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Abstract

Whenever invertible generative networks are needed for LHC physics, normalizing flows show
excellent performance. In this work, we investigate their performance for fast calorimeter
shower simulations with increasing phase space dimension. We use fast and expressive cou-
pling spline transformations applied to the CaloChallenge datasets. In addition to the base
flow architecture we also employ a VAE to compress the dimensionality and train a generative
network in the latent space. We evaluate our networks on several metrics, including high-level
features, classifiers, and generation timing. Our findings demonstrate that invertible neural
networks have competitive performance when compared to autoregressive flows, while being
substantially faster during generation.
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1 Introduction

Simulations are a defining aspect of LHC physics, bridging experiment and fundamental theory
and allowing for a proper interpretation of LHC measurements [1, 2]. The simulation chain
starts from the hard interaction at the scattering vertex, and progresses through the radiation
of soft particles, the decay of heavy, unstable particles, hadronization of colored states, and
subsequent interaction of all particles in the event with the detector. In the development of
LHC as a precision-hadron collider, the last step has become a major bottleneck in speed and
precision, in particular the reproduction of the detailed interactions of incident and secondary
particles within the calorimeters. Generating these calorimeter showers with GEANT4 [3–5],
based on first principles, takes a substantial amount of the LHC computing budget. Without sig-
nificant progress, simulations will be the limiting factor for all analyses at the high-luminosity
upgrade of the LHC.

One development driving faster and more precise LHC simulations is the advent of deep
generative networks. Fast detector simulations based on parametric models have been ex-
tensively used in previous measurements from LHC experiments [6, 7], although their pre-
cision can be improved with machine learning components [8]. Such networks have shown
great promise for LHC physics in the past few years, providing fast and accurate surrogates
for simulations in high-dimensional phase spaces [9]. They learn the underlying probabil-
ity distribution of events or calorimeter showers from a reference dataset and then generate
new samples based on this learned distribution [10, 11]. We have seen successful applica-
tions to all steps in the simulation chain [2], phase space integration [12–22]; parton show-
ers [23–30]; hadronization [31–34]; detector simulations [8, 35–63]; and end-to-end event
generation [64–70].

For LHC physics, it is crucial that these networks are not used as black boxes, but their
performance can be investigated, understood, and improved systematically [69,71–75]. This
is especially important when their conditional counterparts are used for inference [76–78],
probabilistic unfolding [79–88], or anomaly detection [89–94].

In this paper, we will focus on the problem of building fast and accurate surrogate models
for calorimeter shower simulation, using the technology of normalizing flows. We have seen
in a number of contexts that normalizing flows are a promising technique for fast calorime-
ter simulation [44, 45, 51, 75], but there are also major challenges with scaling them up
to more granular (higher-dimensional) calorimeters [52, 53, 58, 63]. These challenges are
especially interesting because recently, continuous-time generative models (diffusion mod-
els and continuous normalizing flows trained with flow-matching) have been tested on LHC
physics [28–30,49,57,59,60,70,74,78,95–98] and show impressive performance which is not
as limited by the dimensionality of the data. However, their gain in expressivity comes at the
expense of slower generation, leading to an interesting trade-off between speed and quality
of generated events or showers.

Here, we will build on previous works [52, 53, 58, 63] attempting to scale up normaliz-
ing flows to higher-granularity calorimeters. Focusing on the datasets [99–102] of the Fast
Calorimeter Simulation Challenge [103,104], we will tackle this problem in two ways.
• First, we will show how impressive gains in speed can be achieved by switching from the

fully-autoregressive flows of [44,45,51,53,58] to flows based on coupling layers [105–107]
which are equally fast in the sampling and density estimation directions, while retaining or
improving the network accuracy. Following the terminology of [108, 109], we will refer to
coupling-layer based flows as invertible neural networks (INNs) throughout this work. Using
the INN framework, we are able to obtain state-of-the-art results on dataset 1 (pions and
photons) and dataset 2 of the CaloChallenge.

• Second, to reach the dimensionality of dataset 3, we will combine the INN framework with
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a VAE. Conceptually similar to other approaches, [52, 110, 111], we will train the INN on
the (much lower-dimensional) latent space of a VAE fit to the showers of dataset 3. Then
sampling from the INN and passing this through the decoder of the VAE, we will obtain a
surrogate model for dataset 3. We will see that the results here, while not state-of-the-art
in terms of quality, are very fast to generate, so could fill out another point in the Pareto
frontier of fast calorimeter shower simulation.
The paper starts by introducing the CaloChallenge datasets in Sec. 2. In Sec. 3 we intro-

duce our fast INN version [108,109] of a normalizing flow, as well as a VAE+INN combination.
In Sec. 4 we discuss their performance on the different dataset, with increasing phase space
dimensionality and including learned classifier weights. We conclude and provide timing infor-
mation in Sec. 5. In the Appendices we provide details on the different network architectures
and hyperparameters and compare the INN performance to CaloFlow.

2 Datasets

As stated above, our reference datasets are the public datasets of the Fast Calorimeter Simu-
lation Challenge [103, 104] and represent three increasing dimensionalities from the current
LHC calorimeter granularity to the ultra high granularity of future calorimeters proposed for
ILC [112], CLIC [113], FCC [114] and beyond. We use the public datasets [99–102] of the
Fast Calorimeter Simulation Challenge [103]. They consist of showers simulated with GEANT4
for different incident particles. The general geometry is the same across all datasets: the de-
tector volume is segmented into layers in the direction of the incoming particle. Each layer is
segmented along polar coordinates in radial (r) and angular (α) bins. A shower is given as
the incident energy of the incoming particle and the energy depositions in each voxel.

