Searches for new physics with leptons using the ATLAS detector

Simon Koch SUSY 2024, Madrid 10.06 - 14.06

Motivation - Leptons in Final State

Simon Koch, o.b.o. ATLAS

Leptons provide a very clean signature \rightarrow minimise detector resolution systematics

Motivation - Leptons in Final State

Leptons provide a very clean signature \rightarrow minimise detector resolution systematics

Motivation - Leptons in Final State

Leptons provide a very clean signature \rightarrow minimise detector resolution systematics

- Recent hints of multiple flavour anomalies
 - LHCb LFV in B meson decays
 - 3.2 σ deviation in R_D/R_{D*} [1]
 - \circ ΔC_9 , 3.4 σ deviation [2] \longrightarrow
 - Muon anomalous magnetic moment $(g - 2)_{\mu}$ at Fermilab
- Provide answers to some of the open questions on lepton properties:
 - Neutrino mass generation mechanism

Flavour dependence of the Yukawa coupling strengths

Simon Koch, o.b.o. ATLAS

SUSY 2024

FNAL Run-1 + Run-2/3 Exp. Average 22.5 20.0 22.0 20.5 21.0 21.5 *a_µ* × 10⁹ − 1165900 Fermilab $(g - 2)_{\mu}$ [Phys. Rev. Lett. 131 (2023) 161802 10/06/2024

- Recent hints of multiple flavour anomalies
 - LHCb LFV in B meson decays
 - 3.2 σ deviation in R_D/R_{D*} [1]
 - \bigcirc ΔC_9 , 3.4 σ deviation [2] \longrightarrow
 - Muon anomalous magnetic moment $(g - 2)_{\mu}$ at Fermilab
- Provide answers to some of the open questions on lepton properties:
 - Neutrino mass generation mechanism
 - Flavour dependence of the Yukawa coupling strengths

Less model-donand

Different-flavour Effective Field Theory (EFT)

Majorana neutrinos with different-flavour decay modes

LFV

Simon Koch, o.b.o. ATLAS

SUSY 2024

Leptoquarks vector/scalar

> *W'/Z'* Non-universal gauge interaction models (NUGEM)

W

10/06/2024

 e_{\times}

 e_{X}

Less model-dona.

Different-flavour Effective Field Theory (EFT)

Majorana neutrinos with different-flavour decay modes

LFV

Simon Koch, o.b.o. ATLAS

SUSY 2024

Leptoquarks vector/scalar

> *W'/Z'* Non-universal gauge interaction models (NUGEM)

10/06/2024

 e_{\times}

 e_{X}

R-parity violating SUSY Less model-dependent

Different-flavour **Effective Field** Theory (EFT) couplings

Simon Koch, o.b.o. ATLAS

SUSY 2024

Leptoquarks vector/scalar

> *W'/Z'* Non-universal gauge interaction models (NUGEM)

m P+

Majorana neutrinos

LFV

with different-flavour decay modes

 \sim

10/06/2024

er_x

 ℓ_X

Less model-donand

Different-flavour Effective Field Theory (EFT) Couplings

Majorana neutrinos with different-flavour

LFV

Simon Koch, o.b.o. ATLAS

SUSY 2024

Leptoquarks vector/scalar

> *W'/Z'* Non-universal gauge interaction models (NUGEM)

m e+

decay modes

10/06/2024

 e_{\times}

 e_{X}

R-parity violating SUSY Less model-dependent

Different-flavour **Effective Field** Theory (EFT) couplings

Simon Koch, o.b.o. ATLAS

SUSY 2024

Leptoquarks vector/scalar

> *W'/Z'* Non-universal gauge interaction models (NUGEM)

m P+

Majorana neutrinos with different-flavour

decay modes

LFV

10/06/2024

 e_{\times}

 e_{X}

Overview

New results in leptonic final states:

