002901265 001__ 2901265
002901265 003__ SzGeCERN
002901265 005__ 20240618222938.0
002901265 0247_ $$2DOI$$9JACOW$$a10.18429/JACoW-SRF2023-FRIBA04
002901265 0248_ $$aoai:cds.cern.ch:2901265$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002901265 035__ $$9OSTI$$a2349035
002901265 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2724652$$d2024-06-17T12:32:21Z$$h2024-06-18T05:22:07Z$$mmarcxml
002901265 035__ $$9Inspire$$a2724652
002901265 037__ $$aFERMILAB-CONF-23-0863-SQMS-TD
002901265 041__ $$aeng
002901265 100__ $$aMcIntosh, [email protected]$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.
002901265 245__ $$9JACOW$$aCrab Cavities for ILC
002901265 260__ $$c2023
002901265 300__ $$a9 p
002901265 520__ $$9JACOW$$aFor the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of these designs and their associated benefits for both manufacture and integration into the ILC Interaction Region. The recommended outcome of the recently conducted crab cavity technology down-selection, will also be highlighted.
002901265 540__ $$aCC-BY-4.0$$bJACOW$$uhttps://creativecommons.org/licenses/by/4.0
002901265 542__ $$dthe author(s)$$g2024
002901265 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002901265 6531_ $$9author$$acavity
002901265 6531_ $$9author$$aHOM
002901265 6531_ $$9author$$aSRF
002901265 6531_ $$9author$$aoperation
002901265 6531_ $$9author$$aimpedance
002901265 690C_ $$aARTICLE
002901265 690C_ $$aCERN
002901265 700__ $$aBelomestnykh, [email protected]$$uFermilab
002901265 700__ $$aBurt, [email protected]$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.
002901265 700__ $$aCalaga, [email protected]$$uCERN
002901265 700__ $$aDe Silva, [email protected]$$uJefferson Lab$$uOld Dominion U. (main)
002901265 700__ $$aDelayen, [email protected]$$uOld Dominion U.$$uJefferson Lab
002901265 700__ $$aGonin, [email protected]$$uFermilab
002901265 700__ $$aKhabiboulline, [email protected]$$uFermilab
002901265 700__ $$aLunin, [email protected]$$uFermilab
002901265 700__ $$aOkugi, [email protected]$$uKEK, Tsukuba
002901265 700__ $$aOrlov, [email protected]$$uFermilab
002901265 700__ $$aVerdú-Andrés, [email protected]$$uBrookhaven
002901265 700__ $$aXiao, [email protected]$$uBrookhaven
002901265 700__ $$aYakovlev, [email protected]$$uFermilab
002901265 700__ $$aYamamoto, [email protected]$$uKEK, Tsukuba
002901265 773__ $$c990-998$$pJACoW SRF$$qSRF2023$$v2023$$wC23-06-22$$y2023
002901265 8564_ $$uhttps://lss.fnal.gov/archive/2023/conf/fermilab-conf-23-0863-sqms-td.pdf$$yFermilab Library Server
002901265 8564_ $$82538034$$s1263728$$uhttp://cds.cern.ch/record/2901265/files/0a8b4e7438808d7e779b6124a12011a9.pdf$$yFermilab Library Server
002901265 8564_ $$82538035$$s1275116$$uhttp://cds.cern.ch/record/2901265/files/document.pdf$$yFulltext
002901265 960__ $$a13
002901265 962__ $$b2900962$$k990-998$$ngrand rapids20230622
002901265 980__ $$aARTICLE
002901265 980__ $$aConferencePaper