
J
H
E
P
1
2
(
2
0
2
4
)
0
6
5

Published for SISSA by Springer

Received: June 25, 2024
Revised: October 23, 2024

Accepted: November 6, 2024
Published: December 10, 2024

A log story short: running contributions to radiative
Higgs decays in the SMEFT

Christophe Grojean ,a,b,c Guilherme Guedes ,a Jasper Roosmale Nepveu a,b

and Gabriel M. Salla a,d

aDeutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany

bInstitut für Physik, Humboldt-Universität zu Berlin,
12489 Berlin, Germany

cTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland

dDepartamento de Física Matemática, Instituto de Física Universidade de São Paulo,
C. P. 66.318, 05315-970 São Paulo, Brazil
E-mail: christophe.grojean@desy.de, guilherme.guedes@desy.de,
jasper.roosmalenepveu@desy.de, gabriel.massoni.salla@usp.br
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1 Introduction

Higgs interactions with gauge bosons are of crucial phenomenological importance. The
di-photon decay (h→ γγ) was one of the channels in which the Higgs was first observed [1, 2],
while gluon fusion (gg → h) is the most important production mechanism for the Higgs
at hadron colliders. Furthermore, the rarer h → γZ decay has recently been observed by
the ATLAS and CMS collaborations [3, 4]. All of these processes occur at loop level in the
Standard Model (SM) and they are promising directions to look for beyond the Standard
Model (BSM) physics.

Assuming this new physics to be heavy — as suggested by the continuous survival of
the SM under the extreme scrutiny from the past years — the Standard Model Effective
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Field Theory (SMEFT) is an ideal tool to probe deviations from the SM predictions in a
mostly model-independent way. In the SMEFT, the loop and heavy mass expansions of
the theory suggest a hierarchy on the Wilson coefficients (WCs). Higher-order terms in
the expansion in the UV scale of new physics (Λ) are generally expected to be suppressed.
Notwithstanding, effects at dimension eight, i.e. O(1/Λ4), can sometimes give relevant or
even the leading contributions to an observable [5–22].

Up to dimension eight, the SMEFT contribution to the amplitudes for the h → V V

decays, with V V = gg, γγ or γZ, can schematically be written as (suppressing an overall
kinematic structure)1

A[h→ V V ]× v ≃ c
(4)
V V

16π2 + c
(6)
V V

v2

Λ2 + c
(6)′
V V

16π2
v2

Λ2 log vΛ + c
(8)
V V

v4

Λ4 + c
(8)′
V V

16π2
v4

Λ4 log vΛ , (1.1)

where v is the Higgs vacuum expectation value (vev) and the coefficients c(d)
V V , c

(d)′
V V represent

combinations of SM and EFT parameters at mass dimension d. For example, c(8)
V V includes

terms quadratic in the dimension-six WCs and other terms linear in the dimension-eight WCs.
The SM contribution to the decay amplitude is denoted by c(4)

V V /(16π2), where c(4)
V V = O

(
g2

SM
)

in terms of the SM (e.g. gauge) couplings and we factored out the known loop suppression.
In the SMEFT, there are higher-dimensional contact interactions between the Higgs and
gauge bosons, which can generate contributions to the decay amplitudes already at tree level,
such that the terms proportional to c

(6,8)
V V do not contain a loop suppression at this stage.

The logarithms stem from the renormalization group equations (RGEs) that describe the
evolution of the WCs from the matching scale Λ to the electroweak scale v. This is a loop
effect, hence the explicit 1/(16π2) scaling. (We have suppressed the running contribution
at dimension four, which is a two-loop effect.)

The fact that the c(6,8)
V V terms a priori contribute at lower loop order than the SM makes it

important to understand their actual scaling by considering their UV origin. The coefficients
c

(d)
V V and c

(d)′
V V at dimension six and eight can be determined in terms of the UV parameters

by a matching calculation at the scale of new physics. Throughout this paper, we will restrict
our analysis to UV scenarios that are weakly coupled and renormalizable, and which respect
the SM symmetries. In this case, the leading new physics contribution to h→ V V is at loop
level, because the SU(3)c and U(1)EM gauge symmetries remain unbroken. In the SMEFT
parameterization (1.1), this translates to a loop suppression of the unprimed coefficients:
c

(6)
V V = O

(
g2

BSMg
2
SM/(16π2)

)
and c

(8)
V V = O

(
g2

BSMg
4
SM/(16π2)

)
, where the interaction with

coupling gBSM involves new heavy particles. This illustrates the more general fact that, under
the stated assumptions on the UV, some physical effects cannot be generated by tree-level
exchange of heavy states [23, 24]. Therefore, the leading order computation of c(6,8)

V V in terms
of the UV parameters requires a matching computation performed at the one-loop level.2

1We focus on the scaling of different terms in the amplitude because this determines the behavior of the
observable decay rate, which involves the square of the amplitude. There are no non-interference selection
rules between the SM and SMEFT amplitudes and therefore the scaling derived in eq. (1.1) will dictate the
scaling of the decay rate in a straightforward way.

2There will also be contributions from a one-loop computation in the EFT that is obtained from a tree-level
matched UV, e.g. a modified Yukawa interaction. These do not affect the conclusions on the 1/(16π2) scaling
made here, but we do include their quantitative effect in the rest of this paper (see section 5).
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Even though there has been an intense effort to develop tools that automatize matching
calculations at loop level [25–30], these remain more cumbersome than their tree-level
counterparts, particularly at dimension eight. They are more time consuming; the projection to
a physical basis is more involved; and the set of relevant UV models is not cataloged, in contrast
to the tree-level extensions [31]. Furthermore, dealing with spontaneously broken symmetries
in loop-level matching calculations is still an active area of research, see e.g. ref. [32].

In contrast to the non-logarithmic terms, the primed coefficients in eq. (1.1), c(6,8)′
V V ,

can in principle receive non-vanishing contributions by a matching computation already at
tree level, together with the application of known RGEs [33–38]. This would result in the
same loop suppression as c(6,8)

V V given the loop factor from the RGEs. If the appropriate
tree-level matching result is non-zero, this could therefore lead to a significant correction
at the same perturbative order with a logarithmic enhancement [39]. This amounts to a
tree-level effect mixing into a loop-level process.

