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Abstract

®

CrossMark

Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in
the particles produced at the Large Hadron Collider. A measurement of the extent of
entanglement in top quark-antiquark (tt) events produced in proton—proton collisions at a
center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at
the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb—!. The events
are selected based on the presence of two leptons with opposite charges and high transverse
momentum. An entanglement-sensitive observable D is derived from the top quark
spin-dependent parts of the tt production density matrix and measured in the region of the tt
production threshold. Values of D < —1/3 are evidence of entanglement and D is observed
(expected) to be —0.48010 058 (—0.46710:0%%) at the parton level. With an observed significance
of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides
observation of quantum mechanical entanglement within tt pairs in this phase space. This
measurement provides a new probe of quantum mechanics at the highest energies ever produced.

Keywords: CMS, top quark, entanglement

1. Introduction

Entanglement is a fundamental concept in quantum mech-
anics that describes a strong correlation between particles,
such that the state of one particle cannot be independently
described without considering the state of the other, regard-
less of the distance between them [1-3]. Quantum entangle-
ment has been extensively studied in the context of photons
and electrons [4-6]. In these measurements, entanglement is

Original Content from this work may be used under the

BY terms of the Creative Commons Attribution 4.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

often determined through observations of particle properties,
such as spin or polarization [7]. When considering the entan-
glement of two spin-1/2 particles, it is convenient to describe
the quantum state of each particle as a linear combination of
its basis states, usually denoted as |0) and |1) (correspond-
ing to spin-up and spin-down states). In this formalism, one
typically refers to each particle as a quantum bit (qubit) of
information. An entangled state for two qubits is a superpos-
ition of their joint states that cannot be factorized into indi-
vidual states. A common example is the Bell state, [ ™) =
(|01) — [10))/+/2, which can be realized to show the viola-
tion of Bell’s inequality [8—10]. This state provides important
insights into the Einstein—Podolsky—Rosen paradox [11], con-
tributing to the ongoing discussion about the foundations of
quantum mechanics. In a maximally entangled state, measur-
ing the state of one qubit instantaneously determines the state
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of the other, independent of the physical separation between
them. The theoretical exploration of entanglement has recently
been extended to collider settings involving a variety of fun-
damental particles including quarks, vector bosons, and the
Higgs boson [12-23], as well as previously between taus pro-
duced from Z boson decays [24]. Observation of quantum
entanglement and violation of Bell’s inequality has also been
established in neutral B meson decays [25].

Recently, the ATLAS Collaboration reported the first obser-
vation of entanglement in the top quark-antiquark (tt) sys-
tem [26], with a result indicating a slight deviation from the
standard model (SM) expectation. We focus on a measure-
ment of entanglement in top quark pairs, which provides a
new probe to test predictions of quantum mechanics at the
highest energies currently accessible [27-29]. This result dif-
fers from the result reported by the ATLAS Collaboration in
that we measure the entanglement at the parton level while the
ATLAS Collaboration reports their observable at the particle
level. Furthermore, the result presented here considers non-
relativistic bound-state effects in the production threshold for
the first time. The formation of such bound states can be linked
to the Sommerfeld enhancement [30], which describes the
increase in annihilation cross section due to the non-relativistic
attractive potential between particles. In the context of tt pro-
duction, the Sommerfeld enhancement arises from the resum-
mation of ladder diagrams involving gluon exchanges, which
is partially accounted for in next-to-leading order (NLO) cor-
rections. However, NLO corrections also include diagrams
besides ladder diagrams such as the emission of real particles.
The CMS result rests on performing a binned likelihood fit to
extract the entanglement proxy instead of utilizing a calibra-
tion curve.

The SM of particle physics is expected to break down at
extremely short distances since gravity needs to be reconciled
with quantum mechanics at the Planck scale. Such a short dis-
tance is beyond the reach of particle colliders, but this result
sheds light on quantum correlations at distances correspond-
ing to energies of hundreds of GeV. Furthermore, measure-
ments involving intrinsic spin are a powerful probe of beyond
the SM (BSM) contributions to the production of tt pairs in
proton—proton (pp) collisions [31-37] and, possibly, at future
circular lepton colliders [38]. Many of these BSM models alter
the spin information of tt pairs in complex and sizeable ways
and, e.g. it has been shown in [33] that extensions of the SM
implemented as an effective field theory can lower the level
of entanglement of tt pairs by up to 40% relative to the SM
expectation. In contrast, BSM effects can contribute up to a
15% difference in the level of spin correlations of tt pairs in the
region m(tt) > 600 GeV, compared to the SM value in the same
region. Hence, measurements of entanglement also provide a
sensitive new probe of BSM contributions and represent a step
towards quantum tomography and coherence measurements in
top quark events [33].

In this article, a measurement of the entanglement of tt
events produced in pp collisions recorded with the CMS
detector at a center-of-mass (CM) energy of 13TeV at the

CERN LHC is presented. The top quark is the heaviest
known fundamental particle and has a very short lifetime.
Expressed in natural units, the top quark’s decay width I'y =
1.42f8: }g GeV [39] is larger than the quantum chromody-
namics (QCD) hadronization scale (Agcp ~ 250 MeV) and
much larger than the spin decorrelation scale (AéCD Jmy ~
0.36 MeV, where m, is the mass of the top quark) [40]. With
such a large difference between the time scales of the top quark
decay, the hadronization, and the spin decorrelation, the top
quark spin retains its value from the moment it was created via
the strong interaction. Thus, top quarks provide unique direct
access to their spin information, which is carried by the angu-
lar distributions of their decay products. These angular dis-
tributions provide a probe of the entanglement of top quarks
and the measurement presented here utilizes the same data set
and treatment of systematic uncertainties as in [41], but with
an optimized extraction technique to determine the extent of
entanglement of top quarks and improved description of the
production threshold region.

This article is structured as follows: section 2 covers the
production and decay of top quarks, focusing on the tt pro-
duction threshold region. Section 3 explains the concept and
significance of entanglement in top quark pairs, details the
observable used to measure entanglement, and discusses the
rationale for selecting the phase space region for this meas-
urement. Section 4 outlines the CMS detector and provides
details on identification and reconstruction of particles, while
sections 5 and 6 provide information on the samples, ana-
lysis, and the background estimation. Section 7 discusses the
systematic uncertainties, and section § introduces the pion-
eering modeling of the non-perturbative component of the tt
production threshold used in this analysis. Section 9 explains
the technique for statistically determining whether tt pairs
are entangled. Results of the measurement are discussed in
section 10, and a summary is given in section 11.

2. The production and decay of top quarks

At the LHC, top quarks are produced predominantly in pairs
(tt) via the gluon-gluon (gg) fusion process and at a level of
about 10% by quark-antiquark (qq) annihilation, both medi-
ated by the strong interaction, as described with perturbative
QCD calculations [42-45]. Figure 1 shows the representative
leading order (LO) Feynman diagrams for tt production via the
strong force.

Top quarks are mostly unpolarized when produced via the
strong force, but their spins are strongly correlated. The con-
figuration of the top quark-antiquark spin is dependent on the
invariant mass of the tt pair (m(tt)). The alignment (misalign-
ment) of the spins of a top quark and a top antiquark res-
ults in like (unlike) helicity pairs, which dominate the low
(high) invariant mass region. Top quark pairs originating from
gg fusion at the production threshold correspond to the Bell
state, i.e. they are maximally entangled spin-singlets, while qq
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Figure 1. Representative leading order QCD Feynman diagrams for the tt production through gg fusion (left) and quark-antiquark

annihilation (right).

annihilation produces tt pairs that are separable at the produc-
tion threshold [27]. Thus, in the production threshold region
tt is produced in a mixed spin state. For a pure state, entan-
glement is a binary condition in which the pure state is non-
separable. In contrast, for a mixed state, the degree of entangle-
ment takes on a continuous value, measured via an entangle-
ment witness or proxy, depending on the statistical ensemble
of the individual states composing the mixed state. In this
article, we exploit the tt production threshold or ‘low mass’
region to carry out a measurement of the entanglement of top
quarks using an entanglement proxy.

