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1 Introduction

Lepton-hadron Deep Inelastic Scattering (DIS) has been a highly relevant framework for
physics discoveries both for strong and weak interactions, most noticeably with the discovery
of scaling at SLAC [1], and with the discovery of weak neutral currents at CERN [2].
Furthermore, DIS is the framework of choice for the measurement of parton density functions
in the proton. Recently, two new experiments have begun taking data at the LHC, namely
the FASER [3] and SND@LHC [4], that exploit the large rate of forward neutrinos arising in
pp collisions, and promise access to tau neutrino interactions.1 The study of these neutrino
interactions may have also applications regarding the air showers [7].

The upcoming SHiP experiment [8], a beam-dump experiment designed for the search
of feebly interacting particles, will also study neutrino interactions. These, together with
the plans for the Electron-Ion Collider (EIC) at BNL [9], and the consideration of future
electron-hadron colliders in Europe, has generated a new interest in DIS processes also in
the theory community.

The DIS cross section for unpolarised Charged Current (CC) neutrino or anti-neutrino
scattering producing an outgoing charged lepton ℓ′ with mass mℓ′ ,

ν/ν̄(l) + N(P ) → ℓ′/ℓ̄′(l′) + X(PX) , (1.1)
1Up to now, tau neutrinos have been revealed at the OPERA [5] and DONUT [6] experiments, which

recorded about ten events each.
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is given by

d2σCCν/ν̄
dxbjdy

= G2
FMEν

π(1 +Q2/M2
W )

{(
y2xbj + m2

ℓ′y

2EνM

)
FCC1 (xbj, Q

2)

+
[(

1 − m2
ℓ′

4E2
ν

)
−
(

1 + Mxbj
2Eν

)
y

]
FCC2 (xbj, Q

2)

±
[
xbjy

(
1 − y

2 − m2
ℓ′y

4EνM

)]
FCC3 (xbj, Q

2)

+m2
ℓ′(m2

ℓ′ +Q2)
4E2

νM
2xbj

FCC4 (xbj, Q
2) − m2

ℓ′

EνM
FCC5 (xbj, Q

2)
}
,

(1.2)

where Eν is the energy of the incoming neutrino (or anti-neutrino) in the nucleon rest frame,
MW and GF are the W boson mass and the Fermi coupling constant, and xbj, y are the
usual DIS parameters, defined as

Q2 = −q2 = −(l − l′)2,

xbj = Q2

2P · q
,

y = P · q
P · l

,

M2
X = (l + P − l′)2 = P 2

X .

(1.3)

The contribution of the F4 and F5 structure functions to the cross section in eq. (1.2) is
suppressed for small lepton masses. This makes the tau leptons the only viable mean of
accessing these two so far unmeasured structure functions via charged-current tau-neutrino
DIS. Moreover, in the parton model the connection among F4 and F5 and the other structure
functions is straightforward at lowest order, making their prediction very simple and solid.2 A
measurement of these two structure functions would then provide further knowledge about the
structure of the proton, and, beyond that, a further consistency test of the partonic picture
through the verification of their relations with the other structure functions. Furthermore, a
precise measurements of F4 and F5 might be useful to constraint those scenarios of Beyond
Standard Model (BSM) physics at higher scales possibly related to the leptons of the third
generation, that could alter the contribution of one or another of the form factors to the
cross section in eq. (1.2) (see for example ref. [12]).

Another relevant phenomenological domain is the production of massive charmed reso-
nances in charged current DIS. This process can be used to further constraint the uncertainty
on proton strangeness (see for example ref. [13] and, for more recent work, ref. [14]) that has
an impact on W boson mass extraction at hadron colliders. In fact, at 7 TeV, approximately
25% of the inclusive W boson production rate is induced by at least one second-generation
quark, s or c, in the initial state [15]. This fraction increases with the center-of-mass energy.

2Albright and Jarlskog in [10] find that F4 = 0 and 2xF5 = F2, while violations to these relations induced
by NLO and kinematic mass corrections have been studied in ref. [11].
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The associated production of a tau lepton and a charm resonance in tau neutrino DIS
might be measurable at SND@LHC and SHiP. The open production of a charm quark and
tau lepton with an invariant mass larger than the typical mass of a bottom resonance could
in principle probe new physics scenarios that cannot be explored at B factories.

The status of higher order calculations has reached a remarkable N3LO accuracy both
for DIS structure functions [16–20] and for jet production in DIS [21, 22], and at N2LO level
for polarised DIS [23]. For the massive cases, NLO QCD corrections have been calculated
since long [11, 24, 25]. The massive structure functions have been first evaluated in the
asymptotic limit [26, 27], and then at full NNLO level [28].

As far as fully exclusive Monte Carlo generators are concerned, while the current status
of the calculations for collider processes is at the cutting-edge with the standard accuracy
given by NLO+PS and also NNLO+PS for some classes of processes, the situation for
DIS is less advanced. General-purpose Monte Carlo events generators, as HERWIG7 [29, 30],
SHERPA2 [31, 32] and PYTHIA8 [33], widely used for hadron-hadron collisions can be also used
to simulate massless DIS processes. For the massless case, a NLO+PS implementation is
available within the HERWIG7 generator and, more recently, POWHEG based generators have
been presented in ref. [34] and ref. [35] for the unpolarised and polarised DIS respectively.
Furthermore, an NNLO+PS implementation in the UNNLOPS framework has appeared [36],
still for the massless case.3

A widely used tool for full simulation of neutrino-nucleon interactions is the generator
GENIE [39]. For the case of DIS, it does not rely on standard procedures for matching fixed-
order corrections with a parton shower. Instead, Born level events are generated according
to the higher-order but inclusive result (i.e. according to the structure functions) and, then,
subsequently processed with PYTHIA, as discussed in ref. [40]. This procedure ensures that
the outgoing lepton has the correct kinematics assuming that the parton shower adopts a
recoil scheme which affects only the coloured partons.

In the present paper we aim to fill the gap, in particular for massive final states, and we
present a full event generator to describe DIS events for both Neutral and Charged Current
interactions (NC and CC respectively from now on). In order to do this we first consider
the relevant QCD radiative corrections, then exploit the POWHEG method [41–43] to match a
Next-to-Leading (NLO) fixed order computation to a Shower Monte Carlo (SMC) program.

The paper is structured as follows. In section 2 we outline the basic aspects of our
computation, referring to the appendix for the derivation of the relevant formulae and other
technical details. We also show validation results for both the fixed order computations and
showered event samples. In section 3 we present a selection of phenomenologically relevant
results and perform comparisons with available data. We draw our conclusions in section 4.

2 Description of the calculation

In this section we describe the main steps to develop a full event generator for the simulation
of lepton-hadron DIS processes with NLO+PS accuracy. We start by considering fixed-energy
incoming leptons.4

3For further developments within the SHERPA2 see refs. [37, 38].
4The case of a broad band beam of incoming leptons, which is relevant for the application to neutrinos,

involves an extra convolution with the flux of incident leptons as will be discussed in section 3.
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Figure 1. Born, Virtual and Real emission sample diagrams for lepton-nucleon DIS, ℓ+N → ℓ′ +X.

The first step corresponds to implement a differential NLO calculation for the DIS
processes. We have re-derived analytic expressions for all needed Born, Virtual and Real
matrix elements for both NC and CC DIS interactions with massive or massless particles
in the final state. Sample diagrams are shown in figure 1. We have double checked their
numerical implementation with GoSam [44].

The second ingredient needed to perform the NLO computation is a subtraction scheme
for the infrared and collinear divergences. The POWHEG-BOX framework implements the
Frixione-Kunszt-Signer (FKS) [45] subtraction scheme that enforces a partition of the real
emission phase space according to the collinear singularities of the real matrix elements.
As is the case for any local subtraction scheme, we need to provide suitable momentum
mappings connecting a Born phase space configuration plus a set of radiation variables to
a real phase space configuration. There is some freedom in the choice of these mappings.
While the particular map has no effect on pure NLO results, it has an impact when one
matches the NLO computation to an SMC program. For the DIS case, a generic map may
introduce some distortions in the distributions of the leptonic variables that are unnatural
when only QCD corrections are considered.

To be more explicit, let us consider for example a CC DIS process with an initial state
lepton scattering off a light quark in the proton producing a lepton and a massive quark. In
the FKS scheme the real emission corrections to this process has only one initial-state collinear-
singular configuration (for each real subprocess) and no final-state collinear singularities,
thanks to the mass of the final-state quark that acts as a regulator of the collinear divergence.

We observe that, starting from a Born configuration and a set of radiation variables, the
default initial-state mapping in the POWHEG-BOX is built so that it preserves the invariant
mass and the rapidity of the Born final state partonic system. This choice is particularly
suitable for hadron-hadron collisions with production of massive resonances. The prize is
that both initial state momenta are not preserved. In our case this would imply a real event
with a more energetic incoming lepton with respect to the starting Born configuration. This
leads to an inconsistent formulation of the subtraction procedure for fixed-energy incoming
leptons.5 Furthermore, at the time of event generation, the default POWHEG initial-state
mapping would also change the momentum of the final state lepton, and this change will

5Note that, considering a flux of incoming leptons with variable energies, we can still perform the NLO
computation following the procedure outlined in section 3 below and using the default POWHEG-BOX initial-state
mapping, even for a very narrow energy distribution of the incoming leptons.
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Figure 2. Sample diagram of charm-anti charm-pair production in gluon splitting.

not be modified by the SMC program, which for the time being is supposed to not alter
the momenta of the leptons. This second problem might alter the value of fiducial cross
sections in passing from the NLO to NLO+PS results when, for example, a cut on Q2 is
applied. When available in the SMC program, one can choose different recoil schemes to assess
the corresponding matching uncertainties, but a construction that preserves the leptonic
momenta seems more justified on a physical ground.

A first option to overcome, at least in part, the problems mentioned above consists in
building a mapping for initial-state radiation (ISR) that preserves the energy of the initial
lepton and the invariant mass of the Born system. A second and better solution is provided by
a mapping preserving the momenta of both the initial- and final-state lepton. We remind that
general formulae for such mappings in terms of invariants have been derived since long, see
e.g. ref. [46]. Nonetheless, their implementation within the FKS framework is more involved
as one has to adopt the specific parametrisation of the radiation variables that is employed
in the construction of the FKS counterterms obtained by means of the plus prescriptions.

Similar considerations also apply to final-state radiation (FSR) when one considers the
production of a massless quark at Born level. In this case, the default mapping implemented
in the POWHEG-BOX preserves the initial-state momenta, and so can be directly applied to the
case of fixed-energy leptons. On the other hand, this mapping does not preserve the final-state
lepton momentum as the radiation recoil is globally absorbed by all final-state particles.