In the SMEFT, the possibility of leading-order contributions through the RGEs — when
tree-level effects mix into loop-suppressed processes — has been studied in detail at di-
mension six. This effect was confirmed and found to be phenomenologically important in
calculations of dipole moments [7, 40, 41]. On the other hand, it was found that the Higgs
decays to gauge bosons at dimension six are not renormalized at one loop, i.e. in eq. (1.1),
c

(6)′
V V = O

(
g2

BSMg
4
SM/(16π2)

)
instead of c(6)′

V V = O
(
g2

BSMg
2
SM
)
, such that the logarithm at dimen-

sion six is a two-loop effect [42–44]. This is also implied by the non-renormalization theorem
of ref. [45] in combination with a classification of operators according to the perturbative
order at which they can be generated by matching [46]. Even though the same arguments
extend to dimension eight, they do not exclude the renormalization of the Higgs decays
at this order. This motivates the investigation of whether the logarithmic enhancement is
realised in the SMEFT for h→ V V at dimension eight, and thereby to determine if c(8)′

V V in
eq. (1.1) should be included in future phenomenological analyses.

In this paper, we perform explicit tree-level matching calculations in weakly coupled
UV models consisting of heavy scalars and vectors, to demonstrate the presence or absence
of the renormalization of the h→ V V amplitudes, while highlighting its phenomenological
impact. In the limit of vanishing Yukawa and CP-violating couplings, we consider all bosonic
extensions of the SM which match onto the SMEFT and potentially generate operators
(through tree-level matching) that can renormalize the operators responsible for Higgs decays
at one loop. At dimension six, the matching results are transparent: the fact that the Higgs
decays are loop-level processes, i.e. c(6)

V V = O
(
g2

BSMg
2
SM/(16π2)

)
in eq. (1.1), and that they are

not affected by renormalization group (RG) mixing from operators which are generated at
tree level, c(6)′

V V = O
(
g2

BSMg
4
SM/(16π2)

)
, is implied by the vanishing result of the appropriate

WCs in the complete tree-level matching results of ref. [31].
At dimension eight, in the commonly used basis of ref. [47], our results show that the

loop-level order of c(8)
V V = O

(
g2

BSMg
4
SM/(16π2)

)
is encoded through intricate correlations

between multiple WCs which are individually generated by tree-level matching calculations.
Furthermore, to obtain the expected loop suppression factor in the heavy vector extensions,
an additional interaction involving the heavy fields had to be included. This “magnetic
dipole term” is necessary to ensure tree-level perturbative unitarity [39, 48, 49]. Dimension
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eight is the leading order at which the SMEFT is sensitive to this interaction in tree-level
matching calculations.

To determine the scaling of c(8)′
V V , we supplement the RGEs of refs. [36–38] with the

obtained tree-level matching results. We show that the Higgs decays h→ gg and h→ γγ are
not renormalized at one loop. For the h→ γγ amplitude, this is a non-trival consequence
of cancellations between the RGEs of various WCs. Knowledge of such correlations and
cancellations within the EFT is important for phenomenological studies, as they motivate the
restriction to a smaller set of directions in parameter space. To expose the correlations that
are present in the matching results and the RGEs, we propose a new basis for a subset of
dimension-eight operators that describe the Higgs decays. Similarly to the SILH basis [50, 51],
the Higgs decay into two photons is parameterized by a single coefficient in this basis.
Moreover, the h→ γZ decay requires only one additional parameter (at tree level) and also
the running (and mixing) of these two coefficients is made more transparent.

Remarkably, we do find that the h→ γZ amplitude is logarithmically enhanced in some
of the UV models, i.e. c(8)′

γZ = O
(
g2

BSMg
4
SM
)
. This non-trivial renormalization of h→ γZ by

potentially tree-level generated operators is the main result of this work. It is a novel effect
starting at dimension eight and it suggests that the RGEs could provide sizable corrections
to phenomenologically relevant observables.

The results presented in this paper help understanding the conditions (or UV models)
under which a logarithmic enhancement can occur in the h→ γZ decay at dimension eight.
We consider both custodial SU(2)L conserving and violating UV models, and we find that
the renormalization of the h → γZ decay is correlated with custodial symmetry breaking
for pure scalar extensions of the SM. That is, c(8)′

γZ (in eq. (1.1)) is in fact not generated by
tree-level matching when custodial symmetry is preserved in UV models with only heavy
scalars. Given the tight experimental bounds on custodial breaking, this renders the effects
of the logarithm very constrained. This is reminiscent of the fact that custodial symmetry
breaking also protects h → γZ in Composite Higgs Models [52]. However, if one includes
heavy vectors, this correlation is broken and the dimension-eight renormalization can arise in
several new physics scenarios while respecting custodial symmetry at tree level.

As precision increases in Higgs physics with the High-Luminosity program at the LHC
and at possible future colliders such as the FCC, the detailed understanding of the role of the
dimension-eight contributions becomes fundamental, particularly after the observation of the
h→ γZ decay [3, 4]. We identify observables in which these higher-order contributions can be
relevant to disentangle possible UV scenarios in case a signal is observed by future experiments.

We start this paper by reviewing the tree-level parameterization of the Higgs decays in
the SMEFT up to dimension eight in section 2. We also discuss the non-renormalization
result of ref. [45], which implies that the Higgs decays are not renormalized at one loop and
dimension six in the SMEFT. In section 3, we introduce the set of candidate weakly coupled
UV models with heavy scalars and vectors that may result in logarithmically enhanced Higgs
decays at one loop. We also calculate their tree-level matching onto the SMEFT. These
results are combined with the RGEs from the literature in section 4 to determine whether
the Higgs decays can be renormalized at dimension eight. Upon confirming that the h→ γZ

decay amplitude does indeed receive contributions from the RG mixing of tree-level generated
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operators, we study the phenomenological implications of this finding in section 5. We
demonstrate that there exist UV models in which the dimension eight RGEs generate sizable
corrections, while evading bounds from custodial symmetry breaking. We then conclude in
section 6. In addition, we provide more details on the computations in four appendices.

