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Abstract

A comprehensive study of the local and nonlocal amplitudes contributing to the decay
BY— K*0(— K*n~)uTu~ is performed by analysing the phase-space distribution
of the decay products. The analysis is based on pp collision data corresponding
to an integrated luminosity of 8.4fb~! collected by the LHCb experiment. This
measurement employs for the first time a model of both one-particle and two-
particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum
without any veto regions around the narrow charmonium resonances. In this way
it is possible to explicitly isolate the local and nonlocal contributions and capture
the interference between them. The results show that interference with nonlocal
contributions, although larger than predicted, only has a minor impact on the
Wilson Coefficients determined from the fit to the data. For the local contributions,
the Wilson Coefficient Cg responsible for vector dimuon currents, exhibits a 2.10
deviation from the Standard Model expectation. The Wilson Coefficients Cig,. Cq
and Cj, are all in better agreement than Cy with the Standard Model and the
global significance is at the level of 1.5¢. The model used also accounts for nonlocal
contributions from B? — K*O[rT7~ — utpu~] rescattering, resulting in the first
direct measurement of the bs77 vector effective-coupling Cy.
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1 Introduction

The decay B° — K*°up~ has attracted significant attention in recent years, both
theoretically and experimentally.! From the theoretical side, the combination of the loop
suppressed flavour-changing neutral current b— s¢*¢~ Standard Model (SM) amplitudes
and the rich information arising from the multitude of K*° polarisation amplitudes
makes the decay an ideal channel to search for New Physics (NP) contributions [1].
From the experimental side, the B — K*°; ™~ mode stands out as the corresponding
B?— K*%¢te™ mode is harder to reconstruct at a hadron collider and the B® — K*07+7r~
mode is so difficult to reconstruct at any experiment that it has not been observed yet.
Previous LHCD results of angular analyses of the BY — K*°u*u~ decay have consistently
deviated from SM predictions at the level of three standard deviations (30) [26]. The
decay has also been studied by ATLAS [7], BaBar [8,9], Belle [10,/11], CDF [12], and
CMS [13,/14].

The matrix element for the B® — K*°u* = decay has components related to both
local and nonlocal contributions. The local contributions correspond to an energy scale
well above the beauty hadron masses and are where NP might manifest itself. The leading
nonlocal contributions are due to narrow charmonium resonances in the dimuon mass
spectrum of the B® — K*°u* 1~ decay but influence all parts of the phase space. The
subleading contributions come from two-particle amplitudes at dimuon masses above the
open charm threshold. By explicitly excluding the charmonium resonance regions, previous
analyses relied on theoretical estimates of the remaining nonlocal contributions. A novel
feature of the analysis presented in this paper is to include the full phase space, including
the narrow charmonium resonances, and determine the local and nonlocal contributions
simultaneously. In this way the theoretical model dependence related to the nonlocal
contributions is reduced as they are determined directly from the data.

Theoretically, the decay B® — K*°u*p~ is described in the Weak Effective Theory
(WET) framework (see e.g. Ref. [15]), which is encapsulated by the Hamiltonian

V2

where G is the Fermi constant and V,, .. are elements of the Cabibbo-Kobayashi-Maskawa
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(CKM) matrix corresponding to the ¢; — gi quark transition. The effective operators (95/)
describe all possible interactions between ingoing and outgoing particles, while the Wilson
Coefficients Ci(,) are the corresponding effective coupling constants. Lastly, u defines the
energy scale.

In the WET framework, the Og/) operators arise from integrating out all heavy particles
at and above the electroweak mass scale My, ~ 80 GeV/c?, and the Wilson Coefficients
are calculated by matching results for physical observables calculated in the full and
effective theories. The values of the Wilson Coeflicients can then via renormalisation be
evolved to the relevant energy scale for b-hadron decays, given by the mass of the b quark
my [16]. The dominant effective local operators for b— s¢*¢~ decays are defined using

IThe inclusion of charge-conjugate processes is implied throughout, unless otherwise specified.



the standard notation as

07 = #mb (§LO"LWbR) Fl“” 0/7 = #mb (ERO'“V[)L) Flu,/,
62 — ’ 62 —
Oy = Tom2 (5L7ubr) e, Oy = 1672 (SrYubR) V"L, (2)
62 — ’ 62 —
Oror = T62 (827vubr) €50, Oroe = T2 (8rRVubR) L™ 5¢,

and in this analysis, the SM values for the Wilson Coefficients are obtained from Ref. |16
17]. The operators O;_gg mix through renormalisation with operators O; g resulting in
observables sensitive to effective operators Of). Further discussion on these effective
operators and their corresponding Wilson Coefficients can be found in Sec. The
Wilson Coefficients for the primed operators, which correspond to the opposite chirality
processes, are predicted to be highly suppressed in the SM or to be zero, but are considered
here as potential sources of NP.

The dilepton operators and the corresponding Wilson Coefficients carry a lepton
flavour index (e.g. Cyr) implying that NP might not be lepton flavour universal. Wilson
Coeflicients related to muons are implied in this paper if no explicit lepton index is given.
Possible NP contributions from (pseudo)scalar or tensor operators are not taken into
account in this analysis since they are strongly constrained through measurements of
other b— s¢*¢~ processes [15,[18]. The level of CP violation in the BY — K*°uTu~ decay
is insignificant in the SM and, in this analysis, any NP contribution is assumed to be CP
conserving. In this case all the Wilson Coefficients are real and unless otherwise noted,
the short hand notation C; will be used to denote the real part of the Wilson Coefficient.

Global analyses of the B® — K*u*p~ decay and others involving b — s¢* ¢~ tran-
sitions indicate that the data are better described by models with one or more Wilson
Coefficients differing from the SM predictions [19-24]. Interestingly, the introduction of
a NP contribution to the single parameter Cy describing the effective b— s ¢~ vector
coupling, is sufficient to explain the tension observed with the data. Even better descrip-
tions of the data can be achieved by modifying the axial-vector coupling C;o as well. Such
contributions arise naturally in scenarios involving Z’ bosons or leptoquarks, as discussed
in e.g. Ref. [25].

Unfortunately, no robust conclusion regarding NP can be drawn at this point since both
experimental measurements and theoretical predictions of decays involving the b— s ¢~
transition remain limited in precision. For the B® — K*°u*u~ decay, the phase-space
distribution depends on calculations of various nonperturbative hadronic matrix elements.
The dominant contributions are proportional to matrix elements of the b — s quark
current entering the local operators of Eq.[2l The corresponding local form factors are
calculable with good precision in lattice QCD (LQCD) [26,127] and light-cone sum rules
(LCSR) [28,)29]. However, additional contributions arise from the four-quark operators
O 2, which produce a dimuon pair through a subsequent coupling to the electromagnetic
current [30]. These contributions are dominated by the so-called charm-loop operator
describing a b — scé(cé — v* — ptp~) process. Such processes are at an energy scale
below the cutoff in the WET framework and lead to so-called nonlocal form factors. These
objects are less well understood and reliable methods for their calculation with controlled
uncertainties are not yet well-developed. The size of the nonlocal contributions has been
the source of some debate in recent years [22,[30-34] and no consensus has yet been reached
regarding their influence.



The nonlocal contributions manifest as resonances in the ¢* = miu spectrum. The most
strongly affected regions are those in the vicinity of the narrow quarkonia resonances, i.e.
the ¢(1020), J/ib, and ¢(2S). The method traditionally employed to avoid these nonlocal
contributions is to omit regions in ¢? around the resonances from the experimental
analyses. However, the nonlocal contributions can have significant effects far away from
the resonances through interference, both between the various nonlocal components and
with the local component [30]. Crucially, such effects lead to a shift in Cy that can
potentially be large enough to resolve the observed tensions in the angular observables
without requiring any NP affecting the local contributions [31}32,35].

Recently, an analysis was carried out that combined information from the low-¢?
(1.1 < ¢* < 8.0GeV?/c*) and inter-resonance (11.0 < ¢ < 12.5 GeV?/c*) regions with the
independently obtained measurements of the polarisation amplitudes and strong-phase
differences at the J/i) pole [6]. Based on the same dataset (2011-2012 and 2016) as prior
LHCb analyses it obtained a result indicating that the nonlocal contributions did not
affect prior measurements in a significant way.

In this paper, LHCb data are fitted with a model that combines the local and
nonlocal amplitudes across the ¢ spectrum in the range 0.1 < ¢ < 18.0 GeV?/c*. The
model includes all known vector resonances coupling to muons, as well as two particle
contributions from D®D® and 7t7~ loops. It thereby simultaneously determines the
nonlocal contributions and the Wilson Coefficients, Cy Cyo, Cg,, Cyo and Cy, that describe
the local contributions. The analysis is performed using proton-proton (pp) collision data
corresponding to an integrated luminosity of 8.4 fb™! collected during the years 2011-2012
(Run 1) and 2016-2018 (Run 2).

The paper is organised as follows: in Sec. [2, the decay amplitude model is described,
followed by a description of the experimental considerations in Sec. [3 The strategy for
performing the measurement is detailed in Sec. |4 and the main contributions to systematic
uncertainties are described in Sec. [5] The results of the fit to data are then presented
in Sec. [0, which is followed by a discussion and concluding remarks in Secs. [7] and [§]
respectively.

2 Theoretical signal model

2.1 Angular definitions

In a four-body final state, the B® — K*n~pu*pu~ differential decay rate can be fully
described by a five-dimensional phase space. It is parameterised in terms of three helicity
angles cos 0y, cos Ok and ¢, along with ¢> and m?%._, which denote the mass squared of the
dimuon and K*7~ systems, respectively. The angle 6, is defined as the angle between
the direction of the pu* (™) in the dimuon rest frame and the direction of the dimuon in
the B® (B) rest frame. The angle 0 is defined as the angle between the direction of
the kaon in the K* (K*°) rest frame and the direction of the K** (K*°) in the B® (B°)
rest frame. The angle ¢ is the angle between the plane containing the dimuon pair and
the plane containing the kaon and pion from the K*° meson. The angular basis used in
this paper is identical to that defined in Ref. [2], and is defined such that the B° and B°
angular distributions are described by the same set of angular functions.

Within the range 0.796 < mg, < 0.996 GeV/c? considered in this analysis, the decay



BY — K*tm~utu~ receives amplitude contributions from P-wave K*(892) transitions,
henceforth referred to simply as B® — K*u*u~, and S-wave B® — K°(700)u"pu~
transitions. Contributions from higher partial wave K7~ states in this mass range are
considered to be negligible.

