Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

General Strategy

- Searching for two independent signals, $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$. Considering hadronic and leptonic τ decays.
- Two background estimation methods: **MC-template** method ($\ell \tau_{\ell'}$ and $\ell \tau_{had}$) and **Symmetry** method ($\ell \tau_{\ell'}$ only).
- Categorized into VBF and non-VBF signal regions.
- Utilized MVA (BDT and NN) to enhance sensitivity.

Background Estimation

Symmetry $\ell \tau_{\ell'}$

- SM processes are symmetric w.r.t. prompt $e \leftrightarrow \mu$ exchange.
- Symmetry is broken when $\mathcal{B}(H \to e\tau) \neq \mathcal{B}(H \to \mu\tau)$.
- Prompt lepton background in **one channel** is estimated from the data in the other channel.
 - > After corrections for asymmetric experimental effects.
- Fakes estimated by a data-driven method.
- The branching ratio difference is estimated.

MC-template $\ell \tau_{\ell'}$

- Backgrounds estimated with **MC**templates.
- $Z \rightarrow \tau \tau$ with **floating** normalization factors. **Top-quark** backgrounds extracted from **CRs** for each VBF/non-VBF category.
- Fakes estimated by a data-driven method.

MC-template $\ell \tau_{had}$

- Backgrounds estimated with MCtemplates.
- Normalization of $Z \rightarrow \tau \tau$ and topquark backgrounds. extracted from **CRs** for each VBF/non-VBF category.
- Fakes estimated by a data-driven method.

MVA and Statistical Analysis

- MVA outputs used as final discriminant to extract signal strength and upper limits.
- For **MC-template**, a final score is obtained from the **combination** of individual BDTs trained with signal against various backgrounds. Non-VBF and VBF categories are treated separately.
- For **Symmetry** method, combination of three NNs is used for VBF. **Multiclassifier NNs** used for non-VBF. Signal node used in the fit.

Three fit setups:

- **1 POI fit**: Independent fit of $\mathcal{B}(H \to e\tau)$ or $\mathcal{B}(H \to \mu\tau)$. One is assumed to be zero when fitting the others. Combination of Symmetry and MC-template method.
- **2 POI fit**: Simultaneous fit of $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu\tau)$. Utilized MCtemplate method only.
- **Branching ratio difference**: fit $\mathcal{B}(H \to \mu \tau) \mathcal{B}(H \to e \tau)$. Utilized Symmetry method in $\ell \tau_{\ell'}$ only.

Results and Conclusions

- The 2 POI fit gives the observed (expected) limits of 0.20% (0.12%) for $H \rightarrow e\tau$ and 0.18% (0.09%) for $H \rightarrow \mu\tau$, compatible with SM within 2.1 σ .
- **Branching ratio difference** is found to be $\mathcal{B}(H \to \mu\tau) \mathcal{B}(H \to e\tau) = 0.25 \pm 10\%$, compatible with zero within 2.5 σ . lacksquare
- Small, but not significant excess observed. \bullet
- Observed (expected) limits improved by a factor of 2.5 (3.1) for $H \rightarrow e\tau$ and 1.6 (4.1) for $H \rightarrow \mu\tau$ with respect to the previous ATLAS result.

Check all the results in JHEP 07 (2023) 166. \bullet

12th LHCP Poster Session – 4th June 2024 Michael Kwok Lam Chu (Weizmann Institute of Science)

