
Track Reconstruction for the ATLAS Detector’s Phase II
Trigger and Data Acquisition System using Graph Neural Networks

Sudha Ahuja on behalf of the ATLAS Collaboration, CERN

References: Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors (2003.11603(2020)) [1]
Novel deep learning methods for track reconstruction, arXiv 1810.06111 2018 [2]

Graph Neural Networks for Charged Particle Tracking on FPGAs. doi: 10.3389/fdata.2022.828666 [3]
Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs (ATL-DAQ-PROC-2023-006/ ATL-DAQ-PROC-2023-014) [4]

 ITk (Inner Tracker) dataset - https://gitlab.cern.ch/gnn4itkteam/acorn [5],Track ML DataSet - https://www.kaggle.com/c/trackml-particle-identification [6]
https://github.com/Xilinx/brevitas [7]

Particle Track reconstruction involves precisely measuring the trajectory and the properties of charged particles (reconstruction) in the Tracking detector by
identifying which of the isolated measurements (hits) belong to the same particle. A GNN approach to charge particle tracking has been proposed [1][2],
while studying Deep Neural Networks for Track reconstruction. In this approach, each graph node represents a sparse measurement (hit), with edges
connecting pairs of hits based on geometrically plausible relationships.

High Luminosity Large Hadron Collider (HL-LHC)

Track Reconstruction using Graph Neural Networks (GNN) & Implementation on FPGA’s

Application of Graph Neural Networks on FPGAs is under investigation for the Event Filter Tracking system for the HL-LHC. Model resource optimization studies are ongoing, as the
pipeline is primarily occupied by the Machine Learning components. Initial model compression using QAT and pruning showed promising resource reduction while maintaining
performance. Further studies are ongoing in various aspects (using the realistic ITk simulation samples, comparing MLP and Module Map techniques, segmenting the Graph into
detector regions, etc.) and the final goal is to have a fully running GNN-based track reconstruction pipeline on an FPGA.

Resource Optimisation for the Graph Reconstruction Step

Summary and Outlook

HL-LHC will deliver an order-of-magnitude
increase in integrated luminosity and
amount of data produced per event.
Challenging environment with high
background pileup noise & particle
production rate.
Major upgrades are foreseen for the
ATLAS detector and the Trigger and Data
Acquisition System (TDAQ).
The TDAQ system consists of a Level-0
hardware trigger, a data acquisition and an
an Event Filter system.
The Event Filter system is exploring a
heterogeneous computing farm comprising
CPUs, and potentially GPUs and/or
FPGAs.

Event Filter Tracking
Track reconstruction is the most computationally
intensive process, due to combinatorics, within the
Event Filter system.
Tracking predominantly influences the Event Filter
system requirements.
Exploring novel track reconstruction algorithms and
modern machine learning techniques with
heterogeneous computing architecture (CPUs +
GPUs +FPGAs)
• Pattern Recognition (from the pipeline) being

studied as a geometric deep learning problem.
Achieved by representing Inner Tracker data as
a graph and training the model to classify its
connections.

GNN based pipeline:
1. Graph reconstruction - aims to maximize efficiency of true edges while

limiting the amount of false edges. Can be done in two ways:
• Metric Learning: Construct a graph using available information (r, phi, z), then

use a Multi-Layer Perceptron (MLP) to map hits into a latent space. Create
edges between hits lying within a circle of radius r. Network learns to push
same-track hits within this circle. Trade-off between efficiency and purity by
adjusting the radius threshold.

• Module Map: Uses geometric observables for construction.

2. Edge Labeling: Implements interaction network to model the relationship
between graph objects. GNN assigns an edge classification score to each
edge to recognise edges originating from true track particles.

3. Graph Segmentation: Threshold applied to the edge score to remove false
edges from the graph. Track candidates are then formed by segmenting the
graph into connected components, using a walkthrough algorithm to
resolve multiple paths for specific nodes. These track candidates inputted
into track-fitting algorithms.

Performance Metrics for Graph Construction (step 1)

Resource Estimation on FPGAs
GNN Tracking on FPGAs [3] can simultaneously provide
parallelization with low energy consumption (compared to CPUs
and GPUs).
For FPGA deployment, converted the algorithm to Hardware
Descriptive language (HDL). Used HLS4ML for high-level
synthesis of the ML component.
• Using ITk Dataset [5]: Trained the algorithm with PyTorch and

converted it to ONNX. Used HLS4ML to generate HDL code and
Quartus RTL compilation to estimate resources on the Intel S10 GX
device.

Model Compression
The Tracker is expected to generate hundreds of thousands of parameters, posing a challenge
to reduce resource usage while maintaining efficiency and purity. Various ML model
compression techniques have been studied:
1. Quantization Aware Training (QAT) - Trained parameter representation using fixed-point

instead of floating-point. Defined bit-widths for weights and activation before training.
Implemented QAT with BREVITAS [7] integrated into PyTorch.

2. Pruning - Iteratively removed non-contributing weights from the network, leveraging sparse
matrices to speed up computation.

Results show that the Digital
Signal Processing blocks are
predominantly used

Model performance measured by computing purity at
fixed (98%) efficiency vs model size given in Bit
Operations (BOPs) per hit cluster. Three QAT models
are chosen and pruned iteratively.

Results (Trained & tested with the
TrackML Dataset [6])
Applied QAT and model pruning to the
MLP during the graph construction
stage, using heterogeneous bit widths
for weights and activations. Integrated
B a t c h n o r m f o r F P G A - s p e c i f i c
requirements. Pruned 10% of weights
every 180 epochs.

Event Filter Tracking Pipeline

[4][5] [4][6]

Resource Estimates for
MLP used in the Graph
Construction step (No
Pruning)

The three QAT models shown here achieved pruning
factors fp above 92% without drops in performance.
While the pruned PyTorch reference model drops
only at pruning factors larger than 90% .

https://cds.cern.ch/record/2285584
https://gitlab.cern.ch/gnn4itkteam/acorn
https://www.kaggle.com/c/trackml-particle-identification
https://github.com/Xilinx/brevitas

