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Particle Track reconstruction involves precisely measuring the trajectory and the properties of charged particles (reconstruction) in the Tracking detector by 
identifying which of the isolated measurements (hits) belong to the same particle. A GNN approach to charge particle tracking has been proposed [1][2], 
while studying Deep Neural Networks for Track reconstruction. In this approach, each graph node represents a sparse measurement (hit), with edges 
connecting pairs of hits based on geometrically plausible relationships.

High Luminosity Large Hadron Collider (HL-LHC) 

Track Reconstruction using Graph Neural Networks (GNN) & Implementation on FPGA’s

Application of Graph Neural Networks on FPGAs is under investigation for the Event Filter Tracking system for the HL-LHC. Model resource optimization studies are ongoing, as the 
pipeline is primarily occupied by the Machine Learning components. Initial model compression using QAT and pruning showed promising resource reduction while maintaining 
performance. Further studies are ongoing in various aspects (using the realistic ITk simulation samples, comparing MLP and Module Map techniques, segmenting the Graph into 
detector regions, etc.) and the final goal is to have a fully running GNN-based track reconstruction pipeline on an FPGA.

Resource Optimisation for the Graph Reconstruction Step

Summary and Outlook

HL-LHC will deliver an order-of-magnitude 
increase in integrated luminosity and 
amount of data produced per event. 
Challenging environment with high 
background pileup noise & particle 
production rate. 
Major upgrades are foreseen for the 
ATLAS detector and the Trigger and Data 
Acquisition System (TDAQ).
The TDAQ system consists of a Level-0 
hardware trigger, a data acquisition and an 
an Event Filter system.
The Event Filter system is exploring a 
heterogeneous computing farm comprising  
CPUs, and potentially GPUs and/or 
FPGAs.

Event Filter Tracking
Track reconstruction is the most computationally 
intensive process, due to combinatorics, within the 
Event Filter system. 
Tracking predominantly influences the Event Filter 
system requirements.
Exploring novel track reconstruction algorithms and 
modern machine learning techniques with 
heterogeneous computing architecture (CPUs + 
GPUs +FPGAs)
• Pattern Recognition (from the pipeline) being 

studied as a geometric deep learning problem.  
Achieved by representing Inner Tracker data as 
a graph and training the model to classify its 
connections.

GNN based pipeline:
1. Graph reconstruction - aims to maximize efficiency of true edges while 

limiting the amount of false edges. Can be done in two ways: 
• Metric Learning: Construct a graph using available information (r, phi, z), then 

use a Multi-Layer Perceptron (MLP) to map hits into a latent space. Create 
edges between hits lying within a circle of radius r. Network learns to push 
same-track hits within this circle. Trade-off between efficiency and purity by 
adjusting the radius threshold.

• Module Map: Uses geometric observables for construction.

2. Edge Labeling: Implements interaction network to model the relationship 
between graph objects. GNN assigns an edge classification score to each 
edge to recognise edges originating from true track particles.

3. Graph Segmentation: Threshold applied to the edge score to remove false 
edges from the graph. Track candidates are then formed by segmenting the 
graph into connected components, using a walkthrough algorithm to 
resolve multiple paths for specific nodes. These track candidates inputted 
into track-fitting algorithms.

Performance Metrics for Graph Construction (step 1)

Resource Estimation on FPGAs
GNN Tracking on FPGAs [3] can simultaneously provide 
parallelization with low energy consumption (compared to CPUs 
and GPUs).
For FPGA deployment, converted the algorithm to Hardware 
Descriptive language (HDL). Used HLS4ML for high-level 
synthesis of the ML component.
• Using ITk Dataset [5]: Trained the algorithm with PyTorch and 

converted it to ONNX. Used HLS4ML to generate HDL code and 
Quartus RTL compilation to estimate resources on the Intel S10 GX 
device.

Model Compression
The Tracker is expected to generate hundreds of thousands of parameters, posing a challenge 
to reduce resource usage while maintaining efficiency and purity. Various ML model 
compression techniques have been studied:
1. Quantization Aware Training (QAT) - Trained parameter representation using fixed-point 

instead of floating-point. Defined bit-widths for weights and activation before training. 
Implemented QAT with BREVITAS [7] integrated into PyTorch.

2. Pruning - Iteratively removed non-contributing weights from the network, leveraging sparse 
matrices to speed up computation.

Results show that the Digital 
Signal Processing blocks are 
predominantly used

Model performance measured by computing purity at 
fixed (98%) efficiency vs model size given in Bit 
Operations (BOPs) per hit cluster. Three QAT models 
are chosen and pruned iteratively. 

Results (Trained & tested with the 
TrackML Dataset [6]) 
Applied QAT and model pruning to the 
MLP during the graph construction 
stage, using heterogeneous bit widths 
for weights and activations. Integrated 
B a t c h n o r m f o r F P G A - s p e c i f i c 
requirements. Pruned 10% of weights 
every 180 epochs. 

Event Filter Tracking Pipeline

[4][5] [4][6]

Resource Estimates for 
MLP used in the Graph 
Construction step (No 
Pruning)

The three QAT models shown here achieved pruning 
factors fp above 92% without drops in performance. 
While the pruned PyTorch reference model drops 
only at pruning factors larger than 90% .
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