CERN Accelerating science

002901267 001__ 2901267
002901267 003__ SzGeCERN
002901267 005__ 20240618222939.0
002901267 0247_ $$2DOI$$9JACOW$$a10.18429/JACoW-IBIC2023-TUP036
002901267 0248_ $$aoai:cds.cern.ch:2901267$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002901267 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2754787$$d2024-06-17T12:06:27Z$$h2024-06-18T05:22:07Z$$mmarcxml
002901267 035__ $$9Inspire$$a2754787
002901267 041__ $$aeng
002901267 100__ $$aSieber, [email protected]$$uDarmstadt, GSI
002901267 245__ $$9JACOW$$aCryogenic Current Comparators as Low Intensity Diagnostics for Ion Beams
002901267 260__ $$c2023
002901267 300__ $$a5 p
002901267 520__ $$9JACOW$$aThe Cryogenic Current Comparator (CCC) is a SQUID based superconducting device for intensity measurement, firstly proposed as a beam diagnostics instrument in the 90s at GSI. After prove of principle the CCC was introduced into other facilities, attesting great potential for high resolution measurements but at the same time considerable mechanical and cryogenics challenges and costs. In the course of plannings for FAIR the CCC has been revitalized. Systematic investigations started, involving commercially available SQUID systems, which led to improvements of detector and cryostat. The developments resulted in nA spill measurements at GSI (2014) followed by the installation of a CCC in CERN Antiproton Decelerator (AD), which has in the meantime become a key instrument. Since then optimization of the device is ongoing, with respect to various operating conditions, system robustness, current resolution and last but not least system costs. Alternative CCC versions with improved magnetic shielding have been developed as well as ¿Dual Core‘ versions for background noise reduction. We give an overview of CCC optimization and development steps, with focus on applications at GSI and FAIR.
002901267 540__ $$aCC-BY-4.0$$bJACOW$$uhttps://creativecommons.org/licenses/by/4.0
002901267 542__ $$dthe author(s)$$g2024
002901267 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002901267 6531_ $$9author$$ashielding
002901267 6531_ $$9author$$apick-up
002901267 6531_ $$9author$$acryogenics
002901267 6531_ $$9author$$adetector
002901267 6531_ $$9author$$aelectron
002901267 690C_ $$aARTICLE
002901267 690C_ $$aCERN
002901267 700__ $$aCrescimbeni, [email protected]$$uU. Jena (main)$$uDarmstadt, GSI
002901267 700__ $$aHaider, [email protected]$$uDarmstadt, GSI$$vTEMF, TU Darmstadt, Darmstadt, Germany
002901267 700__ $$aMarsic, [email protected]$$uDenmark, Tech. U.
002901267 700__ $$aSchmelz, [email protected]
002901267 700__ $$aSchmidl, [email protected]$$uU. Jena (main)
002901267 700__ $$aSchwickert, [email protected]
002901267 700__ $$aStöhlker, [email protected]$$uHelmholtz Inst., Jena$$uDarmstadt, GSI$$vIOQ, Jena, Germany
002901267 700__ $$aStolz, [email protected]$$uIlmenau Tech. U.
002901267 700__ $$aTan, [email protected]$$uCERN
002901267 700__ $$aTympel, [email protected]$$uHelmholtz Inst., Jena
002901267 700__ $$aZakosarenko, Vyacheslav$$jJACoW-00090373$$mvyacheslav.zakosarenko@leibniz-ipht.de$$vIPHT, Jena, Germany
002901267 773__ $$cTUP036$$pJACoW IBIC$$qIBIC2023$$v2023$$wC23-09-10.2$$y2023
002901267 8564_ $$82538037$$s719718$$uhttp://cds.cern.ch/record/2901267/files/document.pdf$$yFulltext
002901267 960__ $$a13
002901267 962__ $$b2900961$$kTUP036$$nsaskatoon20230910
002901267 980__ $$aARTICLE
002901267 980__ $$aConferencePaper