2.2 Decay rate and angular observables

The five-dimensional differential decay rate of the B® — K7~ putu~ process is expressed
in terms of spherical harmonic angular coefficients f;(cos 6y, cos 0, ¢) multiplied by the

corresponding set of g>-dependent functions J; (¢2) and m2._-dependent functions g;(m2 ).
This is written compactly as

d° i:)(BO—> Ktnptu™) 9 o
= = Ji 2 i 0y, Ok, 2 2 7 3
dg? A dm?2. 9 > Ji(q%) filcos Oy, cos O, §)gs(mi,) (3)
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where I' and T indicate the B — K**utu~ and B®— K*Ou* = decay rates, respectively,
and likewise for the J; and J; functions. The f]_;(qz) functions are built up from bilinear
combinations of the transversity amplitudes, described in Sec. Their explicit forms
are given in Appendix [A] along with the definitions of f;(cos 6y, cos Ok, ¢). The functions
gi(m3.) in Eq. [3| represent bilinear products of the line shape models for the K~
system. The P-wave line shape is modelled using a relativistic Breit—-Wigner function
and the S-wave line shape is modelled using the LASS parameterisation, both given in
Ref. |36]. The systematic uncertainty on the parameters reported in this paper due to the
choice of the K7~ line shape is found to be negligible. Note that the ¢* dependence of
the g;(m%.) factors is suppressed. This is a good approximation given the ¢* and m?%
ranges in which the analysis is performed. For this analysis, the differential decay rate of
Eq. [3| is integrated over the selected region in m3._ leading to

PEB S Kt ur) 9 e o
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where G; are given by

G; =

m?,_=0.9962 GeV?/c?
/ i), )

m?,_=0.7962 GeV?/c?



2.3 Transversity amplitudes

Following the convention described in Ref. [15], the seven transversity amplitudes for a
P-wave K*0 state are given by
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where the functions V', Ay, A1, Ao, T, T, and Th3 are the local hadronic form factors,
while the nonlocal matrix elements are absorbed in the ¢ and polarisation-dependent
effective Wilson Coefficients Céeﬂ)’A(QQ). For the F symbol, the minus and plus signs
correspond to the L and R superscripts, respectively. Further discussion of the effective
Wilson coefficients is provided in Sec. The symbols mpg and mg+ denote the known
masses of the BY and K*° mesons [37]. Equations are referred to as the longitudinal,
parallel, perpendicular, and timelike transversity amplitudes, respectively.
The S-wave K} state leads to two additional transversity amplitudes, given by [3§]

2mb

AgéR(QZ) :NOO ((Céeff),OO + ClO)Fl (q2> + Céeff),OUFT<q2)) 7 (10)

mp + Mkzo(700)

where F; are the corresponding local S-wave form factors as defined in Ref. [39]. The
symbol m 0 (700) denotes the mass of the K” state [37]. The choice of the K°(700) mass
leads to a systematic uncertainty discussed later in this paper. The timelike amplitude
contribution for the S-wave K2° is ignored in this analysis owing to the smallness of
the S-wave contribution as a whole in the m3. range considered and the lepton-mass
suppression of the timelike amplitudes. The various normalisation factors appearing in



the transversity amplitudes are given by

. _8NmBmK*

Ny —77
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Nt \/?7
AR
Nop =— N2

V&
where the triangle (Kéllén) function A is given by
A = mp + My +q" = 2(mpmic. +mi.q® + mpe?), (12)

and the constant N is

G2a2 2\V/2f3
N = ViV | —E—em £, (13)
¢ \/ 3 x 21075m3,

with 8, = /1 — 4mi /q%. The K}° subscript appearing in the expression of Ny in Eq.
indicates the my+ — mgso.7g0) replacement. The angular coefficients of Eq. 4] can be fully
constructed from combinations of the transversity amplitudes, as shown in Appendix [A]
Consequently, the parameters of the signal model for the fit to the B® — K*Ou*pu~
differential decay rate are those that feature in Eqs. [6H10, These include the Wilson
Coeflicients C%,lo, and the parameters that describe the local and nonlocal hadronic
contributions. The CKM elements, particle masses, and coupling constants are all taken to
be known and are fixed in the fit. In the following subsections, specific parameterisations of
the local and nonlocal amplitudes are presented, which allow both the hadronic parameters
and the Wilson Coefficients to be determined from a fit to data.

2.4 Local form factors
The local B — K*° form factors F; € {V, Ay, A1, Az, T1, T, Tos} are parameterised using
a series expansion [28],

2

> airl=(d®) = =(0)], (14)

k=0

1
Fq") = +—7—
' 1—¢q*/ m%{,i
where the «;;, coefficients are parameters to be determined, and mpg; is the mass of the
lowest lying bs resonance with J” quantum numbers matching those of the form factor F;
for b — s¢T¢~ transitions. The values of mp; used in this analysis are the same as those

in Table 3 of Ref. [2§]. The z function in Eq.[14]is defined as,

VEI VR
W= = vh =% 1)

with t4 = (mp £ mg-)? and tog = t, (1 —+/1 —t_/t,). This analysis uses the results from
Ref. [34] that rely on a combination of LCSR [29] and LQCD [26,27] computations to
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constrain the coefficients «; ;. This constraint is propagated to the fit of the B®— K*pu* i~
differential decay rate through a multivariate Gaussian likelihood factor. The behaviour
of the fit under alternative LCSR and LQCD local form-factor calculations presented in
Ref. |28] is also investigated.

Recent LCSR computations of B® — K*¥ form factors that account for the finite K*°
width have shown that narrow width B° — K*° form factors can be scaled by a global
factor of 1.1 to account for the finite K*° width [34,40|. This correction factor has only
been demonstrated to work in the large recoil (low ¢?) region and further theoretical work
is required in order to establish a finite width effect to B® — K*° form factors across the
entire ¢® range. Therefore, the form-factor parameters used in this analysis, provided in
Ref. [34], implicitly account for this factor in the region ¢*> < 8 GeV?/c* but not elsewhere.

2.4.1 S-wave local form factors

As no reliable S-wave local form-factor predictions exist as yet, in this analysis the S-
wave amplitudes are treated as nuisance parameters. This means decoupling the local
parameters appearing in ADL(’]R from those in the P-wave transversity amplitudes. Moreover,
an estimation of the B — K}° contribution using data is employed by adopting an effective
form factor in the S-wave amplitude given by

‘/q2 mB—f-ngo

where the g*>-independent parameters Céeﬁ)s, Ciy and C? are independent of the Wilson
Coefficients Cy, Cyo and C7. The effective S-wave form factor Feq is in turn given by

A+ . 2
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700
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2
’VTLBO

Fur(q?) =

(17)

with the parameters ar and Sz both positive. This form-factor parameterisation describes
a very similar shape in ¢* to that used in Ref. [39] but instead incorporates a polynomial
with restricted parameters in the denominator. In this way, the fit can accommodate the
wide range of B® — K° form factors in the literature while at the same time staying well
behaved.

2.5 Nonlocal form factors

In Eqgs. [6H10, the nonlocal form factors are absorbed into the Wilson Coefficients, which
highlights the fact that the dominant effect of these contributions is a ¢?- and helicity-
dependent shift in the effective Cy value, given by

Gr(q°)

CE()EH)M\ =Co+ Y:ﬁ,)\((f), with Yv@,)\(q2) = ]-}(qQ) ’

(18)

where G, (¢?) are the nonlocal form factors and Fy(g?) are the corresponding local vector
form factors. It should be noted that even if Cy is real, Céeﬁ)’A will take on complex values.



The approach followed in this analysis begins with expressing the nonlocal term Yz (¢?)
as a subtracted hadronic dispersion relation [41]

2 2 0
Voo (0?) = Vi s (02 (¢ —QO)/ Paa(8) d 1
a(q’) (@) + . 3 (s — @) (s — ¢% — ie) 8, (19)

where ¢7 is the subtraction point discussed below and the spectral density function pgg
contains the complete information on hadronic real intermediate states that contribute to
the B — K*9u* 1~ decay.

The expression for the nonlocal contributions given by Eq. [19| exploits the fact that
Ya.2(¢%) is perturbatively calculable via an operator product expansion in the (unphysical)
region of ¢> < 0 [30]. If one performs such a calculation, thereby fixing the subtraction
term Yz 1(¢?), the second term in Eq.[19|then provides a means of extrapolating the result
to physical ¢* values by integrating the spectral density function pgz(s). The analytic
structure of Yz 1(¢?), and therefore p,z 1(s), is determined by the set of possible on-shell
intermediate states [42]; therefore, as described in the next subsection, the spectral density
function can be decomposed into a sum over contributions from known intermediate states
in the B®— K*%u* 1~ decay.

2.5.1 Parameterisation of specific nonlocal contributions

In this analysis, a parameterisation of the spectral density function pga(s) in Eq.
is adopted based on that of Ref. [43]. In particular, p,a(s) is decomposed into a sum
of parametric contributions from all relevant one-particle (1P) and two-particle (2P)
intermediate states

Pae(@®) = Pyga(a®) + Paga (@), (20)
and correspondingly, the nonlocal terms are modified as

Y¢I§7>\(q2) }/qq)\<q0)+A qq)\( )+A qq)\( 2) +YTT7>\' (21)

The vector resonances j = {p(770),w(782), ¢(1020), J/u, ¥ (2S),1(3770),1(4040), 4 (4160) }
are considered for the 1P states, while for the 2P states the various open-charm meson
pairs k = {DD, D*D, D*D*} are considered. The spectral density function therefore
formally becomes,

PP (g?) o ZM?(B — K*V;)d(q* — m?), (22)

dpj, d?pr, dpi, .
pqu Z/ 167?2 - k)/ E}: Ek:’: MA(B_> K 0Mk1Mk2)54(pk — Pky _pk2)7
(23)

where the j index represents the different 1P states and k represents the 2P states.

In Eq. 22 the 1P states are treated as stable particles In order to account for the
one-particle resonance widths, the dispersive integral of pqq P (¢?) is modelled using the
expression

AylP ( 2) _ ZA)\ (q2 - qg)BW( 2) — Z |A)\| i5]).‘ (q2 - qS)BW( 2) (24)
qﬁ,)\q - j 2_(2) i\qa) = je mz_qg i\q ),
j J



with each

m;l;

BW;(q*) = (25)

(m? —¢?) —im;T;’
describing a relativistic Breit-Wigner distribution. The pole masses m; and natural
widths I'; are set to their world-average values [37]. The widths are fixed in the fit for all
resonances, while the pole masses are fixed for all except for the J/i) and ¥ (2S) resonances.
The |AJ)‘| and 5;-‘ parameters, to be determined from data, are the relative magnitude and
phase of each resonance. The phase convention used here defines the longitudinal phases,
(5?, relative to Cy while the phases for the other polarisation components (5j“ and (5]-L are
defined relative to the longitudinal component.