2 Renormalization of Higgs decays in the SMEFT

In this section, we will review the relevant background material for the rest of the paper. We
will first write the Higgs decay amplitudes in terms of SMEFT parameters at tree level up
to dimension eight. The considered Higgs decays are loop-level processes in weakly coupled
renormalizable theories. We will therefore also review the general classification of SMEFT
operators that are necessarily loop-level generated, i.e. these operators are never generated in
the matching at tree level of any weakly coupled renormalizable model. Such operators may
receive important contributions through the RGEs, when induced by potentially tree-level
generated operators [39]. We will review this possibility on general grounds, before focusing
on the Higgs decays in more detail in subsequent sections.

2.1 Parameterization of Higgs decays in the SMEFT

Unlike the SM, in which the leading contribution to the processes h → gg, h→ γγ and
h → γZ arises at loop level, the SMEFT introduces corrections to these decays at tree
level in the effective theory, which we denote by direct contributions. We focus on the
parameterization of these effects in this section. In addition, the SMEFT also contributes
indirectly, through redefinitions of the SM couplings in the broken phase, involving the WCs.
The latter only affect loop diagrams and are consequently not considered in this section. They
may however be relevant when computing the SMEFT contributions to the decay widths,
and as such we discuss these indirect effects in appendix A.

We define the bosonic sector of the SM Lagrangian as

LSM ⊃ −
1
4G

A
µνG

µνA − 1
4W

a
µνW

µνa − 1
4BµνB

µν +Dµϕ
†Dµϕ+ µ2

ϕ|ϕ|2 − λ|ϕ|4, (2.1)

where ϕ is the Higgs doublet with mass parameter µ2
ϕ > 0, Bµν and W a

µν are the electroweak
gauge boson field strengths, and GAµν is the gluon field strength. The SMEFT operators that
contribute directly to the considered Higgs decays up to dimension eight are3

LSMEFT ⊃
CϕG
Λ2 |ϕ|

2GAµνG
Aµν + CϕW

Λ2 |ϕ|
2W a

µνW
aµν + CϕB

Λ2 |ϕ|
2BµνB

µν

+ CϕWB

Λ2 (ϕ†σaϕ)BµνW aµν + CϕD
Λ2 |ϕ

†Dµϕ|2 +
Cϕ□
Λ2 |ϕ|

2□|ϕ|2

+
C

(1)
ϕ4G2

Λ4 |ϕ|
4GAµνG

Aµν +
C

(1)
ϕ4W 2

Λ4 |ϕ|4W a
µνW

aµν +
C

(3)
ϕ4W 2

Λ4 (ϕ†σaϕ)(ϕ†σbϕ)W a
µνW

bµν

+
C

(1)
ϕ4B2

Λ4 |ϕ|
4BµνB

µν +
C

(1)
ϕ4WB

Λ4 |ϕ|2(ϕ†σaϕ)BµνW aµν

+
iC

(1)
Wϕ4D2

Λ4 |ϕ|2(Dµϕ
†σaDνϕ)W aµν +

iC
(1)
Bϕ4D2

Λ4 |ϕ|2(Dµϕ
†Dνϕ)Bµν , (2.2)

3We omit CP-odd operators involving the dual field-strength tensors. Our analysis can be extended to
include CP-odd operators without affecting the conclusions.
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where the Ci are the WCs. The first two lines contain dimension-six operators from the
Warsaw basis [53], and the last three lines the dimension-eight operators in Murphy’s basis [47].
Our notation for the labelling of the WCs follows these works.

Let us begin with the decay of the Higgs boson into two gluons. When the Higgs
is expanded around its vev, ϕ = (0, (h + v)/

√
2)T , the operator OϕG corrects the kinetic

term of the gluon. Similarly, OϕD and Oϕ□ modify the kinetic term of the Higgs. After
field redefinitions to canonically normalize both kinetic terms, see appendix A, this effect
gets distributed over the remaining operators. In particular, it results in dimension-eight
contributions at quadratic order in the dimension-six couplings, which we denote by 6× 6.
Separating the full tree-level amplitude into a dimension-six contribution, A [hgg](6), and the
two different dimension-eight terms, A [hgg](6×6) and A [hgg](8), we find

A [hgg](6)

v/Λ2 = CϕG,

A [hgg](6×6)

v3/Λ4 = 2C2
ϕG +

(
Cϕ□ −

CϕD
4

)
CϕG,

A [hgg](8)

v3/Λ4 = C
(1)
ϕ4G2 ,

(2.3)

where we have stripped the amplitudes from a common factor 4(pµg1p
ν
g2 − ηµν(pg1 · pg2)),

with pg1,2 the momenta of the gluons. This factor corresponds to the Feynman rule of the
operator hGAµνGAµν ,

L ⊃ chgg hGAµνGAµν =⇒ iA[hgg] = 4ichgg(pµg1p
ν
g2 − ηµν(pg1 · pg2)) . (2.4)

The amplitudes in eq. (2.3) were previously obtained in ref. [54].
In order to compute the amplitudes for the decays to the electroweak gauge bosons, we

need to consider the electroweak symmetry breaking mechanism and rotate Bµ and W 3
µ to

obtain the physical photon and Z boson. The extra field redefinitions and diagonalizations
to normalize the kinetic terms in the presence of the higher-dimensional operators are more
involved than with the gluonic operators. More details can be found in appendix A.

The tree-level amplitudes at dimension six and dimension eight for h→ γγ are given by

A [hγγ](6)

v/Λ2 = e2
(
CϕW
g2 + CϕB

g′2
− CϕWB

g′g

)
,

A [hγγ](6×6)

v3/Λ4 = (CϕW − sW cWCϕWB)
(
2s2
WCϕW − sW cWCϕWB

)
+ (CϕB − sW cWCϕWB)

(
2c2
WCϕB − sW cWCϕWB

)
+
(
Cϕ□ −

CϕD
4

) A [hγγ](6)

v/Λ2 , (2.5)

A [hγγ](8)

v3/Λ4 = e2

C(1)
ϕ4W 2

g2 +
C

(3)
ϕ4W 2

g2 +
C

(1)
ϕ4B2

g′2
−
C

(1)
ϕ4WB

g′g

 .