Dataset 1 (DS1) provides calorimeter showers for central photons and charged pions. They
have been used in ATLFAST3 [8]. The voxelizations of the 5 photon layers and 7 pion layers in
radial and angular bins (nr × nα) are

photons 8× 1, 16× 10, 19× 10, 5× 1, 5× 1

pions 8× 1, 10× 10, 10× 10, 5× 1, 15× 10, 16× 10, 10× 1 (1)

This gives 368 voxels for photons and 533 voxels for pions. The incoming particles are sim-
ulated for 15 different incident energies Einc = 256 MeV ... 4.2 TeV, increasing by factors of
two, with the sample sizes given in Tab. 1. The original ATLAS dataset does not require an
energy threshold. The effect of a threshold on the shower distributions at the detector cell
level requires further studies. We require Emin = 1 MeV to all generated voxels, motivated
by the readout threshold of the calorimeter cells and the fact that photon showers require a
minimum cell energy of 10 MeV to cluster and pion showers start clustering at 300 MeV [115].
We note that the usually called Einc is in reality the momentum of the incoming particle. This
has implications for pions which have to be further studied for a future deployment.

Datasets 2 and 3 (DS2/3) are not modeled after existing detectors. They assume 45 lay-
ers of active silicon detector (thickness 0.3 mm), alternating with inactive tungsten absorber

Einc 256 MeV ... 131 GeV 262 GeV 0.524 TeV 1.04 TeV 2.1 TeV 4.2 TeV

photons 10000 per energy 10000 5000 3000 2000 1000
pions 10000 per energy 9800 5000 3000 2000 1000

Table 1: Sample sizes for different incident energies in dataset 1.
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layers (thickness 1.4 mm) at η = 0. Each dataset contains 100,000 GEANT4 electron showers
with log-uniform Einc = 1 ... 1000 GeV. The only difference between the two datasets is the
voxelization. In dataset 2, each layer is divided into 16×9 angular and radial voxels, defining
6480 voxels in total. Dataset 3 uses 50 × 18 voxels per layer or 40,500 voxels in total. The
minimal recorded energy per voxel for these two datasets is 15.15 keV.

3 CaloINN

We study two different network architectures. First, we benchmark a standard INN and demon-
strate its precision and generation speed especially for low-dimensional phase space. Second,
we embed this INN in a VAE, with the goal of describing datasets 2 and 3 with the same physics
content, but a much larger phase space dimensionality.

3.1 INN

Normalizing flows describe bijective mappings between a (Gaussian) latent space r and the
physical phase space x ,

platent(r)
Gθ (r)→
←−−−−−→
← Gθ (x)

pmodel(x)∼ pdata(x) . (2)

Gθ (x) denotes the inverse transformation to Gθ (r). The INN variant [108,109] of normalizing
flows is completely symmetric in the two directions. After training the network,
pdata(x)∼ pmodel(x), we use the INN to sample pmodel(x) from platent(r) [9].

The building block of our INN architecture is the coupling layer [105–107]. It allows for a
Jacobian calculable in a single network evaluation for both Gθ (x) and Gθ (r). Therefore, we
train the INN with a likelihood loss

LINN = −
¬

log pmodel(x)
¶

pdata
= −
�

log platent

�

Gθ (x)
�

+ log

�

�

�

�

∂ Gθ (x)
∂ x

�

�

�

�

�

pdata

. (3)

The first term ensures that the latent representation remains Gaussian, while the second term
constructs the correct transformation to the phase space distribution. Given the structure of
Gθ (x) and the latent distribution platent, both terms can be computed efficiently.

Figure 1 (left) shows a schematic representation of the CaloINN architecture. In the cou-
pling block we split the input vector, consisting of the normalized voxels x and the energy
variables u, in two equally-sized vectors. The first half of the vector is not transformed and
used, together with the logarithm of the incident energy Einc, to predict the parameters of the
transformation applied to the second half.

A standard affine transformation uses a scale and shift parameter for each voxel. Instead,
we define a spline parametrized by a neural network. We employ rational quadratic splines
(RQS) and cubic splines. The splines are defined piecewise in a box of size [−B, B]. Given the
total number of bins K , the spline is parametrized by the locations of each knot and their first
derivatives. In one bin k, the two transformations have the form

fRQS(x)k =
α0,k +α1,k x +α2,k x2

β0,k + β1,k x + β2,k x2
and fcubic(x)k = γ0,k + γ1,k x + γ2,k x2 + γ3,k x3 , (4)

respectively. The parameters (α,β)k and (γ)k can be expressed as a function of the bin height,
width, and first derivative in a stable numerical form. The complete parametric expression for
the RQS can be found in [116], while the implementation of the cubic spline follows [117].
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Figure 1: Schematic representation of the CaloINN (left) and the CaloVAE+INN
(right) architectures.

The total number of parameters predicted by the neural network, after accounting for the
continuity constraints, are 3K − 1 for each transformed variable. The large scale architec-
ture stacks several coupling blocks each one followed by a permutation of the input and an
ActNorm [107] layer for normalization purposes. The INN is implemented using the FREIA§

package [118]. For datasets 1, we employ a rational quadratic spline, while for dataset 2 we
find cubic splines to give more stable results. A discussion on the ablation studies is provided
in App. A.1 together with all the INN hyperparameters.

As a noteworthy preprocessing we normalize each shower to the layer energy. The energy
information is encoded as

u0 =

∑

i Ei

Einc
and ui =

Ei
∑

j≥i E j
, (5)

in terms of the energy depositions per layer Ei . The ui are appended to the list of voxels for
each shower. We do not explore a separate training for the energy and the voxel dimensions
which would simplify the learning process of the energy dimensions. We train the INN on
the full data, conditioned on the logarithm of the incident energies. Unlike, for instance,
CaloFlow [45,51,58]we train a single network without any distillation. We provide the details
of the preprocessing in App. A.1.