This analysis constitutes the first measurement of the phase differences between
the local and nonlocal amplitudes in the B° — K*u*tu~ decay in the range
0.1 < ¢*> < 18 GeV?c'. Existing measurements [44-46] of the relative phase differences
between the helicity components of B® — JayK*® and B?— (2S)K*° provide a cross-
check of the parameterisation. Previous measurements of the polarisation amplitudes for
the decays B’ — p°K** and B®— wK*° from Ref. [47], and B®— ¢K*? [48] are used in
combination with the measured branching fractions [37] to fix the magnitudes and relative
phases for these contributions such that only the overall phase relative to Cy is measured
for each. A different phase convention is used in this analysis, which amounts to shifting
the previously measured phases by +m.

The relativistic Breit-Wigner approximation is a good description of well-separated
narrow states. For the broad overlapping resonances above the open-charm region and
below the ¢(1020) meson, the modelling of the one-particle amplitudes constitutes an
approximation that has been shown to be valid given the relatively small amount of signal
in the open-charm region of this rare decay [49].

The parameters |A3\| appearing in Eq. [24] are normalised according to the branching
fraction of the processes B® — V;K*°, where V; denotes a J'¢ = 17~ one-particle state,

such that
RB(B® — ViK")B(Vi — i) (m3 — g3)

TR / {N/\(QQ — qS)BVVj(QQ)];’v/\ec(qz)‘2 dg”

where the B — K** vector form factors are denoted as F), € (V, A, An),
Ny € (No, N1, Nj) as defined in Sec and fj)‘ denote the polarisation fractions of
the particular final state.

Following the recipe of Ref. [43], the two-particle amplitudes M (B — K*°Mj, My,),
appearing in Eq. 23], are described using the two-body phase-space function for a state
with centre-of-mass energy /s = \/? decaying into the state My, My,, characterised by
masses mg, and my, with relative orbital angular momentum L set to the lowest partial
wave allowed by angular momentum conservation. For the set of two-particle states

k= {DD, D*D, D*D*}, the spectral density therefore has the form

A2
A7 =

(26)

2L+1

gt = 3 [AE ) 7

2
A q

with L = 0 for D*D, and L = 1 for DD and D*D*, resulting in two-particle terms given
by



AYr (@) =Ab. phs(mp.p5.¢*) + >, Ahe(ma, ¢°),

n=DD,D*D*

i A i A
=|A}. 5l D ohs(mp.p, )+ D 1AM hp(ma, ¢7),  (28)
n=DD,D*D*

where the functions hg and hp are defined in Ref. [43] and describe the amplitude as a
function of ¢*. The quantity m;,;, = (mj, +mj,)/2 is an effective mass for the two-body
state state, while |A§‘1 j,| and 53\1 j, are its magnitude and phase. A Gaussian constraint is
placed on the open-charm components relating the size of the real and imaginary parts
for each polarisation of the three open-charm contributions. A systematic uncertainty is
assigned for potential biases in the parameters due to this constraint, described in Sec. [5.4]

Lepton flavour universality violating b — s777~ transitions, with subsequent
777 — 4% — uTu~ rescattering, introduces Cy, contributions to B® — K*%uTpu~ de-

cays via a nonlocal two-particle amplitude. Therefore, following Ref. [43],

Qlem 1
Yor(¢?) = - o Cor | hs(mr,q*) — ghP(mTJIZ) : (29)

Finally, for the S-wave, the nonlocal amplitudes give rise to an effective Cy coefficient
as in Eq. [I8 The only considered S-wave nonlocal contributions are those arising from
B® — JWK® and B® — (25) Kz amplitudes, contributing to the C™"* coefficient. The
S-wave amplitude of other nonlocal contributions is expected to be subdominant compared
to their already relatively suppressed P-wave counterpart and is ignored. With this
parameterisation, there exists a complete degeneracy between the form factor normalisation
parameter F'(0) and the C7S’ o parameters. For this reason, the parameters Cﬁg are kept
fixed in the fit to data.

2.5.2 Subtraction constant

The dispersion relation shown in Eq. 19| requires knowledge of the subtraction constant
Y,;(q3), which is in principle different for charmed and light-quark hadronic states. In
this analysis, a subtraction point of ¢ = —4.6 GeV?/c* is chosen for the subtraction
constant Y.z(g2) whose value is taken from the two-loop calculation in an operator product
expansion of the dominant nonlocal contributions presented in Ref. [50].

As the light-quark contributions are CKM suppressed, the same subtraction constant
is used for both the charm- and light-quark hadronic dispersion relation by default. A
systematic uncertainty for this approach is assessed by studying the behaviour of the
fit under an unsubtracted dispersion relation for light-quarks and is found to make a
negligible difference to the fit results.

2.5.3 Further empirical components

Global fits to B® — K*%y, B® — K*%Te™ and B? — ¢y measurements have placed
stringent constraints on NP contributions to the Wilson Coefficients C; and C; [51,[52].
As such, in this analysis, the C; and C, values are fixed to their SM predictions [16].
Instead, a helicity-dependent shift to the C; Wilson Coeflicient is introduced, encoded

10



as C§eff)”\ = C; + AC2, where AC? are three complex parameters to be determined from
data. Such a parameterisation allows for the presence of an additional helicity-dependent
complex phase that is constant across ¢* [35].
In the amplitude fits, the parameters ACQ’O are degenerate with the tensor form-factor
coefficients o, o, an, 0. Therefore, the choice is made to fix the parameters o, o and
a1y, 0 tO their values provided in Ref. [34]. In order to assess the level of compatibility
between the entire set of baseline and postfit form-factor coefficients, a separate fit is
performed where the parameters Cg’o are instead fixed and the coefficients arp, o, ar,, o are

allowed to vary in the fit.

3 Experimental model of the signal

In order to accurately describe the data, the theoretical B®— K*°u* =~ decay rate must
be augmented with a model for the detector response. A description of the LHCb detector
and simulation framework is provided in this section, along with an explanation of the
event selection requirements. Using simulation, a model for the total efficiency of the
event reconstruction and selection is developed, along with a model for the ¢? resolution
of the detector. The final form and implementation of the signal model is described in

Sec. 3.4

3.1 Detector and simulation

The LHCb detector [53,54] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < n < 5, designed for the study of particles containing b or
¢ quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the
impact parameter (IP), is measured with a resolution of (15 + 29/pr) um, where pr is
the component of the momentum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors. Photons, electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The information from each of the particle identification
(PID) detectors is used as input to several multivariate classifiers, each trained to identify
a certain species of particle.

The reconstruction and selection of events is performed by a trigger [55,56], which
consists of a hardware stage based on information from the calorimeter and muon systems,
followed by a software stage, which applies a full event reconstruction. In the software
stage, trigger signals are associated with reconstructed particles and can be queried offline.

Simulation is required to develop and model the effects of the selection requirements on
the signal angular distribution and to assess the impact of certain sources of background
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and potential systematic uncertainty. In the simulation, pp collisions are generated using
PyTHIA [57] with a specific LHCDb configuration [58]. Decays of unstable particles are
described by EVTGEN [59], in which final-state radiation is generated using PHOTOS [60].
The interaction of the generated particles with the detector and its response are im-
plemented using the GEANT4 toolkit [61] as described in Ref. [62]. In a subset of the
simulated datasets, the underlying pp interaction is reused multiple times, with an inde-
pendently generated signal decay for each [63]. In order to ensure agreement between the
simulation and real LHCb data, independent samples are used to calibrate the simulation
and correct for potential discrepancies.

3.2 Signal candidate selection

The B° — K*°u*p~ signal candidates are first required to pass the hardware trigger,
which selects events containing at least one muon with high transverse momentum pr.
The minimum pr threshold varies between 1.36 GeV/c and 1.8 GeV/c for single muons,
depending on the year of data taking. For pairs of muons, a threshold is placed on the
product of their pp, which varies between 1.68 GeV?/c? and 3.24 GeV?/c?, depending on
the year of data taking. In the subsequent software trigger, at least one of the final-state
particles is required to have pr > 1.7 GeV/c, unless the particle is identified as a muon
in which case pr > 1.0GeV/c is required. The final-state particles that satisfy these
transverse momentum criteria are also required to have an IP larger than 100 pum with
respect to all candidate PVs in the event to reject prompt particles produced directly in
pp collisions. Finally, a dedicated trigger line is employed to select multibody B meson
candidates based on the topology of the decay products. This trigger requires that the
tracks of two or more of the final-state particles form a vertex that is significantly displaced
from any PV. At all stages of the trigger, it is required that the particles composing
the signal candidate are directly responsible for the trigger decision, as opposed to other
particles in the event.

In the offline selection, signal candidates are formed from a pair of oppositely charged
tracks that are identified as muons, combined with a K* meson candidate. The K*°
candidate is formed from two oppositely charged tracks that are identified as a kaon and
a pion. The four tracks of the final-state particles are required to have a significant IP
with respect to all PVs in the event and form a good-quality common vertex. The impact
parameter of the B? candidate with respect to one of the PVs is required to be small
and the decay vertex of the BY candidate is required to be significantly displaced from
the same PV. The angle between the reconstructed B® momentum and the vector con-
necting the PV to the reconstructed B° decay vertex is required to be small. Candidates
are required to have reconstructed B® mass, denoted as m (K7~ uTu~), in the range
4800 < m(Kt7~ptp~) < 6500 MeV/c2. Finally, the reconstructed mass of the K7~ sys-
tem, denoted as m(K"7™), is required to be in the range 796 < m(K ™ 7~) < 996 MeV/c?.

A significant background contribution arises from candidates formed by the random
combination of kaons, pions, and muons originating from different parent particles or
from the pp collision itself (referred to as combinatorial background). To reduce the
level of combinatorial background, a Boosted Decision Tree (BDT) [64,/65] classifier is
trained to discriminate between signal and background based on a set of input variables
corresponding to reconstructed particle information. The BDT algorithm is trained
entirely using data, with background subtracted B — J/p(— pu~)K*0 events used as a
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signal proxy, and B — K*'u*u~ candidates with a mass above 5500 MeV/c? used as a
background proxy. For the background proxy, events with dimuon masses close to the
¢(1020), J/p, and 1(2S) resonance masses are excluded to avoid biasing the training
with many events that contain real resonant dimuons. The background subtraction is
achieved using the sPlot technique [66] where the weights are obtained from a fit to the
m(K*Tn~ ptp) distribution. A total of thirteen training variables are used, and the ones
found to provide the most discriminating power include various kinematic properties
of the B meson, along with PID and isolation variables of the daughter particles. The
requirement on the BDT output is chosen to optimise the signal significance S/v/S + B,
where S and B and the expected signal and background yields, respectively. The BDT
classifier achieves a signal efficiency of approximately 87% and 90% in Run 1 and Run 2,
respectively, whilst maintaining a consistent background rejection rate of greater than

98%.

3.3 Modelling of the detector efficiency and response

The reconstruction and selection of signal candidates sculpt the phase space of the signal
decay. This effect can be accounted for in the fit to the data via an acceptance function
€(cos by, cos O, ¢, ¢*), which includes the effects of the detector geometry, triggering,
reconstruction, and selection of events.