Heavy Neutral Gauge bosons in τ + E_T^{miss}

Various interpretations of high-mass di-lepton final states ($e\mu$, $e\tau_{had}$, $\mu\tau_{had}$ pairs) EXOT-2023-16

Heavy Majorana neutrinos in same-sign WW decays [EXOT-2023-16]

All using full run-2 **ATLAS** data: 2015-2018, 13 TeV - 139 fb⁻¹ with an uncertainty of 1.7%

Simon Koch, o.b.o. ATLAS

SUSY 2024

[EXOT-2018-37]

Sequential Standard Model (SSM)
→ assumes couplings of W', Z' to fermions are identical to W, Z in SM

Non-universal gauge interaction models (NUGIM)

→ add non-universality via e.g.
 spontaneous symmetry breaking to
 2×SU(2) with non-universality angle θ_{NU}

Simon Koch, o.b.o. ATLAS

SUSY 2024

Sequential Standard Model (SSM)
 assumes couplings of W', Z' to fermions are identical to W, Z in SM

Non-universal gauge interaction models (NUGIM)

→ add non-universality via e.g.
 spontaneous symmetry breaking to
 2×SU(2) with non-universality angle θ_{NU}

Simon Koch, o.b.o. ATLAS

SUSY 2024

No LFV

Previous ATLAS $W' \rightarrow \ell \nu$ ($\ell = e, \mu$) limit: 6.0 TeV (95% CL) (139 fb⁻¹ of the 2015-2018 13 TeV data sample) [Phys. Rev. D 100 (2019) 052013]

τ (heavy-lepton) channel plus large MET

Previous ATLAS $W' \rightarrow \tau \nu$ limit: 3.7 TeV (95% CL) (36.1 fb⁻¹ of the 2015-2016 13 TeV data sample) [Phys. Rev. Lett. 120 (2018) 161802]

Simon Koch, o.b.o. ATLAS

SUSY 2024

Generally better sensitivity to universal couplings (SSM) Iower backgrounds, better lepton reconstruction

Can be more sensitive for NUGIM (LFV) models

Signatures in LHC detectors are high-momentum τ_{had} decay,

CMS $W' \rightarrow \tau \nu$ limit: 4.8 TeV (95% CL) (2015-2018 13 TeV data sample) [JHEP 09 (2023) 051]

Previous ATLAS $W' \rightarrow \ell \nu$ ($\ell = e, \mu$) limit: 6.0 TeV (95% CL) (139 fb⁻¹ of the 2015-2018 13 TeV data sample) [Phys. Rev. D 100 (2019) 052013]

τ (heavy-lepton) channel Can be more sensitive for NUGIM (LFV) models Signatures in LHC detectors are **high-momentum** τ_{had} **decay**,

plus large MET

Previous ATLAS $W' \rightarrow \tau \nu$ limit: 3.7 TeV (95% CL) (36.1 fb⁻¹ of the 2015-2016 13 TeV data sample)

[Phys. Rev. Lett. 120 (2018) 161802]

Simon Koch, o.b.o. ATLAS

SUSY 2024

Generally better sensitivity to universal couplings (SSM) Iower backgrounds, better lepton reconstruction

CMS $W' \rightarrow \tau \nu$ limit: **4.8** TeV (95% CL) (2015-2018 13 TeV data sample)

[JHEP 09 (2023) 051]

Simon Koch, o.b.o. ATLAS

SUSY 2024

 au_{had} visible p_T > 30GeV, $|\eta| < 2.4$ 1/3-prongs within $\Delta R < 0.2$

	Efficiency	Background rejection	
l-prong $ au$	85%	21	
8-prong $ au$	75%	90	
"loose	e" Recurrei	nt NN ID	

 $\Delta \phi_{\tau_{\rm had-vis}, E_T^{\rm miss}} < 2.4,$ $0.7 < p_T^{\tau_{had-vis}}/E_T^{miss} < 1.3$

