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In recent years, energy correlators have emerged as a powerful tool to explore the field theoretic structure
of strong interactions at particle colliders. In this Letter we initiate a novel study of the nonperturbative
power corrections to the projected N-point energy correlators in the limit where the angle between the
detectors is small. Using the light-ray operator product expansion as a guiding principle, we derive the
power corrections in terms of two nonperturbative quantities describing the fragmentation of quarks and
gluons. In analogy with their perturbative leading-power counterpart, we show that power corrections obey
a classical scaling behavior that is violated at the quantum level. This crucially results in a dependence on
the hard scale Q of the problem that is calculable in perturbation theory. Our analytic predictions are
successfully tested against Monte Carlo simulations for both lepton and hadron colliders, marking a
significant step forward in the understanding of these observables.
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Introduction—Within the physics program of the Large
Hadron Collider (LHC), energy correlators [1–3] have
emerged as a powerful tool to study the properties of
strong interactions, such as the precise extractions of the
strong coupling constant [4]. From a theoretical viewpoint,
these observables have inspired a thorough investigation of
their field-theoretic properties [5–27]. Owing to their
simplicity, energy correlators inherit the quantum proper-
ties of the correlation functions, which encode fundamental
information about the underlying field theory [28]. This
paves the way to new explorations of quantum chromo-
dynamics using present and future collider data, as reflected
in the wide phenomenological interest they have attracted
in particle physics [21,29–49], heavy-ion physics [50–56],
and nuclear physics [57–62].
An N-point energy correlator is defined by weighing the

cross section with the product of the energies of N particles
(e.g., within a jet), as a function of their relative angles. One
can define the corresponding projected N-point energy
correlator (ENC) by integrating the resulting correlator over
these angles except for the largest one θL, as a univariate
function of the angular variable xL ≡ ð1 − cos θLÞ=2 [3]. In
the collinear limit, considered in this Letter, one is

interested in the regime in which such angular variable
is parametrically small, i.e.,

ffiffiffiffiffi
xL

p
Q ≪ Q, with Q being the

hard momentum transfer of the scattering process. At
leading power, the ENC shows a classical scaling behavior
Oð1=xLÞ in the collinear limit [5–7,9–13,29], that is
determined by Lorentz symmetry. This scaling is then
violated by quantum effects, which induce a mild addi-
tional dependence on the hard scale Q. The evolution of
ENC with Q can be obtained using perturbative collinear
resummation techniques [3,21,29,49,63–65].
The full exploitation of high-precision experimental data

also demands an understanding of the dynamics of ENC
beyond perturbation theory. A first-principle understanding
of the deep nonperturbative limit in which the angular
distance

ffiffiffiffiffi
xL

p
becomes of the order of the ratio ΛQCD=Q,

withΛQCD being a typical hadronic scale, is currently out of
reach. Nevertheless, in the regime 1 ≫ ffiffiffiffiffi

xL
p ≫ ΛQCD=Q,

one can approximate nonperturbative corrections in a
power expansion in ΛQCD=Q, gaining a better analytic
control over their properties. The next-to-leading power
term of this expansion, commonly denoted as power
correction, defines the leading nonperturbative correction
in this kinematic regime. These power corrections can be
studied using a range of analytic techniques, which have
been used to investigate observables belonging to the ENC
family at lepton colliders both in the bulk of the phase space
[66–68] (xL ≠ 0, 1) as well as in the back-to-back limit [69]
(xL → 1).
This Letter initiates a novel study of the ENC in the

collinear (xL → 0) limit. We will show that, similarly to
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their leading-power counterpart, the coefficient of the linear
OðΛQCD=QÞ power correction to the ENC exhibits a
classical scaling behavior fixed by symmetry arguments,
which is violated at the quantum level in a way that can be
predicted using perturbation theory. This phenomenon
shares similarities with the violation of the well-known
Bjorken scaling [70–73], where the evolution of the non-
perturbative structure functions with the scale is fully
perturbative [71–73]. Using the light-ray operator product
expansion (OPE) [5,7,9–11,74], we are able to calculate the
evolution of the power correction with the energy scale Q,
hence predicting how they are related at different scales.
This result marks a significant step forward in the theo-
retical understanding of this class of observables beyond
the perturbative level.
ENC and the light-ray OPE—The projected energy

correlators (ENC) are correlation functions of the energy
flow operators EðnÞ in a physical state jΨqi [1,2,5], defined
as hEðn1Þ � � � EðnkÞiΨq