3.2 VAE+INN

The problem with the INN is the scaling towards dataset 3 with its high-dimensional phase
space of 40k voxels. The INN scales at least linearly in time and memory with the input di-
mension since each voxel is processed by a spline that has to be parameterized independently.
In practice, the scaling is usually worse than linear, as the number of parameters, needed to
parameterize each spline, tends to grow with the number of voxels as well. To solve this scaling
problem we introduce an additional VAE to reduce the dimensionality of the INN mapping. Dif-
ferently from [52], we do not estimate the dimensionality of the manifold but rather optimize
the reconstruction of the VAE while keeping a low-dimensional latent space. The VAE consists
of a preprocessing block, an encoder-decoder combination, and a postprocessing block. Both,

§We provide the code in a Github repository at https://github.com/heidelberg-hepml/CaloINN
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the decoder and the encoder are conditioned on the incident energies and additional energy
variables. Therefore, we compress normalized showers in the latent space and jointly learn
the energy and the latent variables with the INN. During generation, the INN samples into the
latent space of the VAE, and the VAE decoder translates this information to the shower phase
space. We set the latent space to 50 for dataset 1 and dataset 2, and to 300 for dataset 3.
Other specifics of the network are different in the three datasets and are provided in App. A.1.

The goal of our β-VAE [119, 120] is to learn to reconstruct the input data. We assume a
Gaussian distribution for the encoder network E(z|x). The VAE loss for the compression is

L= LBCE + βDKL[E(z|x), platent(z)] , (6)

with the usual binary cross entropy loss and the Gaussian prior. For a Gaussian encoder the
KL-divergence can be computed analytically, and the coupling strength is β = 10−9. We select
this small value as the KL part is only a regularization in our setup. We do not need a Gaussian
latent space since a more expressive mapping is learned by the INN. However, we need very
accurate decoding abilities from the latent space. The only requirement, that is ensured by the
small KL term, is a compact well-behaved space which can be learned by a generative model.
For numerical stability we split it into an upscaling factor for the BCE part and a downscaling
factor for the KL part.

For the decoder we use a Bernoulli likelihood, because it outperforms other models. For
example the Gaussian and the continuous Bernoulli [121] approach. The Gaussian decoder
does not model the shower geometry well, and it under-populates the low-energy regions. The
continuous Bernoulli distribution leads to instabilities, as the average energy deposition in the
normalized space is close to zero. We use a Bernoulli decoder,

D(x |λ(z)) = λ(z)x(1−λ(z))1−x , (7)

defining the combined VAE loss

LVAE =

�

¬

x logλ+ (1− x) log (1−λ)
¶

z∼E(z|x)
+ β
�

1+ logσ2
E −µ

2
E −σ

2
E

�

�

x∼pdata

. (8)

Because the Bernoulli distribution gives a binary probability we use its continuous mean λ as
the prediction for the individual voxels.

The remaining differences between the unit-Gauss prior in the latent space and the encoder
are mapped by the INN. Applying a 2-step training, we first train the VAE and then train the
INN given the learned latent space. This means we pass the encoder means and the standard
deviations, as well as the energy variables to the INN. The INN is trained as described above,
mapping the latent representation of the VAE to a standard Gaussian. As for the full INN, the
energy information is encoded following Eq (5) and learned by the latent flow. Both encoder
and decoder of the VAE are conditioned to these variables.

For the larger datasets 2 and 3, we employ a mixture of a convolutional and a fully con-
nected VAE. Our assumption is that the calorimeter layers do not require a full correlation, but
that only neighboring layers are strongly correlated. This assumption is simply implement-
ing locality, which should be given due to the causal propagation of the shower through the
calorimeter layers and the regular structure of electromagnetic showers. Therefore, we can
simplify the structure by compressing consecutive layers jointly in a first-step compression. We
use an architecture with fully connected sub-blocks, resembling a kernel architecture with a
kernel size k (number of jointly encoded calorimeter layers) and a stride s (distance between
two neighboring kernel blocks). After this first compression we concatenate these latent sub-
spaces and compress them a second time into our final latent space. For the decoding we
reverse this two-step structure. The overlapping regions of the fully connected kernel blocks
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are summed over. It should be noted, that the large scale correlations are not completely ig-
nored in this approach. They can still be learned as correlations between the kernel blocks in
the second stage. However, it is harder to model them as the information content is already
compressed by the first dimensionality reduction.

4 Results

The main physics reason for specific shower features is the incident energy. Low-energy show-
ers will interact with only a few layers of the calorimeter and quickly widen, leading to a broad
center-of-energy distribution in earlier calorimeter layers and a high sparsity in the given vox-
elization. High-energy showers penetrate the calorimeter more deeply. They will be collimated
in the initial layers and have low sparsity since each shower is likely to deposit energy in each
voxel.

To see if the ML-learned showers reflect these physics properties, we look at physics-
motivated and high-level features. Given a shower with energy depositions I, we look at
the center of energy and its width for each layer,

〈ζ〉=
ζ · I
∑

i Ii
and σ〈ζ〉 =

√

√

√
ζ2 · I
∑

i Ii
− 〈ζ〉2 for ζ= η,φ ; (9)

where
∑

i runs over the voxels in one layer. We also look at the energy deposition in each
layer; the layer sparsity; and for dataset 1, the ratio Etot/Einc for each discrete incident energy.

To analyze the quality of our generative networks in more detail and to identify failure
modes, we train a classifier D(x) on the voxels, to distinguish GEANT4 showers from generated
showers [44, 45, 75]. By the Neyman-Pearson lemma the trained classifier approximates the
likelihood-ratio. This means we can compute the correction weight [75] and use the weight
distributions as an evaluation metric

w(x) =
D(x)

1− D(x)
≈

pdata

pmodel
(x) . (10)

For these weights it is crucial that we evaluate them on the training and on the generated
datasets combined, because typical failure modes correspond to tails for one of the two datasets [75].
In addition, we always check if showers with especially small or large weights cluster in phase
space, allowing us to identify failure modes of the respective generative network. We also
report the Area-Under-the-Curve (AUC) score, which is calculated after training ten classifiers
from different initializations and averaging the obtained AUC scores.

4.1 Dataset 1 photons

We start with the photons in dataset 1. At high energy the interactions with matter in a pho-
ton shower are dominated by pair production and Bremsstrahlung, making this dataset the
simplest in terms of dimensionality and complexity. We summarize the most interesting high-
level features for the GEANT4 training data, the INN generator, and the VAE+INN generator in
Fig. 2.