For the massless case, ISR and FSR mappings preserving the leptonic momenta have
been derived in ref. [34]. We have derived their generalisation for a massive quark and lepton
in the final state. We have verified that our formulae smoothly reduce to the ones in ref. [34]
when approaching the massless limit. Since the construction of these mappings is rather
technical and the corresponding formulae quite lengthy, we report them in appendix A.

Before concluding this section, we make a comment on charm production in CC DIS.
Beside the EW production mechanism considered in this work, which is sensitive to the
strange content of the proton, charm (anti-)quarks can be produced also in final-state gluon
splitting processes, as depicted in figure 2. The latter processes can be enhanced by the valence
densities and can compete with the EW production. We observe that starting from NNLO,
the distinction between the two production mechanisms becomes less clear. Nonetheless,
working at NLO and in a scheme in which the charm is treated as a massive quark, as we
do, the gluon splitting process is finite and can be treated separately. For the rest of the
work we focus on the EW production mechanism only.

– 5 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
3

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

10−3 10−2 10−1 100

νe p→ e− +X NLO correction

Eνlab = 500GeV

Str.Fun.
Powheg

d
σ
/d
x
b
j
[p
b
/b

in
]

xbj

−0.2

−0.1

0.0

+0.1

+0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

νe p→ e− +X NLO correction

Eνlab = 500GeV
Str.Fun.
Powheg

d
σ
/d
y
[p
b
/b

in
]

ydis

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

10−3 10−2 10−1 100

ν̄e p→ e+ +X NLO correction

Eνlab = 500 GeV

Str.Fun.
Powheg

d
σ
/d
x
b
j

[p
b

/b
in

]

xbj

−0.2

−0.1

0.0

+0.1

+0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ν̄e p→ e+ +X NLO correction

Eνlab = 500 GeV
Str.Fun.
Powheg

d
σ
/
d
y

[p
b

/b
in

]

ydis

Figure 3. Order αs contributions to Björken xbj (left panels) and inelasticity ydis (right panels) for
CC νe (top panels) and ν̄e (bottom panels) DIS. We considered incoming νe (ν̄e) with fixed energy
equal to 500 GeV in the nucleon rest frame. We have used the NNPDF31_nlo_as_0118_nf_4 PDFs,
set µ2

R = µ2
F = Q2, and applied the kinematic cut Q2 > 4 GeV2. The blue points are obtained with

our implementation of DIS in the POWHEG-BOX while the red solid curve is the result of the structure
function calculation.

2.1 NLO validation

We have compared our POWHEG implementation of the NLO corrections to an explicit calcula-
tion of the inclusive double differential cross section formulae (see for example eq. (1.2) for the
case of CC neutrino and anti-neutrino scattering). The relevant proton structure functions are
obtained through the convolution of the parton densities with the NLO coefficient functions
taken from ref. [47] and ref. [11] for the massless and massive case respectively.

Since for many cases and in many kinematic regions the corrections are rather small,
for the purpose of validation, in figure 3, 4 and 5 we show only the αs contributions, i.e.
for each distribution we plot the difference NLO–LO. To generate validation plots we have
considered incoming leptons with fixed energy equal to 500 GeV in the nucleon rest frame
and used the NNPDF31_nlo_as_0118_nf_4 PDFs [48] with αs = 0.118 and nf = 4 through
the LHAPDF interface [49]. For the renormalisation (µR) and factorisation (µF) scales we set
µ2

R = µ2
F = Q2. We also apply the kinematic cut Q2 > 4 GeV2 to stay in the DIS regime

where perturbation theory is well applicable.
In particular, in figure 3 we show the Björken xbj and inelasticity ydis distributions

for νe and ν̄e CC DIS. The blue points are obtained with our implementation of DIS in
the POWHEG-BOX while the red solid curve is the result of a direct numeric integration of
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Figure 4. Same as figure 3 for charged current νe (ν̄e) DIS with charm quark production setting
mc = 1.5 GeV.
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Figure 5. Same as figure 3 for charged current ντ (ν̄τ ) DIS with mτ = 1.777 GeV.
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DIS formulae given in terms of proton structure functions, as in eq. (1.2). This has been
obtained using standard gaussian quadrature routines to perform the convolution of the
parton densities with the coefficient functions.

In figure 4 and 5, the same distributions are shown for the cases of νe (or ν̄e) CC DIS
producing a charm quark (mc = 1.5 GeV), and ντ (or ν̄τ ) CC DIS producing a tau lepton
(mτ = 1.777 GeV), respectively. For all initial and final state configurations, we found perfect
agreement between the fixed-order results obtained with the POWHEG generator and the ones
obtained with the direct calculation using the structure functions. We have also checked that
the same level of agreement is achieved for all choices of the available momentum mappings
employed in the subtraction procedure. This represents a non-trivial test of the newly derived
DIS momentum mappings presented in appendix A. Additional sets of validation plots are
reported in appendix B for completeness.

2.2 Event generation and impact of radiative corrections

The first emission is generated according to the POWHEG master formula [42]

dσNLO = B̄(ΦB)dΦB

∆NLO(ΦB, tmin) +
∑
α

[dΦrad∆NLO(ΦB,KT (ΦR))R(ΦR)]Φ̄
α
B=ΦB

α

B(ΦB)

 ,
(2.1)

where ΦB is the Born phase space and ΦR is the real phase space (that includes the radiation
of one extra parton). ΦR is mapped biunivocally into a Born and a radiation phase space,
so that dΦR = dΦB dΦrad. In the above equation, B and R are, respectively, the Born and
real squared matrix elements averaged/summed over colors and spins, B̄ entails the NLO
corrections inclusively integrated over the radiation phase space. The sum runs over all the
singular regions, labeled by α, and the POWHEG Sudakov reads

∆NLO(ΦB, pT ) = Θ(pT − tmin) exp

−
∑
α

∫ [dΦradR(ΦR)]Φ̄
α
B=ΦB

α

B(ΦB) Θ (KT (ΦR) − pT )

 .

(2.2)

According to eq. (2.1), resolved radiation is generated with a hard scale, given by the KT

function, down to some characteristic hadronic scale tmin, which in POWHEG is chosen to
be tmin = 0.8 GeV2.

The evolution variable KT (ΦR) is a smooth function of the radiation variables, which
is required to approach the transverse momentum of the radiated parton near the soft and
collinear limits. For ISR, assuming that the incoming lepton is moving along the positive
z-direction, we adopt the definition

K2
T (ΦR) ≡ K2

T (ΦB,Φrad) = s̄

2
ξ2(1 + y)

1 + ξy
, (2.3)

where s̄ is the CM energy of the underlying Born configuration ΦB, ξ is twice the ratio of
the radiated-parton energy over the partonic CM energy, and y is the cosine of the angle of
the radiated parton with respect to the positive z axis in the partonic CM frame. Notice
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that the collinear limit, in this specific case, is given by y → −1. The term 1 + ξy in the
denominator, which reduces to 1 in the soft limit, gives the correct behavior in the limit
of a hard and collinear emission.6

For FSR, we adopt the definition

K2
T (ΦR) ≡ K2

T (ΦB,Φrad) = s̄

2ξ
2(1 − y) , (2.4)

where, now, y is the cosine of the angle between the radiation and the emitter parton. The
interested reader can find further details on the generation of the radiation in appendix A.2.4
and appendix A.2.6 for ISR and FSR, respectively.

Since in POWHEG the decomposition in singular regions is driven by the collinear singulari-
ties, in the case of the production of a heavy quark there is only one FKS singular region,
corresponding to ISR from the incoming light quark. On the other hand, the real matrix
element may be enhanced when the extra gluon is emitted quasi-collinearly to the final-state
heavy quark. In this case, the choice of an ISR hard scale KT is not correct, possibly
leading to a mismodeling of this configurations. A more consistent treatment of the FSR
quasi-collinear region would require its inclusion in the FKS decomposition, see e.g. ref. [50],
and the construction of a suitable mapping for the case of a massive emitter. While different
mappings do exist [50, 51], they have been devised in the context of hadron-hadron collisions.
Since there the radiation recoil is shared by all particles in the final state, the leptonic
variables are not preserved in such mappings, which are then not ideal for DIS processes.

In this work, we follow a different strategy. Despite being potentially large, the contribu-
tion of the quasi-collinear configurations is finite thanks to the heavy quark mass. Therefore,
it can be generated separately as a regular (i.e. non-singular) real component. To this end,
we introduce a smooth decomposition of the real squared amplitude

R = wQFSRR+ (1 − wQFSR)R ≡ RQFSR +Rsing . (2.5)

The contribution Rsing contains all soft and/or collinear singularities and is suppressed in the
FSR quasi-collinear configurations, which is instead dominant in RQFSR. Then, we replace
R→ Rsing in the POWHEG Sudakov and in the B̄ function, while we generate remnant events
according to the distribution

RQFSR(ΦR)dΦR (2.6)

with standard Monte Carlo methods. In order to construct the wQFSR function we introduce
the distances of the radiated parton with respect to the initial-state light quark dISR and
to the final-state massive quark dQFSR

dISR = p · k
p0 , dQFSR = v · k

v0 +mv, (2.7)

where p, v and k are, respectively, the momentum of the incoming light quark, of the outgoing
heavy quark, with mass mv =

√
v2, and of the radiation, with all energies evaluated in the

partonic CM frame. Then, we write

wQFSR = dISR
dISR + dQFSR

. (2.8)

6We note that our choice of KT in the ISR case differs from the one in ref. [34] by subleading terms.
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Notice, in particular, that in the soft limit dQFSR → mv while dISR → 0, so that wQFSR → 0,
which ensures that all singularities are contained in Rsing. The above remnant mechanism
represents our default choice for DIS processes characterised by a heavy quark in the final
state. Furthermore, in order to avoid issues related to real configurations whose underlying
Born gives a vanishing or very small contribution, we always turn on the Bornzerodamp
mechanism [43] in our POWHEG generator.

The calculation for the heavy quark production processes is performed in the decoupling
scheme with nf = 3 active flavors in the running of αS and in the proton. We are dealing
with EW processes that are quark-initiated at the lowest order. As a consequence, the strong
coupling is not renormalised by NLO corrections and the gluon parton density starts to
contribute only at NLO. Therefore, we can consistently adopt PDF sets and αS running
with nf = 4 without the need of introducing any correction terms related to the change
of scheme, see e.g. [52]. This matches what is done for all other cases involving only light
quarks, where we consider a nf = 4 proton with a massless charm component to complete
the second-generation SU(2) doublet.

