeneously on the diagrams, simply fixing the
quark direction. In the energy correlators, the can-
cellation of the collinear divergence only takes place
after adding the third contribution coming from plac-
ing the detector on the gauge boson, as it is required

⟨D⟩ aD bD

E mW − 3
2

+ 9αS
2π

0

Q 1 − 3
2

+ 6αS
2π

− 3
2
Bq

(
1 − αS

π

)
I 1 − 3

2
+ 6αS

2π
0

B 0 0 −3Bq

(
1 − αS

π

)
TABLE I. Coefficients of Eq. 10 at one loop for the den-
sities of energy E , electric charge Q, isospin I and baryon
number B for a positively charged W -boson.

due to energy conservation of the collinear splitting.
This third contribution does not have virtual correc-
tion and it does not contain any soft divergence due to
the extra energy insertion in the gauge boson’s energy
integral. The vectorlike nature of the gluon coupling
implies that the parity-odd structure in Eq. 9 is not
modified at one loop. The only contribution to bQ and
bB is via the correction of the total rate. The summary
of the results is reported in Table I.

Perturbative and non-perturbative corrections

In the following we present a comparison between
the analytical calculation and the numerical simula-
tion. We simulate an e+νe collision in MadGraph [51]
and implement the parton shower and the hadroniza-
tion via Pythia8 [52]. Given the left handed na-
ture of the lepton current, the W spin is aligned with
the beam and only the plus helicity is produced, i.e.
the production density matrix is ρ(ℓν) ∝ diag(1, 0, 0),
which implies that the W spin axis is aligned with the
beam axis and the only relevant decay is ρW++, with
θ being the angle between the positron’s momentum
and the detector. The Cabibbo angle is set ot zero
at this level since we are interested in the u − d̄ chi-
ral current, so no s-quark is injected by the opera-
tor. The result is shown in Fig. 1. From left to right
and top to bottom, the densities of energy, electric
charge, isospin and baryon number as functions of the
angle cos θ between the W spin axis and the detector.
The dark- and light-colored lines denote the LO and
NLO predictions, respectively. The dark- and light-
colored data points the Pythia8 output with only
parton shower without hadronization (P.S. only) and
including hadronization (P.S.+hadr.). We simulate a
total of 2.5 million events, and the quoted uncertain-
ties refer only to the statistical uncertainty.

In all cases the NLO calculation does provide an
improvement with respect to the LO calculation and
an accurate prediction of the density after the par-
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FIG. 1. Density of QCD global charges for a W boson decay, as a function of the angle cos θ between the W spin and
the detector. From left to right and top to bottom, energy, electric charge, isospin and baryon number. The dark- and
light-colored lines denote the LO and NLO prediction. The dark- and light- colored data points the Pythia8 output
with only parton shower (P.S. only) and including hadronization (P.S.+hadr.). In the inset, the fitted values for aD and
bD of the P.S.+hadr. sample.

ton shower, as it is expected from IR-safe quanti-
ties, confirming the arguments of the previous sec-
tion. For the energy correlator, the contribution from
the gluon tends to flatten out the distribution, and
the fitted aE parameter without the hadronization is
aE = −1.232 ± 0.003. The parity-even part of both
isospin and electric charge distribution have the same
coefficient at NLO, and compatible with the fitted val-
ues aI = −1.335±0.005 and aQ = −1.334±0.005. Up
to NLO, the isospin distribution is symmetric since u
and d̄ carry positive isospin. At two loops a nonzero
bI receives a potential contribution from a nonplanar
diagram. The parity-odd coefficient electric charge bQ
does receive a tree-level contribution, and the NLO
correction pushes it to higher values compatible with
bQ = −0.475 ± 0.001. The baryon density is com-
pletely asymmetric and positive (negative) in the re-
gion with predominantly a quark (antiquark). The
baryon asymmetry bB is twice the electric charge one,
and observed to be bB = −0.939 ± 0.001 with parton
shower only.