We first look at the shower shape in rapidity for the layer with the largest energy deposition
for Einc = 0.256, 8.2,262.1 GeV. These energies provide insights on the generation over the
entire spectrum of low, medium, and high energetic showers. For instance, we show the center
of energy and its width in the calorimeter layer-1 for Einc = 256 MeV, while, for the remaining
energies, we show the layer 2. Dataset 1 is not symmetric in η and φ, because the shower
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were not generated around η = φ = 0. All showers have the same mean width, regardless of
the incident energy. This is captured by both networks at the level of 5% to 20%. A failure
mode of the INN is the region σ〈η〉 < 20 mm for low energies, where the network undershoots
the training data by up to 50% in the first bin. A peculiar feature of these distributions is a
small peak at zero, which occurs when at most one voxel per layer receives a hit. These cases
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Figure 2: Set of high-level features for γ showers in dataset 1, compared between
GEANT4, INN, and VAE+INN. We show the energy deposition, the center of energy,
and the width of the center of energy in layer-1 for the incident energies 256 MeV,
8.2 GeV, and 262.1 GeV. The last row contains the inclusive sparsity in layer-1 and
layer-2, and the inclusive energy ratio Etot/Einc.
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Figure 3: Energy ratio Etot/Einc for each discrete incident energy, compared between
GEANT4, INN, and VAE+INN for γ showers.

are better reproduced by the VAE, whereas the INN tends to produce slightly more collimated
showers. The INN is able to reproduce the collimated showers at higher energies always within
the statistical uncertainties of the training data, both in the center of energies and their widths.

Next, we show the energy depositions in layers 1. Although the energy deposited in layer-2
is larger for the intermediate and the large incident energies, we focus on layer-1 to showcase
the performance over a larger range of energies. Both networks show comparable performance
over the entire energy range for Einc = 8.2,262.1 GeV, while the VAE has larger deviations at
lower energies.

Finally, we look at observables inclusive in the energy. The sparsity λ2 in the same layer
is determined by the energy threshold of 1 MeV. The INN matches the truth over the entire λ-
range to 10%, while the VAE struggles. In particular, its showers have too many active voxels,
leading to the mis-modeled peak close to zero.

The ratio Etot/Einc exhibits a small bias in the energy generation for the VAE+INN towards
low energies, artifact of the final threshold in the architecture. For smaller incident energies,
more voxels are zero [53], which causes a problem for the VAE+INN because the showers are
more sparse which is the weakness of the VAE.

To illustrate the discrete structure of the incident energies in dataset 1, we collect Etot/Einc
for each incident energy in Fig. 3. The incident energy, provided during training and gen-
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eration, carries energy-dependent information about the shower. For instance, low-energy
showers have a much broader energy ratio distribution, in contrast to high-energy showers.
Both generative networks learn the conditional distribution on Einc with deviations up to 30%
in the tails. We include a set of shower shape histograms inclusive in the energy in App. A.3
and the full set of histograms for each energy with the published samples [122].

4.2 Dataset 1 pions

The physics of hadronic showers is significantly more complex than photon showers, so it is
interesting to see how our INNs perform for a low-dimensional calorimeter simulation of pions.
As before, we show shower shapes, sparsity, energy depositions, and the fraction of deposited
energy in Fig. 4. We focus on three distinct incident energies, 256 MeV, 8.2 GeV, and 262.1 GeV.
In particular we show the layers with the largest energy deposition. For the lowest incident
energy, a large fraction of energy is deposited in layer-2 while for the other two cases we show
layer-12 and layer-13, respectively.

For the shower shapes, both networks show small, percent-level deviations in the bulk
of the distributions at larger energies, while a larger discrepancy is found in the low-energy
regime. In addition, the VAE+INN is smearing out secondary peaks of the distributions. Both
networks generate slightly too wide showers. This effect is evident only at Einc = 256 MeV
and the more physically interesting energy region is modeled within statistical uncertainties
for the INN, besides very narrow showers with width of the center of energy close to zero.

In the energy distributions we see the benefit of a smaller latent space. The energy variables
of the VAE+INN are modeled within statistical uncertainties in layer-12 and layer-13 while the
INN shows a few bins with deviations up to 30%. Additionally, the sharp cut at low energy is
smeared to a different extent by the networks. Finally, we show global sparsity features and
the Etot/Einc ratio. As before the VAE+INN is unable to capture the correct number of active
voxels. From the ratio Etot/Einc we see that at all energies the fraction of deposited energy can
be very different from shower to shower, leading to the wide energy distribution far from one.
We collect in App. A.3 a set of inclusive histograms and the Etot/Einc ratio for single incident
energies.

Low-level classifier

To evaluate the performance of our generative networks on dataset 1 systematically, we train
a network to learn the classifier weights defined in Eq.(10) over the voxel space. In the left
panel of Fig. 5 we show the weights for the γ-shower. We clearly see that the INN outperforms
the VAE+INN. Its weight distribution peaks much closer to 1 and the corresponding AUC of
0.603(2) is substantially better than the corresponding AUC of 0.937(2) of the VAE+INN.

More importantly, the INN does not show significant tails at large or small weights, which
would indicate distinct failure modes. The peak of the VAE+INN, on the other hand, has
moved away from 1. The tail at small weights indicates regions that are overpopulated by the
network. We already know that this is the case for the sparsity. Large weights appear in phase
space regions which the VAE+INN fails to populate, for instance the widths of the centers of
energy.