We focus on the following representative processes

• e− + p→ νe +X(no masses);

• e− + p→ νe + c̄+X (production of a massive quark);

• ντ + p→ τ− +X (production of a massive lepton),

• ντ + p→ τ− + c+X (production of a massive quark and a massive lepton),

which include all combination of massive quark/lepton in the final state.
In all cases, we consider a reference setup with an incoming lepton with fixed energy

Eℓ = 1 TeV scattering off a proton at rest in the laboratory frame. A cut on the minimum
momentum transfer Q2 > 4 GeV2 is applied. The W boson mass is set to mW = 80.419 GeV,
the τ mass to mτ = 1.777 GeV, the charm mass to mc = 1.5 GeV, the Fermi constant to
GF = 1.16639×10−5 GeV−2, and the cosine of the Cabibbo angle to cos θC = 0.97462. We use
the NNPDF3.1 NLO PDFs [48] with αS = 0.118 and nf = 4 through the LHAPDF interface [49].
We adopt a dynamical scale7 µ0 =

√
Q2 +m2

v, where mv is the mass of the final-state quark.
We will refer in the following to the Q2 > 4 GeV2 cut as the definition of our fiducial region.

In table 1, we list the LO and NLO rates in our fiducial region for producing the final-state
lepton (inclusively over any hadronic final state) or for producing the final-state lepton and
the charm. In all cases but charm electro-production in CC, we find that the NLO corrections
are rather mild, decreasing the rates by a few percents. The smallness of the NLO corrections
is in part a result of relatively large positive and negative contributions, possibly occurring
among subprocesses in the same SU(2) weak doublet (neglecting Cabibbo suppressed mixing
effects), that cancel to a large extent in the fiducial rates. We anticipate, therefore, that
their impact on more differential observables may be larger.

7In order to avoid differences due to the scale settings when using different mappings, the dynamical
scale is computed separately for the real and for the underlying Born configurations, turning on the flags
btildescalereal and btildescalect in the powheg.input file.
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process σLO [pb] σNLO [pb] σNLO/σLO − 1 [%]

e− + p→ νe +X 3.7881(3) 3.6741(6) −3.0%

e− + p→ νe + c+X 0.069706(15) 0.1056(4) +51.5%

e− + p→ νe + c+X, mc = 0 0.0644(2) 0.1039(4) +61%

ντ + p→ τ− +X 4.1228(5) 3.9571(8) −4.0%

ντ + p→ τ− + c+X 0.64706(6) 0.6217(2) −3.9%

Table 1. Inclusive LO and NLO fiducial rates for the four considered processes. The result for a
massless charm is also reported for comparison.

On the other hand, in the case of charm electro-production, NLO corrections increase
the LO fiducial rate by 61%. It is worth explaining why. The related process of charm
neutrino-production does not feature the same large positive NLO correction. This is a first
indication that the origin of the different behavior is not related to the massive calculation.
Indeed, we can perform the calculation even for a massless charm by tagging the charm in
the final state. The result for charm electro-production for a massless charm is reported in
table 1 for comparison. We found that the NLO correction has the same pattern as that
for the massive charm. This confirms that this pattern is not associated with mass effects
and that logarithms of the charm mass are not extremely large at the energy scales probed
by the considered lepton-proton scattering process.

On the other hand, a large positive correction can be associated to real emission processes
populating regions of phase space that were inaccessible or dynamically suppressed at a lower
order. Specifically, if we neglect all masses for simplicity, in the collision e−s̄→ νec̄, in the
partonic CM, e− and s̄ have opposite helicity and thus the same spin along the collision
direction. In backward scattering also νe and c̄ have the same spin, but opposite to the
incoming ones, so that angular momentum conservation is violated by two units, leading to a
(1 − ydis)2 suppression of the cross section.8 Conversely in the collision νes → e−c the two
incoming particles have opposite spin, and no such suppression arises. Therefore, in the case
of charm electro-production, real emission processes can lift the dynamical suppression in the
backward scattering region, leading to a large positive correction to the fiducial rates.

We focus now on the kinematic distributions of the following observables:

• the inclusive DIS leptonic variables, xbj and ydis;

• the transverse momenta of the leading light-flavor (charm-flavor) jet j1 (jc1) for the light
(heavy) quark case and of the second leading light-flavor jet j2;

• the rapidity yj1(ycj1) of the leading light-flavor (charm-flavor) jet in the lab frame and
the lepton-jet ∆Rℓj1 =

√
∆2yℓj1 + ∆2ϕℓj1 (∆Rℓjc

1
) separation.

We define the jets using the anti-kT clustering algorithm [53] as implemented in FastJet [54],
with radius R = 1 and using the E-scheme for the recombination. The jets are required

8We recall that ydis = (1 − cos θ)/2, where θ is the scattering angle in the partonic CM frame.
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to have a minimum transverse momentum of 0.1 GeV. At parton level, jets containing any
charm quarks and/or anti-quarks are considered charm-flavor jets.

We consider two variants of the momentum mappings:

• “global”: the ISR mapping preserves the momentum of the incoming lepton and the
invariant mass of the underlying Born system (simple mapping for DIS), the FSR
mapping preserves both incoming partons momenta (standard FKS FSR mapping
implemented in the POWHEG-BOX);

• “dis”: both ISR and FSR mappings preserve the momenta of the incoming and outgoing
leptons.

In fixed order perturbation theory, the two options must provide equivalent results. Differences
may appear at the level of the events generated according to the POWHEG formula.

The kinematic distributions are reported in figures 6–9. In all plots, we compare
predictions obtained

• at LO (blue);

• at NLO (green);

• at the level of the POWHEG events (LHE) with the “global” option (orange);

• at the level of the POWHEG events with the “dis” option (purple).

The figures display statistical uncertainties as bands, while scale uncertainties are not taken
into account.

Upon analyzing the first two curves, it is evident that NLO radiative corrections, while
very mild for fiducial rates, can have a significant impact on more differential observables.
Excluding the case of charm electro-production, it can be observed that NLO corrections
have a similar pattern for all the considered processes. Specifically, the corrections have
a significant impact on the shapes, including the DIS variable xbj, with the corrections
reaching levels of 10–15%. The rapidity spectrum of the leading jet is particularly affected,
with NLO corrections of about 50% that shift the distribution towards smaller rapidities.
Correspondingly, the ∆Rj1,ℓ′ separation between the leading jet and the outgoing lepton
shows a significant NLO correction, with a 30–40% decrease at high values of separation.
At LO, the leading jet and the outgoing lepton were back-to-back in the transverse plane,
resulting in a ∆Rj1,ℓ′ distribution that began at π. This restriction is lifted at NLO due
to the additional real radiation.

As observed for the fiducial rates, when it comes to charm electro-production, NLO
corrections lead to a significant increase in the normalisation corrections of approximately
50%. This increase can also be seen in the differential distributions, specifically in the
ydis distribution in figure 7, where the (1 − ydis)2 suppression of the LO result is clearly
visible. The same suppression also plays a role in the rapidity distribution of the leading
charm jet, and also in its transverse momentum for p2

T,jc
1
⪅ Q2

min, where forward scattering
is kinematically suppressed, while backward scattering is suppressed at LO, but becomes
larger due to NLO corrections.
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Figure 6. Collection of differential distributions for the scattering of a 1 TeV electron off a proton at rest:
Björken variable xbj, inelasticity ydis, transverse momentum of the leading jet pT,j1 , transverse momentum of
the second jet pT,j2 , rapidity of the leading jet yj1 , lepton-jet separation ∆Rj1,ℓ′ . LO predictions are displayed
in blue, NLO ones in green, results obtained at the POWHEG event level in orange and in purple adopting,
respectively, the “global” (LHE-global) and the “dis” (LHE-dis) settings. Ratios to NLO predictions are given
in the bottom panels.
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Figure 7. As in figure 6 for the process e− + p → νe + c̄ + X. The leading jet jc
1 is the leading

charm-flavor jet.
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Figure 8. As in figure 6 for the process ντ + p → τ− + c + X. The leading jet jc
1 is the leading

charm-flavor jet.
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Figure 9. As in figure 6 for the process ντ + p→ τ− +X.
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The transverse momentum distribution of the charm jet exhibits a distinctive change
in slope at approximately pT,jc

1
= 13 GeV. This effect is due to the different behavior of the

dominant anti-strange and Cabibbo suppressed anti-down channels. The latter extends to
higher pT,jc

1
values, resulting in a more gradual slope change beyond the kink point.

We will now compare the NLO results with the ones generated using the POWHEG formula at
the event level, using the “global” (LHE-global) and “dis” (LHE-dis) settings for the mappings.
It is important to remind that in the case of charm production, only the ISR region is present.

For the leptonic DIS observables we found, as expected, excellent agreement between
NLO and LHE-dis, within their statistical uncertainties. Deviations of the LHE-global curves
are mostly visible in the xbj distribution, reaching a few tens of percent for xbj < 10−2.
For jet observables, LHE-dis and LHE-global generally provide similar results, with mild
deviations mostly seen in observables more sensitive to the extra radiation, such as the
transverse momentum of the second jet pT,j2 and the ∆Rj1,ℓ′ separation, especially in the
region of small separations (∆Rj1,ℓ′ < π).

When it comes to charm electro-production, the differences between LHE-global and
LHE-dis results for the xbj distribution are less noticeable compared to the massless quark
cases. On the other hand, there are still approximately 5% differences at high ydis. The reason
behind the former observation, which is also valid in the case of charm neutrino-production,
could be due to the fact that we are solely comparing the differences between the ISR dis
mapping and the one that preserves the neutrino momentum and the invariant mass of
the underlying Born system, while deviations caused by different mappings for FSR are
expected to be larger.

We would like to briefly discuss the comparisons between the NLO results and the ones
obtained at the event level. We will focus on the LHE-dis results and jet observables, as the
leptonic variables are preserved by this choice of mappings. For leading order (LO) observables
such as the transverse momentum and rapidity spectra of the leading jet, we observe a good
agreement between NLO and LHE-dis results in the bulk, with some deviations towards small
values of the transverse momentum and rapidity. The transverse momentum spectrum of the
second jet, which is entirely due to real radiation, is divergent at NLO towards small values of
transverse momentum. The LHE-dis result has a characteristic Sudakov suppression, forming
a peak for transverse momenta of pT,j2 ≳ 1 GeV, where deviations from the fixed order result
are at a level of around 20%. Then, the two results match at around 10 GeV. Other significant
deviations between the NLO and LHE-dis results are present in the separation ∆Rj1,ℓ′ , near
∆Rj1,ℓ′ = π, a region which is sensitive to multiple soft emissions.

2.3 Comparison with NNLO

The option “dis” is the natural choice for lepton-hadron scattering processes. Parton shower
programs implement recoil schemes that preserve lepton momenta, which means that predic-
tions for the leptonic DIS variables will remain the same even after showering the POWHEG
events. However, significant differences exist in the xbj variables when using the “global”
recoil as shown in the previous section. It is important to determine whether these differences
are within the perturbative scale uncertainties. Additionally, NNLO radiative corrections may
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modify the leptonic variables. In the following, we compare the results obtained with the two
mappings “dis” and “global”, including NLO scale variations, with available NNLO results.