– 6 –
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Analogous to the Feynman rule for h → gg in eq. (2.4), for h → γγ we obtain an overall
kinematic structure 4(pµγ2p

ν
γ1−ηµν(pγ1 ·pγ2)), with pγ1,2 the incoming momenta of the photons,

which we suppress when writing the amplitudes above. The couplings e, g and g′ are the
U(1)EM, SU(2)L and U(1)Y charges, respectively. In the presence of higher-dimensional
operators, we define these charges as the ones that preserve the form of the covariant
derivatives. Moreover, sW ≡ sin θW = g′/

√
g2 + g′2, cW ≡ cos θW = g/

√
g2 + g′2 are the sine

and cosine of the weak angle. We refer to appendix A for more details on our conventions.
We note the similarity in structure in the contributions from single dimension-six and
dimension-eight WCs. The expressions in eq. (2.5) agree with ref. [55].

Suppressing the common factor of 2(pµZpνγ − (pZ · pγ)ηµν), with pγ,Z being the 4-momenta
of the photon and of the Z boson, the results for h → γZ read

A [hγZ](6)

v/Λ2 = g2 − g′2
g′g

A [hγγ](6)

v/Λ2 + gg′
(
CϕW
g2 − CϕB

g′2

)
,

A [hγZ](6×6)

v3/Λ4 = 2s2W
(
C2
ϕW − C2

ϕB

)
+
(
Cϕ□ −

CϕD
4

) A [hγZ](6)

v/Λ2

− c2WCϕWB

[
(2s2

W + 1)CϕW + (2c2
W + 1)CϕB − s2WCϕWB

]
, (2.6)

A [hγZ](8)

v3/Λ4 = g2 − g′2
g′g

A [hγγ](8)

v3/Λ4 + gg′

C(1)
ϕ4W 2 + C

(3)
ϕ4W 2

g2 −
C

(1)
ϕ4B2

g′2


+ gg′

8

C(1)
Bϕ4D2

g′
−
C

(1)
Wϕ4D2

g

 ,
where we used the short-hand notation s2W ≡ sin 2θW , c2W ≡ cos 2θW . Compared to the
case of h→ γγ, the amplitude A [hγZ](8) receives contributions from an additional operator
class, Xϕ4D2, where X corresponds to a field-strength tensor and D to a covariant derivative.
Equation (2.6) agrees with ref. [56].

2.2 Tree- and loop-level generated operators and their RG mixing

In this section, we review the arguments that can be used to obtain information on the
perturbative origin of the WCs and their RG mixing structure, with particular interest in the
operators discussed in the previous section, responsible for the decays of the Higgs. To this
end, our starting assumption is that the UV completion is a weakly coupled renormalizable
theory. In this case, in a chosen basis, some operators are not generated by any tree-level
matching calculation, simply because there exist no contributing diagrams. For this reason
they are called “loop-level generated operators” (LLOs) [23, 24]. In contrast, we will call
operators for which this cannot be argued on general grounds “potentially tree-level generated
operators” (TLOs). Given the loop suppression, TLOs are expected to give the leading
contribution to observables when present in their parameterization.

The classification of EFT effects as loop-level generated happens most transparently at
the amplitude level. For this reason, it is convenient to choose a basis in which all operators
have a direct correspondence to amplitudes with the same field content. This is for instance
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not the case in the SILH basis [50, 51], where for example the operator
(
iϕ†Dνϕ∂µB

µν + h.c.
)

does not contribute to the ϕ†ϕB amplitude at tree level, but only to amplitudes with more
external particles. In the Warsaw basis [53] and the dimension-eight basis of ref. [47], such
operators are replaced by operators with more fields. In these bases, the classification of an
amplitude as occurring only at loop level directly translates to a statement at the level of
operators with the same field content. We will therefore work in these bases unless otherwise
stated. We emphasize, however, that statements about amplitudes are basis independent.

Within these bases, the general argument for the perturbative origin of the WCs is that
there only exist tree-level diagrams in renormalizable UV models to generate operators with
at least four particles that are not SM gauge bosons, i.e. Higgs bosons or fermions. External
Higgs bosons or fermions are necessary because SM gauge bosons couple diagonally to heavy
BSM particles, as the SMEFT assumes the SM gauge symmetries to be unbroken. We thus
classify operators of refs. [47, 53] that do not have four Higgs boson or fermions fields as
necessarily loop-level generated. Without further information, any other operator could be
considered to be potentially tree-level generated. However, as we will discuss below, this
classification can be further refined.

Besides classifying operators according to their potential perturbative origin, for LLOs it
is important to account for RG mixing from TLOs, because such contributions may come with
the same loop suppression (but with a further logarithmic enhancement). Prime examples
are the electric or magnetic dipole moments of light fermions. Corrections to the dipole
moments in the dimension-six SMEFT come from LLOs. However, explicit computation
of the dimension-six RGEs has shown that TLOs induce the dipole operators through
renormalization. References [7, 40, 41] showed that this effect is important and should be
taken into account when studying possible heavy scenarios behind a BSM contribution to
the anomalous magnetic moment of the muon. Therefore, knowledge of the structure of the
anomalous dimension matrix of an EFT is a crucial ingredient when classifying operators
as TLOs and LLOs.

For the study of Higgs decays, following the parameterization introduced in section 2.1,
we will investigate whether the operators appearing in eqs. (2.3)–(2.6) can be generated at
tree level and how they mix in their RGEs. The relevant operator classes are X2ϕ2 and ϕ4D2

at dimension six (where operators in the ϕ4D2 class only contribute after multiplication with
an operator of the form X2ϕ2), and X2ϕ4 and Xϕ4D2 at dimension eight.

2.2.1 Dimension six

All operator classes of the Warsaw basis are listed in figure 1 — which reproduces the results
from refs. [45, 46] — with color-coding to distinguish TLOs from LLOs. Even though the
classification of TLOs is not definitive (potentially tree-level generated operators could in
fact be loop-level generated) it was explicitly found that all TLOs at dimension six can be
generated with independent coefficients at tree level [31]. This means that this classification
cannot be further refined (without making more restrictive assumptions on the UV).

