002900537 001__ 2900537
002900537 005__ 20240922042949.0
002900537 0247_ $$2DOI$$9Elsevier B.V.$$a10.1016/j.nima.2024.169385$$qpublication
002900537 0248_ $$aoai:cds.cern.ch:2900537$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002900537 037__ $$9arXiv$$aarXiv:2311.01365$$cphysics.ins-det
002900537 035__ $$9arXiv$$aoai:arXiv.org:2311.01365
002900537 035__ $$9Inspire$$aoai:inspirehep.net:2717847$$d2024-09-21T06:29:19Z$$h2024-09-22T02:00:07Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002900537 035__ $$9Inspire$$a2717847
002900537 041__ $$aeng
002900537 100__ $$aBalibrea-Correa, J.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 245__ $$9Elsevier B.V.$$aPushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments
002900537 260__ $$c2024-04-25
002900537 269__ $$c2023-11-02
002900537 300__ $$a13 p
002900537 520__ $$9Elsevier B.V.$$aOne of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n_TOF facility, the detectors of choice are the C6D6 liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n_TOF 20 m flight path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from <sup loc="pre">197</sup>Au(<math altimg="si48.svg" display="inline" id="d1e2443"><mi>n</mi></math>, <math altimg="si49.svg" display="inline" id="d1e2449"><mi>γ</mi></math>), including the saturated 4.9 eV resonance which is an important component of normalization for neutron cross section measurements.
002900537 520__ $$9arXiv$$aOne of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n_TOF facility, the detectors of choice are the C$_{6}$D$_{6}$ liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from $^{197}$Au($n$,$\gamma$), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements.
002900537 541__ $$aElsevier$$chepcrawl$$d2024-05-01T04:11:37.240768$$e7366878
002900537 540__ $$3publication$$aCC BY-NC-ND 4.0$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
002900537 540__ $$3preprint$$aCC BY-NC-ND 4.0$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
002900537 542__ $$3publication$$dThe Author(s)$$g2024
002900537 65017 $$2arXiv$$anucl-ex
002900537 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002900537 65017 $$2arXiv$$aphysics.ins-det
002900537 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002900537 690C_ $$aCERN
002900537 690C_ $$aARTICLE
002900537 700__ $$aLerendegui-Marco, J.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 700__ $$aBabiano-Suarez, V.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 700__ $$aDomingo-Pardo, C.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 700__ $$aLadarescu, I.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 700__ $$aTarifeño-Saldivia, A.$$uValencia U.$$uValencia U., IFIC$$vInstituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
002900537 700__ $$aFuente-Rosales, G. De La
002900537 700__ $$aAlcayne, V.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aCano-Ott, D.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aGonzález-Romero, E.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aMartínez, T.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aMendoza, E.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aDe Rada, A. Pérez
002900537 700__ $$aDel Olmo, J. Plaza
002900537 700__ $$aSánchez-Caballero, A.$$uMadrid, CIEMAT$$vCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
002900537 700__ $$aCasanovas, A.$$uBarcelona, Polytechnic U.$$vUniversitat Politècnica de Catalunya, Spain
002900537 700__ $$aCalviño, F.$$uBarcelona, Polytechnic U.$$vUniversitat Politècnica de Catalunya, Spain
002900537 700__ $$aValenta, S.$$uCharles U.$$vCharles University, Prague, Czech Republic
002900537 700__ $$aAberle, O.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aAltieri, S.$$uINFN, Pavia$$uPavia U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy$$vDepartment of Physics, University of Pavia, Italy