For the massless case, we extend our structure function program to NNLO, thanks to the
implementation of the higher-order proton structure functions in Hoppet [55, 56]. The cross
section for massive quark production in CC lepton-hadron scattering has been computed up
to NNLO in QCD in ref. [28]. The computation of the corresponding coefficient functions
has been reported in ref. [57]. However, these results are not yet implemented in a publicly
available tool. The coefficient functions for a massive quark have been previously computed
at NNLO in the approximation of large momentum transfer, Q2 ≫ m2

Q, in refs. [26, 27]. We
rely on the latter for our comparison, as recently implemented in Yadism [58].

We focus on the processes e− + p→ νe +X and e− + p→ νe + c̄+X, beginning with
the massless case. The results for the leptonic variables Björken xbj and ydis are displayed in
figure 10. The bands correspond to scale uncertainties computed by the customary seven-point
scale variation around the reference scale µ2

F = µ2
R = Q2. The Cabibbo angle is set to θC = 0

for this comparison. Upon inspection of the xbj distribution, we observe that for xbj ≲ 0.01,
there are sizeable differences between the two recoil options, with their bands (of the order of
15–20%) barely overlapping. In this region, the NNLO prediction lies between the LHE-dis
and LHE-global results. For larger xbj values the three predictions are closer to each and the
corresponding uncertainty bands are smaller, of the order of 5%, indicating good perturbative
convergence in this region. In the case of the ydis distribution, except for the first two bins,
differences between the two mappings are very mild, around 1%, and are contained within
the uncertainty bands, which are of the order of a few percent. The NNLO corrections are
also mild and flat, reducing the NLO result by a few percent.

We turn now to the massive case, shown in figure 11. We observe an overall increase in
the perturbative uncertainties and, correspondingly, larger NNLO effects. As observed and
discussed in the previous section, differences between the predictions obtained with the two
mappings are milder than those observed in the massless case. In the x ≳ 0.01 region, the
approximate NNLO corrections are mild and flat, indicating good perturbative convergence.
However, for x < 0.01, they give a large negative contribution, causing the central aNNLO
prediction to fall outside the NLO uncertainty bands. This region is associated with small
values of the momentum transfer, and the approximation is expected to perform poorly in
this regime. A more meaningful comparison would require the exact NNLO calculation,
which we plan to investigate in future work.

Regarding the ydis distribution, there is an overall better perturbative consistency as
the aNNLO central prediction is mostly encompassed by the NLO uncertainties bands. The
inclusion of aNNLO corrections brings a non-trivial shape distortion which leads to a sizeable
softening the spectrum. At very high and very low ydis values, the aNNLO effects can reach
up to 15–20%. However, at very low ydis, the approximation is expected to worsen since
this region probes small values of Q2.

3 Pheno

In the previous section, we have introduced a new generator for NC and CC DIS lepton-
nucleon processes reaching NLO+PS accuracy. In particular, we have discussed the impact
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Figure 10. Leptonic kinematic distributions Björken xbj (left) and ydis (right) at the level of the
POWHEG events with the “global” (LHE-global) and “dis” (LHE-dis) mappings. Scale uncertainties are
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Figure 11. As figure 10 for charm electro-production in e− + p→ νe + c̄+X. Approximate NNLO
predictions are obtained with Yadism [58].

of NLO corrections and some theoretical aspects related to the choice of the momentum
mappings and their impact on differential distributions for the generated parton level events,
before feeding them to a SMC program.

We now consider the full simulation chain including showering and hadronisation effects
using PYTHIA8 [33] and adopting the recoil option SpaceShower:dipoleRecoil, which is
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suitable for DIS processes.9 We present a selection of comparisons with available data
from electron(positron)-proton collisions at HERA as well as predictions for neutrino DIS
processes for the ongoing FASERν and SND@LHC, and for the upcoming SHiP experiments
at CERN. For the latter case, we will briefly describe how to deal with a broad band beam
of incoming neutrinos.

In particular, we focus on charm CC DIS production, either at the level of flavoured
charm jet or at particle level of charmed mesons and baryons, and on the production of tau
leptons in neutrino interactions. Charm CC DIS production is relevant for constraining the
strange content of the proton. The current measurement with incoming charged leptons
performed by the ZEUS collaboration [59] is affected by large uncertainties, and the situation
is expected to improve with the proposed EIC experiment [60]. On the other hand, for
neutrino beams with an emulsion detector the identification of charm is topological, and
thus has a very high efficiency and purity.

3.1 DIS in the forward region at HERA

In the following, we compare NLO+PS predictions with the single-jet measurements performed
by the ZEUS collaboration for differential distributions in the laboratory frame [61]. The
theory uncertainties on the predictions are obtained from the customary seven-point scale
variation of renormalisation and factorisation scales around a central value of µ2

F = µ2
R = Q2.

We adopt the same physical parameters and pdf set as in section 2.2.
The ZEUS measurement of differential distributions for jet production in the laboratory

frame [61] is based on data that were taken colliding protons with energy of Ep = 820 GeV and
positrons with energy of Ee = 27.5 GeV, i.e. at a centre of mass energy of

√
s = 300.3 GeV.

Jets are reconstructed using the kT clustering algorithm in the longitudinally invariant
mode (ET -weighted recombination scheme). The experimental analysis studied three regions
of inclusive jet production in phase-space. We focus on the most inclusive region, called
“global”. This region, which is expected to be well-described by the quark-model picture,
is defined by the conditions

Q2 > 25 GeV2, ydis > 0.04, E′
e > 10 GeV, (3.1)

where E′
e is the energy of the scattered positron, and at least one jet satisfying

Ejet > 6 GeV, −1 < ηjet < 3. (3.2)

We compare results at LO, NLO (LHE), LO+PS, and NLO+PS with the experimental
measurements for the leading jet pseudo-rapidity (ηj) and transverse energy (ET,j), momentum
transfer (Q2), and Björken variable (xbj), as shown in figure 12. For a meaningful comparison
with data provided at the particle level, predictions obtained through matching to the parton
shower are required. Results at LO and NLO (LHE) are displayed for reference only. At
NLO+PS level, we achieve a much-improved description of the data, with significantly
reduced scale uncertainty bands and central values closer to the experimental data in the
regions where we expect an improvement. Examples of a kinematic domain where a good

9We remind that PYTHIA8 adopts as default a global recoil scheme for initial state radiation.
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Figure 12. Comparisons of theoretical predictions at LO (in gray), NLO (LHE) (in green), LO+PS
(in blue) and NLO+PS (in red) with ZEUS measurements [61] for kinematic distributions in single
inclusive jet production: the leading jet pseudo-rapidity (ηj) and transverse energy (ET,j), momentum
transfer (Q2), and Björken variable (xbj). LO+PS and NLO+PS are matched to PYTHIA8 shower.
Ratios to data are displayed in the bottom panels.

agreement is not expected are provided by the lower-order suppressed regions of high jet
pseudo rapidities (ηj ≳ 1.5), and of the small xbj values (xbj ≲ 10−3). In fact, these are still
not accurately described even with the addition of the first extra emission, which is given by
the exact matrix element in the NLO (LHE) and NLO+PS predictions and approximated
by the shower in the LO+PS one. Higher-order corrections are necessary for these regions.
The authors of ref. [21] performed a calculation of the DIS single-jet inclusive production up
to N3LO in QCD based on the projection to Born method [62] and obtained an excellent
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σe+p
c,vis [pb] σe+p

c [pb]

Q2 range (GeV2) LO+PS NLO+PS ZEUS LO+PS NLO+PS ZEUS

200–1500 2.085+4.7%
−6.2% 2.501+4.8%

−3.7% 4.1 ± 2.0 2.657+3.3%
−4.5% 4.248+5.7%

−4.3% 8.7 ± 4.1

1500–60000 0.9921+1.3%
−1.5% 1.028+6.9%

−5.1% −0.7 ± 2.0 1.157+2.2%
−2.2% 1.604+8.2%

−6.2% −1.2 ± 3.9

Table 2. LO+PS and NLO+PS predictions for charm production cross sections in CC DIS e+p at
HERA within the kinematic phase space defined in eq. (3.3). The visible cross sections refer to the
additional visibility cuts on the charm jet in eq. (3.4). Corresponding cross sections measured by the
ZEUS collaboration [59] are also reported.

description of the ZEUS data in the “global” region. However, their predictions are at the
parton level, and to make a meaningful comparison with the data, the experimental results
have been unfolded from particle to parton level.

3.2 Charm CC electro-production at HERA

The production of charm in CC DIS results in smaller cross sections compared to NC DIS
and photoproduction. This makes measuring charm production more challenging. However,
it is an interesting process because it helps constrain the strange content of the probed
nucleon. The first measurement of charm production in CC DIS was carried out by the
ZEUS collaboration [59], using HERA data in e±p collisions at a centre-of-mass energy of√
s = 318 GeV. Although the measurement was affected by large statistical uncertainties, it

is an important step towards better understanding charm production in CC DIS.
The charm cross section has been measured in the kinematic phase space region defined

by the requirements

200 GeV2 < Q2 < 60000 GeV2, ydis < 0.9 , (3.3)

into two Q2 bins: 200 GeV2 < Q2 < 1500 GeV2 and 1500 GeV2 < Q2 < 60000 GeV2. Moreover,
a region for the visible charm jet has been defined by imposing

Ejet
T > 5 GeV, −2.5 < η < 2.0 (3.4)

on the identified charm jet, where the jets are reconstructed with the kT clustering algorithm
with a radius parameter R = 1 in the longitudinally invariant mode and adopting the
E-recombination scheme.

In table 2 we report LO+PS and NLO+PS predictions obtained in the fixed-flavour-
number scheme with nf = 3 light quarks and a massive charm for both the charm and the
visible charm-jet cross sections in the two Q2 bins. We set the charm mass to mc = 1.28 GeV
and adopt the ABMP16.3 [63, 64] PDF set. Our calculation does not include a significant
contribution due to diagrams with a gluon splitting g → cc̄, which are O(α2

s) terms. These
contributions are usually considered as background to the so-called EW component of the
charm production in CC DIS since they are dominated by valence densities. The EW
component, in contrast, is directly sensitive to the strange density.
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Upon inspection of table 2, we see that radiative corrections have a more significant
impact on the first Q2 bin at lower Q2 values and in the more inclusive setup compared to
the visible charm-jet region. For the more inclusive region, they reach up to +60%(+45%)
in the first (second) bin in Q2, with no overlap between the LO+PS and NLO+PS results.
The slightly larger correction in the first bin is related to larger values of αs at smaller
scales. The NLO corrections turn out to be smaller when applying the visibility cuts on the
charm jet. This is likely due to the fact that these cuts affect the population of large ydis
region, that for charm electro-production gets larger positive NLO corrections, as already
discussed in the previous section.