Just below the tt production threshold of 2m; ~ 345GeV,
where sensitivity to tt entanglement is enhanced, QCD allows
the formation of a so-far-unobserved bound state of a top quark
and top antiquark, referred to as ‘toponium’ [46]. Such states
are a prediction of the SM following from the experiment-
ally confirmed existence of charmonium and bottomonium
bound states [39]. Toponium bound states have yet to be dis-
covered and they are not included in NLO QCD Monte Carlo
(MC) simulations as toponium is inherently a non-perturbative
phenomenon. An observed toponium resonance would be
the sum of the ground state, 7, and all other bound states,
which are formed via nonrelativistic exchanges of gluons [47]
that generate a Coulomb-like interaction between the top
quarks. Including toponium in tt production simulations is
important in light of the recent ATLAS and CMS differen-
tial cross section results [48—52], which indicate difficulties
in modeling the data near the tt production threshold. The
inclusion is also critical to this analysis as the pseudoscalar
nature of toponium would lead to maximally entangled decay
products.

Toponium production represents a distinct stage in the
interaction dynamics between a top quark and antiquark, with
both resonant color-singlet and nonresonant color-octet con-
tributions. The total cross section—summed over all resonant
and nonresonant contributions—is expected to peak at m(tt) =
400GeV and to fall off until around 700 GeV [53]. The color-
singlet contribution is entirely dominated by the gg initial state
and is predicted to form a pseudoscalar resonance, the resonant
7 state [54]. In the tt production threshold region, the 7 state
is predicted to form with a mass of 343 GeV and a production

cross section of 6.43 £0.90pb [46, 55]. The width of the pre-
dicted 7 state, I';, = 7GeV, is determined from the difference
between the QCD predictions with and without Coulombic
corrections [46]. The n color-singlet contribution is not negli-
gible when compared to the tt cross section near the production
threshold [37]. This is accounted for in this measurement by
including a detailed study on the effect of the 7, state on the
measurement of the entanglement present in tt events.

In addition to this color-singlet resonant contribution, there
are also color-octet contributions to toponium production [53],
which become more significant at longer distances. These are
dominated by gg initiated nonresonant color-octet pseudo-
scalar contributions and, to a smaller extent, q-initiated reson-
ant color-octet vector contributions. However, the color-octet
contribution is subject to a repulsive potential and only forms a
bound state after an additional gluon is either absorbed or emit-
ted [56]. The latter complicates theoretical calculations of the
octet contribution since these gluons are ‘soft” and translate to
alarge value of the strong coupling constant («s). Hence, there
is no comprehensive theory for toponium production and thus
no MC simulation of the full bound-state spectrum. Owing
to the lack of a model implementing these color-octet con-
tributions, they are not included in the toponium model util-
ized here, which also applies to any interference terms. The
phase space of the measurement presented here is selected
to suppress qq initiated processes, hence reducing the vec-
tor color-octet contributions to toponium production. Based
on the state-of-the-art knowledge of toponium [54, 57], we
estimate a systematic uncertainty of the toponium contribu-
tion in this measurement, which is explained in more detail in
section 7. Furthermore, the predicted 7 state is a spin-singlet
and therefore is expected to produce maximally entangled
decay products in the phase space relevant for this analysis.

Top quarks decay almost exclusively via the electroweak
interaction into a W boson and a bottom quark. Similarly,
top antiquarks decay to a W~ boson and a bottom antiquark.
This analysis targets events with two leptonic W boson decays,
referred to as the ‘dilepton’ (£7¢~) decay channel, where
¢ refers to electrons or muons, including those originating
from the decay of 7 leptons. Entanglement effects are probed
through a spin-correlation analysis of the lepton pair.
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The squared matrix element (ME) for tt production and
decay (with appropriate color and spin summation under-
stood) [40, 58, 59] can be written as

M (qd/gg — tt— (¢tvb) (¢ ob)) P~ [PRP]. (1)

In equation (1), tr is the trace, R is the production spin dens-
ity matrix related to on-shell tt production, and P and P are
the decay spin density matrices for the top quark and top anti-
quark, respectively [58]. The narrow intrinsic width of the top
quark allows the factorization of production and decay terms.
According to [27], the most general form for the spin density
operator p is given by:

1 . . . .
p=7 14+Z(Bi+a'®12+3712®a') +%:C,;,-a'®af :

1

2

where I, is the nxn identity matrix, o' refers to the Pauli
matrices corresponding to each particle, and the indices i and
Jj correspond to the three quantization axes (i,j = 1,2,3). The
spin density operator p is related to R as p = R/tr(R). In the
case of two spin-1/2 particles, in particular, in tt production in
pp collisions, BT are 3-vectors that characterize the degree of
top quark/antiquark polarization along each of the axes, and C
is a 3x3 matrix that characterizes the correlation between the
t and t spins along each pair of axes. Given the on average net-
zero polarization of tt pairs near the tt production threshold, the
B vectors are not expected to be sensitive to entanglement in
tt production.

Working in the tt CM frame, we use the helicity axis k
defined by the top quark direction and the direction p of the
incoming parton to define the direction perpendicular to the
scattering plane i = (p x k)/sin©, where O is the top quark
scattering angle. The direction in the scattering plane mutu-
ally perpendicular to k and the transverse axis 7 is given by
= (p—kcos©)/sin®. Although more details can be found
in [41], for this article the relevant quantities for understand-
ing the measurement are the scattering angle defined above
and the opening angle between the charged decay leptons in
their parent top quark rest frames, ¢, which is independent of
the coordinate system defined here.

Equation (1) can be translated into spin correlation observ-
ables in the coordinate system defined above. The cosine of the
angle between the two charged decay leptons in their respect-
ive parent top quark rest frames, cos p = ¢+ .4~ has a linear
relationship with the relative differential cross section

1 do 1
- —~(1-D 3
odcosyp 2< cos ) )

where the slope parameter D is the entanglement proxy con-
sidered in this analysis, which is described in section 3, and
the spin analyzing power of the leptons is assumed to be
unity [60].

3. Entanglement observable for top quark pairs

In general, measurements of top quark properties (specific-
ally angular correlations) have been a highly sensitive probe
as to whether the experimentally observed top quark is indeed
the SM top quark [61]. Some top quark properties can be
expressed as differential cross sections, for example distri-
butions of spin correlation variables and hence the spin of
top quarks is accessible via such distributions. In the realm
of quantum measurements, it is possible to quantify vary-
ing degrees of entanglement within systems, influenced by
factors such as phase space configurations and potential BSM
contributions. This variability allows for a nuanced explor-
ation of the hierarchy of quantum correlations within the
spin density matrix, which can be conceptually organized as:
Bell’s inequality violation C Entanglement C Spin correla-
tions. Compared to standard differential cross section meas-
urements, estimating the systematic uncertainties relevant to
conditions of entanglement requires—as it will be explained
later—studies of different sources of systematic uncertainty
and this can have quite a different impact on the measurement.

A quantum state of two subsystems, denoted « for the t
quark and 3 for the t antiquark, is separable when p can be
expressed as a convex sum of tensor products of states between
the respective subsystems, denoted as pf* and piﬁ . A necessary
and sufficient condition for identifying entanglement in such a
two-particle system is the Peres—Horodecki criterion [62, 63],
which allows the identification of entanglement in systems
composed of two particles by examining the partial transpose
of p, given by p™2 = DDipf® (P,ﬁ )T, where p; are the prob-
abilities of the individual density operators. If p'> has any neg-
ative eigenvalues, then the state p is entangled. This criterion
can be used to show that top quarks are entangled by measur-
ing a proxy that takes on particular values when this criterion
is met.

We consider the momenta of the two leptons in the CM
frame of the tt system and an additional boost into the frame of
their respective parent top quark or antiquark. The momentum
directions of the two leptons in these CM frames are labeled
as (* and ¢~ The four-fold angular distribution for the two
charged leptons £+/~ in the t and t reference frames is given
by [64]

1 d'o
cdQ,dQ_ (4m)?

(1+B+.é++B— it (cé*)).
4

The charged lepton direction is used as a proxy for the top
quark spin and the lepton is suitable for this purpose, since
it has a spin analyzing power of ~1 [60], which means that
there is a strong correlation between the parent quark spin and
the angular distribution of the lepton. For simplicity, the spin
analyzing power factors are omitted in equation (4).