002900537 700__ $$aAmaducci, S.$$uINFN, Catania$$vINFN Laboratori Nazionali del Sud, Catania, Italy
002900537 700__ $$aAndrzejewski, J.$$uLodz U.$$vUniversity of Lodz, Poland
002900537 700__ $$aBacak, M.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aBeltrami, C.$$uINFN, Pavia$$vIstituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy
002900537 700__ $$aBennett, S.$$uManchester U.$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aBernardes, A.P.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aBerthoumieux, E.$$uIRFU, Saclay$$vCEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
002900537 700__ $$aBeyer, R.$$uHZDR, Dresden$$vHelmholtz-Zentrum Dresden-Rossendorf, Germany
002900537 700__ $$aBoromiza, M.$$uBucharest, IFIN-HH$$vHoria Hulubei National Institute of Physics and Nuclear Engineering, Romania
002900537 700__ $$aBosnar, D.$$uZagreb U., Phys. Dept.$$vDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
002900537 700__ $$aCaamaño, M.$$uSantiago de Compostela U.$$vUniversity of Santiago de Compostela, Spain
002900537 700__ $$aCalviani, M.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aCastelluccio, D.M.$$uINFN, Bologna$$vAgenzia nazionale per le nuove tecnologie (ENEA), Italy$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
002900537 700__ $$aCerutti, F.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aCescutti, G.$$uINFN, Trieste$$uTrieste U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy$$vDepartment of Physics, University of Trieste, Italy
002900537 700__ $$aChasapoglou, S.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aChiaveri, E.$$uCERN$$uManchester U.$$vEuropean Organization for Nuclear Research (CERN), Switzerland$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aColombetti, P.$$uINFN, Turin$$uTurin U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy$$vDepartment of Physics, University of Torino, Italy
002900537 700__ $$aColonna, N.$$uINFN, Bari$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
002900537 700__ $$aCamprini, P. Console
002900537 700__ $$aCortés, G.$$uBarcelona, Polytechnic U.$$vUniversitat Politècnica de Catalunya, Spain
002900537 700__ $$aCortés-Giraldo, M.A.$$uSeville U.$$vUniversidad de Sevilla, Spain
002900537 700__ $$aCosentino, L.$$uINFN, Catania$$vINFN Laboratori Nazionali del Sud, Catania, Italy
002900537 700__ $$aCristallo, S.$$uINFN, Perugia$$uCagliari Observ.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy$$vIstituto Nazionale di Astrofisica - Osservatorio Astronomico di Teramo, Italy
002900537 700__ $$aDellmann, S.$$uGoethe U., Frankfurt (main)$$vGoethe University Frankfurt, Germany
002900537 700__ $$aDi Castro, M.
002900537 700__ $$aDi Maria, S.$$uLisbon, IST$$vInstituto Superior Técnico, Lisbon, Portugal
002900537 700__ $$aDiakaki, M.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aDietz, M.$$uBraunschweig, Phys. Tech. Bund.$$vPhysikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
002900537 700__ $$aDressler, R.$$uPSI, Villigen$$vPaul Scherrer Institut (PSI), Villigen, Switzerland
002900537 700__ $$aDupont, E.$$uIRFU, Saclay$$vCEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
002900537 700__ $$aDurán, I.$$uSantiago de Compostela U.$$vUniversity of Santiago de Compostela, Spain
002900537 700__ $$aEleme, Z.$$uIoannina U.$$vUniversity of Ioannina, Greece
002900537 700__ $$aFargier, S.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aFernández, B.$$uSeville U.$$vUniversidad de Sevilla, Spain
002900537 700__ $$aFernández-Domínguez, B.$$uSantiago de Compostela U.$$vUniversity of Santiago de Compostela, Spain
002900537 700__ $$aFinocchiaro, P.$$uINFN, Catania$$vINFN Laboratori Nazionali del Sud, Catania, Italy
002900537 700__ $$aFiore, S.$$uINFN, Rome$$vAgenzia nazionale per le nuove tecnologie (ENEA), Italy$$vIstituto Nazionale di Fisica Nucleare, Sezione di Roma1, Roma, Italy
002900537 700__ $$aFurman, V.