The operators (O) in figure 1 are also separated according to their so-called holomorphic
weights, w(O), and anti-holomorphic weights, w(O). These weights were introduced in
ref. [45] because they determine part of the renormalization structure within EFTs, as we will
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6 F 3
F 2ϕ2

Fψ2ϕ

ψ4
ψ2ϕ3 ϕ6

4
ψ̄ψϕ2D

ψ̄2ψ2

ϕ4D2
ψ̄2ϕ3

2
F̄ 2ϕ2

F̄ ψ̄2ϕ

ψ̄4

0 F̄ 3

0 2 4 6
w

RG mixing

O Loop-level generated

O Potentially tree-level generated

Operator classes that potentially
renormalize Higgs decays

Figure 1. Operator classes in the Warsaw basis of the SMEFT at dimension six, distributed according
to their holomorphic weights. Following ref. [45], the arrows indicate the direction in which one-loop
RG mixing is possible. That is, operators do not mix into other operators that are on their left or
below them in the diagram. The operators in red can be tree-level generated, while LLOs are written
in black. The shaded area contains all operator classes which could potentially mix into the Higgs
decays, captured by the operator classes F 2ϕ2 and F̄ 2ϕ2.

discuss below. The (anti-)holomorphic weight of a tree-level amplitude with an insertion of
an operator (AO) is defined as the number of external particles, n(AO), minus (plus) the sum
over helicities of the external states of that amplitude, h(AO). The weight of an operator
itself is in turn defined by minimizing over the weights of all (non-zero) tree-level amplitudes
that may result from the insertion of that operator. Schematically,

w(O) ≡ min
(
w(AO)

) ≡ min
(
n(AO)− h(AO)

)
,

w(O) ≡ min
(
w(AO)

) ≡ min
(
n(AO) + h(AO)

)
. (2.7)

For this reason, we write the operators in terms of fields that generate SM states of definite
helicity. For example, field-strength tensors X are decomposed into F with helicity +1 and F̄
with helicity −1. These definitions can be applied in basis-independent way. In the Warsaw
basis, the amplitude with minimal weight has the external particle content corresponding to
the term in O with the smallest number of fields (when expanding the covariant derivatives
and field strength tensors). For example, the holomorphic weight of the operators in the
ϕ4D2 class is w(ϕ4D2) = 4 − 0.

Following the introduction of the weights in eq. (2.7), ref. [45] formulated a non-
renormalization theorem based on generalized unitarity which fully explains the near absence
of TLOs mixing into LLOs in the SMEFT at mass dimension six, while leaving room for
the single exception to this rule — see refs. [42, 43, 45, 57–59] for other studies of the
renormalization structure of the SMEFT.
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w

8 F 2ϕ4

6 Fϕ4D2

4 ϕ4D4 F̄ ϕ4D2 F̄ 2ϕ4

4 6 8
w

RG mixing O Loop-level generated

O Potentially tree-level generated

Operator classes that potentially
renormalize Higgs decays

Figure 2. Subset of dimension-eight operators in the SMEFT with exactly four Higgs fields and
without fermions, distributed according to their holomorphic weights [45]. The shaded area contains all
bosonic operator classes which could potentially mix into the Higgs decays, captured by the operator
classes F 2ϕ4, F̄ 2ϕ4, Fϕ4D2, and F̄ ϕ4D2. This figure should be contrasted to figure 1 at dimension
six, in which all operator classes that can renormalize the Higgs decays are loop-level generated. A
complete classification of all operator classes at dimension eight can be found in refs. [46, 47].

The one-loop RGEs of the WCs, Ci associated to the operators Oi, are described by
the anomalous dimension matrix γ:

16π2µ
dCi
dµ =

∑
j

γijCj , (2.8)

where µ is the renormalization scale and we omitted higher-order terms in the WCs.4 The
non-renormalization theorem of ref. [45] is given by5

γij = 0 if ω(Oi) < ω(Oj) or ω(Oi) < ω(Oj) . (2.9)

In terms of figure 1, this implies that operators cannot renormalize those from classes that
appear on their left or below them [45]. Since F 2ϕ2 (F̄ 2ϕ2) is not renormalized at one loop by
ψ4 (ψ̄4) simply because no candidate Feynman diagrams exist, it follows that the operators
contributing to the relevant Higgs decays at dimension six — see eqs. (2.3), (2.5) and (2.6)

— are not renormalized by TLOs. The only mixing of a TLO into an LLO allowed by the
non-renormalization theorem is ψ4 mixing into Fψ2ϕ (and similarly ψ̄4 into F̄ ψ̄2ϕ). This
possibility is in fact realized in the SMEFT, as was verified in the renormalization of the
dipole operators by the four-fermion operators Olequ and Oquqd [34].

2.2.2 Dimension eight

The TLO/LLO classification and the non-renormalization theorem of ref. [45] are general and
also apply to the SMEFT at dimension eight, which was explicitly considered in refs. [46, 47].
First, assuming the basis of ref. [47], operators can be classified as necessarily generated at

4Terms in the RGEs at non-linear orders in the Wilson coefficients also exhibit remarkable patterns of
zeros, some of which are captured by the non-renomalization theorem of ref. [60].