Both the polarization vectors BT and the spin correlation
matrix C depend on the specifics of the tt kinematic variables.
However, in this measurement we do not utilize the polar-
ization vectors B¥, since there is no net polarization of top
quarks at LO and thus they are not expected to be sensitive
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Figure 2. Predicted values of —(1+ A)/3 obtained from tt MC simulation, without accounting for detector effects, are shown on the left as
a function of m(tt) and the cosine of the top quark scattering angle ©. The value of —(1 4+ A)/3 also determined by a tt MC simulation as a
function of m(tt) and S3;(tt) is shown on the right. In both figures the black solid lines represent the boundary for entanglement, while the
black dashed line indicates the selected phase space in this analysis. The minimum value on the color axis of —1 corresponds to the
boundary tr[C] = 3, a maximally entangled state. Top quarks with no spin correlations correspond to a value of D=0and A = —1 (C =0).
In the central boosted region, D < —1/3 is not a valid entanglement criterion as the negativity of the Cy; and C», elements is not

guaranteed [66] and the correct entanglement criterion is A > 0.

to the entanglement of tt pairs. Instead, we focus on the diag-
onal elements of the C matrix. At the production threshold,
tt production via gg fusion results in spin-singlet states, which
means the quark spins are maximally correlated along any axis
and C is diagonal: C = Diag(—1,—1,—1). Above threshold,
the relative contribution of gg fusion resulting in spin-singlets
decreases with increasing m(tt), resulting in more mixed states
and diagonal elements of C that are less than one [65].

The Peres—Horodecki criterion relates an entanglement wit-
ness A = —C33 + |Cy1 + Cx| — 1 to a condition for entangle-
ment [27] of A > 0, where the third axis is taken as the spin
quantization axis. The specific choice of which basis vector
corresponds to the spin quantization axis can be chosen at will
and ultimately results in four unique observables that can be
used for entanglement measurements [37, 66].

The entanglement proxy, or D coefficient, is related to the
diagonal C coefficients as:

D=tr[C]/3=(C11+Cxn+C33)/3, (5)
which yields the condition for observing entanglement:
A+1=w[C]=-3D>1. (6)

The coefficient D itself is a measure of the fraction of events
where the spins of the t quark and t antiquark are aligned. To
demonstrate entanglement in top quark events, we compare
the measured entanglement proxy D with the —1/3 boundary
for entanglement in equation (6) [27]. Measuring D < —1/3
implies that the partial transpose of the density operator is not
positive definite and therefore is nonseparable, which is fol-
lowing the criteria discussed in [63].

Figure 2 (left) illustrates how the entanglement is expected
to vary as a function of the kinematic parameters. The quantity
—(1+ A)/3is shown (on the color scale) as a function of m(tt)
and the top quark scattering angle © determined using a tt MC

simulation implementing both the gg fusion and qq process at
NLO. Intuitively, this means that at threshold, top quarks are
produced in like-helicity states forming a spin-singlet state.
This spin-singlet is maximally entangled and explains the large
value of entanglement near the production threshold. Toward
intermediate values of m(tt), the level of entanglement is sub-
stantially reduced, while at very high m(tt) the unlike-helicity
states dominate and form a spin triplet state, which is also
maximally entangled. We focus on the low m(tt) region, with
345 < m(tt) < 400GeV, where we expect both Cy; and C, to
be negative [59]. This simplifies the A > 0 entanglement cri-
terion to tr[C] > 1.

It was suggested in [66] to enhance the purity of the gg
fusion process by an additional requirement on the relative
longitudinal velocity between the lab and tt reference frames:
B.(tt) = |(pt +p)/(E' + E)|. Figure 2 (right) shows again the
quantity — (1 + A)/3 (on the color axis) as a function of m(tt)
and f,(tt). Below the dashed line indicates an entanglement
sensitive phase space of m(tt) < 400GeV and S,(tt) < 0.9.

For the measurement of entanglement in top quark events,
we focus on a variable that can be measured more pre-
cisely [41], i.e. cosp = ¢+ .0~ which fully encapsulates the
differential spin correlation information at the production
threshold through the gg fusion process and in absence of BSM
contributions [33].

At the tt production threshold, the cosy distribution
provides the best sensitivity of all spin correlation variables
and hence, the corresponding D coefficient is least affected
by systematic uncertainties [41, 67]. The analysis strategy
for measuring the entanglement in tt pairs is based on using
templates as a function of cosy to perform a binned pro-
file likelihood fit with uncertainties as nuisance parameters
using the CMS statistical analysis tool COMBINE [68], which
is based on the RooFIT [69] and RooStaTs [70] frame-
works. The final measured result in data is corrected to the
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parton level and compared to the boundary for entangled top
quark-antiquark states, which is well defined as D = —1/3.
Therefore, observation of top quark entanglement at the par-
ton level is equivalent to a measurement of D to be less than
—1/3 within a given precision.

4. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting
solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calori-
meter (ECAL), and a brass and scintillator hadron calorimeter
(HCAL), each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity (1) coverage
provided by the barrel and endcap detectors. Muons are meas-
ured in gas-ionization detectors embedded in the steel flux-
return yoke outside the solenoid, with detection planes made
using three technologies: drift tubes, cathode strip chambers,
and resistive plate chambers. Events of interest are selected
using a two-tiered trigger system [71]. The first level, com-
posed of custom hardware processors, uses information from
the calorimeters and muon detectors to select events at a rate
of around 100kHz within a time interval of less than 4 us.
The second level, known as the high-level trigger, consists of
a farm of processors running a version of the full event recon-
struction software optimized for fast processing, and reduces
the event rate to around 1kHz before data storage. A more
detailed description of the CMS detector, together with a defin-
ition of the coordinate system used and the relevant kinematic
variables, can be found in [72, 73].

A particle-flow (PF) algorithm [74] aims to reconstruct and
identify each individual particle in an event, with an optimized
combination of information from the various elements of the
CMS detector. The primary vertex is taken to be the vertex cor-
responding to the hardest scattering in the event. The energy of
photons is obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined by
the tracker, the energy of the corresponding ECAL cluster, and
the energy sum of all bremsstrahlung photons spatially com-
patible with originating from the electron track. The energy
of muons is obtained from the curvature of the correspond-
ing track. The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker and
the matching ECAL and HCAL energy deposits, corrected for
the response function of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the cor-
responding corrected ECAL and HCAL energies.

Jets are reconstructed by clustering the PF candidates using
the infrared- and collinear-safe anti-kr clustering algorithm
with a distance parameter of 0.4 [75, 76]. Jet momentum is
determined as the vectorial sum of all particle momenta in the
jet, and is found from simulation to be, on average, within
5%-10% of the true momentum over the whole transverse

momentum (pr) spectrum and detector acceptance. Additional
pp interactions within the same or nearby bunch crossings
(pileup) can contribute additional tracks and calorimetric
energy depositions, increasing the apparent jet momentum. To
mitigate this effect, tracks identified to be originating from
pileup vertices are discarded and an offset correction is applied
to correct for remaining contributions [77]. Jet energy correc-
tions are derived from simulation studies so that the average
measured energy of jets becomes identical to that of particle
level jets. In situ measurements of the momentum balance
in dijet, photon+jet, Z+jet, and multijet events are used to
determine any residual differences between the jet energy
scale (JES) in data and in simulation, and appropriate correc-
tions are made [78]. Additional selection criteria are applied to
each jet to remove jets potentially dominated by instrumental
effects or reconstruction failures [77]. The jet energy resolu-
tion (JER) amounts typically to 15%—20% at 30 GeV and 10%
at 100 GeV [78].

The missing transverse momentum vector 5 is com-
puted as the negative vector pr sum of all the PF candidates
in an event, and its magnitude is denoted as p™iss [79]. The
piniss js modified to account for corrections to the energy scale
of the reconstructed jets in the event.

Electron candidates, reconstructed from a combination of
the track momentum vector at the primary interaction vertex
and the corresponding clusters in the ECAL, are excluded if
the ECAL clusters are in the region between the barrel and
endcap (1.44 < |Neiuseer| < 1.57), since they have a reduced
reconstruction efficiency there. A relative isolation criterion
I1 < 0.0588 (0.0571) is applied for electron candidates in the
barrel (endcap). The I, is defined as the pr sum of all photon
and neutral and charged hadron candidates within a distance
of 0.3 from the electron candidate in 7-¢ space, divided by
the pr of the electron candidate, with a correction to sup-
press the residual effect of pileup. Additional electron iden-
tification requirements are applied to reject misidentified elec-
tron candidates and candidates originating from photon con-
versions [74, 80]. The electron momentum is estimated by
combining the energy measurement in the ECAL with the
momentum measurement in the tracker. The momentum res-
olution for electrons with pr ~ 45GeV from Z — ee decays
ranges from 1.6%—-5%. Itis generally better in the barrel region
than in the endcaps, and also depends on the bremsstrahlung
energy emitted by the electron as it traverses the material in
front of the ECAL [81, 82].