Validation Region

loose τ ID $E_T^{\text{miss}} > 150 \text{ GeV}$ $p_T^{\tau_{\rm had-vis}}/E_T^{\rm miss} < 0.7$ *m*_T > 240 GeV

Signal

Simon Koch, o.b.o. ATLAS

SUSY 2024

multijet $(\tau_{had} fakes)$

Transfer factors from CRs **CR1:** fail loose τ ID, satisfy very loose τ ID **CR2:** *E*_T^{miss} < 100 GeV; *loose* τ *ID* **CR3:** E_T^{miss} < 100 GeV; very loose τ ID

Binned $m_T(\tau)$ distributions for W' masses: 500 GeV < $m_{W'}$ < 6 TeV

Excludes W' masses up to 5.0 TeV at 95% CL Upper exclusion limits for 1 ≤ cotθ_{NU} ≤ 5.5 → W' bosons in range 3.5-5 TeV excluded

...improves on previous result by 1.3 TeV

Simon Koch, o.b.o. ATLAS

SUSY 2024

AET Model-independent upper limits on production cross-section of τ + E_T ^{miss}: 17 fb @ m_T ^{thresh} = 200GeV to 0.014fb @ m_T ^{thresh} = 2.95 TeV

LFV in High-Mass Dilepton Final States Search for new physics in final states with $e\mu$, $e\tau_{had}$, or $\mu\tau_{had}$ pairs

Arkani-Hamed–Dimopoulos–Dvali (ADD) model [3] Randall-Sundrum (RS) model [4]

Quantum black holes in quantum-gravity theories with extra spatial dimensions

Interpretations

Previous **ATLAS** QBH *m*_{th} limit: **5.5/3.4**, **4.9/2.9**, and **4.5/2.6** TeV with ADD/RS model for eµ, (36.1 fb⁻¹ of the 13 TeV data sample) <u>[Phys. Rev. D 98 (2018) 092008]</u>

Ŵ s Sequential Standard Model (SSM) W' and Z' heavy gauge bosons \sim Previous ATLAS Z' limit: 4.5, 3.7, and 3.5 TeV μτ pairs, (36.1 fb-1 of the 13 TeV data sample) [Phys. Rev. D 98 (2018) 092008] R-parity violating SUSY τ -sneutrino (\tilde{v}_{τ}) interpretation Previous ATLAS \tilde{v}_{τ} limit: 3.4, 2.6, and 2.3 TeV $\frac{1}{2^{\lambda_{ijk}L_{i}L_{j}\bar{e}_{k}} + \lambda'_{ijk}L_{i}Q_{j}\bar{d}_{k}}$ Assumption on [Phys. Rev. D 98 (2018) 09-Yukawa coupling lijk CMS *v*_z limit: 2.2 TeV $\int \lambda_{312} = \lambda_{321} = 0.07$ LIHEP 05 (2022) 227 $\lambda_{327} = \lambda'_{377} = 0.07$ 10/06/2024 SUSY 2024

LFV in High-Mass Dilepton Final States Search for new physics in final states with $e\mu$, $e\tau_{had}$, or $\mu\tau_{had}$ pairs

Arkani-Hamed–Dimopoulos–Dvali (ADD) model [3] Randall-Sundrum (RS) model [4]

Quantum black holes in quantum-gravity theories with extra spatial dimensions

Interpretations

Previous **ATLAS** QBH **m**_{th} limit: **5.5/3.4**, **4.9/2.9**, and **4.5/2.6** TeV with ADD/RS model for eµ, (36.1 fb⁻¹ of the 13 TeV data sample) <u>[Phys. Rev. D 98 (2018) 092008]</u>