The acceptance function is determined in the four-dimensional phase space described
by cos 8, cosfr, ¢, and ¢?, using simulation generated with a uniform distribution in
each dimension. The simulated events are run through the complete reconstruction and
selection chain, and the resulting deviation from uniformity is taken to quantify the
acceptance. The acceptance function is modelled using Legendre polynomials, i.e.

e(cos By, cos g, 6, ¢%) = Z cijriPi(cos O ) Pi(cos 0,) Py(9) Pi(q?), (30)
ijkl
where P,, refers to the Legendre polynomial of order m. The maximum polynomial order
for each dimension is chosen empirically to give the set of lowest orders which are sufficient
to model the acceptance well, leading to the choice of a ninth order polynomial for the ¢?
dimension, seventh order for the cos g dimension, fourth order for the cos#, dimension,
and sixth order for the ¢ dimension. The resulting acceptances are shown in Fig. |1l and a
systematic uncertainty is assigned to choice of Legendre polynomial orders as described in
Sec. (.3
In addition to the acceptance, a resolution model, given by R(¢*—¢2..), is implemented
to account for the smearing of reconstructed dimuon masses relative to their true values.
This effect is the combined result of the finite resolution in each subdetector involved in the
reconstruction of muons. The ¢? resolution model is built up from the sum of a Gaussian
function G(Ag¢? i), and two Crystal Ball (CB) functions [67] C;.(A¢?; , 0, Qs M),
with power law tails on opposite sides,
R(A¢") =faG(AG p, 06)
1 ) ) (31)
+ (1 - fG)N_C [Cu(Aq y by O, Oy, nu) + OZ(Aq sy OC, ahnl)] )

where A¢? = ¢* — ¢, fo is the Gaussian fraction, and N¢ is a normalisation factor for
the CB sum component. The optimal parameters of the resolution model are determined
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Figure 1: One-dimensional projections of the acceptance function determined from simulation.

Table 1: Three ¢? regions defining the simultaneous fit categories when determining the Wilson
Coeflicients.

Category Region
Low-¢> 0.10 < ¢ < 3.24GeV?/c!
Mid-¢?>  3.24 < ¢ < 11.56 GeV?/c*
High-¢> 11.56 < ¢* < 18.00 GeV?/c*

using either simulation or data, depending on the ¢? region. The resolution varies
depending on the value of ¢? itself in a nonlinear fashion, and ranges from approximately
0.01 GeV?/ct at ¢> = 1GeV¥c? to 0.04 GeV¥/c! at ¢> = 13.6 GeV?/c*. The final fit to data
is performed simultaneously in three ¢? regions, allowing variations in the resolution model
and background composition to be accurately modelled. These three regions, referred
to as low-, mid-, and high-¢?, are chosen to have the three narrow ¢g resonances, the
$(1020), J/p, and 1(2S) in separate regions and are defined according to Table [1}

In the low-¢? region, the resolution parameters are obtained through an unbinned
maximum likelihood fit to the distribution of ¢? reconstruction errors in simulated
B°— K*u*p~ decays. The oy, parameters of the CB tails are symmetrised in the
low-¢? region to improve stability, while the remaining parameters of the resolution model
are allowed to vary freely in this fit. The model provides an excellent description of
the resolution in simulation, and the results of this fit are shown in Fig. Ral The low-¢
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Figure 2: Distributions of reconstructed ¢? resolution in LHCb simulation, overlaid with the
results of fitting the resolution function of Eq. l@] shows the fit to the low-¢° region
0.1 < ¢ < 3.24GeV?/c* for simulated B® — K*0u* = events (blue), along with the Gaussian
core (red) and double CB (green) contributions separately. [(b)]shows the fit to the mid-¢?
region (blue) 3.24 < ¢ < 11.56 GeV?/c* for simulated B®— J/iK*¥ events and |(c)| shows the fit
to the high-¢2 region (blue) 11.56 < ¢ < 18.0 GeV?%/¢?* for simulated B® — (25)K*? events. In
the latter two plots, the dashed orange curves show the final resolution shape after the fit to
data, which agrees well with the results from simulation.

resolution parameters are fixed in the fit to data since the number of signal candidates in
this region is insufficient to allow them to vary.

In the mid-¢? and high-¢? regions, all of the resolution parameters are allowed to vary
freely in the fit to data. Fits to the J/i) and ¥(2S5) peaks in simulated B — J/)K*" and
B%— (25) K*° decays are shown in Figs. and [2¢| respectively, along with a comparison
to the final resolution shape obtained from the fit to data. Excellent agreement between
the resolution models obtained from data (orange) and simulation (blue) is observed in
all areas except for the far tails of the resonance peaks, giving additional confidence in
the accuracy of the simulations and therefore also in the low-¢? resolution model.
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3.4 Full signal probability density function
The full signal Probability Density Function (PDF) has the form,

1 [d* (T +T) (B K*ut -
Psig,i (COS 9@7 COos eKa (ba q2) = ./T[ ( )d(q2 dﬁ ) &® Rz(q2 - qt2rue) (32)
true

xe(cos by, cos O, ¢, ¢°),

where the ® symbol indicates a convolution, and the index ¢ labels the ¢? region. The
angular resolution of the detector is not accounted for in the signal model. Based on
simulation, the angular resolution is around 40 mrad for #; and 6, and around 100 mrad
for ¢, with little dependence on ¢?. The angles and ¢? used in the determination of the
acceptance in Eq. 30| refer to the true values in the simulation and not the reconstructed
ones. However, here in Eq. [32]it is used for the reconstructed ones. As the variation in
efficiency is very slow compared to the resolution in all dimensions, this difference only leads
to a negligible systematic uncertainty on the results. The CP-averaged B® — K*0u*p~
theoretical decay rate contains all parameters of interest, including the Wilson Coefficients
and all parameters describing both the local and nonlocal hadronic form factors. The
expression is built up by constructing the angular coefficients of Eq. |4 from the transversity
amplitudes given in Egs. [6) (see Appendix [Al for details). The acceptance function is
fixed from simulation, whilst the ¢ resolution adds a small number of nuisance parameters
to the signal model which are either allowed to vary in the fit to data or are fixed from
simulation, as already described in Sec. |3.3

To improve the ¢? resolution, a constraint is applied when determining the value of ¢2.
The constraint involves performing a kinematic refit of the decay chain using a Kalman
filter [68] to vary the four-momenta of the final-state particles within their uncertainties
such that the reconstructed mass is constrained to the known B mass [37]. Unless
otherwise stated, the use of ¢ throughout this paper always refers to the constrained
value.

3.5 Background composition

The model requires to describe the contribution from processes other than the signal decay
which contaminate the final sample. The combinatorial background, discussed already in
Sec. [3.2] is the only contribution which remains significant after the full selection and is
modelled as described in Sec. [4.2] Beyond this, several physical background sources are
identified, referred to as peaking backgrounds, which are suppressed using a combination
of dedicated vetoes and machine-learning techniques.

The BT — K*u*pu~ mode mimics the signal decay when a random 7~ is combined
with the daughters of the true decay. This background is vetoed by removing all candidates
with m(KTr~u*p~) > 5380 MeV/c? in which the mass of the KTutp~ combination is
also compatible with the known B mass. The B — K™K~ pu*pu~ decay forms a peaking
background when one of the kaons is misidentified as a pion. The dominant contribu-
tion arises from B?— ¢(1020)u"u~ decays followed by the transition ¢(1020)— u*u~.
Several vetoes are applied to remove this contribution, accounting for both the resonant
and nonresonant parts of the m(K*K~) spectrum. Candidates are first reconstructed,
assigning the kaon mass to the pion. For the resonant ¢(1020) channel, strict pion PID
requirements are applied to those candidates with reconstructed B and KK~ masses
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that are compatible with the known B? and ¢(1020) masses. For the nonresonant mode,
the requirement that the reconstructed K+ K~ mass is compatible with the ¢(1020) mass
is removed, and slightly modified PID cuts are applied. The decay B® — 7r7—ptpu~
forms a peaking background in a similar way if one of the pions is misidentified as a kaon.
In this case, the dominant contribution comes via the B — p°(— 777~ )uTu~ resonant
decay. Analogous PID requirements are applied to remove these decays after assigning a
pion mass hypothesis to the reconstructed kaon. Backgrounds stemming from the double
misidentification of the final-state particles in signal decays, e.g. when the 7= (K™) of
the K** meson is misidentified as a K~ (7") and vice versa, are highly suppressed due to
PID requirements on the final state particles.

Several more peaking background sources arise from the A) — pK ptp~ and
AY— pr~ T~ decays, which mimic the signal if one or both hadrons are misidentified
and are reconstructed as a K** decay. These backgrounds are removed by reconstructing
decays under the alternative mass hypotheses, and requiring that the final-state hadrons
satisfy strict PID criteria if the mass is close to the known A) mass.

Double hadron misidentification leads to peaking backgrounds that originate from true
resonant signal decays, B® — JA)K*® and B? — ¢(25)K*°, with two of the final-state
particles swapped, i.e. the 7= (K1) is misidentified as a = (u™) and vice versa. These
decays are vetoed by assigning the muon mass to the pion (kaon), and removing events
for which the 7~ p™ (K*p™) combination has a mass close to either the known J/i or
¥(2S5) mass, and the 7~ (K™) also fails to satisfy stringent PID criteria.

An additional peaking background can be formed from BT — K**pu*u~ decays with
either K** — K{r" or K** — K*70 states and the charged hadron from these decays
is combined with a random charged pion or kaon from elsewhere in the event to create
the K*Y candidate. These events are less trivial to separate from the signal; hence, two
BDTs classifiers are trained using simulation for the purpose of discriminating between
B°— K*°u* ™ decays and BT — K**putp~ decays in each of the two K** decay modes.
A total of fourteen variables are used to train the BDT algorithm including various
kinematic and isolation variables, with the highest discriminating power provided by the
significance of the impact parameter with respect to the PV of the randomly charged
hadron used to create the K*° candidate, i.e. the K~ in the BDT classifier trained to
reject Bt — K*"(— K{nt)uTpu~ decays, and the 7~ in the BDT algorithm trained to
reject BT — K*t(— KTn%)utp~ decays.

4 Data analysis

The primary aim of the analysis is to determine the Wilson Coefficients of the b— s¢T¢~
WET Hamiltonian as well as to obtain a full description of the nonlocal amplitudes. The
measurement is performed by fitting the B — K*°u*u~ angular distribution of Eq. [4]
which provides sensitivity to the WET parameters through the ¢*> dependent angular
observables. The latter are parameterised in terms of a set of theoretical amplitudes,
which depend directly on the b — s¢*¢~ Wilson Coefficients and various parameters
describing the nonlocal contributions. This approach of explicitly modelling the signal in
the ¢? dimension including the charmonium resonance regions is the main new feature
with repect to previous angular analyses of the B — K*9u*u~ decay mode.