Scale uncertainties are obtained by independently varying the renormalisation µR and
factorisation µF scales around the central reference scale µ0 =

√
Q2 +m2

c by a factor of two
up and down, with the additional constraint 1/2 < µR/µF < 2. The results obtained from
LO calculations tend to underestimate the rates and corresponding theoretical uncertainties.
The inclusion of higher-order corrections is, therefore, necessary.

3.3 DIS with a neutrino flux

We start by considering a flux of incoming neutrinos given as a binned histogram of the
neutrino energy in the laboratory frame of the νN collision, in which the nucleus and the
individual nucleons are at rest. In particular, the histogram defines the normalised flux
function f as

f(Elab
ν ) = 1

N

dN
dElab

ν

. (3.5)

Defining Emax,lab
ν as the energy of the most energetic neutrino in the flux, each neutrino

involved in the scattering process can be thought as carrying a fraction x = Elab
ν /Emax,lab

ν

of the maximal energy of the beam. Furthermore we set as reference frame the CM of ν
with energy Emax,lab

ν and the nucleon. We then define

SH = M2 + 2MEmax,lab
ν , (3.6)

with M denoting the mass of the nucleon. The maximum neutrino energy in the reference
frame is then

Emax,CM
ν = SH −M2

2
√
SH

. (3.7)

We then define a neutrino beam density function (BDF) as

fν(x) ≡ 1
N

dN
dElab

ν

Emax,lab
ν = 1

N

dN
dx . (3.8)

This is now the boost invariant neutrino BDF we need. Since SMC programs normally deal
with a fixed-energy lepton-nucleon interaction, some extra care is needed when interfacing
them with POWHEG.

3.4 Setup

We consider three case studies: the SND@LHC, SHiP and FASERν experiments. For all these
applications with neutrino fluxes we have used the setup of section 2.2, except that the cut in
Q2 has been set to Q2 > 2 GeV2. The standard seven-point scale variation will also be shown
in all plots. Furthermore, having all the three experiments a tungsten target, we separately
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Figure 13. Normalized energy flux of ντ (left panel) and ν̄τ (right panel) entering the SND@LHC
target.
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Figure 14. Energy distribution of τ−(τ+) produced in charged current ντ (ν̄τ ) scattering at the
SND@LHC target per tungsten nucleon.

computed the cross section for scattering off protons and neutrons and combined the results
to build the cross section per tungsten nucleon, that will be denoted as nt in the plots.

3.5 τ neutrinos at SND@LHC

As an illustrative example of the computation of fully differential deep inelastic scattering
cross sections initiated by a flux of neutrinos with variable energy we consider the charged
current τ neutrino and anti-neutrino interactions at SND@LHC. We have used the normalized
flux simulated by the SND@LHC collaboration [65], which we show in figure 13. Here and in
the following we assume no errors on the fluxes, that are thus given as step functions.

In figure 14 we show the cross sections per tungsten nucleon as a function of the energy
of the produced τ lepton. NLO corrections are negative and about −5% in the dominant
small energy region, and mildly rise with energy reaching +5% (+10%) for 1 TeV τ (τ̄)
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Figure 15. Normalized energy flux of ντ (left panel) and ν̄τ (right panel) entering the SHiP target.
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Figure 16. Energy distribution of τ− (τ+) produced in charged current ντ (ν̄τ ) scattering at the
SHiP target per nucleon of tungsten.

lepton. The scale uncertainties are strongly reduced but in the very first bin where the
NLO results lay outside of the LO bands.

3.6 τ neutrinos at SHiP

We evaluated the DIS cross section induced by an incoming flux of τ neutrinos and anti-
neutrinos interacting in the SHiP target. The fluxes shown in figure 15 have been generated
by the SHiP collaboration [8]. In figure 16 we show the cross section per nucleon as a function
of the energy of the produced charged lepton. Here (and in general also in the following
plots) the radiative corrections reduce considerably the uncertainty band, becoming non
negligible only for very small and very large energies.

By matching our fixed-order computation with PYTHIA8 we evaluated several kinematic
distributions of variables used to describe the hadronic final state. We start by showing cross
sections as function of the number of charged particles in the final state after the shower and
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Figure 17. Charged particle multiplicity produced in charged current τ (anti-)neutrino scattering at
the SHiP target per nucleon of tungsten.

hadronisation process. As shown in figure 17, we observe that the NLO corrections tend to
increase the multiplicities of charged particles, especially for the incoming anti-neutrino.10

We also observe the alternating behaviour of the cross section for even-odd multiplicities.
This is explained by the fact that for proton target the multiplicity must be even (for charge
conservation), while for neutron target it must be odd. The tungsten nucleon is a mixture of
the two, with a large prevalence of the neutron. In neutrino scattering the target down quarks
prevail by far, because we have more neutrons and the neutrons have more down quarks. In
the anti-neutrino scattering off protons an up quark must be hit, thus yielding a cross section
larger by about a factor of two with respect to the neutron case, nearly compensating the
larger neutron fraction. Thus the strong prevalence of the odd multiplicity for neutrinos, and,
as can be seen in the figure, a very slight prevalence of even multiplicities for anti-neutrinos.

In figure 18 we show the cross section as a function of the scattering angle θ of the hadronic
final system in the laboratory frame, for both τ neutrino and anti-neutrino scattering. Here
we observe a strong reduction of the scale uncertainty but also regions where the NLO+PS
band is not contained in the LO+PS one. For an incoming neutrino the radiative corrections
have an effect between −5% up to 10%. A similar pattern can be observed for an incoming
anti-neutrino, except for the larger negative NLO corrections at small angles.

In figure 19 we show the cross section as a function of the transverse momentum of the
hadronic final state, either for an incoming tau neutrino flux (left panel), or for an anti-neutrino
flux (right panel). We see a similar pattern in both cases. Looking at pt > 1 GeV we observe
that the radiative corrections are relatively small and contained in the LO+PS band. Below

10The larger size of the inclusive cross section in the anti-neutrino case has the same explanation that we
gave for the charm electro-production case, since also in this case we have a high-ydis suppression (at the Born
level) of the right-on-left collision for valence quarks.
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Figure 18. Scattering angle of the hadronic final-state system produced in charged current ντ (ν̄τ )
scattering at SHiP target per nucleon of tungsten.
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Figure 19. As in figure 18 for the transverse momentum.

– 27 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
3

10−5

10−4

10−3

10−2

10−1

100

1/2 ≤ µR/Q, µF /Q, µR/µF ≤ 2

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

LO+PS
NLO+PS

d
σ
/
d
p
t,
π
+
[p
b
/G

eV
]

ντ + nt → τ− +X @ SHiP
N
L
O
P
S
/
L
O
P
S

pt,π+ [GeV]

10−5

10−4

10−3

10−2

10−1

1/2 ≤ µR/Q, µF /Q, µR/µF ≤ 2

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

LO+PS
NLO+PS

d
σ
/
d
p
t,
π
+
[p
b
/G

eV
]

ν̄τ + nt → τ+ +X @ SHiP

N
L
O
P
S
/
L
O
P
S

pt,π+ [GeV]

Figure 20. As in figure 19 for the transverse momentum of produced π+ for an incoming ντ (ν̄τ ) flux.
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Figure 21. Number of νµ (left panel) and ν̄µ (right panel) entering the FASERν target per bin of ν
energy in the laboratory frame.

the cusp, at roughly pt =
√

2 GeV, the cross sections are affected by the Q2 cut, and show a
different pattern. We also see a noticeable change of shape induced by the NLO corrections.

Finally, in figure 20 we show the cross section as a function of the transverse momentum
of inclusively produced positively charged pions. NLO corrections are mild in the whole range,
with the NLO bands contained in the LO ones in the whole pt range that we have explored.

3.7 Charm production at FASERν

We have computed the cross section for charm production in muon neutrino and anti-neutrino
CC scattering at FASERν using the fluxes predicted in [66, 67] and shown in figure 21. In
figures 22 and 23 the energy distributions of charmed mesons and Λc are shown. Generally
speaking, we see that the NLO corrections lead to a hardening of all distributions.
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Figure 22. Energy distribution of charged (left) and neutral (right) D mesons produced via charged
current νµ + ν̄µ events in FASERν.
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Figure 23. Energy distribution of Ds (left) and Λc (right) particles and antiparticles produced via
charged current νµ + ν̄µ events in FASERν.

4 Conclusions

In this paper we have presented a new POWHEG event generator to describe deep inelastic lepton
hadron scattering at NLO+PS accuracy. Our code produces results for charged current as well
as neutral current processes initiated by a massless lepton. The final state lepton and quark
can be massless or massive. To build our code we have developed and implemented new FKS
phase space mappings for initial and final state radiation, that preserve the leptonic variables
and are suitable for the case of massive particles in the final state. These mappings, described
in detail in the appendices, smoothly adapt when the final state particles are massless.
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We have validated our NLO computation through a tuned comparison with an in house
code based upon the DIS lepton hadron cross section expressed in terms of form factors,
which we computed convoluting PDFs with the NLO coefficient functions.

We have studied the impact of the NLO corrections for the different possible final states,
and the impact of the matching procedure focusing especially on the (sub-leading) effects
related to the choice of the momentum mapping.

We also compared the prediction of our code for the lepton distributions with available
higher order corrections. In order to do this we extended our in house code by including
NNLO form factors available in Hoppet for the case of a massless final state quark, and, for
a massive quark, using the approximate NNLO result implemented in Yadism [58].

Having implemented and validated our code, we have shown some illustrative applications.
We first compared our results with two analyses at HERA, one for charged current ep scattering,
and one focusing on single charm production. Then we moved to incoming neutrino beams,
showing predictions for charm and tau lepton yields at the ongoing experiments FASERν and
SND@LHC, and at the upcoming SHiP experiment. In order to run with broad band beams
of neutrinos in the initial state one has to provide a binned histogram with the neutrino
flux, that we have taken from available studies.

Other studies can be easily implemented for past experiments, like the study of associated
charm production in NC ep scattering at HERA, or future DIS studies at the proposed EIC
experiment. Furthermore, our tool may be used in the context of tau neutrino appearance
in atmospheric neutrino oscillations, see e.g. [68], or to include mass effects in top CC DIS
production with very high energy neutrinos from cosmic rays [40, 69].