The hadronization and weak interactions induce a
series of corrections to the densities. First of all,
isospin is not preserved by weak interactions, which

induce K0 − K̄0 mixing. This implies an asymmetry
between the u-quark and the d̄-quark since up-quarks
hadronize into charged kaons of definite isospins and
reach the detector whereas down-quarks hadronize
into neutral kaons, either KS decaying into pions or
KL reaching the detectors. These effects generate an
asymmetry, predicted to be bI = −0.013 ± 0.002 by
the Pythia8 simulation. Moreover, this also gener-
ates a total isospin charge larger that the W -boson’s
isospin, ⟨I⟩ = 1.023± 0.0007.

The baryon asymmetry gets a large correction due
to non-perturbative effects. At the perturbative
level, it is predicted that the baryon number car-
ried by a quark and its collinear radiation is ∼ 1/3.
This would suggest that the average baryon num-
ber observed tends to 1/3. However, string forma-
tion spoils factorization between the collinear sec-
tors, and the asymptotic baryon number observed
strongly depends on the details of how the QCD string
breaks. The hadronization model used in Pythia8
is based on the Lund string model [53, 54], which
controls the baryon production through the ratio be-
tween the rate of diquark-antidiquark production rel-
ative to the quark-antiquark production in the string
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FIG. 2. Density of strangeness generated nonperturba-
tively.

breaking [55–57]. In Pythia, this is controlled by
the parameter StringFlav:probQQtoQ, and set to
the default value of 0.081 in Fig. 1, which leads to
bB = −0.128 ± 0.001. In the range between ∼ 0.04
and ∼ 0.16 for the Pythia parameter, the asymp-
totic baryon asymmetry behaves close to linear, bB ≃
−0.128× StringFlav:probQQtoQ/0.081.

The electric charge receives non-perturbative cor-
rections already mentioned. Since pions have equal
charge and isospin, measuring only pions would lead
to a symmetric electric charge distribution. The asym-
metry in the charge at the hadron level should be
driven by the baryons and kaons. Indeed, the cos θ < 0
region is populated by protons and neutrons with van-
ishing average isospin and positive average electric
charge while the cos θ > 0 region is populated by an-
tiprotons and antineutrons. This only accounts par-
tially for the electric charge asymmetry though since
only baryons would lead to bQ = bB/2. The rest comes
from positively charged kaons predominantly gener-
ated at cos θ < 0.

Lastly, a nonzero strangeness density is generated
nonperturbatively. The meachanism is exactly the one
described for the isospin, as it is the production of
kaons that are responsible for both effects. The gen-
erated strangeness charge of the current is predicted
to be ⟨S⟩ = 0.043 ± 0.001 by Pythia8 , indeed twice
the observed excess of isospin. The asymmetry is ob-
served to be bS = −1.66± 0.002.

This explains the aforementioned charge asymme-
try since the different quantum numbers satisfy the
relation ⟨Qn⟩ = ⟨In⟩ + 1

2 ⟨Bn⟩ +
1
2 ⟨Sn⟩ at a fixed di-

rection n⃗, as long as no other quantum numbers are
present. Therefore, the different parity-odd parame-
ters are related by bQ ≃ bI+bS/2+bB/2. The density
of strangeness is illustrated in Fig. 2.

BOUNDS ON ONE-POINT CORRELATORS

The coefficients in Eq. 10 are subject to constraints
stemming from the unitarity and the positivity of the
energy. The spatial components of the hadronic tensor
Hµν in Eq. 8 form a positive definite matrix, as can
be seen by inserting a complete set of states,∫

d4xeip·x⟨J i†(x)EnJj(0)⟩ = (12)∑
α,i∈α

δ(4)(pα − p)Eiδ
(2)(Ωi − Ωn)⟨0|J i†|α⟩⟨α|Jj |0⟩ .