A full description of the signal model is provided in Sec. [ The signal decay rate
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Table 2: The signal fraction in the full mass range 5220 < m(K 7~ putu~) < 5840 MeV/c?
determined in five ¢? regions chosen to isolate different combinatorial background contributions.

Category q* region [GeV?/c! | Signal fraction (f&,)
Low-¢° [0.10,3.24] 0.9196 = 0.0088
Fully combinatorial mid-¢*  [3.24,8.20] U [10.6,11.56]  0.8045 £ 0.0093
Resonant mid-¢? [8.20, 10.6] 0.9934 + 0.0002
Fully combinatorial high-¢* [11.56,12.40] U [14.40, 18.00]  0.8656 + 0.0088
Resonant high-¢? [12.40, 14.40] 0.9862 4 0.0010

is modelled in five dimensions, i.e. the three helicity angles cos#,, cosfk, and ¢, along
with ¢%, and mp masses. The signal shape in the mass of the K7 system is integrated
out as mentioned in Sec. 2.2 This is done in order to simplify the already very complex
model. The model is ultimately used to perform an unbinned maximume-likelihood fit
to the data, simultaneously in the cos @y, cosfg, ¢, and ¢* dimensions, within the range
0.1 < ¢*> < 18.0GeV?/c. In order to constrain the background, two separate fits are
performed in different ranges of the B® mass as described in Sec. and [4.2]

4.1 Determination of the signal fraction

One-dimensional fits to the m(K*t7n~putp~) distribution are performed in the range
5220 < m(K*tn~ptpm) < 5840 MeV/e?, to determine the fraction of signal events f&'
relative to the background in the full mass range. The signal fraction is determined
simultaneously in the five separate ¢® regions given in Table . These regions correspond
to the same three regions as those in Table [l but with the mid- and high-¢? regions further
subdivided. This is done in order to capture the fact that the combinatorial background
composition differs depending on whether the ¢ value is close to one of the J/i) or 1(25)
resonances, or away of them. In particular, within the resonance regions (labelled resonant
mid- and high-¢? in Table , the dominant contribution comes from true resonant dimuon
candidates combined with a random K7~ combination, resulting in a strongly peaking
q? distribution. Outside the resonance regions, fully random combinations of KTm— putpu~
are the dominant contribution with no peaking structure, henceforth referred to as fully
combinatorial.

Similar to previous LHCb analyses of B®— K*u* = decays [4,5], the shape of the
signal mass is modelled using the sum of two single-sided CB functions,

Ppo = % LAC(m; 01, a,m) + (1= f1)C(m; p, 02, —a,n)] (33)

where f; represents the fraction of the first CB component, N is normalisation constant, and
m represents the reconstructed B® mass m(K "7~ ™). The best description of the data
is obtained with symmetric CB tails on opposite sides of the Gaussian core. Due to large
correlations between the CB tail parameters, only the o parameter is allowed to vary in the
fit, whilst the n parameter is fixed to the value obtained in Ref. [4]. For the signal, both a
BY and a B? component with the same shape are included with a fixed peak offset given by
the known difference in the BY and B? masses Am = m(BY) —m(B°) = 87.19 MeV/c? 37].
The fraction fpo of the BY component relative to the B component is allowed to vary.
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The combinatorial background is modelled with an exponential function, leading to a
total PDF of the form

Protai(m) = f&u: [(1 = fpo)Ppo(m) + fpoPro(m)] + (1 — feas) Poigi(m), (34)

where the index i labels the ¢? region. The fits to the different ¢ regions can be seen in
Fig. , and the values of fé‘fgu’i obtained for each region are listed in Table . The signal
fractions of Eq. [34] are used to calculate the number of background events per ¢? region
contained in the signal region, which is defined as a 40 MeV/c? region around the B mass

peak, 5259.58 < m(K T~ ptu~) < 5299.58 MeV/ 2.

4.2 Background fit in the upper B° mass sideband

Following the determination of the signal fractions, a fit to the upper B° mass sideband
(5440 < m(K*tn ptp~) < 5840 MeV/c?) is performed simultaneously in the three ¢?
regions defined in Table [I Special care is taken in the sideband fit to account for
the use of a BY mass constraint in the fit to the signal region (see Sec. below). The
combinatorial background events are not the decay products of a real B® meson; hence, the
mass constraint causes a distortion of the background ¢? distribution which is correlated
with the reconstructed BY mass. This effect can be observed by contrasting Fig. ,
which shows the reconstructed B mass as a function of ¢ without the mass constraint,
and showing the same with the mass constraint. The ¢ positions of the J/)- and
1 (25)-dominated combinatorial peaks are observed to vary as a function of mp in a way
that is impractical to model. To remedy this, the upper B® mass sideband is divided into
10 windows, each of width 40 MeV/c?. In each window, the K7uu mass is constrained to
the centre of the region, so as to mimic the distortion of the background ¢? distribution
that occurs in the signal region that also is 40 MeV/c? wide. As a result of this, the J/)
and 1(2S) peaks are aligned between the subregions and the signal region, as shown in
Fig. [Ad

In each of the ten mp background windows, the background shape is modelled in the
cos By, cos Ok, ¢, and ¢* dimensions, separately for the five ¢ regions defined in Table .
Those five ¢? regions are then reduced to the three regions of Table [1| by adding the PDFs
for the relevant contributions in each region. The PDF for the sideband fit is defined as

7)comb (q27 Q) lOW_q2

P(a% D) = S (1= F10) Peomn(a® D) + FPop(@®, Q) mid-¢? |, (35)
(1 = fp29)) Peomb (6, Q) + fys)Ppes)(¢?, )  high-¢>

where fj,, and fys) represent the resonant background fractions relative to the fully
combinatorial components in the mid- and high-¢? regions, respectively.

Each of the PDF's in Eq. [35]is assumed to factorise completely such that each dimension
can be modelled independently. For the ¢? dimension, the fully combinatorial contribu-
tion is modelled using the Weibull function [69]; while the J/i)- and ¢ (2S)-dominated
contributions are modelled using CB functions. The cos 6, and ¢ dimensions are modelled
using second order Chebyshev polynomials; whilst the cos 6 dimension is modelled with
second order Bernstein polynomials.

A complication arises due to the BT — K u*u~ veto described in Sec. While the
veto has no effect in the signal region, it causes a drop in the number of combinatorial
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Figure 3: The mass distribution m(K*7~u*p~) of candidates in the data in five separate ¢?
regions. The data is overlaid with the results of a simultaneous fit to determine the signal
fractions.
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Figure 4: Distributions of candidates in data with different treatments of the B® mass constraint
when determining ¢2. In (a) no constraint is applied, in (b) the final state is constrained to the
B® mass, while in (c) the final-state mass is constrained to the centre of each of the 40 MeV/c?
wide signal and upper mass background windows. In all the plots, the signal regions correspond
to the horizontal band. The diagonal lines in (a) that become vertical lines in (b) are the tails
of poorly reconstructed B — JapK*? and B® — 4(28)K*° decays.

background events in a cos 0k region of the phase space that depends on the reconstructed
B mass. If ignored, it leads to the wrong background shape extrapolated into the signal
region. The solution employed is to exclude the affected m (K7~ p*p~) dependent cos O
interval in each of the ten sideband regions. This reduces the amount of events in the
sideband fit by approximately 15% but prevents any bias in the extrapolation.

To model the shape of the combinatorial background in the signal region, an extrapo-
lation is made of the parameters describing the angular and ¢* distributions in each of the
ten sideband bins. In this way, the angular distribution in the signal region is described by
Eq. [35] as well. The parameters obtained from the extrapolation and their corresponding
correlation matrix are used in the signal fit described below.

4.3 Fit in the signal region

The final step consists of an unbinned maximum likelihood fit to the four-dimensional
(cos 0y, cos Ok, ¢, and ¢?) distribution in the signal region. The fit is performed simultane-
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ously in the three ¢? regions shown in Table , with the total PDF in each region given
by

PTotal,i(Qa q°) = fSig,iPSig,i(Qa %) + (1 — fsigi) PBkg,i(ﬁ, 7, (36)

where PSigji(Q), q?) is the full experimental signal PDF described in Eq. , and PBkg,i(Q, 7?)
is the corresponding background PDF from Eq. The fractions fg;g; correspond to the
fractions of signal events within each of the signal regions. They are not independent
free parameters, rather, they are derived from the fitted signal fractions in Eq. 34 which
correspond to the full mass range and the five ¢ regions of Table In the fit, the
background shape is constrained using the results of the extrapolation from sideband fits
and the background yield is constrained using signal fractions from the mpg mass fit as
given in Table 2] The signal angular distribution is modelled according to Sec.[3.3] The
baseline fit configuration consists of 150 free parameters.

The complex amplitudes for each polarisation state of the nonlocal components A;‘
appearing in Egs. 24| and [28] are determined from the fit to the data. For amplitudes that
are expected to be significantly different from zero, the fit is performed in terms of the
magnitude ]Ag\| and phase 5;‘. In contrast, for components with a small expected amplitude
the fit is performed in terms of the real R(A}) and imaginary S(A}) components. This
ensures better stability of the fit.

The scale of both the B — K**u*p~ local and nonlocal amplitudes are
determined through the known value of the compound branching fraction
B(B®— JapK*)B(Jhh — ptp~) and by scaling the three polarisation amplitudes A?,’/LL;L
such that

B(B® = JWEK BN — wu7) = [AYy[* + |A]

il + 1A (37)

The branching fraction B(B® — J/K*?) is taken from Ref. [46] and the branching fraction
B(J/ — ptp~) is taken from Ref. [37]. In the fit this is implemented by calculating
|A3/ w| from Eq. [37 rather than having it as a free parameter. The uncertainty of the
branching fraction B(B? — JipK*") is a limiting source of uncertainty on numerous
nonlocal parameters and is the largest systematic uncertainty on the Wilson Coefficients,
as discussed in Sec. Bl

The kinematically allowed ¢* region of B® — K*u*pu~ decays ranges from 4m? to
(mp — mE)? where m¥®* denotes the maximum mass of the K** — K*7~ system.
In this analysis m% is set to 0.996 GeV/c? as discussed in Sec. . This results in
a ¢® phase-space range of 0.044 < ¢*> < 18.34 GeV?/c*. In order to reduce the model
dependence of the ¢? resolution in regions where the decay rate varies rapidly with ¢?, the
measurement is performed in the reconstructed ¢? range of 0.1 < ¢* < 18.0 GeV?/c*.