≡ hΨqjEðn1Þ � � � EðnkÞjΨqi, where
qμ is the total momentum of the state jΨqi. The energy
flow operator EðnÞ is defined as [5,75]

EðnÞ ¼ Lτ¼2½niT0iðt; rn⃗Þ�; ð1Þ

where Tμν is the energy-momentum tensor of QCD and the
operation Lτ is the light transform [76]

Lτ ¼ lim
r→∞

rτ
Z

∞

0

dt: ð2Þ

Examples for the state jΨqi include those excited by the
electromagnetic current from the vacuum, the decay prod-
ucts of a Higgs boson, or the scattering state of a high-
energy collision. Generic final states consist of the
ensemble described by the density ρq ¼

P
Ψ jΨqihΨqj.

In recent years, the light-ray OPE has emerged as an
efficient tool to study energy correlators in the small angle
limit. Originally developed in the context of conformal
collider physics [5,7,9], the light-ray OPE has recently been
found useful also in QCD [10,11,74]. For the simplest two-
point energy correlator (EEC), the light-ray OPE at leading
twist reads

lim
n1→n2

Eðn1ÞEðn2Þ ¼
1

xL
C⃗ · O⃗½J¼3�

τ¼2 ðn2Þ

þ ΛQCD

x3=2L

D⃗ · O⃗½J¼2�
τ¼2 ðn2Þ þ � � � ; ð3Þ

where xL ¼ ðn1 · n2Þ=2 is related to the angular distance of
two lightlike directions n1 and n2, and C⃗, D⃗ are dimension-
less OPE coefficients. The light-ray OPE formula in (3)
describes the leading small-angle behavior of the EEC. The

operator O⃗½J�
τ¼2 belongs to the leading trajectory of the light-

ray operator [76]. For even collinear spin J, it can be

obtained by a light transform of the following twist τ ¼ 2
local operators [10,11]:

O⃗½J�
τ¼2 ¼ L2½O⃗½J�

τ¼2�; O⃗½J�
τ¼2 ¼

 
1
2J
ψ̄γþðiDþÞJ−1ψ

−1
2J
Ga;μþðiDþÞJ−2Ga;þ

μ

!
;

ð4Þ
where γþ ¼ n̄ · γ, and τ ¼ Δ − J, where Δ is the operator
dimension. The energy flow operator corresponds to the

combination E ¼ ð1; 1Þ · O⃗½J¼2�
τ¼2 , with J ¼ 2.

The form of the light-ray OPE (3) is determined by
dimensional analysis and Lorentz symmetry. To understand
this, we collect in Table I the collinear spin and dimension
of all the ingredients entering the OPE (3). By dimensional
analysis, imposing that the dimension of both sides of (3) is
the same fixes the dimension of the operators in each term
of the light-ray OPE. Imposing that the light-ray operators
have twist label τ ¼ 2 fixes their collinear spin, which
determines the label J ¼ 3 for the first term in (3) and
J ¼ 2 for the OðΛQCD=QÞ power correction. This com-

pletely determines the classical scaling in xL, e.g., x
−3=2
L for

the OðΛQCD=QÞ term. The reason is that the collinear spin
of xL is completely fixed by its transformation properties
under a Lorentz boost, which acts as a dilation of angles on
the celestial sphere, as depicted in Fig. 1. Using the

FIG. 1. A boost in the positive z direction increases the distance
of two energy flow operators on the celestial sphere.

TABLE I. Collinear spin (boost) and classical scaling dimen-
sion of various quantities appearing in the OPE (3).

Lτ O⃗½J�
τ O⃗½J�

τ xL ΛQCD, Q

Collinear spin 1 − τ −J 1 − ðτ þ JÞ 2 0
Dimension −τ − 1 τ þ J J − 1 0 1
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quantities listed in Table I, it is easy to verify the legitimacy
of (3) (cf. [77] for further discussions).
The light-ray OPE in (3) can be generalized to higher

point correlators. For N energy flow operators, the observ-
able depends on NðN − 1Þ=2 angles for an isotropic state
jΨqi. We are interested in the projective N-point energy
correlator, where the higher dimensional distribution is
projected to the axis of the maximal angular distance of the
N energy flow operators. In this case the OPE formula
readsZ

dΩ̄ lim
ni→n

Eðn1Þ � � �EðnNÞ ¼
1

xL
C⃗N · O⃗½J¼Nþ1�

τ¼2 ðnÞ

þΛQCD

x3=2L

D⃗N · O⃗½J¼N�
τ¼2 ðnÞ þ � � � ;