002900537 700__ $$aGarcía-Infantes, F.$$uCERN$$uGranada U.$$vUniversity of Granada, Spain$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aGawlik-Ramikega, A.$$uLodz U.$$vUniversity of Lodz, Poland
002900537 700__ $$aGervino, G.$$uINFN, Turin$$uTurin U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy$$vDepartment of Physics, University of Torino, Italy
002900537 700__ $$aGilardoni, S.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aGuerrero, C.$$uSeville U.$$vUniversidad de Sevilla, Spain
002900537 700__ $$aGunsing, F.$$uIRFU, Saclay$$vCEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
002900537 700__ $$aGustavino, C.$$uINFN, Rome$$vIstituto Nazionale di Fisica Nucleare, Sezione di Roma1, Roma, Italy
002900537 700__ $$aHeyse, J.$$uGeel, JRC$$vEuropean Commission, Joint Research Centre (JRC), Geel, Belgium
002900537 700__ $$aHillman, W.$$uManchester U.$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aJenkins, D.G.$$uYork U., England$$vUniversity of York, United Kingdom
002900537 700__ $$aJericha, E.$$uHZDR, Dresden$$vTU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
002900537 700__ $$aJunghans, A.$$uHZDR, Dresden$$vHelmholtz-Zentrum Dresden-Rossendorf, Germany
002900537 700__ $$aKadi, Y.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aKaperoni, K.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aKaur, G.$$uIRFU, Saclay$$vCEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
002900537 700__ $$aKimura, A.$$uJAEA, Ibaraki$$vJapan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
002900537 700__ $$aKnapová, I.$$uCharles U.$$vCharles University, Prague, Czech Republic
002900537 700__ $$aKokkoris, M.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aKopatch, Y.
002900537 700__ $$aKrtička, M.$$uCharles U.$$vCharles University, Prague, Czech Republic
002900537 700__ $$aKyritsis, N.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aLederer-Woods, C.$$uEdinburgh U.$$vSchool of Physics and Astronomy, University of Edinburgh, United Kingdom
002900537 700__ $$aLerner, G.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aManna, A.$$uINFN, Bologna$$uBologna U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy$$vDipartimento di Fisica e Astronomia, Università di Bologna, Italy
002900537 700__ $$aMasi, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aMassimi, C.$$uINFN, Bologna$$uBologna U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy$$vDipartimento di Fisica e Astronomia, Università di Bologna, Italy
002900537 700__ $$aMastinu, P.$$uINFN, Legnaro$$vINFN Laboratori Nazionali di Legnaro, Italy
002900537 700__ $$aMastromarco, M.$$uINFN, Bari$$uBari U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy$$vDipartimento Interateneo di Fisica, Università degli Studi di Bari, Italy
002900537 700__ $$aMaugeri, E.A.$$uPSI, Villigen$$vPaul Scherrer Institut (PSI), Villigen, Switzerland
002900537 700__ $$aMazzone, A.$$uINFN, Bari$$uCNR, INO, Pisa$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy$$vConsiglio Nazionale delle Ricerche, Bari, Italy
002900537 700__ $$aMengoni, A.$$uINFN, Bologna$$vAgenzia nazionale per le nuove tecnologie (ENEA), Italy$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
002900537 700__ $$aMichalopoulou, V.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aMilazzo, P.M.$$uINFN, Trieste$$vIstituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
002900537 700__ $$aMucciola, R.$$uINFN, Perugia$$uU. Perugia (main)$$vIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy$$vDipartimento di Fisica e Geologia, Università di Perugia, Italy
002900537 700__ $$aMurtas, F.$$uFrascati$$vINFN Laboratori Nazionali di Frascati, Italy
002900537 700__ $$aMusacchio-Gonzalez, E.$$uINFN, Legnaro$$vINFN Laboratori Nazionali di Legnaro, Italy
002900537 700__ $$aMusumarra, A.$$uINFN, Catania$$uINFN, LNS$$uCatania U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy$$vDepartment of Physics and Astronomy, University of Catania, Italy
002900537 700__ $$aNegret, A.$$uBucharest, IFIN-HH$$vHoria Hulubei National Institute of Physics and Nuclear Engineering, Romania
002900537 700__ $$aPérez-Maroto, P.$$uSeville U.$$vUniversidad de Sevilla, Spain