Therefore, the positivity of the energy implies that
the matrix spanned by the components of J⃗ is posi-
tive definite. Using the decomposition of Eq. 9, this
positive definiteness implies two inequalities for the
scalar terms independent of n⃗, and given by

H0
E > 0 , H0

E +Hn
E > 0 . (13)

This implies, obviously, that ⟨E⟩ > 0, but also that
aE in Eq. 10 and Eq. 11 is bounded by

−3

2
≤ aE ≤ 3 , (14)

with the lower and upper bound saturated whenHn
E =

−H0
E and when H0

E/H
n
E = 0, respectively. This is

the bound discussed in [11], obtained here as a sim-
ple consequence of Lorentz invariance, unitarity, and
positivity of the energy.
The upper bound is saturated by two particle states

with total angular momentum j = 1 and projection
m = 0, so the distribution is proportional to 1−cos2 θ,
while the lower bound is saturated by two particle
states with j = 1 and m = ±1, so the distribution
is proportional to 1 + cos2 θ. It is often stated [11]
that such cases are obtained by considering weakly
coupled scalars and fermions, respectively, so that

Jµ = ϕ∗
←→
D µϕ and Jµ = ψ̄γµψ. However, the situ-

ation can be reversed and the upper bound can be
saturated with fermions and the lower with scalars, if
those are nonminimally coupled with L ⊃ ψ̄σµνψFµν

and L ⊃ Dµϕ∗DνϕFµν .
From the discussion above it is clear that the same

string of reasoning applies to any observable which is
positive definite, in particular to a detector measuring
the energy to any real power k ≥ 0, Ek, see [58] for
an equivalent statement for CFT. Consequently, one
has that H0

Ek > 0 and H0
Ek +H

n
Ek > 0, which implies

not only ⟨Ek⟩ > 0, but also that − 3
2 ≤ aEk ≤ 3 in

exact analogy with the k = 1 case. Again, the bounds
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FIG. 3. Coefficient aEk as defined in Eq. 10 as a function of
k for a vector current decaying into quarks. Red and blue
denote Pythia8 output without and with hadronization,
respectively.

are saturated by two particle states with m = ±1 and
m = 0.
Since QCD has a mass gap, the restriction of k ≥ 0

can be lifted and consider k to be any real number as
the measurement will be finite. However, QED correc-
tions lead to soft photons and the observable formally
diverges for negative k, even though one could assume
a finite resolution. Different values of k explore the
theory in different regimes. We provide in Fig. 3 the
coefficients aEk from k = 0 to k = 5 extracted from
a sample of W -boson decays as specified in the previ-
ous section. For k = 1, aE indeed corresponds to the
value in Table I and the distribution in Fig. 1. For
large k, data tends to saturate the unitarity bound.
This is due to the fact that in this region collinear
and hard splittings are suppressed and only events
with few highly energetic particles plus a soft sector
dominate, looking more and more like the tree-level
process, corresponding to free fermions. For smaller
k, softer particles start to contribute and for k = 0 the
Ek detector becomes the particle number detector and
the distribution is the number density distribution.

Relation with moments

Beyond the positivity of H0
Ek and of H0

Ek + Hn
Ek ,

which we denote either as H(k) from now on for sim-
plicity, there are a further infinite set of constraints
that such quantities satisfy. They stem from the fact
that both can be written as

H(k) =

∫
dΦρ(Φ)(E(Φ))k , (15)

i.e. as integrals over some kinematic configuration Φ, a
positive distribution ρ(Φ) ≥ 0 and a positive function
of such kinematics E(Φ) ≥ 0, normalized in such a
way that E(Φ) ≤ 1, raised to some power k > 0. This
implies that the derivatives obey

(−1)N d
NH(k)

dkN
> 0 , (16)

and therefore H(k) (i.e., both HEk and H0
Ek + Hn

Ek)
is a completely monotonic function in k. The fact
that H(k) is a completely monotonic function means
that its functional form is constrained. The problem
we will be interested in is whether the measurement of
H(k) in some interval for k can be used to extrapolate
the function outside such interval. We do this not by
assuming a certain functional form for H(k), but by
finding the complete set of constraints that the values
{H(k1), . . . }, obtained by evaluating the function on
a discrete set {k1, . . . }, have to satisfy.
For N = 0, Eq. 16 reduces to the positivity of H(k).