ð5Þ
where all ni directions approach n. The angular integral is
over the NðN − 1Þ=2 − 1 angles except the largest sepa-
ration xL among the N directions. The general N-point
projective energy correlator can be defined as the normal-
ized expectation value of the product of N energy flow
operators in a state jΨqi:

ENCΨq
ðxL;QÞ ¼ 4π

σΨq
QN

Z
dΩ̄ lim

ni→n
hEðn1Þ � � � EðnNÞiΨq

;

ð6Þ
where σΨq

¼ hΨqjΨqi and Q ¼ q0 is the energy of the
state, e.g., the center-of-mass energy in γ� → qq̄ or h → gg,
or the energy of jets.
For N ¼ 2 it reduces to the conventional EEC [1,2]. In

parton language, the first term in the rhs of Eq. (3) gives rise
to the factorization theorem of Refs. [3,29], known at next-
to-next-to-leading logarithmic (NNLL) accuracy in QCD

[29,49]. The operators O⃗½J¼3�
τ¼2 are mapped onto the hard

function while the OPE coefficients are encoded in the jet
function. The leading-power EEC exhibits a classical
scaling behavior Oð1=xLÞ, which is mildly violated by
quantum corrections that modify its dependence on the
energy Q. Analogous considerations hold for the ENC
starting from Eq. (5).
We now focus on the power correction to the N-point

projective energy correlator by defining

ENCN:P:
Ψq

ðxL;QÞ≡ ENCΨq
ðxL;QÞ − ENCP:T:

Ψq
ðxL;QÞ; ð7Þ

where the subscript P.T. denotes the leading power,
perturbative part of the energy correlator. Equation (5)
predicts a classical scaling behavior Oðx−3=2L Þ for the
leading power correction. The assumption of linearity in
ΛQCD is supported by predictions from hadroniz-
ation [2,78], Wilson loop [66,67], and renormalon [68]
models.

The classical scaling can be verified using Monte Carlo
simulations for eþe− collision at different Q, as shown in
Fig. 2 for the process γ� → qq̄. In the following, we
consider the regime Q ≫ Q

ffiffiffiffiffi
xL

p ≫ ΛQCD, shown in the
unshaded region of the plot, where the scaling is clearly
visible.
Scaling violation in power corrections—The above

discussion about classical scaling is based only on
Lorentz symmetry and classical dimensional analysis.
We now show that the OPE also predicts quantum
corrections that slightly violate this scaling in the pertur-
bative region Q ≫ Q

ffiffiffiffiffi
xL

p ≫ ΛQCD. We start by factoring
out the classical scaling of ENCN:P:

Ψq
ðxL;QÞ, and write

ENCN:P:
Ψq

ðxL;QÞ ¼
ENCN:P:

1;Ψq
ðK⊥; QÞ

x3=2L Q
þ…; ð8Þ

where K⊥ ¼ ffiffiffiffiffi
xL

p
Q characterizes the exchanged transverse

momentum scale and we neglected subleading power
corrections in the rhs. Classically, no dependence of
ENCN:P:

1;Ψq
ðK⊥; QÞ on Q is expected. At the quantum level,

the function ENCN:P:
1;Ψq

ðK⊥; QÞ mildly depends on Q. This

can be appreciated in the lower panel of Fig. 2, where the
classical scaling has been removed. We refer to the small
residual dependence of ENCN:P:

1;Ψq
ðK⊥; QÞ on Q as to

quantum scaling violation.
We now show how the scaling violation is caused

by the renormalization group (RG) evolution of O⃗½J�
τ¼2.