Muon candidates are reconstructed using the track inform-
ation from the tracker and the muon system [83]. A relat-
ive isolation requirement of I < 0.15 within a distance of
0.4 in n-p space from the muon candidate is applied. To
reject misidentified muon candidates and candidates originat-
ing from decay-in-flight processes, additional muon identific-
ation requirements are used [83]. The efficiency to reconstruct
and identify muons is greater than 96%. Matching muons to
tracks measured in the silicon tracker results in a relative pr
resolution of 1 (3)% in the barrel (endcaps) for muons with pr
up to 100 GeV.
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5. Data and simulated samples

The analysis is performed using 36.3 fb~! of pp collision data
collected by the CMS experiment during the 2016 LHC run
at a CM energy of 13 TeV. The single muon trigger efficiency
exceeds 90% over the full n range. To maximize the trigger
efficiency, both single-lepton and dilepton triggers are used.
Data events are required to pass one of the following dilepton
or single lepton triggers. For events containing two reconstruc-
ted electrons with opposite charge, the pr of the leading (sub-
leading) electron is required to be larger than 23 (12) GeV.
For events containing two reconstructed oppositely charged
muons, the pr of the leading (sub-leading) muon is required to
be larger than 17 (8) GeV. For events containing a reconstruc-
ted electron and a muon, either the muon pr is required to be
greater than 23 GeV and the electron pr greater than 12 GeV or
the muon pr is required to be greater than 8 GeV and the elec-
tron pr greater than 23 GeV. The dilepton triggers additionally
require the reconstructed z coordinate of the vertex position of
the leptons to be within 0.2 cm of each other. The single lepton
triggers require the electron pr to be greater than 27 GeV and
the muon pr greater than 24 GeV.

We utilize a combined simulated signal sample consist-
ing of a (dominant) tt contribution and the 7, contribution,
for the top quark bound state described in section 2. The
tt signal sample is produced using the POWHEGV2 event
generator at NLO [84-87] including spin correlations and
thus referred to as the ‘spin correlated’ (SC) or ‘nom-
inal tt sample. The nominal tt sample is reweighted to a
POWHEGV2 sample with spin correlations turned off differ-
entially in m(tt) ® cosp ® B,(tt) @ cos ©, with otherwise the
exact same settings, to implement the tt ‘no spin correla-
tion’ (noSC) case. We rely on the Top++ v2.0 program [42]
to calculate the tt production cross section at next-to-NLO
(NNLO) including electroweak (EWK) corrections at NLO,
and obtain 832130 (scale) & 35 (PDF+as) pb assuming m, =
172.5GeV. In order to assess the level of variation when
using an alternative ME and matching procedure, a second
tt sample is obtained using MADGRAPH5_aMC@NLO ver-
sion 2.4.2 (MG5_amc@nNL0) [88] including MADSPIN [89] at
NLO, where the ME jets are matched to parton showers using
the FxFx prescription [90]. The parton distribution functions
(PDFs) in all cases are described using NNPDF3.0 [91], and
m; is assumed to be 172.5 GeV.

The 1 signal sample is produced using the
MADGRAPHS_aMC@NLO version 2.6.5 event generator at
LO [46] including spin correlations. The 7 particle couples
exclusively to gluons and top quarks and is produced through
an s-channel process resulting in a tt pair. In the produc-
tion threshold region, this calculation predicts the 7; to form
with a mass of 343 GeV and width of 7 GeV with a produc-
tion cross section of 6.43 pb [46]. This 7, signal sample is
produced at parton level selecting only events with masses
in between 337-349 GeV. The generator-level events in the
simulated 7, sample are smeared to the reconstruction level

utilizing the nominal tt sample. To get a noSC 7, sample, the
nominal MADGRAPHS_aMC@NLO version 2.6.5 7, sample is
reweighted using the same procedure that was applied to the
nominal POWHEGV2 tt sample.

The combined signal model of tt47, includes corrections to
account for EWK contributions at NLO, referred to as ‘EWK
corrections’, and the corrections to the average of the trans-
verse momentum of the top quark and top antiquark (pr(t/t))
spectra derived from NNLO QCD. For the pr(t/t) reweight-
ing, also referred to as ‘NNLO QCD reweighting’, we use
FASTNLO tables [92-94] to compute the pr(t/t) distribution in
fixed-order QCD at NNLO using the same PDF and m; value
as was used in the tt sample but excluding EWK contributions
at NLO, since those are applied in a separate additional step.
The EWK corrections are taken into account by following a
similar approach as in [95] to determine the size and uncer-
tainty of these corrections (discussed in section 7). The EWK
corrections are computed in HATHOR at NLO differentially in
cos © and m(tt). The generator level values of m(tt) and cos ©
are used to determine the appropriate kK& scale factor (SF)
per event. Applying these EWK corrections on a bin-by-bin
basis can be performed via two different methods: ‘multiplic-
ative’ or ‘additive’. The multiplicative approach determines
a SF, ky'5, that is applied multiplicatively to the nominal tt
sample, while the additive approach adds the predicted EWK
contribution to the nominal tt sample. In most regions of the
kinematic phase space, the EWK contributions to the differ-
ential cross section factorize, and therefore the multiplicative
approach is a good approximation to correct for higher-order
EWK contributions. However, the difference between the two
approaches is taken as a systematic uncertainty.

The major sources of background contributions are Z+jets,
single top quark tW, dibosons (WW, WZ, and ZZ), and tt
events in association with W/Z bosons (ttV). The Z+jets
sample is simulated at NLO with MG5_amc@n~ro (FxFx
matching) [90], single top quark samples are produced at NLO
with POWHEGV2, diboson events are simulated at LO with
PYTHIA 8.219 [96], (referred to as PYTHIA8 in what follows),
and ttV samples are produced at NLO with MG5_aMc@NLO
(FxFx matching).

For all signal and background samples, the parton shower-
ing and hadronization is performed with PYTHIAS. While the
PYTHIAS CUETP8M2T4 tune [97] is employed to describe the
underlying event in the tt, 7, and single top quark samples,
all other background samples utilize the pryTHIAS CUETP8M 1
tune [98]. An alternative showering and hadronization model,
HERWIGH+ [99], is used to quantify the sensitivity to the
modeling of these processes. Where HERWIG++- is used for
parton showering and hadronization, the EESC tune [100] is
employed instead.

Pileup collisions are overlaid to each simulated event,
and the generated distribution of the number of events per
bunch crossing is matched to that observed in data. The full
CMS detector simulation is carried out using GEANT4 version
9.4 [101].
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6. Event selection, background estimation, and
kinematic reconstruction

The measurement of the entanglement proxy D employs, to a
large extent, the event selection and approaches to background
estimation and corrections as in [41, 49], which measured D
at the inclusive level to be 0.237 +0.011 [41], indicating no
entanglement over the full phase space. For this measurement,
the tt pairs are restricted to a phase space where the level of
entanglement is expected to be high and the selection is optim-
ized to enhance entangled top quarks as discussed later in this
section.

Both electron and muon candidates are required to have
pr > 25(20) GeV for the leading (trailing) candidate and |n| <
2.4. Electrons and muons originating from tau lepton decays
are considered as signal for this analysis. Jets are selected if
they have pr > 30GeV and || < 2.4 with additional isolation
requirements.

Jets originating from the hadronization of b quarks (b jets)
are identified (b tagged) by combining information related
to secondary decay vertices reconstructed within the jets and
track-based lifetime information in an algorithm (CSVv2) that
provides the b jet identification efficiency of 79%—-87% and a
probability to misidentify light- and charm-flavor jets as b jets
of approximately 10% and 40%, respectively [102].