002900537 700__ $$aPatronis, N.$$uCERN$$uIoannina U.$$vUniversity of Ioannina, Greece$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aPavón-Rodríguez, J.A.$$uCERN$$uSeville U.$$vUniversidad de Sevilla, Spain$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aPellegriti, M.G.$$uINFN, Catania$$vIstituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy
002900537 700__ $$aPerkowski, J.$$uLodz U.$$vUniversity of Lodz, Poland
002900537 700__ $$aPetrone, C.$$uBucharest, IFIN-HH$$vHoria Hulubei National Institute of Physics and Nuclear Engineering, Romania
002900537 700__ $$aPirovano, E.$$uBraunschweig, Phys. Tech. Bund.$$vPhysikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
002900537 700__ $$aPomp, S.$$uUppsala U.$$vDepartment of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
002900537 700__ $$aPorras, I.$$uGranada U.$$vUniversity of Granada, Spain
002900537 700__ $$aPraena, J.$$uGranada U.$$vUniversity of Granada, Spain
002900537 700__ $$aQuesada, J.M.$$uSeville U.$$vUniversidad de Sevilla, Spain
002900537 700__ $$aReifarth, R.$$uGoethe U., Frankfurt (main)$$vGoethe University Frankfurt, Germany
002900537 700__ $$aRochman, D.$$uPSI, Villigen$$vPaul Scherrer Institut (PSI), Villigen, Switzerland
002900537 700__ $$aRomanets, Y.$$uLisbon, IST$$vInstituto Superior Técnico, Lisbon, Portugal
002900537 700__ $$aRubbia, C.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aSabaté-Gilarte, M.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aSchillebeeckx, P.$$uGeel, JRC$$vEuropean Commission, Joint Research Centre (JRC), Geel, Belgium
002900537 700__ $$aSchumann, D.$$uPSI, Villigen$$vPaul Scherrer Institut (PSI), Villigen, Switzerland
002900537 700__ $$aSekhar, A.$$uManchester U.$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aSmith, A.G.$$uManchester U.$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aSosnin, N.V.$$uEdinburgh U.$$vSchool of Physics and Astronomy, University of Edinburgh, United Kingdom
002900537 700__ $$aStamati, M.E.$$uCERN$$uIoannina U.$$vUniversity of Ioannina, Greece$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aSturniolo, A.$$uINFN, Turin$$vIstituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy
002900537 700__ $$aTagliente, G.$$uINFN, Bari$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
002900537 700__ $$aTarrío, D.$$uUppsala U.$$vDepartment of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
002900537 700__ $$aTorres-Sánchez, P.$$uGranada U.$$vUniversity of Granada, Spain
002900537 700__ $$aVagena, E.$$uIoannina U.$$vUniversity of Ioannina, Greece
002900537 700__ $$aVariale, V.$$uINFN, Bari$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
002900537 700__ $$aVaz, P.$$uLisbon, IST$$vInstituto Superior Técnico, Lisbon, Portugal
002900537 700__ $$aVecchio, G.$$uINFN, Catania$$vINFN Laboratori Nazionali del Sud, Catania, Italy
002900537 700__ $$aVescovi, D.$$uGoethe U., Frankfurt (main)$$vGoethe University Frankfurt, Germany
002900537 700__ $$aVlachoudis, V.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Switzerland
002900537 700__ $$aVlastou, R.$$uNatl. Tech. U., Athens$$vNational Technical University of Athens, Greece
002900537 700__ $$aWallner, A.$$uHZDR, Dresden$$vHelmholtz-Zentrum Dresden-Rossendorf, Germany
002900537 700__ $$aWoods, P.J.$$uEdinburgh U.$$vSchool of Physics and Astronomy, University of Edinburgh, United Kingdom
002900537 700__ $$aWright, T.$$uManchester U.$$vUniversity of Manchester, United Kingdom
002900537 700__ $$aZarrella, R.$$uINFN, Bologna$$uBologna U.$$vIstituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy$$vDipartimento di Fisica e Astronomia, Università di Bologna, Italy
002900537 700__ $$aŽugec, P.$$uZagreb U., Phys. Dept.$$vDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
002900537 773__ $$c169385$$mpublication$$pNucl. Instrum. Methods Phys. Res., A$$v1064$$y2024
002900537 8564_ $$82536716$$s3233464$$uhttp://cds.cern.ch/record/2900537/files/Publication.pdf$$yFulltext
002900537 8564_ $$82536717$$s30295$$uhttp://cds.cern.ch/record/2900537/files/Comparsion_Deposited_energy_Spectra_C6D6_MC_Exp_v2.png$$y00002 Experimental and reconstructed MC deposited energy spectra for C$_{6}$D$_{6}$ (panel a) and sTED (panel b) in the $^{197}$Au($n$,$\gamma$) 4.9~eV saturated resonance during HI (red) and LI (blue) pulses.