Our tool is publicly available and it can be pulled from the POWHEG-BOX repository
svn://powhegbox.mib.infn.it/trunk/User-Processes-V2/nu-DIS.11

We conclude by noticing that, being based on the POWHEG-BOX framework, our work can
be extended in several directions. NLO electroweak corrections can be included, and also the
NLO QCD corrections can be extended with one extra radiated parton in the final state. This
would allow to promote the computation to NNLO+PS via a MiNNLO [70–72] procedure.
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A Mappings for DIS

A.1 Conventions

The deep inelastic scattering process proceeds at LO via the parton reaction

ℓ(l) + q(x̄P ) → ℓ′(l′) + q′(v), (A.1)

where P is the incoming nucleon momentum and, in general, the final-state lepton and
quark can be massive, l′2 = m2

ℓ′ and v2 = m2
v. In the following, we will always assume

that the nucleon is coming from the positive z-axis direction. The corresponding Born
phase space element is

dΦB = dx̄ d3l′

2l′0(2π)3
d3v

2v0(2π)3 (2π)4δ(4)(l + x̄P − l′ − v) (A.2)

= dx̄ d3l′

4l′0v0(2π)2 δ(
√
x̄S − l′

0 − v0) (A.3)

= 1
16π2 dx̄dydisdϕl′ , (A.4)

in terms of the y ≡ ydis and x̄ ≡ xbj variables defined in eq. (1.3), ϕl′ , the azimuthal angle
of the outgoing lepton in a given reference frame, and S = (l + P )2 is the total energy of
the lepton-nucleon collision. At NLO, the real emission processes

ℓ(l) + q(xP ) → ℓ′(l′) + q′(v) + g(k), (A.5)
ℓ(l) + g(xP ) → ℓ′(l′) + q′(v) + q̄(k) (A.6)

must be taken into account. The real emission phase space reads

dΦR = dx d3l′

2l′0(2π)3
d3v

2v0(2π)3
d3k

2k0(2π)3 (2π)4δ(4)(l + x̄P − l′ − v − k). (A.7)

The corresponding matrix elements develop singularities in the limit of soft and/or collinear
emission. In what follows we will show how to construct a mapping from the real phase space
ΦR to the underlying Born variables (and its corresponding inverse mapping) for the two
kinds of singular regions, namely the initial and final state ones. We will consider mappings
compatible with the FKS [45] subtraction method.

A.2 Momentum mappings for DIS

A.2.1 DIS momentum mapping preserving the invariant mass of the born-like
lepton-quark system

We start by considering the mapping associated to the initial-state singular region. We
notice that the standard POWHEG mapping introduced in ref. [42] cannot be applied to the
DIS kinematics as the longitudinal recoil of the emitted parton is reabsorbed by both initial
state partons. In this way, the mapping preserves both the rapidity and the invariant mass of
the Born system. In this section, we will show a simple modification of that construction
that does not change the momentum of the incoming lepton.
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Following the FKS formulation, we work in the rest frame of l + xP , i.e. the partonic
CM frame of the real configuration, and we introduce the standard FKS variables

ξ = 2k · (l + p)
(l + p)2 , y = cos θk, ϕ (A.8)

for the case of ISR radiation. The angles θk and ϕ are relative to the positive beam axis
direction. In this parametrisation, the momentum k reads

k =
√
xS

2 ξ(1, sin θ sinϕ, sin θ cosϕ, cos θ), (A.9)

and the corresponding one-particle phase space element is

d3k

2k0(2π)3 = xS

(4π)3 ξdξdydϕ. (A.10)

We introduce the momentum of the Born final state

ktot = l + xP − k =
√
xS

2 (2 − ξ,−ξ sin θ cosϕ,−ξ sin θ sinϕ,−ξ cos θ). (A.11)

Following the standard POWHEG construction we reabsorb the longitudinal and transverse
momentum by performing a sequence of boost transformations

k̄tot = B−1
∥ B⊥B∥ktot, (A.12)

consisting in a longitudinal boost to the system of zero rapidity of ktot, a transverse boost
in order to absorb its transverse component and, finally, the inverse of the longitudinal
boost. By construction, the invariant mass of the Born final-state system k̄2

tot = k2
tot is

preserved. We require now that

k̄tot = l + x̄P, (A.13)

which, at variance with the standard POWHEG construction, implies that we cannot also
preserve the rapidity of the Born system. From the conservation of the invariant mass, we
immediately obtain an expression of the underlying Born momentum fraction x̄ in terms
of the radiation variables and x

(l + xP − k)2 = (l + x̄P )2 =⇒ xS(1 − ξ) = x̄S =⇒ x̄ = (1 − ξ)x. (A.14)

The inverse mapping, consisting in reconstructing the kinematic of the real emission
from the underlying Born momenta and the radiation variables ξ, y and ϕ, can be easily
obtained by inverting eq. (A.14)

x = x̄

1 − ξ
, (A.15)

and eq. (A.12).
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Requiring x ≤ 1 we also obtain an upper bound for the energy fraction of the emit-
ted parton

ξ ≤ 1 − x̄ ≡ ξmax. (A.16)

The real emission phase space element reads

dΦR = dx̄dΦB
x̄S

(4π)3 ξdξdydϕ ≡ dx̄dΦBJ(ξ, y, ϕ; x̄)dξdydϕ, (A.17)

from which we get the jacobian of the mapping

J(ξ, y, ϕ; x̄) = x̄S

(4π)3 ξ. (A.18)

A.2.2 DIS momentum mapping preserving the lepton kinematics: the ISR case

A more interesting option is to set up a projection from a real phase space configuration to
an underlying Born one that preserves the momentum of the scattered lepton. In this case,
both ydis (or Q2) and xbj remain invariant, that is a natural choice for this process.

Consider the system in the lepton-proton CM. Let us call E the energy of the incoming
proton and lepton, E′ the energy of the outgoing lepton, and θ the lepton scattering angle.
Retaining the dependence on the mass of the outgoing lepton, mℓ′ , we have

Q2 = −(l − l′)2 = −m2
ℓ′ + 2l · l′ = −m2

ℓ′ + 2EE′(1 − β′ cos θ), (A.19)
ν = (l − l′) · P = 2E2 − EE′(1 + β′ cos θ), (A.20)

where β′ = |l⃗′|/E′. Then, it follows that both E′ and θ must remain fixed to preserve xbj
and Q2. At the Born level, the struck parton carries a fraction x̄ of the incoming proton
momentum P . We consider the general case of producing a massive final-state quark of
momentum v and mass mv. By imposing the on-shell condition on the scattered quark
momentum, we get v = l − l′ + x̄P = q + x̄P

v2 = −Q2 + 2x̄ν = m2
v =⇒ x̄ = Q2 +m2

v

2ν , (A.21)

which reduces to xbj in the limit of a massless outgoing quark. If a gluon with momentum k

is emitted, the momentum fraction x associated to the real configuration can be similarly
computed starting from v = q + xP − k and imposing that v is on the mass shell. We get

x = Q2 +m2
v + 2k · q

2(ν − k · P ) . (A.22)

In particular, we notice that if k is collinear to P , say k = ξp, we have

x = Q2 +m2
v + 2ξν

2ν = x̄+ ξ, (A.23)
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as expected. Again, we work in the rest frame of l + p with p = xP and introduce standard
FKS variables as in eq. (A.8). Then, the kinematics is given by

l =
√
s

2 (1, 0⊥, 1), (A.24)

p =
√
s

2 (1, 0⊥,−1), (A.25)

k = ξ

√
s

2

(
1,
√

1 − y2sϕ,
√

1 − y2cϕ, y

)
, (A.26)

where s = (l + p)2, sϕ ≡ sinϕ and cϕ ≡ cosϕ. We observe that the relevant initial state
collinear limit corresponding to the emitted gluon being collinear to the incoming quark is
approached for y → −1. It is convenient to write the momentum of the final-state lepton l′ in
terms of Q2, ν and S = (l+P )2, which are preserved by the mapping, and of the momentum
fraction x. To this end, we start from the following parametrisation

l′ = l′
0(1, β′ sin θ′, 0, β′ cos θ′), (A.27)

where, without loss of generality, we set the azimuth of the final-state lepton to zero. Then,
the invariants Q2 and ν can be written as

Q2 = −m2
ℓ′ +

√
sl′

0(1 − β′ cos θ′), (A.28)

2ν = S −
√
s

x
l′

0(1 + β′ cos θ′). (A.29)

Inverting the above system in terms of the variables l′0 and β′ cos θ′, we obtain

l′
0 = Q2 +m2

ℓ′ + (S − 2ν)x
2
√
s

= Q2 +m2
ℓ′

2
√
s

(
1 + x

χ

)
, (A.30)

β′ cos θ′ = 1 − 2 Q2 +m2
ℓ′

Q2 +m2
ℓ′ + (S − 2ν)x = x− χ

x+ χ
. (A.31)

where we have introduced the quantity

χ ≡ Q2 +m2
ℓ′

S − 2ν = x
1 − β′ cos θ′
1 + β′ cos θ′ . (A.32)

In summary, we have

l′ = Q2 +m2
ℓ′

2χ
√
s

[
x+ χ, 2

√
χx−

χ2m2
ℓ′s

(Q2 +m2
ℓ′)2 , 0, x− χ

]
. (A.33)

The momentum of the final-state quark is then fixed by momentum conservation to be
v = q + p− k. In this way, we have constructed a mapping from a given Born phase space
point and radiation variables ξ, y, ϕ to a real one under the assumption that eq. (A.22)
admits at least one solution. Indeed, x must satisfy the equation

0 =
[
S̃ξ(1 + y) − 4ν(1 − ξ)

]
x+

[
2sϕξ

√(
S̃Q2 − 2νm2

ℓ′

)
(1 − y2)

]
√
x

+4νx̄− (Q2 +m2
ℓ′)ξ(1 + y) ≡ axx+ bx

√
x+ cx, (A.34)

– 34 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
3

where S̃ = S−2ν. Notice that the dependence on the mass of the final-state quark is implicitly
contained in the Born momentum fraction x̄. In the soft limit ξ = 0, the equation becomes

4ν(−x+ x̄) = 0 ⇒ x = x̄ (A.35)

as it should. We look after solutions in the physical range [x̄, 1] of eq. (A.34), which is
quadratic in

√
x. At fixed underlying Born configuration, this leads to non trivial boundaries

in the radiation phase space [0, 1]ξ × [−1, 1]y × [0, 2π]ϕ. In order to have real solution, the
discriminant of eq. (A.34) must be positive:

∆x = 4
[
(S̃Q2 − 2m2

ℓ′ν)s2
ϕ(1 − y) + (Q2 +m2

ℓ′)(4ν + S̃(1 + y))
]

(1 + y)ξ2

−16ν
[
4νx̄+ (Q2 +m2

ℓ′ + S̃x̄)(1 + y)
]
ξ + 64ν2x̄

≡ aξξ
2 + bξξ + cξ > 0. (A.36)

We employ the above condition to derive constraints on the ξ variable as function of the
underlying Born and the other two radiation variables y and ϕ. Eq. (A.36) is quadratic in ξ

with a clearly positive coefficient of the ξ2 term as the quantity (S̃Q2−2m2
ℓ′ν) ≥ 0 in the 2 → 2

Born kinematics. In order to study if there are real solutions, we evaluate its discriminant