In the right panel of Fig. 5 we see that the two generators perform more similar for π-
showers. Both networks now show tails at small and large weights, two orders of magnitude
away from one. This means there are regions that are over- and underpopulated by the gen-
erative networks. The fact that small weights appear for generated showers and large weights
appear for the training data is generally expected. The AUCs for the INN and the VAE+INN
are 0.804(2) and 0.864(2), respectively. The INN weight distribution is sharper around one,
resulting in the smaller AUC compared to the combined VAE+INN approach. Altogether, we

10



SciPost Physics Submission

find that for dataset 1 with its limited dimensionality of 368 voxels for photons and 533 voxels
for pions the INN works well, and that adding a VAE hinders the generative model because of
a more complex latent space and a limited reconstruction quality of the autoencoder.
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Figure 4: Set of high-level features for pion showers in dataset 1, compared between
GEANT4, INN, and VAE+INN. We show the energy deposition, the center of energy,
and the width of the center of energy in layer-1, layer-12, and layer-13. For each
layer, we show a single incident energy. The last row contains the inclusive sparsity
in layer-1 and layer-12, and the inclusive energy ratio Etot/Einc.
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Figure 5: Classifier weight distributions in dataset 1. Classifier trained on low-level
features for γ showers (left) and π showers (right).

4.3 Dataset 2 electrons

Dataset 2 is given in terms of 6480 voxels, the kind of dimensionality which will probe the
limitations of the regular INN. The number of parameters for this network approaches 200M.
The question will be, if the VAE+INN condensation helps the performance of the network. As
before, we show a representative set of high-level features in Fig. 6. This time we group the
showers in three equally spaced energy windows in log Einc. For brevity, we only focus on three
different layers representative for the interaction of the incident particle with the detector in
each energy window. We include all the remaining histograms together with the published
samples. We choose layer 1 for Einc ∈ [100, 101] GeV, layer-10 for Einc ∈ [101, 102] GeV, and
layer-20 for showers with incident energy in Einc ∈ [102, 103] GeV.

From the shower shapes we see that the INN-based architecture generates realistic showers
at all energies. The training is stable and consistent across different runs of the same archi-
tecture. We observe agreement in the center of energy distributions with small deviations
towards larger 〈η〉 and less commonly around zero, as shown in layer-10. The agreement in
phase space density between GEANT4 and the INN ranges from a few percent in the bulk of the
distributions to 50% in the tails, where very low statistics is available. Similar numbers apply
to the width of the center of energy a shift towards wider showers is observed in all the energy
windows. The failure mode of the INN, regardless of the dataset, is an under-sampling of
showers with width between the peak at zero and the secondary peak, for which the location
depends on the layer but not on the incident energy.

The VAE+INN shows limitations for large incident energies. As the energy increases, the
generated showers only reproduce the mean value of the center of energy, i.e. showers have a
rather uniform energy distribution around the center of the calorimeter resulting in 〈η〉 peaked
around zero. A similar failure mode is observed in the width of the center of energy where the
VAE+INN is more concentrated around the mean width of the GEANT4 showers. On the other
hand, the compression mechanism of the VAE works well at lower energies where showers are
generated by the latent INN and reconstructed by the VAE within statistical precision besides
the σ〈η〉 region close to zero.

The two networks learn the energy depositions in the layers in two very different spaces.
The INN extracts them with a large number of voxels, while the VAE+INN compresses them
into a reduced space of around 50 features. This different dimensionality is reflected in all
energy distributions in Fig. 6. While in poorly populated tails the INN does slightly better, the
VAE+INN performs better for the main features in the central and high-energy regime. This
is true for the layer-wise energies, but also for the ratio Etot/Einc. The last two plots show the
inclusive sparsity distributions in layer-10 and layer-20 confirming that the INN reproduces the
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Figure 6: Set of high-level features for electron showers in dataset 2, compared be-
tween GEANT4, INN, and VAE+INN. We show the energy deposition, the center of
energy, and the width of the center of energy in layer-1, layer-10, and layer-20. For
each layer, we show a single incident energy range. The last row contains the inclu-
sive sparsity in layer-10 and layer-20, and the inclusive energy ratio Etot/Einc.
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Figure 7: Classifier weight distributions. Classifier trained on e− showers on dataset
2 (left) and dataset 3 (right). The tails of dataset 3 should be taken with a grain of
salt, giving the limitations of the simple classifier architecture.

sparsity across the entire phase space while the VAE+INN struggles from the decoding step.

Low-level classifier

Again, we show a systematic comparison for dataset 2 in terms of the classifier weights in the
left panel Fig. 7. Compared to dataset 1, there is a clear deterioration of the INN performance
for the higher-dimensional phase space. At small weights, the tail remains narrow, indicating
that there are still no phase space regions where the network over-samples the true phase space
distribution. For large weights the weight tail now extends to values larger than w∼ 103. This
tail can be related to a recurrent under-sampling of showers with a small width of the center
of energy in each layer, as seen in Fig. 6.

The classifier evaluating the VAE+INN generator highlights a few important structures
as well. First, we have a clear over-sampled region in phase space with weights w ∼ 10−2,
which we can relate to the center of energy distribution as well. As mentioned before, the
VAE+INN over-samples showers with width close to the mean shower width. The classifier
confirms this major failure mode. For the large-weight tail we checked that the under-sampled
showers do not cluster in the same way, but are distributed over phase space, including tails
of distributions.

The AUC values of the classifiers for dataset 2, 0.705(5) for the INN and 0.916(3) for the
VAE+INN, confirm the challenge of the INN related to the size of the model and the dimen-
sionality of dataset-2, especially relative to the well-modeled γ-showers in dataset 1. Adding
a VAE improves the generation of low-energetic showers, where the low activity inside the
calorimeter can be nicely compressed in the latent space, however this is out-weighted by the
failure modes observed at medium and high incident energies.

4.4 Dataset 3 electrons

Finally, we tackle dataset 3, which includes the same physics as dataset 2, but over a much
higher-dimensional and extremely sparsely populated phase space. For this dataset we cannot
train an INN without dimensionality reduction, so we only show VAE+INN results in Fig. 8.
As expected, the performance is worse than for dataset 2, but the training is stable across
different training runs. One problem is a worsening reconstructions of the centroids and widths
for the later layers, which is likely related to the small average energy deposition per voxel.
The maximum in the width distributions is overpopulated by the VAE+INN. For the energy
distributions the VAE+INN is doing reasonably well, with serious deviations only in the low-
energy tails.
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Figure 8: Set of high-level features for electron showers in dataset 3, compared be-
tween GEANT4, INN, and VAE+INN.