Ŵ s Sequential Standard Model (SSM) W' and Z' heavy gauge bosons \sim Previous ATLAS Z' limit: 4.5, 3.7, and 3.5 TeV μτ pairs, (36.1 fb-1 of the 13 TeV data sample) [Phys. Rev. D 98 (2018) 092008] R-parity violating SUSY τ -sneutrino (\tilde{v}_{τ}) interpretation Previous ATLAS \tilde{v}_{z} limit: 3.4, 2.6, and 2.3 TeV (36.1 fb-1 for eµ, ez, of the 13 TeV data sample) $\frac{1}{2^{\lambda_{ijk}L_{i}L_{j}\bar{e}_{k}+\lambda_{ijk}'L_{i}Q_{j}\bar{d}_{k}}}$ Assumption on [Phys. Rev. D 98 (2018) 0920081 Yukawa coupling *lijk* CMS $ilde{
u}_{ au}$ limit: 2.2 TeV $\lambda_{312} = \lambda_{321} = 0.07$ LIHEP 05 (2022) 2271 $\lambda_{312} = \lambda_{321} = \lambda'_{311} = 0.01$ 10/06/2024 SUSY 2024

LFV in High-Mass Dilepton Final States

Search for new physics in final states with $e\mu$, $e\tau_{had}$, or $\mu\tau_{had}$ pairs

Arkani-Hamed–Dimopoulos–Dvali (ADD) model [3] Randall–Sundrum (RS) model [4]

Quantum black holes in quantum-gravity theories with extra spatial dimensions

Interpretations

Previous **ATLAS** QBH *m*th limit: **5.5/3.4**, **4.9/2.9**, and **4.5/2.6** TeV with ADD/RS model for $e\mu$, (36.1 fb⁻¹ of the 13 TeV data sample) <u>[Phys. Rev. D 98 (2018) 092008]</u>

m Sequential Standard Model (SSM) W' and Z' heavy gauge bosons Previous ATLAS Z' limit: 4.5, 3.7, and 3.5 TeV μτ pairs, (36.1 fb-1 of the 13 TeV data sample) [Phys. Rev. D 98 (2018) 092008] R-parity violating SUSY τ -sneutrino (\tilde{v}_{τ}) interpretation Previous ATLAS \tilde{v}_{τ} limit: 3.4, 2.6, and 2.3 TeV (36.1 fb-1 for eµ, ez, for e $\frac{1}{2^{\lambda_{ijk}L_{i}L_{j}\bar{e}_{k}} + \lambda'_{ijk}L_{i}Q_{j}\bar{d}_{k}}$ Assumption on [Phys. Rev. D 98 (2018) 0920081 Yukawa coupling *lijk* CMS $ilde{
u}_{ au}$ limit: 2.2 TeV $\lambda_{372} = \lambda_{327} = 0.07$ LIHEP 05 (2022) 2271 $\lambda_{312} = \lambda_{321} = \lambda'_{311} = 0.01$ 10/06/2024

LFV in High-Mass Dilepton Final States Backgrounds:

- \bigcirc \rightarrow MC simulation
- Reducible: W+jets and multijet \rightarrow data-driven fakes estimate

- Data consistent with SM
- background at 2.0-2.3 TeV

Simon Koch, o.b.o. ATLAS

3	3.	5

Heavy Majorana Neutrinos in same-sign WW Heavy Majorana neutrinos - couple to SM through mixing with SM neutrinos • Type-1 Seesaw mechanism: $m_{\nu} \approx O(v^2/m_N)$ where v = 246 GeV (Higgs v.e.v.) Help explain leptonic mass hierarchy, or part of Grand Unified Theories

Simon Koch, o.b.o. ATLAS

SUSY 2024

- Same-sign leptons from WW
 - Di-electron channel *ee*

 $C_5^{ll'} \Big|^2 /$

- EFT interpretation replace by dim-5

 $v_{\ell'}^c$

Heavy Majorana Neutrino

* data-taking conditions from 2015, 16, 17-18, respectively

Simon Koch, o.b.o. ATLAS

SUSY 2024

C	

Heavy Majorana Neutrinos

- No significant deviation from SM observed
- Obs. (exp.) limits using dim-5 Weinberg operator:
 - *m_{ee}*: 24 GeV (24 GeV)
 - *m_{eμ}*: 13 GeV (15 GeV)
- Statistical combination with $\mu\mu$ performed
 - Combined limits 27% (16%) more stringent than μμ alone