∆ξ = (16ν)2
[
((Q2 +m2

ℓ′ − S̃x̄)(1 + y) − 4νx̄)2 − 4s2
ϕx̄(S̃Q2 − 2m2

ℓ′ν)(1 − y2)
]

≥ (16ν)2
[
((Q2 +m2

ℓ′ − S̃x̄)(1 + y) − 4νx̄)2 − 4x̄(S̃Q2 − 2m2
ℓ′ν)(1 − y2)

]
, (A.37)

being the coefficient of s2
ϕ negative. The quantity in the square bracket is a quadratic

polynomial in y that is equal to 16ν2x2
b > 0 at y = −1 and, as its discriminant is negative

∆y = −64Sx̄2m2
v(S̃Q2 − 2m2

ℓ′ν) < 0, (A.38)

it is positive definite. Therefore, we conclude that ∆ξ > 0, there are always two real solutions
ξ1 < ξ2 and ∆ is positive for ξ ≤ ξ1 or ξ ≥ ξ2 in the allowed range [0, 1]ξ. Furthermore:

1. the coefficients of the quadratic polynomial in ξ in eq. (A.36) have definite signs and it
follows that ξ1 > 0 (aξ > 0, bξ < 0 and cξ > 0);

2. the upper limit for ξ = 1 corresponds to the condition aξ + bξ + cξ = 0. Solving it with
respect to y, we obtain two solutions

y1 = −1, y2 = 1 + 2 S̃(m2
v −m2

ℓ′)
S̃(Q2 +m2

ℓ′) − (S̃Q2 − 2m2
ℓ′ν)s2

ϕ

. (A.39)

3. We consider first the solution y1. We observe that ξ1 = 1 at y = y1 independently of the
Born kinematics and ϕ. Being ξ2 > ξ1, the second solution leads to a non physical value
for ξ. It turns out that ξ1 (and ξ2) is a decreasing function of y since the derivative of
ξ1 with respect to y never vanishes and ξ1(y1) = 1 and ξ1 → 0 in the limit y → +∞. In
fact, the discriminant ∆dy associated to the equation dξ1/dy = 0 is negative

∆dy ∝ 2ν(Q2 +m2
ℓ′ − (S̃ + 2ν)x̄) + (S̃Q2 − 2m2

ℓ′ν)s2
ϕ (A.40)

< 2ν(Q2 +m2
ℓ′ − (S̃ + 2ν)x̄) + (S̃Q2 − 2m2

ℓ′ν) = −m2
v(S̃ + 2ν) < 0 ,

where we have factored out a positive quantity. We conclude that the solution 0 < ξ1 < 1
is always allowed.
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4. Then, it clearly follows that ξ2 = 1 at y = y2. We notice that, in the case mv ≥ mℓ′ ,
y2 ≥ 1. Then, ξ2 > 1 in the physical region and must be discarded. For mv < mℓ′ ,
y2 < 1 and the solution ξ2 is allowed for values of y in the range [y2, 1], independently
of the values of ϕ.

We turn now to discuss the physical solutions of eq. (A.34). Formally, eq. (A.34) admits
the two solutions

√
x1,2 =

−bx ±
√
bx

2 − 4axcx
2ax

. (A.41)

A physical solution corresponds to x̄ < x < 1. We need to consider two limiting cases: one
associated to the solution crossing x = 1, and the other to the limit in which the coefficient
ax is vanishing, where one of the two solutions develops a singularity.

Concerning the latter, we observe that ax is a linear and increasing function of ξ; solving
the equation aξ = 0 as function of ξ we find

ξax = 4ν
4ν + S̃(1 + y)

. (A.42)

Since the discriminant ∆x in eq. (A.36) does not vanishes when ax = 0, it follows that ξax is
always in the physical region. Moreover, ξax is well defined for every y and, being a continuous
function of y, it must be ξax < ξ1. The solution x crosses x = 1 when ax + bx + cx = 0.
Solving this equation with respect to ξ, we get

ξ∗ = 4ν(1 − x̄)
4ν + (S̃ −Q2 −m2

ℓ′)(1 + y) + 2sϕ
√

(S̃Q2 − 2m2
ℓ′ν)(1 − y2)

, (A.43)

and ξ∗ < ξ1 following the same reasoning as for ξax . In order to discuss the solutions, we
separate the regions ξ < ξ1 and ξ2 < ξ < 1. In the former, the condition cx > 0 holds. It
follows that for ξ < ξax , ax < 0 and the quantity

√
bx

2 − 4axcx > |bx|. Since x2 = x̄ is the
valid solution in the soft limit ξ → 0, for continuity it must be a valid solution in some
subset of the interval 0 < ξ < ξax , regardless the sign of bx which, in turn, only depends
on the sign of sϕ. Then it follows that

1. for ξax > ξ∗, there is only one solution corresponding to √
x2 for 0 < ξ < ξ∗, as √

x2
reaches 1 at ξ = ξ∗. In fact, the other solution √

x1 is negative at ξ = 0 and, since it
cannot vanish, stays negative in the considered range.

2. for ξax < ξ∗, the situation is more involved. The solution x2 must be continuous at
ξ = ξax , which implies that bx < 0, and must be valid at least up to ξ∗ where it might
become 1. The other solution x1 → +∞ as ξ → ξ−ax

and stays greater than 1 at least
up to ξ∗. At ξ∗, one of the two solutions x1 and x2 becomes 1. If it is not x2, then x2
would be a valid solution up to edge ξ1 where x2 = − bx

2ax
|ξ=ξ1 . This requires that the

quantity − bx
2ax

|ξ=ξ1 ≤ 1. In this case, then
• the solution x2 is valid for 0 < ξ < ξ1;
• the solution x1 is valid for ξ∗ < ξ < ξ1.

and there are two possible solutions in the region ξ∗ < ξ < ξ1. On the other hand, if
− bx

2ax
|ξ=ξ1 ≥ 1, it must be the solution x2 to cross 1 at ξ∗. Then, it follows that there is

only one acceptable solution, x2, for 0 < ξ < ξ∗.
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Figure 24. Physical regions in the (y, ξ) radiation plane at fixed underlying Born configuration, given
by S = 1876 GeV2, x̄ = 0.01, Q2 = 10 GeV2, for sϕ = 0.2 (left panel) and sϕ = −0.9 (right panel).

It follows from the above discussion that, in particular, in the region specified by the
conditions ξax < ξ∗, − bx

2ax
|ξ=ξ1 ≤ 1 and ξ∗ < ξ < ξ1, both solutions x1,2 are allowed and lead

to two different physical real configurations. In this region, therefore, the mapping is not
bijective and there are two possible branches, which are present also in the limit of massless
lepton and quark, as observed in ref. [34]. Finally, in the region ξ2 < ξ < 1, it turns out that
x1,2 are both outside the physical region [x̄, 1], and thus there are no physical solutions.

For illustrative purposes, we show the physical region in the (y, ξ) radiation plane in
figure 24, at a

fixed underlying Born configuration given by S = 1876 GeV2, x̄ = 0.01, Q2 = 10 GeV2.
The doubly-covered region occurs for negative and large sϕ values.

A.2.3 Jacobian for ISR mapping

We write the real phase space as

dΦR = dx d4l′

(2π)3 δ
(
l′

2 −m2
ℓ′

) d4k

(2π)3 δ(k
2)2πδ(v2 −m2

v), v = xP + l − l′ − k. (A.44)

Adopting FKS variables for k, we have

d4k

(2π)3 δ(k
2) = s

(4π)3 ξdξdydϕ. (A.45)

We perform the integration over x by solving the δ(v2 −m2
v). To this end, taking into account

eq. (A.22) and eq. (A.34), we write

δ(v2 −m2
v) = δ

(1
2(axx+ bx

√
x+ cx)

)
= 2δ

(
axx+ bx

√
x+ cx

)
. (A.46)
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The Jacobian from the x integration is given by

Jx =
∫

dx2δ
(
axx+ bx

√
x+ cx

)
=
∫

4ydy 1
|ax|

δ ((y −√
x1)(y −√

x2))

=
∫

4ydy 1
|ax|

δ ((y −√
x1)(y −√

x2))

=
∫

4ydy 1
|ax|

1
|√x1 −

√
x2|

[δ(y −√
x1) + δ(y −√

x2)]

=
4√x1,2√

∆x
, (A.47)

where we have performed the change of variable y =
√
x, and the numerator √

x1,2 must
be chosen according to the physical solutions.

Finally, we get

dΦR = Jx
s

(4π)3 ξdξdydϕ 2ν × 1
2ν

d4l′

(2π)2 δ
(
l′

2 −m2
ℓ′

)
= 2νJx

s

(4π)3 ξdξdydϕ× dΦ̄B ≡ J(ξ, y, ϕ)dξdydϕ× dΦ̄B, (A.48)

where dΦ̄B is the phase space element of the underlying Born. The Jacobian associated
to the radiation variable is then

J(ξ, y, ϕ) = νs

(2π)3 ξ

√
x1,2
∆x

. (A.49)

A.2.4 Generation of ISR radiation

In the following, we highlight the main complications occurring at the generation stage, when
the events are generated according to the POWHEG method. First, we recall that the hard scale
KT (Φ)R for initial-state radiation is by default chosen to be the transverse momentum of
the radiated parton k2

T . For the original ISR mapping implemented in the POWHEG-BOX, k2
T

assumes a relatively simple form in terms of the radiation variables ξ, y, ϕ, i.e.

k2
T = s

4ξ
2(1 − y2) = s̄

4(1 − ξ)ξ
2(1 − y2), (A.50)

where s and s̄ are the partonic centre-of-mass energies in the real and the underlying Born
configuration, respectively. While eq. (A.50) holds also for the case of the DIS mapping that
preserves the invariant mass of the Born system (discussed in section A.2.1), the situation
is more involved for the new DIS mapping preserving the lepton momenta derived in the
previous section. Now the relation between s and s̄ involves the real momentum fraction
x = x(ξ, y, ϕ), which is a complicated function of the radiation variables:

k2
T = s

4ξ
2(1 − y2) = x(ξ, y, ϕ)s̄

4x̄ ξ2(1 − y2). (A.51)

The construction for the generation of initial-state radiation in POWHEG is based on the
appendix of ref. [73], which in turn relies on the particular expression of k2

T in the right hand
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side of eq. (A.50). Therefore, the standard implementation provided by the POWHEG-BOX is
inconsistent with the new DIS mapping. On the other hand, one can choose the POWHEG hard
scale in a different way as long as it reduces to the transverse momentum of the radiated
parton in the relevant soft and/or collinear limits. We exploit this freedom and define the
hard scale as (in our convention the collinear singularity is approached only for y → −1):

K2
T (ΦR) = s̄

2ξ
2 1 + y

1 + ξy
, (A.52)

and we use as upper bound function for the veto method

Ub = Nαs(kT )
ξ(1 + y) . (A.53)

The integration of the upper bound (including the lowest-order running for αs) times the
factor θ(t − kT ) is straightforward and the veto technique is used to generate the hardest
radiation according to the POWHEG formula in eq. (2.1). We point out that we have chosen
to use the hard scale in eq. (A.52) and the upper bound function in eq. (A.53) also for the
mapping preserving the invariant mass of the Born system and the momentum of the initial
lepton. Differences among various options for the hard scale are known to have impact on
the resummed results only at higher orders.