The classifier weights for the VAE+INN generating dataset 3 are shown in the right panel of
Fig. 7. Even though the generative task is considerably harder, the learned weight distribution
broadens centrally, but shows smaller tails than for dataset 2. The reason is that not only the
generative network, but also our simple classifier are reaching their limits. However, the bulk

Batch size
INN

1-photon 1-pion 2-electron 3-electron

GPU
1 24.79 ± 0.49 24.76 ± 0.35 50.90 ± 0.37
100 0.385 ± 0.002 0.406 ± 0.003 1.900 ± 0.026
10000 0.162 ± 0.002 0.191 ± 0.006 exceeding memory

CPU
1 17.48 ± 0.09 18.88 ± 0.33 117.5 ± 1.8
100 0.827 ± 0.028 1.004 ± 0.047 14.26 ± 0.18
10000 0.510 ± 0.008 0.719 ± 0.016 15.24 ± 1.36

Batch size
VAE+INN

1-photon 1-pion 2-electron 3-electron

GPU
1 33.64 ± 0.32 33.54 ± 0.23 40.55 ± 0.40 43.13 ± 1.4 ∗

100 0.507 ± 0.005 0.544 ± 0.007 1.05 ± 0.02 3.44 ± 0.04
10000 0.180 ± 0.002 0.228 ± 0.003 0.748 ± 0.018 —

CPU
1 20.83 ± 0.72 20.05 ± 0.13 28.11 ± 0.15 39.46 ± 1.1 ∗

100 0.582 ± 0.005 0.886 ± 0.015 1.94 ± 0.01 4.91 ± 0.01
10000 0.328 ± 0.004 0.426 ± 0.014 1.25 ± 0.01 4.97 ± 0.08

Table 2: Per-shower generation times in ms. We show mean and standard deviation
of 10 independent runs. The star indicates that only 10k samples were generated.
The CPU timings were done with an Intel(R) Core(TM) i9-7900X at 3.30 GHz, the
GPU timings with an NVIDIA TITAN V with 12GB RAM.
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Generation time in ms per shower (CPU/GPU)
Batch size 1

1-photon 1-pion 2-electron

CaloINN 38(3) / 25(2) 43(3) / 25(2) 3.9(3)·102 / 53(1)
CaloFlow teacher [51] 4.3(3)·104 / 4.2(1)·103 2.0(3)·105 / 6.2(1)·103 —
CaloFlow student [51] 5.7(2)·102 / 56.9(5) 6.2(2)·102 / 77(4) —

CaloDiffusion [60] 1.57(6)·104 / 5.59(6)·103 1.5(1)·104 / 5.67(5)·103 3.6(2)·104 / 5.29(8)·103

Batch size 100
1-photon 1-pion 2-electron

CaloINN 2.7(3) / 0.51(3) 3.9(4) / 0.44(1) 60(10) / 1.18(3)
CaloFlow teacher [51] 2.0(1)·103 / 45(1) 5.4(5)·103 / 70(1) —
CaloFlow student [51] 11(1) / 0.79(1) 14(2) / 1.00(2) —

CaloDiffusion [60] 4.6(3)·103 / 75(2) 1.57(6)·104 / 77(2) 2.3(3)·104 / 99(2)

Table 3: Generation time for networks trained on the full space. We compare our
network CaloINN, CaloFlow teacher and student, and CaloDiffusion. Numbers are
taken from the CaloChallenge [104] review.

AUC (LL/HL)
1-photon 1-pion 2-electron

CaloINN 0.603(2) / 0.563(3) 0.804(2) / 0.692(1) 0.705(5) / 0.891(2)
CaloFlow teacher [51] 0.701(3) / 0.551(3) 0.827(3) / 0.692(2) —

CaloDiffusion [60] 0.62(1) / 0.62(1) 0.65(1) / 0.65(1) 0.56(1) / 0.56(1)

Table 4: Summary of low-level (LL) and high-level (HL) classifier scores for our
networks, where errors are extracted from 10 different classifiers. We compare to
CaloFlow [51] and CaloDiffusion [60]. An in-depth comparison between different
architectures, including latent models, is part of [104].

of the classifier weight distribution clearly indicates that for dataset 3 the phase space density is
mis-modelled by factors as large as 100 or 0.01 over large phase space regions. While the INN
description of these position showers fails altogether, the VAE+INN results do not guarantee
the level of precision we would expect for generative networks at the LHC. For completeness,
we include the high-level distributions divided in windows of incident energies only with the
published samples [122].

4.5 Comparison

Finally, we compare our INN to other networks in two main aspects, the generation timing
and the shower fidelity as measured by the AUC of a classifier. First, we do an in-depth timing
study of our networks using the CaloChallenge [104] procedure. The INN architecture with
modern coupling layers is ideally suited for fast and precise generation. We create a singularity
container [123] of the software environment and take the time it takes to load the container,
load the network, move it on the GPU, generate the samples, and save them to disk. In Tab. 2
we show the averaged results from ten runs. We observe a speed–up for increased batch size
and when running on the GPU. The INN has a small advantage for dataset 1, but is unable
to generate dataset 2 with the highest batch size and dataset 3 altogether. The VAE shows
generation times at or below the millisecond mark.

The training time for the DS1 network on a single A30 GPU is ∼ 4 hours, including the
validation steps which slightly increased the training time due to the large number of validation
figures. However, we are unable to provide an exact number because of large fluctuations in
the training time coming from the shared CPU and GPU memory of the cluster. Under the
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same observations, the network for dataset-2 trained on average for ∼ 6 hours.
The generation time from different published networks can vary because of varying hard-

ware, making a fair comparison laborious. To avoid generating samples from different net-
works, we base our timing comparison on the result of the CaloChallenge [104]. We look at
two well-known architectures based on autoregressive normalizing flows, CaloFlow teacher
and student [51], and the diffusion model CaloDiffusion [60], which provides benchmark
results for this class of neural networks. From Tab. 3, we observe that the coupling block
structure provides a generation speed-up when compared to the autoregressive counterpart,
as studied in the CaloFlow architecture. As expected, our model is also substantially faster
than a diffusion model due to the additional function evaluation needed to revert the diffu-
sion process.