The analysis was performed in a blind fashion until finalised, by implementing an
unknown offset to the values of the Wilson Coefficients Cégo and Cy,. Additionally, the
signs of the differences between the Wilson Coefficients and their Standard Model values
are switched randomly. Pseudoexperiments are performed following an identical procedure
to that used for the data fit to validate the full analysis. The bias and error coverage
obtained from the pull distributions for the Wilson Coefficients are listed in Table 3] The
observed biases are < 30% compared to the statistical uncertainty for all parameters, and
are accounted for as corrections to the final results.
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Table 3: The means and widths of the pull distributions in pseudoexperiments for the Wilson
Coefficients. The bias is quoted as a fraction of the statistical uncertainty on the parameter.

Variable Mean (bias) Width (coverage)

Co —0.27 £ 0.06 1.00 +0.04
Cio  —0.1340.06 0.94 4 0.04
Co —0.09 4 0.06 1.05 £ 0.04
C,oy  —0.3440.06 0.99 + 0.04
Co  —0.2040.06 1.03 £ 0.04

5 Systematic uncertainties

Several sources of systematic uncertainty are considered for this analysis, including those
related to the modelling of the signal, backgrounds, detector effects, and the analysis
method and implementation. The most significant effects are described in detail, followed
by a brief overview of some additional effects which are considered but found to be
subdominant or negligible. The final parameter uncertainties are obtained by combining
the statistical covariance matrix from the likelihood fit with the total combined systematic
covariance matrix accounting for all non-negligible effects. The systematic covariance
matrices are obtained by performing fits to pseudoexperiments using alternative fit
configurations and/or modifying the pseudoexperiments in a manner representative of the
effect in question.

5.1 Normalisation to the B° — J/4» K*° branching fraction

The dominant source of systematic uncertainty on the parameters of interest is found to
arise from the normalisation to the B®— J/) K*Y branching fraction, which is only known
with a relative uncertainty of 6.8% [46]. Varying the known B? — J/)K** branching
fraction within its uncertainties translates to an effect of the order 50% of the statistical
uncertainty for the Cy, and 100% for the C;y parameters. It should be noted that the reason
this effect is so significant is due to the dramatically improved statistical precision in this
analysis relative to the Belle measurement of B(B° — JibK*Y) |46]. This is currently
an irreducible systematic uncertainty, but can be directly improved in the future with a
new precise measurement of the B®— J/) K** branching fraction, e.g. from the Belle II
experiment.

5.2 Exotic charmonium-like states

The presence of charmonium-like resonances in the J/im and (2S)m spectra, so-called
exotic T,z states?, leads to the interference of the decay amplitudes B — T (— vm)K
with both the rare decay and B — ¥ K*° final states. This analysis performs a fit across
the full ¢* spectrum, including the J/i and 1(2S5) regions, without accounting for these
exotica contributions. The reason for not including these amplitude components in the fit
is mainly due to computational efficiency; the B — Tz (— 7)) K decays contribute with
different functional angular dependencies, thus the decay rate no longer factorises into a

2Previously known as Z. states
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simple sum of products of J;(¢*) and f(Q) terms as given in Eq. . To assess the impact
of neglecting the exotica contributions, a correction is derived by generating pseudodata
that contain all of the baseline local and nonlocal amplitudes added coherently to the
exotica ones, following the procedure of Refs. |46/ 70} /71]. The pseudoexperiments are
fit back using the baseline model that neglects the exotic states. The exotic amplitudes
are fixed in the generation of the pseudodata to the central values from measurements
made by the Belle collaboration [46}/71]. The resulting average shift of the parameters
from their generated values is taken as the correction. With the exception of the J/i
and 1(25) magnitudes and phases, the exotica correction to the parameters of interest is
small (< 20%) relative to the statistical uncertainty.

A systematic uncertainty is derived for the correction by varying the exotic amplitudes
within their measured 1o uncertainties and recalculating the correction. Again, with the
exception of the J/i and 1(2S5) magnitudes and phases, the systematic uncertainty on
the exotica correction is < 20% relative to the statistical uncertainty.

For the J/i) and ¢(2S) parameters, the exotica correction and associated systematic
uncertainty are large relative to the statistical uncertainty (from 100% to 250%); however,
the absolute effect remains small given the excellent statistical precision achieved on the
resonance magnitudes and phases.

5.3 Acceptance

The acceptance function described in Sec. is determined from simulated samples that
are reweighted to agree with data. Corrections are applied specifically to ensure agreement
in the hardware trigger and tracking efficiencies, the multiplicity of tracks in an event, and
the distributions of PID and B° meson kinematic variables. The weights applied to the
simulated samples have associated statistical and systematic uncertainties that propagate
through to the eventual determination of the signal parameters. To assess the impact of
these uncertainties, ensembles of pseudoexperiments are used in which alternative weights
are derived and subsequently used to produce modified PDFs with alternative acceptance
coefficients. Pseudoexperiments are generated from the alternative PDFs and then fitted
back using both the baseline and alternative (true) PDFs.

The largest effect is found to come from the corrections to the B meson kinematics.
Relative to the respective statistical uncertainties, the effect is approximately 10% for
the Wilson Coefficients and 200% for the magnitudes of the parallel and transverse J/i
amplitudes.

The baseline weights for these kinematic corrections are derived by comparing the
distributions of the B meson transverse momentum, pseudorapidity, vertex quality, and
impact parameter quality between B® — J/)K*? decays in simulation and data. The
alternative weights are derived by performing the same comparisons for B® — ¢(25) K*°
decays in simulation and data.

5.4 Two-particle open-charm constraint

As described in Sec. 2.5.1] a Gaussian constraint is placed on the coefficients in Eq.
describing the size of the open-charm contributions to maintain the stability of the fit.
The constraint restricts the real and imaginary parts, separately, of each two-particle
open-charm state (DD, D*D and D*D*) to be of a similar size to one another. A separate
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constraint is used for each polarisation amplitude. The constraint is given a conservative
width of 1.0,® but could nonetheless cause biases in the open-charm contributions, as
well as other parameters, if the components that are constrained have differences larger
than this in data. To asses this bias, pseudoexperiments are generated with the difference
between the open-charm components set to 1.5. These pseudoexperiments are then fitted
twice, once with the baseline constraint-width, and once with an unbiased constraint-width
of 1.5. The difference in the fit results is assigned as a systematic uncertainty, and besides
the open-charm parameters, the main affected parameters are Cy and Cy,, with systematic
uncertainties of 24% and 29% of the statistical uncertainty, respectively.

5.5 Subdominant effects

The experimental resolution in the angles cosf,, cosfr, and ¢ is not explicitly accounted
for in the signal model. Unlike the ¢? spectrum, however, the angular distributions contain
no sharp peaks and are thus not greatly affected by the detector resolution. Ensembles
of pseudoexperiments emulating the effects of the angular resolution are used to confirm
that this has no significant effects on the signal parameters of interest.

The ¢? resolution is accounted for in the baseline model as described in Sec. [3.3] As
an approximation, the parameters of the resolution model are assumed to remain constant
within each ¢? region. Pseudoexperiments investigating the effects of mismodelling the
¢? resolution are performed and no significant effects are observed to result from this
assumption.

The mass of the K;°(700) scalar state has a large uncertainty. Varying the mass in the
interval 0.680 < mexo0(700) < 0.900 GeV?/c! results in no significant change apart from the
value of the effective form factor for the S-wave which is a nuisance parameter in the fit.

After the full selection has been applied, the fraction of events that contain more
than one candidate is approximately 0.18%. These events are unlikely to correspond
to multiple true candidates and are not distributed evenly throughout the phase space.
However, the distribution of events with multiple candidates is found to be well modelled
in simulation, hence all candidates are retained in the subsequent analysis and a small
systematic uncertainty related to their inclusion is determined from simulation.

6 Results

The full ¢? spectrum resulting from the simultaneous fit is shown overlaid on the data in
Fig. [5l The total PDF is decomposed into signal and background components, and the
signal component is further decomposed into the contributions from local amplitudes, one-
and two-particle nonlocal amplitudes, and the interference between them. The same results
are shown with alternative signal decompositions in Figs. [16] and [17 in Appendix [C.1]
The optimal values of the Wilson Coefficients Cs(a:)m and Cy, are listed in Table . The
corresponding one-dimensional likelihood profiles are shown in Fig. [6 wherein the 1o,
20, and 30 confidence intervals are indicated considering both statistical and systematic
uncertainties. The SM values for the Wilson Coefficients obtained from Ref. [16,/17] are
also indicated in Fig. [0] revealing a 2.10 deviation in the Cy fit result, and otherwise

3For context, the coherent sum of all the D™ D™ states would saturate the decay rate at around 0.22 [43].
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Table 4: Results for the Wilson Coeflicients. The first uncertainty is statistical, while the second
is systematic.

Wilson Coefficient results
Co  3.56+0.28+0.18
Cio —4.0240.184+0.16
Cy 0.28 £0.41 +0.12
Cy, —0.0940.2140.06
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Figure 5: The ¢? distribution in the data, overlaid with the PDF projection from the baseline
data fit. The total PDF is decomposed into signal and background components, with the signal
contributions further decomposed into local and nonlocal contributions as described in Sec. 2.5.1]
Note the hybrid linear/log scale to incorporate the very tall peaks from the charmonium states.

good agreement with SM. T'wo-dimensional likelihood profiles for Cégo are also obtained,
as shown in Fig. [l The parameters of the dominant nonlocal contributions, i.e. the
one-particle resonance amplitudes, are listed in Tables [5] and [6] and the two-particle and
nonresonant contributions to the C; parameters are given in Table [7]

The prior and posterior values for the local form factor parameters are given in Table [§|
Projections of the fit on the angles as well as ¢? in the individual subregions can be found

in Fig. [15]in Appendix [C]
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Figure 6: One-dimensional confidence intervals for the Wilson Coefficients, obtained using a
likelihood profile method. The shaded regions consider only statistical uncertainties, while the
dashed vertical lines indicate the same regions with systematic uncertainties included. The
vertical black dashed lines show the Standard Model values.