5Reference [45] identified one counterexample to this rule, which occurs for so-called exceptional amplitudes
in the SM with ω(ASM) = 2. This results in mixing between the operator classes ψ2ϕ3 ↔ ψ̄2ϕ3 and
ψ4 ↔ ψ̄2ψ2 ↔ ψ̄4 and does not affect the conclusions on the mixing of TLOs into LLOs in this section.
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loop level unless they have four fields that are Higgs bosons or fermions [46]. Second, as
opposed to dimension six, the non-renormalization result of eq. (2.9) now allows for several
cases of TLOs mixing into LLOs. Explicit results have confirmed this richer structure of TLOs
mixing with LLOs at dimension eight. For example, ϕ4D4 mixes into F̄Fϕ2D2, and ψ̄ψϕ2D3

induces F̄Fϕ2D2 [38]. It is also interesting to note that ϕ4D4 mixes into the dimension-six
LLOs of the class X2ϕ2, with terms proportional to the Higgs mass parameter µ2

ϕ [38].
In figure 2 we show the weight diagram for the operators relevant to the Higgs decays

at dimension eight. These operators are classified as potentially tree-level generated and
they can receive mixing contributions from other TLOs. However, it should be emphasized
again that the minimal requirement for the tree-level generation of some operators, namely
the presence of four Higgs or fermion fields, is a necessary, but insufficient condition for an
operator to be generated at tree level. Indeed, in any renormalizable weakly coupled UV
theory, the Higgs decays to two gluons, to two photons, or to one photon and one Z boson can
only arise at loop level, because of the unbroken SU(3)c ×U(1)EM gauge symmetries. This
implies that operators which contribute to these Higgs decays (through tree-level diagrams
in the EFT) must be generated in a correlated way by tree-level matching, such that their
combined contribution to the amplitude cancels. In other words, the classification of the
parameter space of TLOs can be further refined by identifying loop-level generated directions,
corresponding to linear combinations of the Wilson coefficients (in a generic basis).

In the remainder of this paper, we will make the TLO/LLO classification of the operators
related to the Higgs decays more precise, following explicit matching calculations in section 3.
The next step is then to explore whether TLOs can mix into the LLOs responsible for these
Higgs decays. The study of the RGE mixing structure among these operators focusing on
TLOs mixing into LLOs will be performed in section 4.

3 Tree-level matching results

The amplitudes in eqs. (2.3), (2.5) and (2.6) were derived from a bottom-up approach,
i.e. starting from the most general EFT Lagrangian without any considerations on the
UV. As was noted in section 2.2, gauge invariance in any underlying weakly coupled
UV completion implies that the combinations of WCs related to h → gg, h → γγ and
h → γZ in eqs. (2.3), (2.5) and (2.6) vanish at tree level. For all considered decays, A(6)

and A(6×6) are loop-level generated because they are proportional to WCs in the X2ϕ2

class. In contrast, the dimension-eight amplitudes A(8) depend on operators from potentially
tree-level generated classes.

For the decay into two gluons, A[hgg](8) depends only on C(1)
ϕ4G2 . The fact that h→ gg is

a loop-level process thus leads to the conclusion that C(1)
ϕ4G2 is itself loop-level generated. This

also follows from the fact that any heavy field linearly coupled to two Higgs fields cannot be
charged under SU(3)c. It is therefore impossible to attach gluons to a diagram representing the
exchange of said heavy particle, which implies that C(1)

ϕ4G2 cannot be generated at tree level.
In contrast, the Higgs decays to photons or to a photon and a Z boson depend on multiple

WCs. Considered separately, these WCs can each potentially be generated at tree level.
However, there should exist correlations between them such that A[hγγ](8) = A[hγZ](8) = 0
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at tree level. To make these correlations manifest, we analyse all relevant (CP-even) UV
models which generate operators in the classes ϕ4D4, Xϕ4D2 and X2ϕ4 at tree level. In
particular, we consider UV models with a single additional heavy particle in the following
representations of the SU(3)c × SU(2)L × U(1)Y gauge group:6

• a real singlet scalar S ∼ (1, 1, 0) ;

• a real SU(2)L triplet scalar Ξ ∼ (1, 3, 0) ;

• a complex SU(2)L triplet scalar Ξ1 ∼ (1, 3, 1) ;

• a real Abelian vector boson B ∼ (1, 1, 0) ;

• a complex SU(2)L singlet vector boson B1 ∼ (1, 1, 1) ;

• a real SU(2)L triplet vector boson W ∼ (1, 3, 0) ;

• and a complex SU(2)L triplet vector boson W1 ∼ (1, 3, 1) .

Particles with higher representations of SU(2)L cannot couple to just two Higgs doublets,
since only singlet and triplet currents of SU(2)L can be constructed with two Higgs fields.
We also do not consider the complex scalar singlet S1 ∼ (1, 1, 1), because the interaction
with two Higgs fields vanishes, S1ϕ†iσ2ϕ∗ = 0. For these reasons, the above list considers all
possible UV models that potentially generate the relevant classes of operators at tree level.
The Lagrangians for these UV models are listed in appendix B, where we restrict to real
couplings between the heavy particles and two Higgs fields. Moreover, we do not include
other potential terms for the new scalar particles, such as S3, ϕ2S2 or S4, because these do
not affect the tree-level matching conditions of the relevant operators.

In the heavy scalar extensions we will assume that the new scalar potential does not
introduce extra sources of electroweak symmetry breaking (EWSB), so that the matching
can be performed to the SMEFT instead of the more general Higgs Effective Field Theory
(HEFT) [61]. When considering massive vectors, amplitudes involving these new particles
grow with energy, breaking tree-level perturbative unitarity. This growth with energy is
controlled if the heavy vector is a gauge boson from a spontaneously broken symmetry, once
one includes the Higgs mechanism responsible for the heavy mass generation. However, we
will remain agnostic about the origin of the massive vector. The kinetic terms for these
fields can be written as

LB ⊃
1
2
(
∂µBν∂νBµ − ∂µBν∂µBν +M2BµBµ

)
,

LB1 ⊃ DµB†ν1 DνBµ1 −DµB†1νDµBν1 +M2B†1µBµ1 ,

LW ⊃
1
2
(
DµWνD

νWµ −DµWνD
µWν +M2WµWµ

)
,

LW1 ⊃ DµW†νa
1 DνWµa

1 −DµW†a
1νD

µWνa
1 +M2W†a

1µWµa
1 ,

(3.1)

6We do not consider models with two or more BSM particles, because tree-level contributions to the
considered operators result from the exchange of a single heavy field. For theories with multiple heavy fields,
for example be relevant in UV complete models with heavy vectors, the contributions from each particle in
the single-field results can be summed.
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where M is the mass parameter. Out of the four models above, the Abelian SM-singlet vector
B is a special case. Using the Stueckelberg approach [62, 63], one can show that this model
is renormalizable despite the mass term [64, 65]. For the remaining three models, which
all involve vectors charged under the SM gauge group, the Stueckelberg approach cannot
account for their mass in a renormalizable theory.