The constraints from N > 0 can be efficiently posed
by considering a discrete sequence k, k+δ, k+2δ, . . . .
It can be shown [59] (see also Chapter IV of [60]) that
the set of constants H(k), H(k + δ), H(k + 2δ), . . .
form a completely monotonic sequence,

(−1)N∆NH(k +mδ) ≥ 0 , (17)

for any N,m ≥ 0, and with ∆ being the discrete
derivative, ∆0H(k) = H(k) and ∆nH(k) = Hn−1(k+
δ)−Hn−1(k). The full set of linear constraints imply
that the set of H(k +mδ) can be identified with mo-
ments of a positive distribution, and therefore making
an equivalence with the Hausdorff moment problem
[61, 62], see [63] for a recent discussion in the context
of scattering amplitudes. In particular, H(k) is com-
pletely monotonic in k if for any δ > 0 the following
matrices H(p) with entries (Hp)ij = H(k+(i+ j+p−
2)δ) are positive definite:

H0 ≻ 0 , H1 ≻ 0 ,

H0 −H1 ≻ 0 , H1 −H2 ≻ 0.
(18)

The advantage of this formulation of the constraints
on H(k) is that a finite set of the nonlinear constraints
of Eq. 18 is equivalent to a class of infinite set of linear
constraints of Eq. 17. Therefore the moment structure
of H(k) constrains the behavior of ⟨Ek⟩ and aEk as a
function of k and Eq. 18 provides the complete, opti-
mal set of constraints.

Given a set of moments, the space of higher mo-
ments allowed by the requirements in Eq. 18 is expo-
nentially small. We illustrate this point with the fol-
lowing. We extract ⟨Ek⟩ and aEk for k = 1, 1.25, . . . , 3
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FIG. 4. Theoretical constraints on aEk and ⟨Ek⟩ for k =
0.75 and fixing the values for k ≥ 1 to their best fit values.
In grey the bounds − 3

2
≤ aEk ≤ 3 and ⟨Ek⟩ > 0. In teal,

the allowed space from the moment structure. The actual
best fit point sits strikingly close to the kink.

from a numerical simulation used in Fig. 3. The best
fit points are used to extract H0

Ek and H0
Ek + Hn

Ek

from the relations in Eq. 11. Note that N is an over-
all normalization independent of k and does not affect
the constraints. Now we can set up a simple Semidef-
inite programming (SDP) routine that extremizes the
allowed values for k = 3.25 up to k = 5, by requir-
ing that the quantitiesH0

Ek=1 , . . . ,H
0
Ek=5 obey the con-

straints in Eq. 18, and similarly for H0
Ek + Hn

Ek . We
find that ⟨E3.25⟩ is constrained at the level of 10−5

while ⟨E5⟩ is determined within 2 · 10−2. Therefore,
for k close to the region where the parameters are
known, the ⟨Ek⟩ are very efficiently constrained by the
moment structure while larger k have slightly more
freedom. For instance, the intermediate ⟨E4⟩ is con-
strained at the 10−3 level. A similar observation ap-
plies to aEk , but with stronger relative constrains by
an order of magnitude. In this case, for k = 3.25 the
bounds are at the 2 · 10−6 level, 10−4 for k = 4 and
2 · 10−3 for k = 5.
Ideally, the fit on aEk and ⟨Ek⟩ should be performed

together with the requirement of the moment con-
straints. While low values of k are limited by sys-
tematic uncertainties, large values of k are of easier
experimental access but suffer of larger statistical un-
certainties.
While the constraints on higher moments are quite

stringent, the constraints on lower moments are signif-
icantly looser. We consider a similar setup, where the
moments for k = 1, 1.25, . . . , 3 are fixed to the best
fit points, and we run an SDP that extremizes the al-

lowed values for k = 0.75. Running the SDP with only
H0

Ek=0.75 as free parameter finds a lower bound, but the
problem is unbounded by above. The same is true for
H0