Fits performed on $p_T^{\ell_2}$

1.0 ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $pp \rightarrow l^{\pm} l^{\pm} jj, |V_{eN}| = |V_{\mu N}|$ 95% CL Limits 0.1 Combination Observed Limit -- Expected Limit $Expected Limit \pm 1 \sigma$ $Expected Limit \pm 2 \sigma$ 10^{2}

SUSY 2024

Summary and Outlook

- Across multiple searches for new physics following LFV hints, no substantial deviations from SM found yet
- Run 3 is well underway, with almost 100 fb⁻¹ recorded so far and greater reach for searches:
 - Higher centre-of-mass energy
 - Improved hardware trigger \bigcirc
 - Many lepton performance improvements (e.g. electron ID CNN [ATL-PHYS-PUB-2023-001], new/improved software triggers for Run 3)
- Toward HL-LHC: Iarge luminosity benefit for searches tracking improvements from new Inner Tracker (ITk)

Simon Koch, o.b.o. ATLAS

SUSY 2024

	-
	-
	_
_	
	-
	-
	_
_	
	-
	_
_	
	-
	-
	_
_	_
	-
	—
_	_
	-
	-
_	_
	_
	-
_	_
	_
	_
	_
	-

References

[1] A. Mathad, Lepton flavour universality tests in $b \to c l \nu$ decays at LHCb, <u>57th</u> <u>Recontres de Moriond EW (2023)</u>

[2] Aguillard, D. P. et. al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, <u>Phys. Rev. Lett. 131 (2023) 161802</u>

[3] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263, arXiv: hep-ph/9803315.

SUSY 2024

[4] L. Randall and R. Sundrum, A Large Mass Hierarchy from a Small Extra Dimension, <u>Phys. Rev. Lett. 83 (1999) 3370</u>, arXiv: hep-ph/9905221.

Simon Koch, o.b.o. ATLAS

Backup

Model-independent upper limits on production cross-section of τ + E_T ^{miss}:

Simon Koch, o.b.o. ATLAS

SUSY 2024

LFV in High-Mass Dilepton and

Heavy Majorana Neutrinos

Channel	Variable	SR	$W^{\pm}W^{\pm}$ CR	WZ CR
	N_ℓ	=2		=3
oolou	$ \Delta y_{jj} $	> 2		
<i>eere</i> μ	m_{jj}	> 500 GeV		
	$m_{\ell\ell\ell}$			> 106 GeV
	$ m_{\ell\ell} - m_Z $	> 15	5 GeV	
	$ \eta_\ell $	<2		
ee	$m_{\ell\ell}$	> 20 GeV		
	$p_{\mathrm{T}}^{\ell_1}$	_	< 250	
	$p_{\mathrm{T}}^{\hat{j}_1}$	> 30 GeV	> 45 GeV	> 30 GeV
	$p_{\mathrm{T}}^{\hat{j}_2}$	> 25 GeV	> 30 GeV	> 25 GeV
	$ $ \hat{S}	< 4.5	> 4.5	
	$p_{\mathrm{T}}^{j_1}$	> 30 GeV	> 45 GeV	> 45 GeV
eμ	$p_{\mathrm{T}}^{j_2}$	> 25 GeV	> 30 GeV	> 30 GeV
	$ \Delta \phi_{e\mu} $	> 2.0	< 2.0	

Selection

Simon Koch, o.b.o. ATLAS

SUSY 2024

Heavy Majorana Neutrinos

Simon Koch, o.b.o. ATLAS

SUSY 2024

Majorana neutrino mixing elements: $V_{\ell N}$