7 Discussion

The primary observation to be made based on the results of Sec. [f] is that while the
nonlocal model used in this analysis shows that there is some contribution of nonlocal
amplitudes in the ¢* regions used by previous binned analyses [5], it still prefers a value of
Cy that is shifted from the SM expectation. Based on a one-dimensional profile likelihood
scan, shown in Fig. @, a shift of ACyY = —0.71 4 0.33 is observed that corresponds to a
2.10 deviation from the SM prediction of C§™ = 4.27 [16}[17], with both statistical and
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Figure 7: Two-dimensional confidence regions for selected combinations of the Wilson Coefficients,
obtained using a likelihood profile method. The shaded regions indicate the 1o and 3o confidence
regions considering only statistical uncertainties, while the dashed contours indicate the same
regions with systematic uncertainties included. The horizontal and vertical dashed lines show
the Standard Model values.

systematic uncertainties accounted for. The global significance of the deviation from the
SM considering all of the Wilson Coefficients in Table |4]is reduced to 1.50. This dilution of
the statistical significance is due to the lack of a significant fit quality improvement when
introducing the possibility of NP in Wilson Coefficients Cyy, 6107 C; and Cy,, compared to
only allowing for NP in the Wilson Coefficient Cg. No significant deviation in the Wilson
Coefficient Cyg is observed, nor any evidence for the presence of right-handed currents.
This is the first direct measurement of the Wilson Coefficient Cy,, and the value of
Cor = (=1.0 4+ 2.6 £ 1.0) x 10? is consistent with both zero and the SM expectation of
lepton flavour universality C5M = 4.27 [16,[17]. The uncertainty of the Cy, parameter
is dominated by statistical effects. The largest systematic uncertainty, accounting for
~ 30% of the total uncertainty, arises from the constraint on the relative size of the
B — D®WDK* contributions, as detailed in Sec. . The development of theory
calculations that can be used to constrain the B — D(*)E(*)(—> ™) K*O amplitudes
would help improve sensitivity to the Wilson Coefficient Cy, in future measurements.
The current best upper limit on the B(B® — K*°7777) branching fraction is 3.1 x 1073
at 90% Confidence Level [72] (CL), corresponding to an upper limit of |Co,| < 680 at
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Table 5: Results for the (left column) magnitudes and (right column) phases of the dominant
one-particle nonlocal contributions. The first uncertainty is statistical, while the second is
systematic. The magnitudes, ]AE.\|, and phases, 6] , are defined in Eq. The values of amplitude
parameters that are fixed in the fit to the data appear with a dash.

Nonlocal parameter results

ALl (3.98£0014£0.15) x 107% 4}, 0.23 + 0.01 & 0.01
|A§/¢| (3.85 4+ 0.01 +0.14) x 1073 5% —0.21 4+ 0.00 + 0.01
Al - 8%,  —1.9240.05+0.02
Al gl (959028 £0.82) x 1074 48] o 0844002+ 019
[Afng  (8:3840.27£0.62) x 10~ 5L s —0.44%0.0240.11
A% (134404 +1.1)x 10 50 o) —25440.13+0.12
A 770)] - 52(770) 1.38 4 0.53 = 0.65
Az 7s2)] - 007 —0.49%0.92+0.53
| A1020)] - 00omy 010 £0.8240.78

Table 6: Results for the (left column) real and (right column) imaginary parts of the higher
charmonium resonance nonlocal amplitudes as defined in Eq. The first uncertainty is
statistical, while the second is systematic.

Nonlocal parameter results (X 10_5)
R(A] ) B368£ 1342073 S(A] ) 287+ 1.8340.49
R(Afgrr) —3.53 £ 1452047 S(ALypm) —0.86 % 1.56 4 0.53
SCE(A?p(:’mo)) —3.14 £ 1.39 £ 0.60 %(A?p(3770)> 1.67 +1.54 +0.62
§R<A‘1L(4040)) —2.39£1.53+0.96 %(All)(4040)) —0.71+180+1.11
R(Abry) —201£14T£0.59 S(Af0)  0.35+ 1.49 % 0.82
R(AY i) —D62ELTIELOT S(AYy0) 132 1.870.99
%(All;(zlmo)) 0.04+1.72+0.56 g(AlL(416o)) 1.91 +1.98+1.45
R(Abpgy) —281ELT5£0.61 S(Afyg)  0.32%0.15%0.09
R(AY )  LO3ELT7T£0.39 S(AY) —1.66:+ 167+ 1.04

90% CL (assuming no NP contribution in the Cjo, coefficient) or |Co,| < 600 (assuming
the relation Cio, = —Cy,). The 90% CL upper limit on the |Cy,| parameter from this
work is |Co,| < 500 (|Co,| < 600 at 95% CL). To convert the upper limits on the
BY — K*9777~ branching fraction in Ref. [72] to upper limits on the parameter|Cy,|,
the flavio package [73] is used, with local B® — K** form factors from Ref. [34] and
subleading effects parameterised as in Ref. [19).

A number of cross-checks are performed to validate the results of this analysis. The
description of the dominant nonlocal amplitudes, i.e. those of the J/i) and ¥(2.5) resonances,
is validated by comparing the fitted amplitude parameters and resulting angular observables
to those measured in previous analyses. To this end, the angular observables Fp,, S3, Sy,
Sg, and Sy are calculated at the J/b pole mass, and compared along with the magnitudes

and phases |A” l] and 5‘|]/1f, to the results reported by LHCD [44]. Agreement within 1.50

is observed between the two measurements for all observables, magnitudes, and phases.
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Table 7: Results for the parameters of the two-particle and nonresonant nonlocal contributions
for the (left) real and (right) imaginary components as defined in Eqgs. 28 and Sec. [2.5.3] The
first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results

RAL, ) —0.07£093+£0.69 S(AL,.,) —044+0.71+0.73
R(ALepo)  —0.12+£083+£0.71 S(Al,5)  0.02£0.80+0.74
R(AV, ) —0.33£091+£0.70 (A%, 5,)  —0.27+0.77 +0.81
R(AL.op0)  —0.06+0.96+0.63 S(A).,5,) —0.25+0.79 4 0.67
R(AL.op0) —0.16+0.91+0.66 S(AL,5.,) —0.0340.85+0.70
R(AY o 50) —0.17£0.95+0.66 (A, 5.,) —0.2840.85+0.78
R(AL.opo)  0.02£04240.66 S(A)..p) —0.46+0.32+0.58
R(AL.op) —0.24+042+0.70 S(AL,5) —0.1140.39 4 0.61
R(AY ., 50)  —0.51+£041+0.68 S(AL,5)  0.1240.35 +0.58
R(AChH 0.00 +0.03 +0.02 S(ACH —0.10 + 0.03 + 0.01
R(ACY)  —0.05+0.03+£0.02 S(ACE)  —0.0440.04 +0.01
R(ACY) 0.33+0.33+£0.09 S(ACY)  —0.19 4 0.20 +0.09

The measured magnitudes and phases of BY — JayK*® and B®— (2S5)K*® transitions
are also in good agreement with previous amplitude analyses performed by Belle [46,|71],
once the systematic uncertainties due to the presence of Z(4430) and Z(4200) states are
accounted for.

In order to check that the model used in this analysis is complete regarding its
description of the nonlocal contributions, an alternative fit is performed in which the
values of coefficients Cy and Cy are allowed to carry a linear dependence on ¢?. Specifically,
the following replacements are made,

CSQ =Cy + a(q2 — qlznid)’ C{’; =Cio + /B(QQ - q12nid)7 (38)

where ¢2,4 = 8.95 GeV?/c* and denotes the middle of the fitted ¢* range. Statistically
significant nonzero values of o and/or f would imply an incorrect description of the
nonlocal contributions since a ¢ dependent shift is not consistent with being of local
origin. Allowing for this linear dependence in the fit does not significantly alter the
values for Cy and C;g, and results in o = 0.029 £ 0.082, = —0.058 4 0.026, where the
uncertainties are statistical only. No evidence for an incorrect description of the nonlocal
contributions to the Cy parameter is observed, while for the parameter Cyo, which receives
only local contributions in the model, a 2.20 deviation from zero is observed in the S
slope parameter. This could point to an inconsistency in form factors between the low
and high ¢? regions but this is not explored and no systematic uncertainty is assigned due
to this effect.

The results of the fit are also cross-checked for different choices of the dispersion
relation subtraction point ¢ which serves as additional validation of the nonlocal model.
The subtraction constant Y.z(q3) enters Eq. [19|as a constant offset to Cy and is degenerate
with a NP contribution. In principle, the dispersion relation of Eq. [19|is exact and should
be independent of the number and location of subtractions, provided the subtraction point
is within the region in which Y,:(¢?) can be calculated reliably, i.e. g5 < 0. A deviation
from this behaviour would reveal itself as a change in the Cy fit results dependent upon
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Table 8: Results for the local form factors. The first uncertainty is statistical, while the second

is systematic. The dashed entries represent the parameters being fixed in the fit due to their
. 1,0

degeneracy with the nonlocal AC;" parameters.

Local form-factor results

Parameter  Prior [34] Posterior

o —1.124+0.20 —1.21+0.19+0.02
g 2.184+1.76  3.23+1.69+0.18
! 0.2940.02  0.29 £ 0.01 +0.00
ait 0.46+0.13  0.40+0.10 +0.01
o 1224073  1.2140.69+0.10
i 0.284+0.02  0.26 4 0.02 £ 0.00
oz 0.55+0.34  0.4740.2240.04
g 0.58 £2.08  0.5341.26 £0.17
oy 0.36 £0.03  0.36 +0.02 = 0.00
al —1.094£0.17 —1.09+0.17 £0.01
oy 2734199  3.93+1.74+0.25
ol —0.954+0.14 —0.9440.14 +0.01
ol 211+1.28 207+ 1.16 £ 0.05
ag’ 0.32 4 0.02 -

al? 0.604+0.18  0.61=40.16 4 0.01
s’ 1.704+£0.99  1.78 £0.98 +0.03
ap 0.62 4 0.03 -

ol 0.97+0.32  0.95+0.30 & 0.01
g 1.81 4245  1.6842.15+0.04

the chosen subtraction point. This would indicate a problem in either the calculation of
Y.z(g?) or in the extrapolation to physical ¢* values via the dispersive integral — that is, a
problem with the parameterisation of the spectral densities used in this analysis. To check
this, the fit is run twice with subtractions at ¢ = —1GeV?/¢* and ¢2 = —10 GeV?/c* and
the results are compared to the baseline fit with the subtraction at ¢2 = —4.6 GeV?/ct,
The change in the Cy parameter is found to be ~ 0.1 in both cases which is approximately
35% of the statistical uncertainty. Therefore, within the precision of this measurement,
the choice of subtraction point is found to have a negligible impact on the results.

To investigate the sensitivity of the fit to the local form factor constraints, an alternative
set of SM predictions from Ref. [28] is used to constrain the form factors. The main
difference between the two sets of form-factor predictions are the LCSR inputs, leading to
slight differences in the central values and widths of the constraints in this alternative
fit. Modifying the constraint results in a non-negligible shift in the Wilson Coefficients.
The effect is approximately 35% of the statistical uncertainty for Cy and 90% for Cyq.
This difference is visible due to the improved precision of the measurement presented
here. Further advances in the calculation of the local form factors are necessary to resolve
these differences. Plots of the baseline local form factors as a function of ¢* are shown
in Fig. [§ where only the statistical uncertainty is shown. The statistical precision of
the data provides some mild overconstraining power and in some cases prefers slightly
modified central values; however the global difference between the prefit and postfit form
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Figure 8: Comparison of form factors (orange) prefit and (maroon) postfit. The bands denote
the 68% intervals from varying the postfit and prefit covariance matrices respectively. Only the
statistical uncertainty is accounted for in the postfit intervals.

factors, evaluated using the change in y? of the Gaussian constraint, is negligible.