FIG. 2. The upper panel shows the classical scaling of the
energy correlators across energy and angular scales. The lower
panel highlights the mild quantum scaling violation.
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The light-ray OPE (5) provides the following factorized
prediction for ENCN:P:

1;Ψq
:

ENCN:P:
1;Ψq

ðK⊥; QÞ

¼ ΛQCDD⃗N

�
K2⊥
μ2

;
Λ2
QCD

μ2

�
·
hO⃗½J¼N�

τ¼2 ðn; μÞiΨq

ð4πÞ−1σΨq
QN−1

�
Q2

μ2

�
; ð9Þ

where μ is a factorization scale that separates the perturba-
tive matrix element of light-ray operators and the non-
perturbative OPE coefficients D⃗N , which also depend on

ΛQCD. The light-ray operator O⃗½J�
τ¼2ðn; μÞ satisfies the

DGLAP equation [10,11,74,79]

μ
d
dμ

O⃗½J�
τ¼2ðn; μÞ ¼ γ½J�τ¼2ðμÞ · O⃗½J�

τ¼2ðn; μÞ; ð10Þ

where γ½J¼N�
τ¼2 is the anomalous dimension matrix of the

twist-2 light-ray operators, which admits the perturbative

expansion γ½J�τ¼2ðμÞ ¼
P∞

k¼0

�
αsðμÞ=4π

�
kþ1γ½J�;ðkÞτ¼2 . The

leading order expression γ½J�;ð0Þτ¼2 can be found in [80,81],

while higher-order calculations of γ½J�τ¼2 and their inverse
Mellin transform can be found in [82–90]. Renormalization
group invariance implies that

μ
dD⃗N

dμ
¼ −D⃗N · γ½J¼N�

τ¼2 : ð11Þ

By observing that D⃗N does not depend on Q explicitly,
Eq. (9) suggests that one can predict the Q dependence of
ENCN:P:

1;Ψq
at fixed K⊥ solely from the Q dependence of the

matrix element of light-ray operators. Specifically, we let
μ ¼ K⊥ in the OPE coefficient, and evolve the matrix
element of the light-ray operators from Q to K⊥ using the
renormalization group equation (10). Since the physical
state jΨqi is μ independent, at fixed K⊥ the Q dependence
of EECN:P:

1;Ψq
is given by

ENCN:P:
1;Ψq

ðK⊥; QÞ

¼ ΛQCDD⃗N

�
1;
Λ2
QCD

K2⊥

�
·UNðK⊥; QÞ ·

hO⃗½J¼N�
τ¼2 ðn;QÞiΨq

ð4πÞ−1σΨq
QN−1 ;

ð12Þ

where UNðK⊥; QÞ is the evolution operator

UNðK⊥; QÞ≡ P exp

�
−
Z

Q

K⊥

dμ
μ
γ½J¼N�
τ¼2 ðμÞ

�
: ð13Þ

This is one of the main results of this Letter.

We finally discuss the implications of Eq. (12) for the
factorization formula of the projected correlator [3,29]:

ENCΨq
ðxL;QÞ¼

Z
1

0

dx
xN

xL
J⃗N

�
xLx2Q2

μ2
;
Λ2
QCD

μ2

�
·H⃗

�
x;
Q
μ

�
:

ð14Þ

Based on the equivalence [74] of the light-ray OPE and
Eq. (14), we can extend the above factorization formula to
include the power corrections derived in this Letter. The
hard function H⃗ encodes the probability of producing a
parton with energy fraction x and it corresponds to the
normalized matrix element of the twist τ ¼ 2 operators in
Eq. (5). The jet function J⃗N is sensitive to the fragmentation
at small angular scales and, as such, it encodes also the
nonperturbative dynamics. It is mapped [74] onto the OPE
coefficients of Eq. (5), from which we can deduce the
following expansion:

J⃗N

�
xLx2Q2

μ2
;
Λ2
QCD

μ2

�
¼ J⃗P:T:N

�
xLx2Q2

μ2
;αsðμÞ

�

þ ΛQCD

x
ffiffiffiffiffi
xL

p
Q
J⃗ð1ÞN

�
xLx2Q2

μ2
;
Λ2
QCD

μ2

�
þ���;

ð15Þ

where J⃗P:T:N is the perturbative jet function [3,21,29,49] and

J⃗ð1ÞN ¼ D⃗N jK⊥→xK⊥ is the corresponding power correction.
Monte Carlo validation—We can now explicitly use

Eq. (12) to relate the power correction at a reference scale
Q0 to that at a scaleQ. We can express the solution in terms
of two nonperturbative functions of K⊥ defining the two
components of D⃗ at a reference scale Q0, which can be
extracted from the fragmentation of quarks and gluons. At
the leading-logarithmic order we find (cf. [77] for details)

�ENCN:P:
1;γ�→qq̄ðQÞ

ENCN:P:
1;h→ggðQÞ

�T

¼
�ENCN:P:

1;γ�→qq̄ðQ0Þ
ENCN:P:

1;h→ggðQ0Þ

�T

·ULL
N ðQ0;QÞ;

ð16Þ

where K⊥ is fixed and kept implicit and ULL
N ðQ0; QÞ ¼

½αsðQÞ=αsðQ0Þ�γ
½N�;ð0Þ
τ¼2

=ð2β0Þ.
We extract the functions ENCN:P:

1;γ�→qq̄ðQ0Þ and
ENCN:P:

1;h→ggðQ0Þ from γ� → qq̄ and h → gg at Q0 ¼
250 GeV for 2-, 3-, and 4-point correlators and predict
their distribution at a different c.m. energy Q∈
91.2–500 GeV. Specifically, we use events generated with
MADGRAPH5 [91], showered with HERWIG7.2 [92]
(Specifically, we use the dot-product preserving shower
and corresponding tune from Ref. [93].) and analyzed with
Rivet [94]. (We have repeated the analysis also with
HERWIG7.3 [95] and PYTHIA8 [96], finding consistent
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results.) The results are shown in Fig. 3, which displays a
comparison of Eq. (16) to the Monte Carlo prediction
obtained with Eqs. (7) and (8). We notice that the latter
contains subleading power corrections not accounted for in
Eq. (16). In general, we observe very good agreement,
hence validating the expectation for the perturbative scaling
violation presented in this Letter. From Fig. 3 we observe
that in the case of the EEC the region of validity of Eq. (16)
is substantially pushed towards larger angles. An explan-
ation of this fact, particularly prominent in the gluonic
case, is that subleading power corrections neglected in the
OPE (3) receive a contribution from operators with J ∼ 1,
whose anomalous dimensions feature a strong enhance-
ment due to the radiation of soft gluons [97–101]. The
enhanced quadratic power corrections may be ultimately
responsible for the discrepancy in the left region of the plot.
This phenomenon is present only in the EEC case while for
N > 2 the contribution of J < 2 operators is further power
suppressed.
It is interesting to apply the same procedure to the case of

ENC measured on hadronic jets at the LHC [4], in the limit
in which the largest angular resolution

ffiffiffiffiffi
xL

p
→ RL≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δy2 þ Δϕ2
p

between detectors is much smaller than
the jet radius R. We consider pp → Z þ q=g jets LHC
events at

ffiffiffi
s

p ¼ 13 TeV, with jet energies in the range
EJ ∈ 250–1500 GeV. Accordingly we now define
K⊥ ¼ RLEJ. Jets are defined using the anti-kt algorithm
[102] with a jet radius R ¼ 0.6, as implemented in FastJet

[103]. We generate separately events with quark and gluon
jets, that we extract from Zq and Zg final states, respec-
tively. An analysis at higher perturbative orders, however,
would require a more refined definition of quark and gluon
jet fractions. The results are shown in Fig. 4, where the
solid lines indicate our predictions from Eq. (16) withQ0 ¼
500 GeV and Q ¼ EJ. The effect of initial-state radiation,
present in pp collisions, impacts mildly the correlators
measured inside jets at the nonperturbative level (e.g., via
color reconnection). While the EEC, as in Fig. 3, is affected
by large subleading power corrections, the analytic pre-
diction describes very well the simulation for the N > 2
correlators, confirming the validity of our results also in the
hadron-collider case (cf. [77] for additional studies).
We envision that the leading power correction can be

directly extracted from experimental data at a reference
scale and then evolved at different scales using the results
presented in this Letter. In Ref. [77] we present also a study
of the effect of quantum scaling violation on ratios of
energy correlators, used to measure αs in Ref. [4]. This
Letter will enhance the role of energy correlators in the
precision physics programme and their use for the extrac-
tion of fundamental properties of QCD at the LHC and
future colliders.

Note added—Recently, Ref. [104] presented a related
study of the power corrections to the projected correlators
using a renormalon analysis in the context of extractions of

FIG. 3. Comparison of analytic and Monte Carlo predictions
for the quantum scaling violation for N-point projected correla-
tors in γ� → qq̄ and h → gg.

FIG. 4. Comparison of analytic and Monte Carlo predictions
for the quantum scaling violation for N-point projected correla-
tors in pp → Zq and pp → Zg.
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the strong coupling constant. The connection of their
findings to our prediction from the light-ray OPE is
nontrivial and deserves further investigation.
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