002900537 8564_ $$82536718$$s10735$$uhttp://cds.cern.ch/record/2900537/files/CR_Sixty_eV_Resonance_sTED1_v2.png$$y00020 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536719$$s11407$$uhttp://cds.cern.ch/record/2900537/files/CR_Saturated_Resonance_C6D61_v2.png$$y00011 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536720$$s19772$$uhttp://cds.cern.ch/record/2900537/files/Saturated_Resonance_C6D61_Corrected_v3.png$$y00012 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536721$$s28924$$uhttp://cds.cern.ch/record/2900537/files/Comparsion_Deposited_energy_Spectra_STED_MC_Exp_v2.png$$y00003 Experimental and reconstructed MC deposited energy spectra for C$_{6}$D$_{6}$ (panel a) and sTED (panel b) in the $^{197}$Au($n$,$\gamma$) 4.9~eV saturated resonance during HI (red) and LI (blue) pulses.
002900537 8564_ $$82536722$$s27810$$uhttp://cds.cern.ch/record/2900537/files/Correction_factor_sTED_C6D6_v3.png$$y00010 $f_{dt}$ and $f_{dtpu}$ corrections for both, C$_{6}$D$_{6}$ and sTED module, using a detection threshold of 300~keV and 200~keV, respectively.
002900537 8564_ $$82536723$$s18182$$uhttp://cds.cern.ch/record/2900537/files/Sixty_eV_Resonance_C6D61_QCorrected_v3.png$$y00016 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536724$$s20836$$uhttp://cds.cern.ch/record/2900537/files/Saturated_Resonance_sTED1_Corrected_v3.png$$y00018 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536725$$s20493$$uhttp://cds.cern.ch/record/2900537/files/Saturated_Resonance_sTED1_QCorrected_v3.png$$y00019 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536726$$s18674$$uhttp://cds.cern.ch/record/2900537/files/sTED_Fit_Distribution_E1_1_E2_1_v2.png$$y00005 Example of $\Delta t$ distribution and analytical fit using deposited energy signals of $E_1$ and $E_2$ between 1 and 2 MeV for C$_{6}$D$_{6}$ detectors (panel a) and sTED module (panel b).
002900537 8564_ $$82536727$$s19392$$uhttp://cds.cern.ch/record/2900537/files/Sixty_eV_Resonance_sTED1_QCorrected_v3.png$$y00022 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536728$$s12924$$uhttp://cds.cern.ch/record/2900537/files/Deltat0_C6D61_5.0eV_v1.png$$y00006 $\Delta t_{\circ}(E_{1},E_{2})$ distribution calculated from the $\Delta t$ distribution fitting procedure. Panel a) C$_{6}$D$_{6}$ detector. Panel b) sTED module. White regions suffer from low statistics and could not be fitted.