The results of the nonlocal hadronic amplitudes, expressed as polarisation-dependent
shifts to the Cy parameter are shown in Fig. [0} A comparison is made to the nonlocal
amplitudes measured using 4.7fb~" of LHCb data [36] that employed a polynomial
expansion in the z parameter, defined similarly to that shown in Eq. [15| and relies on the
analytical properties of these functions in the ¢* range ¢ € (1.1,8.0) U (11.0, 12.5) GeV?/c*.
In the measurement of Ref. [36] two fits were considered. One fit that relied on a
simultaneous fit to both LHCb data in the region and theory calculations at ¢> < 0
using an expansion up to fourth order in 2z, and another fit only toLHCb data using an
expansion up to second order in z. In contrast to the study of Ref. [36], the model used
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from the 4.7 fb~! LHCb analysis [36] are also shown (pink) with and (yellow) without theory
input from ¢% < 0. See text for more detail.

in this analysis gives access to the entire ¢ range of BY — K*Ou*pu~ decays. A good

agreement is seen in the real part of nonlocal amplitudes between all three fit variations.

However, it is clear that the data prefers large %(AC’;OHtal) contributions, that cannot be

accommodated by the theory inputs at ¢> < 0 for the z-expansion fit.

Figures [10] and [11] show the role of the nonlocal contributions in the observable P}
and the differential branching fraction, respectively. The nonlocal components are set
to zero in the model when constructing the observables in order to plot only the local

contributions, as shown in Fig. for P, and Fig. for the differential branching
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fraction, dT"/dg?. The local-only observables evidently differ from the total across much
of the ¢? spectrum, including within the bins used in previous analyses . By setting
the Wilson Coefficients to their SM values, SM “postdictions” of the angular observables
can be computed from the signal parameters returned by the baseline fit to the data. The
resulting observables are constructed using the nonlocal contributions derived from data
from this analysis and can be compared to the formal SM predictions from Ref. , as
shown in Figs. and The SM observable postdictions of this analysis have central
values closer to those of the data fit results for the total observables, indicating that the
data prefer larger nonlocal contributions than the formal SM computations. This is in
agreement with the distributions of the nonlocal amplitudes shown in Fig. [} Nevertheless,
the SM postdictions also have different central values to the baseline fit that are closer
to the SM predictions. The latter observation indicates that the nonlocal contributions,
while important, are not sufficient to explain the deviation seen in the measured value of
Co.

Overall, this set of results is consistent with those reported in recent global analyses of
b— stt{~ decays , which favour lepton flavour universal NP contributions to Wilson
Coefficient Cy. Moreover, they are consistent with the findings of other complementary
analyses investigating the effect of the nonlocal contributions in B® — K*¢* ¢~ decays ﬂ§|,
which also found them to be of only minor importance.

1.51 . L5y
| LHCb8Afb! == Total ° | LHCh g4 EEE Total
1.0] Local only ol Total, SM WCs
1 | SM from GRvDV
0.51 j 5§
0.0 d o
| I |
—0.5] 5 A —0.5]
N R A Y R A
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
q* [GeV?/cY] ¢ [GeV?/c!]
(a) (b)

Figure 10: Distributions of the observable Pi constructed out of the signal parameters from
the baseline fit to data. In @ the distribution is shown both with and without the nonlocal
contributions included in the amplitudes. In @ the distribution is shown for the baseline fit
to data, and with the Wilson Coefficients (WCs) set to their SM values. These are compared
against SM predictions obtained from Ref. .
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Figure 11: Distributions of the P-wave differential branching fraction dI'/d¢? constructed out
of the signal parameters from the baseline fit to data. In @ the distribution is shown both
with and without the nonlocal contributions included in the amplitudes. In @ the distribution
is shown for the baseline fit to data, and with the Wilson Coefficients (WCs) set to their SM
values. These are compared against SM predictions obtained from Ref. .

8 Conclusion

An amplitude analysis of the decay B° — K*%u*p~ in the reconstructed ¢? range of
0.1 < ¢® < 18.0GeV?/c* is performed for the first time using LHCb data. The analysis
employs a model of one- and two-particle nonlocal amplitudes to explicitly isolate the
local and nonlocal contributions to the decay and capture the interference between them.
In doing so, direct measurements of the b — su™p~ Wilson Coefficients ngz)lo are obtained,
as well as a first ever direct measurement of the Wilson Coefficient Cy,. The values of
C(;, Cio, Cio, and Cy, are all found to be consistent with the SM, while a 2.10 deviation
is observed in the Cy parameter. The observed shift in the value of Cq is found to be
independent of ¢2, but has a slight dependence on the local form factor constraints used.
These results agree with the interpretations of previous binned angular analyses. Although
the nonlocal contributions play a clear role in the angular distribution of B — K*0pu* i~
decays, the tension in the measured value of Cy persists. There is also agreement with
the findings of the prior complementary analysis focusing on the effect of the nonlocal
contributions in BY — K*°/*¢~ decays. The results of this analysis are obtained using all
available information in the final state and cannot be combined with any other LHCb
measurement of the angular observables or the branching fraction of the same or partially
the same dataset.
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Appendices

A Angular observables and spherical harmonics
For a P-wave K7~ system, the explicit forms of the angular terms in Eq. are given by

f15(cos By, cos Ok, @) = sin”® O
f1c(cos By, cos O, ) = cos? O,
fas(cos Oy, cos O, @) = sin? O cos 26,
fae(cos Oy, cos Ok, @) = cos® O cos 20,
f3(cos @y, cos Ok, @) = sin? O sin? 6, cos 20,
= sin 20k sin 26, cos ¢, (39)
s

fes(cos by, cos Ok,

cos By, cos Ok, @) = sin 20k sin 0, cos ¢,
= sin? O cos b,
7

fs(cos By, cos b, @) = sin 20 sin 26, sin ¢,

(
(
(
(
(
fa(cos Oy, cos Ok, ¢
(
(
(
(
(

¢) =
) =
¢) =
cos 0y, cos Ok, ) = sin 20k sin f, sin ¢,
) =
) =

fo(cos By, cos Ok, ) = sin? O sin® O, sin 2.
and for the S-wave, they are given by

cos By, cos O, ) =

cos 0y, cos Ok, ) = cos 295,

cos 0y, cos Ok, ) = cos bk,

(40)
1(cos by, cos Ok, @) = sin Ok sin 20, cos ¢,
f2(cos by, cosbk, ) = sin Ok sin b, cos ¢,

il

il

fie(

fo.(cos by, cos Ok, d) = cos Ok cos 20y,
fi

f5( ¢) =

fo(cos by, cos Ok, ¢) = sin O sin O, sin ¢,
fi( ¢) =

cos By, cos Ok, ¢) = sin Ok sin 260, sin ¢.

The corresponding angular coefficients J;(¢®) can be constructed using the transversity
amplitudes AOL’R, Aﬁ’R, Ai’R and A; described in Sec. [2.3| where contributions from scalar
amplitudes are assumed to be zero. The explicit forms of the P-wave angular coefficients
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are given by

2 4mj
Tug?) = =% @ (JAL 2 4 |AF2 + AT 4 JAT?) + 2L Re (AL AT 4 APATF) |
Tld) = rAOLF AR+ 2 (A2 4 2Re (A5A))
c q2 0vo ’
2
Tola?) = L (AL + | AFP AR+ ATP)
JQC(QQ) = _542 (|“40L|2 + |-’40| ) 5
2
Te?) = (LALP — LA + 1A% — AR,
5 (41)
J5(q*) = V2, Re (AOLAﬁ* — AFAT)
Jos(q 2) = —255 Re (ALAL* — A,’EAE*) :
Js(q%) = % Im (AZAL + A(?Aff*) ,
Jo(¢?) = — 2 Im (.Aﬁ*.Af + Aff*Af) ,
where the parameter 3, is given by £, = — 4;"—2‘2. The S-wave angular coefficients also

involve the S-wave transversity amplitude AOLdR in addition to the P-wave amplitudes,
and are given by

IS () = ((rA P+ AR + e Re A AL)).
T = 38 (AR + LA,

Je?) = % Re (AfpAE + ABAT +
T (%) = ——55 Re (AQAS™ + Afh AT

AL AL AL+ AL A )) ,

f 57 (Re (Al AE) + Re (ABAT)

B - z@@z (Re (Al AT + Re (A5A)
)= 20/ 25 (Re (A AT) e (A AF)).

) =\ 297 (e (4l L") — Re (A5AT)).
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Figure 12: Plots of the angular observables in the optimised basis showing both the total and
the contributions from local amplitudes only.

B Plots of the full set of angular observables

As the overall fit calculates all amplitudes, the observables of previous measurements can
be plotted for both the optimised (Fig. and the standard (Fig. basis. In all of the
plots, the observables are shown when calculated from both the full amplitudes as well as
from the local amplitudes only. In this way the contribution of the nonlocal amplitudes
is made clear. Finally, in Fig. [14] there are plots in the standard basis compared against
Standard Model predictions from Ref. [34].
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C Fit projections in g? sub-regions

The four-dimensional maximum-likelihood fit to the signal region is performed simultane-
ously in three ¢* regions, as described in Sec. . The results of the fits to the cos 0,
cos By, ¢, and ¢* distributions within each of the three regions are shown in Fig. .
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Figure 15: Result of the fit to candidates in the signal mass region. The four rows correspond to
the distributions of cos 0, cosdy, ¢ and ¢>. The three columns correspond to the low-, mid- and
high-¢? regions. The total PDF is shown in blue, the signal PDF in red and the background PDF
in dotted black. The impact of the neglected exotic states is visible in the cos 0k distributions.
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C.1 Projections of the ¢*> spectrum with alternative signal de-
compositions

The signal contributions can be decomposed in various ways — for example, in terms of
the local and nonlocal contributions, as done in Fig. [5|in the main text. Alternatively,
they can be decomposed into contributions from different transversity amplitudes (see
Sec. as shown in Fig. , or into contributions from different Lorentz structures as

shown in Fig. [17]
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Figure 16: The ¢? distribution in the data, overlaid with the PDF projection from the baseline
data fit. The total PDF is decomposed into signal and background components, with the signal
contributions further decomposed into contributions from the different transversity amplitudes.

C.2 Comparison of observables to previous analyses

The total angular observables obtained from the signal parameters can be compared to
previous LHCb measurements. The binned angular observables were measured in Ref. [5]
using the Run 1 and 2016 data samples, corresponding to 4.7 fb~'. The decay rate was
measured in Ref. [76] using Run 1 data, corresponding to 3fb~'. The comparison is shown

in Figs. [I§ and [T9}
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Figure 17: The ¢? distribution in the data, overlaid with the PDF projection from the baseline
data fit. The total PDF is decomposed into signal and background components, with the signal
contributions further decomposed into contributions from different Lorentz structures.
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