We summarize the shower fidelity results in Tab. 4. Our figure of merits are a classifiers
trained on all the voxels, i.e. low-level features, and a second one trained on high-level ob-
servables. These include the layer energy deposition, the center of energy and the width of the
center of energy in both (η,φ) directions, and the incident energy. From the AUC score, our
photon showers on dataset-1 show the best performance on the low-level feature, even when
compared to current diffusion networks, and high-level features comparable to CaloFlow. For
pions, the complex low-level shower structure is better captured by CaloDiffusion, while flow
networks still retain good high-level shower quality. Lastly, the training challanges encoun-
tered while training on dataset-2 are also reflected on the ability of the CaloINN network to
generate high-dimensional electron showers.

5 Conclusions

Simulations are at the heart of the LHC program. Modern generative networks are showing
great promise to improve their quality and speed, allowing them to meet the requirements of
the high-luminosity LHC. In this paper, we have studied fast and precise normalizing flows,
specifically an INN and a VAE+INN combination to generate calorimeter showers in high-
dimensional phase spaces. As reference datasets we use the CaloChallenge datasets 1 to 3,
with an increasing number of 368, 533, 6480, and 40,500 voxels.

For the simplest dataset 1 photon showers, we have found that the INN generated high-
fidelity showers and learns the phase space density of high-level features at the 10% level,
except for failure modes which we can identify using high-level features and classifier weights
over the low-level phase space. We have found that the INN provides unmatched speed with,
for instance, O(10) ms generation time on a single CPU for a single shower. At the same
time the shower quality is comparable or even better than other deep generative networks,
including diffusion models.

For the pions in dataset 1 the INN faces more serious challenges, including mis-modeled
features, and a wider range of learned classifier weights. The performance difference between
the INN and the VAE+INN is limited by the expressivity of the latent network, with the ad-
ditional sparsity failure mode introduced by the autoencoder. Also in this case our networks
show shower accuracy comparable to other normalizing flows while providing faster genera-
tion time.

The electron showers in dataset 2 introduced technical challenges for the full-space INN.
We have observed that the compression by the VAE+INN helps learning simple showers in the
high-dimensional calorimeter. In particular, the main shape features of low-energetic show-
ers are improved by the VAE+INN, including all the energy variables which are learned in a
smaller latent space. However, the compression introduces more complex features for higher
energies, where we observe a substantial deterioration of the VAE+INN. The second issue is
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introduced by the decoding step, which limits the reconstruction of low-energy depositions
and the sparsity. The INN produces good-quality showers across the entire phase space. Al-
though the physics is similar to the photons in dataset-1, we have not matched the same shower
quality. This is attributed to difficulties in the optimization task of a much larger INN. In this
paper we focused on the improvements provided by an INN for fast detector simulation and
we believe other architectures can also benefit from our observations. For instance, a super-
resolution approach, as in [63], would show better scaling properties to higher-dimensional
calorimeters while retaining the improvement proposed by our CaloINN. Additionally, having
a separate network which learns only the energy variables will further increase the overall
fidelity in terms of both layer energy deposition and shower shape observables.

Finally, the electrons in dataset 3 exceed the power of the plain INN, leaving us with the
VAE+INN as the remaining option. As for dataset-2, we have observed an intrinsic limitation
of the latent INN to learn the compressed features which we partially addressed by moving to
a kernel-based autoencoder architecture. While still providing fast generation, the VAE+INN
is not able to generate high-fidelity showers. Although the expressivity of the network can
be improved, as it has been done in [98], generating the correct sparsity remains an open
question for latent models.

The generated samples used in this paper are published on Zenodo at 10.5281/zenodo.14178546.
We also include the complete set of high-level features for the studied incident energies and
the inclusive results.
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A Appendices

A.1 Network details

In this appendix we give details on the network architectures and the preprocessing. The
INN and the VAE+INN take voxels normalized by the layer energy as input. The extra energy
dimensions, calculated as in Eq. 5, are appended to the feature vector.

In the INN, we apply uniform noise and and a regularized logarithmic transformation with
strength α. The transformation applied to the features is a rational quadratic spline [116] for
dataset 1 and a cubic spline [117] for dataset 2. The prediction of the spline parameters is ob-
tained with an MLP sub-network with 256 nodes for each hidden layer. To equally learn each
dimension, we permute the order of the features after a transformation and normalize the out-
put to mean zero and unit standard deviation with an ActNorm [107] layer. In the large-scale
architecture, we stack twelve blocks to construct the INN with the additional preprocessing
block.

The VAE preprocessing has a similar structure. After normalization, we apply anα-regularized
logit transformation and a normalization to zero mean and unit standard deviation to each fea-
ture. We do not add noise during training and we set the latent dimension to 50 for dataset 1
and 2, and to 300 for dataset 3. We provide the full list of parameters in Tabs. 5 and 6.

The selection of the hyperparameters is based on heuristic observations from which we
performed a rather limited grid search around the starting set. For instance, the hidden di-
mension of the layers is chosen to be similar to the number of input features used to predict the
spline parameters and the selection of the number of layers is based on previous experience
on INNs [69, 124]. While RQS are currently one of the most expressive transformations, we
found occasional run-to-run instabilities while training on DS2 while the cubic spline consis-
tently converged. A change in batch size is accompanied by a change in the number of epochs,
such that the number of iterations is approximately constant,

The initial conditions for the number of bins and the number of blocks is based on the
number of parameters used in [44], which already showed great generation performance.
Additionally we tested b ∈ {1 · 10−6, 5 · 10−6 1 · 10−5}, a batch size ∈ {64,128, 256,512}, and
change the number of blocks by two units.
For the VAE we additionally varied the latent space by a factor of 2 up and down without any
visible improvements. The size of the embedding and decoding networks was not the goal of
a larger optimization. It turned out beneficial to inflate the dimensionality in the first layer
in all tried configurations. Apart from that we found generally better results the larger the
encoder and decoder networks were constructed. So we chose the parameter number based
on the available GPU RAM.
We avoided large resources consumption which would be required for a finer ablation study.
Therefore, we expect that the results can be improved in terms of timings, network complexity,
and performance.