The selected events are required to have exactly two isol-
ated electrons or muons of opposite electric charge and at least
two jets. At least one of the jets is required to be b tagged.
Events with a lepton-pair invariant mass m(¢7£~) < 20GeV
are removed in order to suppress contributions from heavy-
flavor resonance decays and low-mass Drell-Yan processes.
In the eTe™ and p*p~ channels, backgrounds from Z+jets
processes are further suppressed by requiring p''ss > 40 GeV
and vetoing events in the Z boson mass region, with 76 <
m(£T¢~) < 106GeV. The remaining background yield from
Z-+jets events, which is large in the eTe™ and ™y~ channels,
is determined by applying a factor derived from simulation
to the number of Z+jets events observed in data in a control
region where m(¢£7) is close to the Z boson mass [103]. A
correction to account for non-Z+jets backgrounds in the con-
trol region is derived from the e* ;¥ channel. The simulated
Z+-jets yield is corrected by a SF of up to 1.05 in each channel
to match the determination from data.

Other background sources include processes of diboson,
single top quark tW, and tt+Z/W (ttV) production, as well as
misidentified tt events originating from lepton+jets and had-
ronic decay channel events. These tt events are collectively
referred to as ‘tt other’. The same category for the 7, only con-
sists of 11 events. Hence, it is negligible compared to the 7,
signal component of 892 events and not included.

The number of W-jets events is found to be negligible
(<0.5%) and hence is not included as a background source.
Overall, the event selection as described here has a purity of
>88%.

To determine the most sensitive phase space for meas-
uring the entanglement proxy D while minimizing expected
total uncertainties, we scan the phase space of cos ¢ ® m(tt) ®
B.(tt). The region with the highest expected sensitivity is

Table 1. The expected number of events from signal and
background contributions after event selection, compared with the
number observed in data. The ‘tt other’ category includes
mis-identified semileptonic and fully hadronic decays, and hadronic
decays of tau leptons of the tt pairs. The uncertainties include only
the MC statistical uncertainties. The ‘Only 7’ contribution is not
added to the total MC prediction since it is included in the combined
(tt+m,) signal contribution.

345 < m(tt) < 400GeV

Sample Full phase space & B:(tt) < 0.9
Signal (tt+mn) 230580 +£210 45793 £92
Z+jets 11300 %400 3560 + 260
tW 8990+ 110 1873 £49

tt other 1916 £ 19 572+ 10
Diboson 71119 179.6 £9.4
tv 691.6 £5.8 100.1 +£2.1
Total MC 254190 £ 500 52080 + 300
Only 7 1554.4+6.9 892.2+6.0
Data 255646 53843

determined based on maximizing the expected sensitivity to
observe entangled tt pairs. We converge on a best choice of
345 < m(tt) < 400GeV along with an additional requirement
of f5(tt) < 0.9, shown in figure 2 with the dashed lines. The
final event yields displayed in table 1 are obtained after apply-
ing all selection requirements.

All of the background contributions except those from
Z+jets are estimated from simulation following [41].

The yields from simulation are normalized to the integrated
luminosity of 36.3 fb~!. Data-to-simulation SFs are applied to
simulated events to account for trigger, lepton, b tagging, and
kinematic reconstruction efficiencies.

The four-momenta of the t and t in each event are estim-
ated using a kinematic reconstruction algorithm [49, 104]. The
algorithm solves for the unknown neutrino momenta under
these constraints: p* is attributed solely to the two neut-
rinos; the invariant mass of each W boson, my, is fixed to
80.4GeV [39]; and the invariant mass of each top quark
must equal 172.5 GeV. Detector resolution effects are modeled
by smearing the measured energies and directions of jets
and leptons based on their simulated resolutions, and myy is
smeared according to a relativistic Breit—-Wigner distribution
with a width of 2.1 GeV [39]. The best-fit solution for neut-
rino momenta is selected based on the smallest reconstructed
m(tt), and solutions are weighted by the expected invariant
mass spectrum of the lepton and b jet system (m(¢b)) from
the top quark decay [49] after the kinematic selection require-
ments. Weights from 100 smearings are used to compute the
four-momenta as a weighted average. This reconstruction is
performed for all suitable pairs of b jet candidates for the two
possible lepton-jet assignments. Only if no kinematic solution
is found at all, then also combinations with one b-tagged and
one untagged jet are considered. The jet pair and lepton-jet
assignment that yields the maximum sum of weights is chosen.
The kinematic reconstruction efficiency is about 90% in both
data and simulation; the remaining 10% are events without a
real neutrino momenta solution.
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7. Systematic uncertainties

In this section, each of the uncertainties in the measurement
of the top quark entanglement proxy D is discussed. For each
source of systematic uncertainty, templates as a function of
cos g are generated based on %1 standard deviation (o) uncer-
tainty variations and table 2 shows a summary of systematic
uncertainties and their impact on the measurement at the pre-
fit level. The templates are used as inputs for a binned profile
likelihood fit.

71. Experimental uncertainties

In order to improve the description of the data by the sim-
ulation, efficiency SFs (SF = epara/emc) are applied where
necessary. Most SFs are applied as event weights to the simu-
lated samples.

Trigger efficiencies (for the OR of the dilepton and single-
lepton triggers) are measured as a function of the lepton 7
using triggers that are only weakly correlated with the dilepton
triggers (pi*-based triggers). Measurements from data are
used to improve predictions from Z-+jets simulation. The
measured SFs are typically close to unity across all bins.
Uncertainties related to trigger efficiency SFs are measured
using two kinds of variations, following the same procedure
as in [49]. First, the SFs are varied according to their uncer-
tainties in order to account for the change in total rates with
respect to the nominal simulation. The second kind of vari-
ation accounts for the shape modification. This is achieved by
varying the SFs with ‘up’ and ‘down’ variations, based on the
different combinations of dilepton 7 regions. An envelope of
the two variations is constructed to determine the uncertainty.

Lepton identification and isolation efficiencies (referred
to as ‘Lepton ident./isolation’) for electrons and muons are
estimated as a function of pr and 7 using a ‘tag-and-probe’
method [105, 106] based on the Z boson samples. The SFs are
found to be close to unity and they are varied according to their
uncertainties.

Tagging efficiencies for b, ¢, and light-quark or gluon jets
(referred to as ‘b tagging (heavy)’ and ‘b tagging (light)’,
respectively) are determined from simulation as a function of
jet pr and 7 [102]. Since the b tagging efficiencies measured in
data are different from those measured in simulation, SFs are
applied to the simulated events. Envelopes of the normaliza-
tion and shape uncertainties are calculated for both the heavy
and light flavors and these are used independently as input
templates to the profile likelihood fit.

For a fraction of events (about 9%), the tt kinematic recon-
struction finds no physical result as the only solutions to the
quadratic equation are imaginary and the events are rejected.
This occurs because of resolution effects and the top quark
and W boson mass constraints. The efficiency is expressed as a
function of lepton observables (pr and ), the number of b jets,
and p™is. The data-to-simulation SFs are derived separately
for the ee, uu, and ep final states. Uncertainties are estimated
following the procedure in [49].

The uncertainties due to the JES are determined from
19 JES sources [78]. These sources arise from differences

due to variations of the energy of the reconstructed jets
(‘JES: Absolute’ and ‘JES: Absolute (stat)’) and pileup off-
set dependence (‘JES: pileup’) in simulated events between
different detector regions, as well as due to corrections for
initial- (ISR) and final-state radiation (FSR), and also due
to uncertainties in the correction factors of heavy- and light-
flavor jets (‘JES: Relative samples’ and ‘JES: Flavor QCD”).
‘JES: Relative Balance’ accounts for the difference in mod-
eling of missing transverse momentum. Simulations are run
with jet four-momenta scaled by the corresponding uncertain-
ties to obtain ‘up’ and ‘down’ systematic samples. Variations
of the jet four-momenta are propagated to p2i** measurements.
The selection efficiency is recalculated with rescaled simu-
lated samples and the difference with respect to the original
samples is taken as systematic uncertainty for the relevant JES
source.

The JER is smeared using a scaling method whereby the
difference between the reconstructed jet pr and the matched
generated jet pr is scaled by a certain factor. Uncertainties
in the correction factors are evaluated accordingly. The sim-
ulated JER is varied by =+1c uncertainty in different 7
regions [78].

The energy deposited by charged and neutral hadrons
and photons is varied according to their energy resolutions,
and the p™s* four-vectors are recalculated to account for the
unclustered piss (referred to as ‘Unclustered energy’).