Ek=0.75+H
n
Ek=0.75 . This is illustrated in Fig. 4, where

we show in teal the allowed space in aEk and ⟨Ek⟩/⟨E⟩
for k = 0.75 once the values for k ≥ 1 are fixed to
their best fit values. The lower bounds for H0

Ek=0.75

and H0
Ek=0.75 +Hn

Ek=0.75 leads to a sharp boundary for
the allowed space. The fact that those have no upper
bounds lead to the unbounded region in the right of
the plot. What is most striking, is that the actual
extracted values for k = 0.75 are extraordinarily close
to the kink of the allowed space. This suggests that
both H0

Ek and H0
Ek +Hn

Ek have a power law behavior
that is close to saturate the moment structure.

The phenomenological value of this class of con-
straints is that allows to use experimentally clean, IR-
safe data for k ≳ 1, in order to constrain experimen-
tally challenging, non-IR-safe data at low k. In par-
ticular, number density corresponds to k = 0, which
can be constrained by IR-safe observables with k > 0.

We end with a speculative note: while from the ar-
guments presented here one cannot rule out points in
the bulk of Fig. 4, in particular points with arbitrarly
large ⟨E3/4⟩, in order to be in that region a dramatic
change in H(k) must occur. We find reasonable that
there should exist extra constraints, possibly linked
with full unitarity of the S-matrix, that would rule
out such extreme behaviors, since this is what forbids
large hierarchies among moments associated with scat-
tering amplitudes [64]. For instance, in theories with
a mass gap mπ, ⟨Ek=0⟩ has the upper bound Q/mπ,
with Q being the hard scale.

CONCLUSIONS AND OUTLOOK

In this Letter we have explored the use of one-point
correlators in order to understand the density matrix
of conserved and non-conserved charges in QCD. We
observe that the one-point correlators of conserved
charges are IR-safe perturbatively, which includes not
only the energy density, but also the densities of elec-
tric charge, isospin and other flavors, and baryon num-
ber. We compare the analytical result with the numer-
ical simulation in Fig. 1. We remark that despite the
simplicity of the observables, the densities carry an in-
credible amount of information on the underlying dy-
namics. The functional form of the different densities
is fixed by Lorentz invariance. We present a complete
and optimal set of constraints that the densities of Ek
should satisfy. This allows to constrain the allowed



9

space of aEk and ⟨Ek⟩ as in Fig. 4. The fitted value
from simulation is close to the kink, which indicates
that the actual distribution is close to a power law.

The most interesting avenue is an experimental
measurement of such densities, and the extraction of
the parameters ⟨D⟩, aD and bD. A promising con-
text to perform such measurements at the LHC is in
semi-leptonic tt̄, as it offers a relatively clean sample of
hadronically decaying W bosons [65, 66] and the sta-
tistical sample of semileptonic tt̄ is reaching the level
of hadronic Z-decay at LEP. Combined with charm jet
identification [67], charm densities might be a target.

In the future, FCC-ee is expected to provide around
1013 Z-bosons and 108 W -boson pairs [68], which
would allow to perform measurements of the different
densities to an unprecedented precision.

In the same way the energy density can be used to
extract the W spin density matrix [69], the family of
observables proposed here may boost the discriminat-
ing power and allow to better characterize a jet.

While focused on one-point correlators, the argu-
ments presented apply to a subset of correlators be-
yond one-point. This opens up the space of calcula-
ble correlators, with a network of connections to other
correlators via theoretical constraints and the operator
product expansion. The theoretical and phenomeno-
logical exploration of this network may lead to new
perspectives on collider physics.
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