For these charged vectors an extra gauge-invariant term should also be included [39,
48, 49]:

LB1 ⊃ −i g′ kB1 B†µ1 Bν1Bµν ,

LW ⊃ −
1
2 g kW ϵabcWµaWνaW c

µν ,

LW1 ⊃ −i g′ kW1,1W†a
1µWa

1νB
µν − g kW1,2 ϵ

abcW†a
1µWb

1νW
µνc ,

(3.2)

where we introduced the coefficients kB1 , kW , kW1,1, kW1,2. In order to respect tree-level
unitarity, these coefficients need to be fixed to one. Indeed, it can be explicitly verified
that this is necessary to cancel the quadratic energy growth in the scattering processes
XX → XX , where X denotes the SM massless gauge bosons and X the heavy vectors. Note
that one cannot expect a Higgs mechanism to control the energy growth in this amplitude
since that Higgs would not couple to the massless (unbroken) gauge bosons. However, a Higgs
mechanism underlying the mass generation of X would be necessary to tame the quadratic
energy growth in a XX → XX . Furthermore, a quartic term for the heavy vector would be
needed to cancel the quartic energy growth. All of this discussion is analogous to the form of
the low energy interactions in the SM, when X is taken to be the charged W± and X the
photon. Vertices such as (3.2) for the W boson are generated through EWSB. We do not
include either the Higgs mechanism or the quartic term in the considered UV models, because
they do not affect our calculations. The latter cannot contribute in tree-level matching while
the former could in principle be accounted for by the single-field scalar models we include.

In addition to the argument based on perturbative unitarity, ref. [39] proved in a purely
algebraic way that kX = 1 for massive vector fields in theories with spontaneously broken
symmetries, regardless of the details of symmetry breaking. Other arguments based on
perturbative renormalizability have also been put forward in the context of QCD, to predict
kρ = 1 in the coupling of the ρ-meson to the photon [66–68]. Furthermore, the result kX = 1
has been observed in refs. [69, 70], where the explicit computation to the dipole moment
was performed in extensions of the SM with heavy vectors. There, only when kX was unity
would a divergence for the dipole process, which had no counterterm to absorb it, vanish.
From yet another perspective, the choice kX = 1 coincides with the so-called “minimal
coupling” on-shell interaction of ref. [71]. This is defined as the amplitude that recovers the
configuration of particles with opposite helicities in the high-energy limit.

In the matching calculations we find that dimension eight is the leading order at which
the couplings kX have an impact. By keeping the kX as free parameters, we will explore the
significance of taking the limit kX = 1 in interpreting the EFT results.

We performed the tree-level off-shell matching calculation using Feynman diagrams. The
full results in the Green’s basis of refs. [28, 72, 73] have been provided in appendix B. The
results in the Warsaw basis at dimension six and Murphy’s basis at dimension eight, obtained

– 13 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
5

Sc
al

ar
ex

te
ns

io
ns

V
ec

to
r

ex
te

ns
io

ns

S
∼

(1
,1
,0
)

Ξ
∼

(1
,3
,0
)

Ξ 1
∼

(1
,3
,1
)
Bµ
∼

(1
,1
,0
)

Bµ 1
∼

(1
,1
,1
)

W
µ
∼

(1
,3
,0
)

W
µ 1
∼

(1
,3
,1
)

di
m

.4
|ϕ
|4
∗

0
0

0
0

0
0

0

di
m

.6

            
O
ϕ

4µ
2 ϕ

4λ
−

16
λ
µ

2 ϕ
8λ
−

16
λ
µ

2 ϕ
−

1 2g
2 µ

2 ϕ
−
2λ

+
1 4(
g
′2
k
B

1
−
g

2
−

10
g

2 B
1
)µ

2 ϕ
−
λ
−

1 8(
2g

′2
+
10
g

2 W
−
g

2 k
W
)µ

2 ϕ
−

1 2λ
−

1 32
(3
g

2 W
1
+
2g

′2
k

2 W
1
,1
+
2g

2 k
2 W

1
,2
)µ

2 ϕ

O
ϕ
□

−
1 2
+
2µ

2 ϕ
1 2
−

2µ
2 ϕ

2
−

8µ
2 ϕ

−
1 2

−
1 2

−
3 8

−
1 8

O
ϕ
D

−
2
+
8µ

2 ϕ
4
−

16
µ

2 ϕ
−
2

1
−

1 4

ϕ
8

O
ϕ

8
8λ

2
8λ

2
g

2 λ
1 2(
2g

2 B
1
+
g

2
−
g
′2
k
B

1
)λ

1 4(
2g

′2
+
2g

2 W
−
g

2 k
W
)λ

−
1 16
(2
g
′2
k
W

1
,1
+
2g

2 k
W

1
,2
−
g

2 W
1
)λ

ϕ
6 D

2

      
O

(1
)

ϕ
6

−
8λ

32
λ

−
2g

2
1 4(
2g

2 B
1
+
3g

′2
k
B

1
−

6g
2 )

−
1 8(
6g

′2
+
2g

2 W
−

5g
2 k

W
)

−
1 32
(g

2 W
1
+
6g

′2
k
W

1
,1
+
8g

2 k
W

1
,2
)

O
(2

)
ϕ

6
−
8λ

16
λ

−
1 2g

2
1 4(
4g

2 B
1
+
2g

′2
k
B

1
+
g

2 )
−

1 2g
′2

−
1 16
(g

2 W
1
+
2g

′2
k
W

1
,1
+
g

2 k
W

1
,2
)

ϕ
4 D

4

            
O

(1
)

ϕ
4

4
−
2

2
1 2

O
(2

)
ϕ

4
8

2
1 2

O
(3

)
ϕ

4
2

−
2

−
2

−
1

X
ϕ

4 D
2

      
g
O

(1
)

W
ϕ

4
D

2
2

2
−

1 2(
1
+
2k

W
)

g
′ O

(1
)

B
ϕ

4
D

2
−
2

−
2k

B
1

3 2

X
2 ϕ

4

                    

g
2 O

(1
)

ϕ
4
W

2

0
1 4

1 4
−

1 16
(1

+
2k

W
)

1 32
(k

W
1
,2
−

1)

g
2 O

(3
)

ϕ
4
W

2
1 32
(k

W
1
,2
−

1)

g
′ g
O

(1
)

ϕ
4
W
B

1 4(
1
−
k
B

1
)

1 8(
1
−
k
W
)

1 16
(k

W
1
,1
+
k
W

1
,2
−

2)

g
′2
O

(1
)

ϕ
4
B

2
−

1 4
−

1 4k
B

1
3 16

1 16
(k

W
1
,1
−

1)

T
ab

le
1.