The pileup effect on the signal efficiency is accounted for
by varying the total inelastic cross section by +4.6% with
respect to the nominal value of 69.2 mb [107].

The normalization of the background events represents
another source of systematic uncertainty, estimated by using
the corresponding experimental uncertainties per background
source. This uncertainty is assigned a log-normal prior. In the
ee and pp channels, the background from Z+-jets processes
is dominant. Its normalization (referred to as ‘Z-jets normal-
ization”) is varied by +20% [105]. A data-driven approach is
applied to estimate this uncertainty where the MC prediction
in the Z boson mass region is compared to data at different
points during the selection, which yields a SF of up to 1.2
applied to the Z+jets sample, and the full size of that SF is
taken as a 20% normalization uncertainty. In addition, a shape
uncertainty (referred to as ‘Z+jets shape’) is determined to
cover differences in modeling Z+jets production at LO and
NLO. The NLO Z+jets sample is used to determine a slope in
the cos ¢ distribution and a +-5% variation is applied to derive
up/down templates.

Finally, the uncertainty in the integrated luminosity for
2016 data (1.2%) [108] is propagated to the normalization of
all simulated predictions including tt and 7.

72. Model uncertainties

The impact of theoretical assumptions on the modeling is
determined by considering uncertainties that affect both the
normalization and shape and those that affect only the nor-
malization. The former are parametrized by nuisances with
Gaussian priors and the latter by nuisances with log-normal
priors.
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Table 2. An overview of the systematic uncertainties and their impact on the yields and shape of the cos ¢ distribution. The uncertainties
are categorized by their type where ‘norm.” refers to normalization uncertainties modeled with a log-normal prior and ‘shape’ refers to
shape uncertainties. The impact on the yields and shape of the cos  distribution is given in percent where the difference in the shape of the
cos ( distribution is determined from the forward-backward asymmetry. The JES systematics are split as in [78] with the addition of ‘JES:
Relative Balance’ accounting for the difference in modeling of missing transverse momentum.

Uncertainty category Type Effect on yield Effect on shape
Experimental uncertainties
Trigger efficiency Shape 0.5% 0.2%
Lepton ident./isolation Shape 3.0% 0.2%
b tagging (heavy) Shape 0.6% 0.1%
b tagging (light) Shape 0.3% 0.2%
Kinematic reconstruction Shape 0.3% 0.1%
JES: Absolute Shape 0.9% 0.3%
JES: Absolute (stat) Shape 0.4% 0.2%
JES: Pileup Shape 0.5% 0.2%
JES: Flavor QCD Shape 0.7% 0.2%
JES: Relative balance Shape 0.4% 0.8%
JER Shape 0.3% 0.3%
Unclustered energy Shape 0.2% 0.3%
Pileup Shape 0.4% 0.1%
tt normalization Norm. 4.4% 0.3%
Z+jets normalization Norm. 1.6% 0.4%
Z+jets shape Shape 0.2% 0.2%
Luminosity Norm. 1.2% <0.1%
Model uncertainties
Matrix-elem. renorm. scale variation Shape 0.4% 0.3%
Matrix-elem. fact. scale variation Shape 0.6% 0.2%
Parton shower: Initial-state radiation Shape 0.8% 0.7%
Parton shower: Final-state radiation Shape 2.1% 0.4%
Top quark mass Shape 2.4% 0.5%
ME/parton shower matching Norm. 0.8% <0.1%
Underlying event Norm. 0.8% <0.1%
PDF Shape 0.9% 0.1%
Color reconnection Norm. 0.8% <0.1%
b quark fragmentation Shape 0.7% 0.4%
B hadron semilept. decays Shape 0.3% 0.2%
Branching fraction Norm. 1.9% <0.1%
NNLO QCD reweighting Shape 0.6% 0.4%
EWK corrections Shape 0.6% 0.4%
7 normalization Norm. 0.7% 0.8%
7 binding energy Shape 0.2% 0.1%

Renormalization and factorization scales in the ME cal-
culation in POWHEGV2 samples (referred to as ‘Matrix-elem.
renorm. scale variation’ and ‘Matrix-elem. fact. scale vari-
ation’, respectively) are varied considering the following vari-
ations as a function of the cos ¢ distribution:

e LR is fixed, ur is varied by 2.0 (0.5) for the up (down) shape;
e L is fixed, ug is varied by 2.0 (0.5) for the up (down) shape.

To evaluate the impact of the choice of the g value in the par-
ton shower (PS) simulation, dedicated POWHEGV2+PYTHIAS
samples are used.

The uncertainties associated with the modeling of ISR and
FSR are estimated with the separate up/down variations of

the R or afSR parameter in the dedicated samples, chan-
ging their scale individually up and down by factors of 2 and
/2, respectively. For ISR and FSR uncertainties we use the
up and down variations to determine a template represent-
ing a shape uncertainty from a linear fit to these variations.
The slope parameters determined from these linear fits to the
cos (p distribution are —0.0078 £ 0.0060 (ISR) and —0.0021 +
0.0033 (FSR). From these slope parameters, we derive sym-
metrized templates representing a shape uncertainty due to
ISR and FSR effects (referred to as ‘Parton shower: Initial-
state radiation’ and ‘Parton shower: Final-state radiation’,
respectively).

Two POWHEGV2 samples are used to estimate the impact
of the value used for m, in the MC sample on signal selection
efficiency. Compared to the tt POWHEGV2 sample, these two
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have identical settings but different values of m, and are used to
derive templates corresponding to the down and up variations
of m; by 0.5 GeV.

Two MGS5_aMc@NLO 7, samples are used to estimate the
impact of my; in the 7, process. Also, identical settings are used
for these 7, samples except for m;. These samples are used to
derive templates corresponding to the down and up variations
of m; by 0.5 GeV.

To account for the uncertainty due to ME-PS matching
(referred to as ‘ME/parton shower matching’), the Ag,mp para-
meter is varied up and down by one o with respect to its default
value of hgamp = 1.58f8:28 m; in the POWHEGV2-+PYTHIAS
simulation [97]. As no significant shape effect is observed but
the linear fit yields a normalization effect of typically <1%,
we model this effect as a 1% uncertainty with a log-normal
prior in the tt normalization.

The uncertainty due to the underlying event tune
(referred to as ‘Underlying event’) is measured using the
POWHEGV2+PYTHIAS simulations with up/down variations of
the tune parameters with respect to its default value according
to their uncertainties [109]. Again, a linear fit of the cos  dis-
tribution of these up/down variations is utilized to determine
a shape uncertainty. A <1% flat effect is observed and hence,
is assigned an uncertainty of 1% with a log-normal prior.

The uncertainty arising from the PDFs is assessed by
reweighting the tt signal sample according to the 100 rep-
licas in the NNPDF3.0 PDF set. Also, the ag value used in
the NNPDF3.0 PDF set is varied separately according to its
uncertainties.

A multiple particle interaction (MPI) scheme with early res-
onance decays switched off is implemented in the PYTHIAS
simulation of the tt process as a default color recon-
nection model. Various color reconnection models (MPI-
based scheme with early resonance switched on, gluon-move
scheme, and QCD-inspired scheme) [110, 111] are applied to
the signal sample independently. Since no significant shape
effect is observed, a log-normal prior on the tt normalization
of 1% is assigned as uncertainty for color reconnection.

The Bowler-Lund function [112, 113] with a parameter
value of 0.855 [114] is used as a default fragmentation func-
tion to describe momentum transfer from b quarks to B had-
rons in the tt simulation. The effect of an up and down vari-
ation of the Bowler-Lund function is studied by reweight-
ing the relevant transfer function at the generator level of
the tt sample. Furthermore, a different fragmentation function
(Peterson function [39]) is used as an alternative function to
reweight the signal sample. A shape dependent total uncer-
tainty due to the fragmentation model (referred to as ‘b quark
fragmentation’) is estimated by taking an envelope of the res-
ults from the two approaches.

The semileptonic branching fraction (BF) of B hadrons
could affect the b jet energy response. The b jets with
semileptonic B hadron decays (referred to as ‘B hadron
semilept. decays’) are reweighted at the generator level by
comparing the pYyTHIA8 BFs with the ones taken from PDG
2022 [39] and their uncertainties. More details on these effects
are provided in [115]. This effect results in a shape uncertainty.