002900537 8564_ $$82536729$$s686760$$uhttp://cds.cern.ch/record/2900537/files/2311.01365.pdf$$yFulltext
002900537 8564_ $$82536730$$s19855$$uhttp://cds.cern.ch/record/2900537/files/Saturated_Resonance_C6D61_QCorrected_v3.png$$y00013 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536731$$s18601$$uhttp://cds.cern.ch/record/2900537/files/signal_C6D6_1_Amp_100_300_Offset_15.png$$y00000 Illustration of asymmetric C$_{6}$D$_{6}$ detection probability for two signals separated in time by 15~ns. In Panel a) the detection probability for the second signal is 75\%. In panel b) the detection probability for the second signal decrease down to 10\%.
002900537 8564_ $$82536732$$s11756$$uhttp://cds.cern.ch/record/2900537/files/a0_sTED1_5.0eV_v1.png$$y00009 $a_{0}(E_{1},E_{2})$ distribution calculated from the $\Delta t$ distribution fitting procedure for a) C$_{6}$D$_{6}$ and b) sTED module. White regions suffer from low statistics and could not be fitted.
002900537 8564_ $$82536733$$s11885$$uhttp://cds.cern.ch/record/2900537/files/CR_Saturated_Resonance_sTED1_v2.png$$y00017 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536734$$s10667$$uhttp://cds.cern.ch/record/2900537/files/CR_Sixty_eV_Resonance_C6D61_v2.png$$y00014 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536735$$s13223$$uhttp://cds.cern.ch/record/2900537/files/Deltat0_sTED1_5.0eV_v1.png$$y00007 $\Delta t_{\circ}(E_{1},E_{2})$ distribution calculated from the $\Delta t$ distribution fitting procedure. Panel a) C$_{6}$D$_{6}$ detector. Panel b) sTED module. White regions suffer from low statistics and could not be fitted.
002900537 8564_ $$82536736$$s11577$$uhttp://cds.cern.ch/record/2900537/files/a0_C6D61_5.0eV_v1.png$$y00008 $a_{0}(E_{1},E_{2})$ distribution calculated from the $\Delta t$ distribution fitting procedure for a) C$_{6}$D$_{6}$ and b) sTED module. White regions suffer from low statistics and could not be fitted.
002900537 8564_ $$82536737$$s18671$$uhttp://cds.cern.ch/record/2900537/files/signal_C6D6_1_Amp_300_100_Offset_15.png$$y00001 Illustration of asymmetric C$_{6}$D$_{6}$ detection probability for two signals separated in time by 15~ns. In Panel a) the detection probability for the second signal is 75\%. In panel b) the detection probability for the second signal decrease down to 10\%.
002900537 8564_ $$82536738$$s19737$$uhttp://cds.cern.ch/record/2900537/files/Sixty_eV_Resonance_sTED1_Corrected_v3.png$$y00021 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to sTED in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 8564_ $$82536739$$s16751$$uhttp://cds.cern.ch/record/2900537/files/C6D6_Fit_Distribution_E1_1_E2_1_v2.png$$y00004 Example of $\Delta t$ distribution and analytical fit using deposited energy signals of $E_1$ and $E_2$ between 1 and 2 MeV for C$_{6}$D$_{6}$ detectors (panel a) and sTED module (panel b).
002900537 8564_ $$82536740$$s18879$$uhttp://cds.cern.ch/record/2900537/files/Sixty_eV_Resonance_C6D61_Corrected_v3.png$$y00015 Performance of $f_{dt}$ and $f_{dtpu}$ corrections applied to C$_{6}$D$_{6}$ in the neutron energy range from 3 to 6~eV and 54 to 63~eV. Panels a) and d) present $r^{\prime}$ as a function of neutron energy for HI and LI pulses. Panels b) and e) give corresponding reaction yield from experiment and after application of $f_{dt}$ correction, while panels c) and f) after application of $f_{dtpu}$ correction.
002900537 960__ $$a13
002900537 980__ $$aARTICLE