The classifiers trained for the evaluation of the generative networks are simple MLP net-
works with leaky ReLU. We use three layers with 512 nodes each and a batch size of 1000.
The network is trained for 200 epochs with a learning rate of 2 ·10−4 and the Adam optimizer
with standard parameters. To prevent overfitting, especially for the larger datasets, we apply
30% dropout to each layer, and we reduce the learning rate on plateau with a decay factor
of 0.1 and decay patience of 10. The splitting between training, validation, and testing is
60/20/20%. The selection of the best network is based on the best validation loss.
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Parameter INN DS1/DS2 INN (with VAE)

coupling blocks RQS / Cubic RQS
# layers 4 / 3 3
hidden dimension 256 32
# of bins 10 10
# of blocks 12/14 18
# of epochs 450 / 200 200
batch size 512 / 256 256
lr scheduler one cycle one cycle
max. lr 1 · 10−4 1 · 10−4

β1,2 (ADAM) (0.9,0.999) (0.9, 0.999)
b 5 · 10−6 /
α 1 · 10−8 1 · 10−6

Table 5: Network and training parameters for the pure INN.

Parameter VAE

lr scheduler Constant LR






















































Inner VAE

lr 1 · 10−4

hidden dimension 5000, 1000, 500 (Set 1)
1500, 1000, 500 (Set 2)
2000, 1000, 600 (Set 3)

latent dimension 50 (Set 1,2) / 300 (Set 3)
# of epochs 1000
batch size 256
β 1 · 10−9

threshold t [keV] 2 (Set 1) / 15.15 (Set 2,3)

hidden dimension 1500, 800, 300






Kernelkernel size 7
kernel stride 3 (Set 2), 5 (Set 3)

Table 6: Network and training parameters for the VAE-INN.

A.2 CaloGAN dataset

In this section we discuss the INN performance on the even simpler CaloGAN dataset [35,37].
The INN architecture is described in Sec. 3. To extract uncertainties from the generative net-
work, we promote the deterministic INN to its Bayesian counterpart [69,124]. The implemen-
tation follows the variational approximation substituting the linear layer with a mixture of
uncorrelated Gaussians with learnable means and a diagonal covariance matrix. In practice,
we only upgrade the last layer of each sub-network to a Bayesian layer [125].

Figure 9 showcases two high–level features as examples of the performance of the CaloINN
as compared to the training data distribution generated by GEANT4. We show the brightest
voxel distribution in layer 0 and the width of the shower depth width defined as the standard
deviation of sd [44], with

sd =

∑2
k=0 kEk
∑2

k=0 Ek

. (11)

The error bars in the GEANT4 distribution are the statistical errors while for the INN we estimate
the uncertainties by sampling N = 50 times from the network and resampling the network
parameters each time.

To evaluate our networks on low-level observables, we resort again to classifier-based met-
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rics. As already studied in a previous work [75], the INN samples are indistinguishable from
the GEANT4 counterpart besides a few specific phase-space regions. We train a classifier on
the CaloFlow samples and find a large tail towards small weights. From clustering of the tail,
we observe a clear dependence on the energy deposition total energy deposition. We link this
effect to the learned energy variable u2 = E1/(E1 + E2) and the noise injection procedure. If
the noise is added at voxel-level, before calculating the additional energy variables, the flow
learns distorted energy ratio distributions. Especially in the last layer, where the average en-
ergy deposition is smaller, this effect is larger. We summarize this effect in Fig. 10. We also
provide the AUCs and the generation timings in Tab. 7.

AUC CaloFlow [44] CaloINN

e+
unnorm. 0.859(10) 0.525(2)
norm. 0.870(2) 0.598(3)
hlf 0.795(1) 0.656(2)

γ

unnorm. 0.756(50) 0.530(2)
norm. 0.796(2) 0.584(2)
hlf 0.727(2) 0.671(2)

π+
unnorm. 0.649(3) 0.662(2)
norm. 0.755(3) 0.735(4)
hlf 0.888(1) 0.786(4)

Batch size CaloFlow [45] CaloINN

GPU
1 55.12± 0.19∗ 23.79± 0.10∗

100 0.744± 0.04 0.425± 0.005
10000 0.249± 0.003 0.211± 0.003

CPU
1 119.9± 0.9∗ 46.39± 3.18∗

100 3.13± 0.11 1.14± 0.03
10000 1.681± 0.004 0.72± 0.01

Table 7: (left) AUC of the two classifiers trained on the CaloFlow teacher and CaloINN
samples. (right) Per shower generation timings in ms. We show mean and standard
deviation of 10 independent runs of generating 100k showers. The star indicates
that only 10k samples were generated in total.
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Figure 9: Comparison between CaloINN and GEANT4 on two high level features.
Brightest voxel distribution in layer-1 (left), and width of the shower depth (bot-
tom). Error bars on the INN are calculated after sampling from the Bayesian network
N = 50 times.
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A.3 Additional histograms
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Figure 11: Set of high-level features for γ showers in dataset 1 inclusive in Einc,
compared between GEANT4, INN, and VAE+INN.
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Figure 12: Set of high-level features for pion showers in dataset 1 inclusive in Einc,
compared between GEANT4, INN, and VAE+INN.
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Figure 13: Energy ratio Etot/Einc for each discrete incident energy, compared between
GEANT4, INN, and VAE+INN for π+ showers.
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Figure 14: Set of high-level features for electron showers in dataset 2 inclusive in
Einc, compared between GEANT4, INN, and VAE+INN.
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