The combined dileptonic BF for the tt decay into ee, upu,
and ey final states including leptonic decays of 7 leptons
i8S Beombined = 0.06425 with an uncertainty (referred to as
‘Branching fraction’) of 1.8% [39], and this is assigned a log-
normal prior.

We reweight the nominal signal MC sample such that the
top quark pr spectrum matches that from a fixed-order ME
calculation at NNLO in QCD. The nominal signal MC sample
without this NNLO QCD reweighting is taken as the system-
atic variation in the NNLO QCD reweighting. Since this is a
one-sided variation, we supply this as the positive variation in
the fit and restrict the fit to only consider the positive variation.

An uncertainty in the EWK corrections is included to
account for contributions from higher mixed-order terms, fol-
lowing the same prescription as outlined in [95] and allow-
ing us to estimate the impact of missing higher-order terms
in the ME calculations. The EWK corrections are applied to
the tt signal sample using the multiplicative approach and the
uncertainty is taken as the difference between the multiplicat-
ive and additive approaches. Since this is a one-sided variation,
we supply this as the positive variation in the fit and restrict the
fit to only consider the positive variation.

We assign specific systematic uncertainties to compensate
for the unknown 7, signal component with respect to its nor-
malization and shape. The expected migration between bins
of the cos distribution is obtained from simulated tt events
at reconstruction level and used to smear the generator-level
events in the simulated 7, sample.

In order to determine a model uncertainty for the toponium
contribution we rely on a theoretical result in [54]. The nor-
malized m(tt) cross section distribution between 300 and
380 GeV, which is predicted at NLO plus next-to-leading
power [57] (NLO+NLP) and NNLO-+NLP levels, is com-
pared with earlier results using CMS data [49] and shows reas-
onable agreement when applying a SF of 1.2. However, the
toponium model at LO QCD utilized in this measurement only
uses the 7, color-singlet contribution and does not adequately
cover effects of color-octet contributions. Hence, we vary the
7 cross section by £50% of its predicted value to account
not just for resummation effects, but also for the effects
described earlier. The predictions for the binding energy of 7,
under various potentials has been shown to vary from —1.7 to
—2.6GeV [116]. Thus, we also vary the binding energy of the
n¢ by £0.5GeV, which directly influences the formation and
stability of the tt bound state and quantifies the energy required
to separate the top quark and antiquark constituents, impacting
the shape of the 7, signal component. The choice of the size
of this variation ensures that the model returns physical solu-
tions with a negative binding energy in the variation. Missing
color-octet contributions are also affected by variations of the
binding energy, but this effect is included in the overall nor-
malization uncertainty.

8. Modeling of the production threshold

Several kinematic variables, shown in figure 3, were examined
to study the modeling of the data by the MC simulation
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Figure 3. Reconstruction-level m(tt) (upper left), pr(t/t) (upper right), and cos ¢ (lower) distributions of the combined signal model
(POWHEGV2+PYTHIA8+1, labeled PH+P8+1) in the full phase space comparing the modeling of the data by MC simulation when not
including 7 contributions (purple dotted line in the upper panel under each plot), or no pr(t/t) reweighting is applied (gray dashed line in
the upper panel), or neither of those (red dashed-dotted line in upper panel). The lower panel under each plot compares the data to
POWHEGV2-+HERWIGH+ (blue dashed line, labeled PH+Hpp+1:), to MG5_amc@nNLo (FxFx)+PYTHIAS (purple dashed-dotted line), and
finally to the nominal MC including 7 contributions and pr(t/t) reweighting (orange solid line, labeled PH+P8+1). The hashed
uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ‘pr
rew.” in the legend refers to the pr reweighting procedure (detailed in section 7) used to reweight the tt sample to NNLO in QCD.

near the production threshold of tt. The two lower panels of
each plot in figure 3 show ratios of the various predictions
to the data that more clearly demonstrate the improvement
in modeling of the data when including contributions from
the 7, state. Comparisons of different options on how to con-
struct the combined signal model and generator choices are
also included. Namely, data are compared in the upper panel
to the case of POWHEGV2+PYTHIAS not being reweighted
to account for higher order corrections to the pr(t/t) dis-
tribution (gray line in upper panel), or not including 7
(purple line in upper panel), or neither of them (red line in
upper panel). The lower panel compares data to the nominal
combined signal provided by POWHEGV2+PYTHIA8 (orange
line in lower panel), to POWHEGV2+HERWIG++ (blue line
in lower panel) and to MG5_aMmc@NLO (FxFx)+PYTHIAS
(purple line in lower panel). The hashed band includes
all systematic uncertainties described in section 7 for the
combined signal model and all background contributions.

The best overall modeling is given by the combined sig-
nal model of tt4+n, and including pr(t/t) and EWK cor-
rections, while MG5_amc@nNLO (FxFx)-+PYTHIAS provides
an improved modeling in pr(t/t) but worse modeling in
m(tt). However, it should be noted that the systematic uncer-
tainties are at the pre-fit level, which means in particu-
lar that the 7 contribution has systematic uncertainties in
excess of 50%.

Figure 4 shows MC modeling of the data in the analyzed
phase space including the 7 state residing at lowest m(tt).
Adequate modeling of the data can be seen even in the pro-
duction threshold region below 400 GeV, which includes the 7,
contribution. Systematic uncertainties were described earlier
in more detail in section 7 and include (large) systematic
uncertainties for the modeling of the 7, and the EWK correc-
tions to the signal MC components. Within the selected phase
space and including effects from pr(t/t) reweighting and 7,
MG5_amc@nrLo (FxFx) provides a better description than
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Figure 4. Reconstruction-level distributions of cos ¢ (left) and pr(t/t) (right) requiring 345 < m(tt) < 400GeV and f.(tt) < 0.9. The lower
panels on each figure show the same model comparison done in figure 3. The hashed uncertainty bands correspond to the pre-fit systematic
uncertainties and includes the statistical uncertainty of the data as well. The label ‘pt rew.” in the legend refers to the pt reweighting
procedure (detailed in section 7) used to reweight the tt sample to NNLO in QCD.

the other event generators for both the cos and the pr(t/t)
distributions.

9. Extraction of the entanglement proxy

The distribution of events at the reconstruction-level as a func-
tion of cos ¢ in the phase space of 345 < m(tt) < 400GeV and
B.(tt) < 0.9 is employed in a binned profile likelihood fit to
measure the entanglement proxy D and to compare it with the
boundary for entanglement. A single parameter of interest D
is defined, which means that the combined tt and 7 signal are
correlated in the likelihood fit, and only a single D is extracted
at the end. We use templates with the expected yields as repor-
ted in table 1 as nominal input to the binned profile likelihood
fit including shapes of all systematic uncertainties described
in section 7 and define D as the single parameter of interest
with an unconstrained shape prior. The profile likelihood fit is
repeated while varying the entanglement proxy D and the min-
imum of the negative log likelihood is used to determine the
best fit value for D. The uncertainty in D is determined from
when the difference of the negative log likelihood values to the
minimum crosses the values —2AInL = 1.

In particular, templates are derived using the POWHEGV2
SM predictions implementing spin correlations for the tt com-
ponent of the combined signal model including the assumed
7, contribution. We expect that mixtures of such a sample and
a sample with purposely broken spin correlations can effect-
ively model a continuous (linear) variation of the degree of
entanglement between the top quarks by means of the entan-
glement proxy D. In order to have templates implementing an
alternative value of the entanglement proxy D, we employ the
noSC POWHEGV2 sample (including the assumed 7, noSC con-
tribution) and ‘mix’ it in steps ranging from —100% to +100%
with the combined signal model SM template. Figure 5 shows
‘mixtures’ obtained from three values (100% SC, 50%/50%
noSC/SC, 100% noSC) as a function of cos¢ at the detector

13

level for the tt (Ieft) and 7 (right) components of the combined
signal model. The negative mixtures for tt, shown in figure 5,
are created mirroring the corresponding positive mixtures
around the 100% SC mixture. The profile likelihood fit is pre-
vented from fitting a negative noSC fraction for the 7, con-
tribution as this would imply D < —1 and would have the
consequence of predicting a portion of the differential cross
section in cos to be negative, which is non-physical. Any
particular mixture of combined SC and noSC signal corres-
ponds to a certain value of D at the parton level by means of
calculating a 2-bin asymmetry (Ap) with the combined signal
model, consisting of tt and 7. The value of

N(cosp > 0) —N(cosp < 0)
N(cosgp > 0)+N(cosp < 0)

Ap

(N

yields D as —2Ap, with N always being the sum of tt and 7
contributions.