A second problem is associated with the region where the DIS mapping is not invertible,
i.e. in the region where there are two physical real configurations associated with the same
underlying Born Φ̄B and set of radiation variables ξ, y, ϕ. We notice that the problematic
region does not encompass any of the singular limits. Therefore, it can be removed from the
real contributions that appear in the POWHEG formula and can be treated separately exploiting
the standard remnant mechanism provided by the POWHEG-BOX.

A.2.5 DIS momentum mapping preserving the lepton kinematics: the FSR case

We consider now the case of a final-state singular region and we focus on a mapping that
preserves the lepton kinematics. We observe that this mapping is actually the same as the
one described in section A.2.2 for the initial-state case. Nonetheless the meaning of the
FKS radiation variables is different in the two cases and thus a dedicated construction is
needed. In this section, we must assume that the final-state emitter quark is massless, since
in POWHEG no mapping is associated to massive quarks. We instead retain the possibility
of having a massive outgoing lepton.

The construction proceeds as follows. We work in the partonic CM frame and, as first
step, we integrate out the quark momentum by exploiting the 3-momentum conservation.
We adopt a parametrisation of the momenta in terms of spherical coordinates

dΦR = dx d3l′

(2π)32l′0
d3v

(2π)32v0
d3k

(2π)32k0 (2π)4δ4(l + xP − l′ − v − k)

= dx 1
8(2π)5

d3l′d3k

l′0v0k0 δ
(√

s− l′
0 − v0 − k0

)

= dx 1
8(2π)5

l′
2dl′d cos θl′dϕl′

l′0v0 k0dk0dcψdϕ

×δ
(√

s− l′
0 −

√
l′

2 + (k0)2 − 2l′k0cψ − k0
)
, (A.54)
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where l′ denotes the modulus of the tri-momentum of l′ and cψ ≡ cosψ. We use, as reference
axes for the angles θl′ and ψ, the direction of the incoming lepton and that opposite to
the outgoing one, respectively. We notice that we cannot use directly the direction of the
outgoing quark as it has been integrated out.

We parametrise the lepton variables in terms of the DIS invariants

Q2 =
√
s(l′0 − l′ cos θl′) −m2

ℓ′ , (A.55)

ydis = 1 − l′0 + l′ cos θl′√
s

. (A.56)

This is convenient in order to make transparent the connection to a Born configuration,
obtained by absorbing the recoil of the radiation. In particular, the CM energy is not
preserved and it changes from s to sb = λs, going from a real to a Born configuration, and
the partonic Born CM frame does not coincide with the real CM one, as it is the case in
the standard final-state FKS mapping. The advantage of using DIS invariants rests on the
fact that those variables are frame independent.

Computing the jacobian associated to the above 2-dimensional change of variables, we get

jacobian−1 =

∣∣∣∣∣∣ ∂(Q2, ydis)
∂(l′, cos θl′)

∣∣∣∣∣∣=
∣∣∣∣∣∣
√
s
(
l′

l′0
− cos θl′

)
− 1√

s

(
l′

l′0
+ cos θl′

)
−
√
sl′ − 1√

s
l′

∣∣∣∣∣∣ = 2 l
′2

l′0
. (A.57)

Then, we get

dΦR = dx 1
16(2π)5

dQ2dydisdϕl′
v0 k0dk0dcψdϕδ

(√
s− l′

0 − v0 − k0
)
. (A.58)

In order to make contact with the FKS parametrisation, we want to pass from cψ to the FKS
variable y, that is the cosine of the angle between l′ and v. Using Carnot’s formula, we have

y = l′
2 − v2

0 − (k0)2

2v0k0 = 2cψl′ −
√
sξ√

4l′2 − 4cψl′
√
sξ + sξ2

, (A.59)

with v0 =
√
l′

2 + (k0)2 − 2cψl′k0. The derivative with respect to cψ

dy
dcψ

= 4l′2(
4l′2 − 4cψl′

√
sξ + sξ2

)3/2
(
2l′ − cψ

√
sξ
)
, (A.60)

is positive for l′ > k0. In this case, y is a monotonically increasing function of cψ and
admits an unique inverse. The inverse can be obtained by taking the square and solving
the resulting quadratic equation for cψ

y2 =
(
2cψl′ −

√
sξ
)2

4l′2 − 4cψl′
√
sξ + sξ2

,

=⇒ cψ =
±y
√

4l′2 − sξ2(1 − y2) +
√
sξ(1 − y2)

2l′ . (A.61)
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Figure 25. Geometric illustration of the relation between the angle ψ and the standard FKS one
π − θy for the two cases l′ > k0 (left) and l′ < k0 (right).

For l′ > k0, we must take the upper sign, that guarantees that cψ is a monotonically increasing
function of y mapping the [−1, 1] interval biunivocally into itself. For l′ < k0 both signs are
acceptable. The possible cases are depicted in figure 25, where we exploit the geometrical
relation among the angles cψ and y = cos(π − θy) = − cos(θy) and the lengths v0, k0 and
l′ forming a triangle. The left panel corresponds to the case l′ > k0. It is clear that there
is a one-to-one correspondence between cψ and y.

On the other hand, for the case k0 > l′ shown in the right panel, the range of θy
corresponding to cψ ∈ [−1, 1] does not fully cover the interval [0, π] and in particular θy
goes from 0 up to a maximum value strictly lower than π such that the collinear region is
excluded. Furthermore, because the transverse momentum of the two final state partons
has to compensate the one of the lepton, radiation has to be necessarily in the anticollinear
region, at y < 0. This region can be covered by the remnant mechanism, since it is not
singular. Correspondingly, for l′ < k0, we must have y < 0 and

v0 = 1
2

(
±
√

4l′2 − sξ2(1 − y2) −
√
sξy

)
, (A.62)

while for l′ > k0, we have

v0 = 1
2

(√
4l′2 − sξ2(1 − y2) −

√
sξy

)
. (A.63)

The choice of the sign guarantees that for y = −1

v0 = 1
2
(
2l′ +

√
sξ
)

= l′ + k0 , (A.64)

and for y = 1

v0 = 1
2
(
2l′ −

√
sξ
)

= l′ − k0 . (A.65)

Using the relation (A.61) we can compute the jacobian factor associated with the change
of variable cψ → y, and we get

Jy =

∣∣∣∣∣∣4
√
sξyv0 − (4l′2 − sξ2)

2l′
√

4l′2 − sξ2(1 − y2)

∣∣∣∣∣∣ = (v0)2

l′|v0 + k0y|
, (A.66)
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where we have conveniently identified a factor v0 to simplify the notation. Then, we have

dΦR = dx 1
16(2π)5

dQ2dydisdϕl′
v0 k0dk0dydϕJyδ

(√
s− l′

0 − v0 − k0
)
. (A.67)

The last step in the construction of the full jacobian factor is to perform the change of
variable x = s/S and integrate in ds exploiting the δ function. As a result, the δ function
enforces the relation

s = 2Q2 − (Q2 +m2
ℓ′)ξ(1 − y)

ydis(2 − ξ(1 − y)) − ξ(1 − ξ)(1 − y) , (A.68)

and after using the properties of the Dirac δ and a bit of algebra we have the last jacobian factor

Jδ =
∣∣∣∣∣ 4

√
s
(
2s− 2

√
sl0 − sξ(1 − y)

)
/s

(4 + 2(ξ2 − 2ξ)(1 − y) − 2(1 − ydis)(2 − ξ(1 − y)))

∣∣∣∣∣ = 4|v0 + k0y|
2ydis − ξ(1 + ydis − ξ)(1 − y) ,

(A.69)
so that the final expression reads

dΦR = 1
S

1
16(2π)5

dQ2dydisdϕl′
v0 k0dk0dydϕJyJδ

= 1
S

1
4(2π)5

k0v0dQ2dydisdϕl′dk0dydϕ
l′(2ydis − ξ(1 + ydis − ξ)(1 − y))

= ydis
2ydis − ξ(1 + ydis − ξ)(1 − y)

2v0

l′
d3k

(2π)32k0 × dΦ̄B, (A.70)

A.2.6 Generation of FSR radiation

Being the map among real and born configuration essentially the same for FSR and ISR,
similar considerations apply for the definition of the hard scale for FSR. The original choice
done in the POWHEG-BOX framework are slightly modified to consistently address the case
of DIS. We use as evolution variable

K2
T (ΦR) = s̄

2ξ
2(1 − y) , (A.71)

and as upper bound function

Ub = Nαs(kT )
ξ(1 − y) . (A.72)

Note that for the case of final state radiation in our mapping the collinear region is approached
in the limit y → 1, and the upper bound function is the same as for the case of initial state
radiation.

B Further NLO validation plots

For convenience we show in figures 26–29 here our validation plots for other relevant cases
of lepton-hadron DIS processes. The setup, cuts and scale setting are the same as reported
in section 2.1.

– 42 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
3

−0.3

−0.2

−0.1

0.0

0.1

10−3 10−2 10−1 100

ντ p→ τ− + c+X NLO correction

Eνlab = 500GeV

Str.Fun.
Powheg

d
σ
/d
x
b
j
[p
b
/b

in
]

xbj

-0.04

-0.02

0.00

+0.02

+0.04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ντ p→ τ− + c+X NLO correction

Eνlab = 500GeV
Str.Fun.
Powheg

d
σ
/d
y
[p
b
/b

in
]

ydis

−0.3

−0.2

−0.1

0.0

0.1

10−3 10−2 10−1 100

ν̄τ p→ τ+ + c̄+X NLO correction

Eνlab = 500 GeV

Str.Fun.
Powheg

d
σ
/d
x
b
j

[p
b

/b
in

]

xbj

-0.04

-0.02

0.00

+0.02

+0.04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ν̄τ p→ τ+ + c̄+X NLO correction

Eνlab = 500 GeV
Str.Fun.
Powheg

d
σ
/d
y

[p
b

/b
in

]

ydis

Figure 26. Same as figure 3 for charged current ντ (ν̄τ ) DIS with mτ = 1.777 GeV and charm quark
production setting mc = 1.5 GeV.
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Figure 27. Same as figure 3 for charged current l− (l+) DIS.
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Figure 28. Same as figure 3 for NC νe (ν̄e) DIS.
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Figure 29. Same as figure 3 for NC l− (l+) DIS.
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