The profile likelihood fit yields the value of the parameter of
interest D directly at the parton level accounting for all detector
effects due to acceptance, efficiency, and migration. The par-
ton level corrected phase space is given by: m(tt) < 400GeV
and S, (tt) < 0.9. These effects smear the definition of when
top quark-antiquark states start becoming entangled at the
detector level. We also include the shifts originating from the
profile likelihood fit of all systematic uncertainties implemen-
ted as nuisance parameters and employ a scan of twice the neg-
ative log likelihood (—2A In L) distribution of the parameter of
interest D to measure its value and uncertainty.

The measurement of D via a binned profile likelihood fit
and the scan of the —2AInL distribution are verified to be
unbiased against different values of an injected Djpjec; at the
parton level corresponding to top quarks with a varying degree
of entanglement.

In order to determine whether top quarks are inseparable
and consequently entangled, the measured value of D can be
compared to the boundary for entanglement.
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10. Results

The result of the binned profile likelihood fit of the cos¢y
distribution is shown in figure 6 (left), and the data is well
modeled by the combined signal model of tt+7. Figure 6
(right) presents the expected and observed template of noSC
and SC mixture and we observe a best fit mixture of the post-fit
templates resulting in a tt contribution consistent with a 2.53%
more spin correlated tt contribution when compared to the SM.
The 7, contribution is consistent with 100% SC contribution,
which is the expectation by the SM for the 7, contribution.
Table 3 provides the yields for each simulated sample and
data at the pre-fit and post-fit level. The scan of the —2AInL
distribution of the parameter of interest D is shown in figure 7
including the boundary for entanglement at D = —1/3.

The value of the entanglement proxy D in top quark
events at the parton level is measured following the method
described in the previous section and is available as a HEPData
record [117]. For the phase space of m(tt) <400GeV and
B.(tt) < 0.9 at the parton level, an observed value of D =
—0.4801 0018 (stat) 70020 (syst) is obtained in data, with an
expected value of D = —0.4671001%(stat) 7005} (syst). With
the boundary for entanglement at —1/3, this result corres-
ponds to top quarks being entangled in this phase space with
an observed (expected) significance of 5.1 (4.7) .

Removing the 7, contribution from the signal model
and only considering the tt component as signal and re-
measuring D in the same phase space as before yields an
observed (expected) value of D= —0.491100¢ (tot.) (D =

—0.4521992 (tot.)) at the parton level with an observed
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Table 3. The number of predicted and observed events in the selected phase space, before the fit to the data (pre-fit) and with their best fit
normalizations (post-fit). The uncertainties in the pre-fit and post-fit yields reflect total uncertanties but do not include correlations. The
‘Only 7’ contribution is not added to the total MC prediction since it is included in the combined signal contribution.

Sample Pre-fit Post-fit
Signal (tt+7) 45800 + 1300 47560 + 380
Z+jets 3560 4280 3490 £ 260
tW 1873 +£72 1912 + 64
tt other 572 +27 590 £ 22
Diboson 1804+ 12 185+ 11
tV 100 £13 102 £+ 14
Total MC 52100 =4 1600 53840 4220
Only 7 890 4+ 220 920 £ 190
Data 53843 53843
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Figure 7. Result of the scan of the quantity —2AInL from a profile likelihood fit as a function of the parameter of interest D, when
including (left) or excluding (right) the 7, contribution. Both results are at parton level and the relevant phase space is indicated in the
figures itself. The region where the tt pairs become separable and not entangled (D > —1/3) is indicated by the shaded area.

(expected) significance of 6.3 (4.7) 0. Data are described bet-
ter when the expected 7 contribution is included in the signal
model.

Figure 8 shows the 20 leading nuisance parameters in the
profile likelihood fit. The three leading uncertainties stem from
the 7, signal contribution, the JES relative balance correc-
tions, and the top quark pr reweighting uncertainty. The latter
and the uncertainty on EWK corrections are by construction
one-sided.

Figure 9 shows the measured value of the entanglement
proxy D, together with the predicted values from different MC
event generators, in the relevant phase space, compared with
the boundary for entanglement of top quarks. Overall, the data
is in good agreement with the predictions from the three mod-
els, especially with the inclusion of the 7, contribution.

In addition, figure 9 provides the measured and predicted
values of D in the same phase space but excluding the 7, con-
tribution and only assuming the tt signal component. As a
result, the measurement shows that MG5_amc@n~NLo (FxFx)
describes the data better, since the predictions by the other two
models have some disagreement with the data at the level of
one o. While the observed values tend to be more negative,
the predicted values from all three MCs become less negative

owing to the missing effect of the 7, contribution. This dif-
ference in observed value originates from the inclusion of 7
causing a larger response in the shape of the cos ¢ distribution
at the reconstruction level for a given change in the parton-
level shape when compared with the no spin correlation mix-
ing. Thus, for our specific technique of extracting the entan-
glement of tt pairs, an overestimation of the observed signific-
ance would be obtained, if 7, contributions were ignored. It is
clearly visible that including the 7, signal component reduces
the previously mentioned mild disagreement between data and
simulation.

11. Summary

Entanglement is an intrinsic property of quantum mech-
anics and its measurement utilizes elementary particles to
test quantum mechanics. Recently, the ATLAS Collaboration
reported the first observation of entanglement in the top quark-
antiquark (tt) system [26] wih a result indicating a slight devi-
ation from MC simulation.

The measurement of the entanglement of tt pairs per-
formed with CMS data exploits the spin correlation variable
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Figure 8. The left (right) column shows pulls (impacts) for the top 20 nuisance parameters affecting the measurement of the top quark
entanglement. Pulls are calculated using pre- and post-fit values and uncertainties, while impacts are measured by shifting the nuisance
parameter by +1¢ and observing the change in D. The maximum likelihood estimate of the parameter of interest is denoted as D. The
NNLO QCD reweighting and EWK correction uncertainties are one-sided by construction, which can be seen by observing the one-sided
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and not applying it, and provide it as the positive variation in the profile likelihood fit. For the EWK correction, the uncertainty is taken as
the difference between applying the EWK corrections multiplicatively and additively and is provided as the positive variation in the profile

likelihood fit.

D, which at the tt production threshold, and in absence of
BSM contributions, provides access to the full spin cor-
relation information. This result contrasts with the ATLAS
Collaboration’s findings in several key ways. We measure
entanglement at the parton level, whereas ATLAS reports
their observable at the particle level. Additionally, our ana-
lysis is the first to consider non-relativistic bound-state effects
in the production threshold by including the ground state of
toponium, 7;, which were not included in the ATLAS result.
Unlike ATLAS, the CMS result is derived from a binned like-
lihood fit to extract the entanglement proxy, rather than using
a calibration curve.

The D variable represents an entanglement proxy, where
a value of less than —1/3 signals the presence of entangle-
ment. This proxy is measured using events containing two
oppositely charged electrons or muons produced in pp colli-
sions at a center-of-mass energy of 13 TeV. The modeling of
the data is improved when including the additional predicted

contribution of the ground state of toponium, 7, and is utilized
in a combined signal model of tt+7, in the measurement. The
extent to which tt pairs are entangled is measured by means
of a binned profile likelihood fit of the parameter of interest
D directly from the distribution of cos ¢, where ¢ is the angle
between the two charged decay leptons in their respective par-
ent top quark rest frames. In the most sensitive kinematic phase
space of the relative velocity between the lab and tt refer-
ence frames (,(tt) < 0.9, and of the invariant mass of the top
quark pair 345 < m(tt) < 400GeV, the fit of the cos distri-

bution yields an observed value of D = —0.480700%¢ and an
expected value of D = 70.4671'8:3%8 including the predicted

1, state.

This result has an observed (expected) significance of 5.1
(4.7) o, corresponding to the observation of top quark entan-
glement. The measured value of D is in good agreement with
the MC modeling in this phase space when including the
expected 7 bound state contribution.
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Figure 9. Summary of the measurement of the entanglement proxy D in data (black filled or open point) compared with MC predictions
including (solid line) or not including (dashed line) contributions from the 7 state. The legend denotes MC predictions without the 7 state
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