Tr
ee

-le
ve

lm
at

ch
in

g
co

nt
rib

ut
io

ns
to

th
e

SM
EF

T
fr

om
sin

gl
e-

pa
rt

ic
le

ex
te

ns
io

ns
of

th
e

SM
.

T
he

U
V

m
od

el
s

ar
e

de
fin

ed
in

ap
pe

nd
ix

B
,

w
he

re
we

al
so

pr
ov

id
e

th
e

off
-s

he
ll

m
at

ch
in

g
re

su
lts

(i.
e.

be
fo

re
fie

ld
re

de
fin

iti
on

s)
.

T
he

hi
gh

er
-d

im
en

sio
na

lo
pe

ra
to

rs
ar

e
de

fin
ed

in
ta

bl
e

6.
W

e
ha

ve
su

pp
re

ss
ed

ov
er

al
lf

ac
to

rs
of
κ

2 /
M

2
an

d
g

2 X
,w

he
re
κ

is
th

e
di

m
en

sio
nf

ul
H

ig
gs

-s
ca

la
r

co
up

lin
g,
g X

is
th

e
ve

ct
or

-H
ig

gs
co

up
lin

g
an

d
M

is
th

e
m

as
s

of
th

e
he

av
y

pa
rt

ic
le

.
Bo

th
κ

an
d
g X

ar
e

ta
ke

n
to

be
re

al
.

In
th

e
ve

ct
or

ex
te

ns
io

ns
,k

X
is

th
e

in
te

ra
ct

io
n

w
ith

ga
ug

e
bo

so
ns

of
eq

.(
3.

2)
.

Po
we

rs
of

1/
M

ca
n

be
re

co
ns

tr
uc

te
d

by
di

m
en

sio
na

la
na

ly
sis

.
W

e
dr

op
pe

d
al

lt
er

m
s

of
O
(1
/M

8 )
an

d
O
(1
/M

6 )
fo

r
th

e
sc

al
ar

an
d

ve
ct

or
ex

te
ns

io
ns

,r
es

pe
ct

iv
el

y.
Em

pt
y

en
tr

ie
s

ar
e

ze
ro

an
d

op
er

at
or

s
th

at
ar

e
om

itt
ed

do
no

t
re

ce
iv

e
m

at
ch

in
g

co
nt

rib
ut

io
ns

fro
m

an
y

of
th

e
co

ns
id

er
ed

m
od

el
s

(in
th

e
lim

it
of

ze
ro

SM
Yu

ka
wa

co
up

lin
gs

).
*

Th
e

co
nt

rib
ut

io
ns

to
th

e
re

no
rm

al
iza

bl
e
|ϕ
|4

op
er

at
or

ha
ve

be
en

ab
so

rb
ed

in
to

th
e

ot
he

ro
pe

ra
to

rs
th

ro
ug

h
a

re
de

fin
iti

on
of
λ

.N
o

ot
he

rS
M

co
up

lin
gs

ar
e

re
de

fin
ed

at
th

is
st

ag
e.

– 14 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
5

through field redefinitions, are presented in table 1. We work up to dimension eight, which
translates to order κ2/M6 for the scalar extensions, where κ is the dimensionful Higgs-scalar
coupling, and up to 1/M4 in the vector boson extensions. We have not included contributions
from field redefinitions to operators with fermions. These can be reproduced from the off-shell
matching results, given in table 4. Following ref. [74], we redefine λ such that any matching
contribution to |ϕ|4 is absorbed into corrections to other operators.

Matching results at dimension six for heavy scalars and vectors exist in refs. [31, 75, 76].
In addition, the real scalar singlet S [74], the real scalar triplet Ξ [77], the complex scalar
triplet Ξ1 [78], and the real Abelian vector B [55] have previously been matched to the
SMEFT up to dimension eight. Partial results also exist for the real vector boson triplet
W [79] and the complex SU(2)L singlet vector B1 [80], but these do not include the interaction
of eq. (3.2) and not all EFT operators considered here. To the best of our knowledge, the
tree-level matching results of the complex vector boson triplet W1 in this section are new.

Substituting our matching results from table 1 in the expressions for A[hγγ](8) and
A[hγZ](8) (eqs. (2.5) and (2.6)) sets them to zero. In the case of scalars, this follows trivially,
as the classes Xϕ4D2 and X2ϕ4 are not generated. For models with heavy vectors, the
cancellation is non-trivial and arises from the correlated way in which the operators from the
relevant classes are generated. Following the previous discussion on the universal nature of the
heavy vector interactions in eq. (3.2), we remark that h→ γZ is actually generated at tree
level when kW1,1 ̸= kW1,2, which would be consistent with gauge invariance. However, taking
into account the restriction from perturbative unitarity, kW1,1 = kW1,2 = 1, the h → γZ

amplitude is not generated at tree level. This follows from the the fact that kW1,1 = kW1,2
is the only way in which the interactions from eq. (3.2) can be written as a commutator
of covariant derivatives:

−i g′W†a
1µWa

1νB
µν − g ϵabcW†a

1µWb
1νW

µνc = −W†a
1µ [Dµ, Dν ]Wa

1ν . (3.3)

Remarkably, we also find that W1 ∼ (1, 3, 1) does not generate any dimension-eight
operator with four Higgs fields when kW1,1 = kW1,2 = 1, even though those at dimension six are
generated. It is relevant to mention that it was previously noted that the heavy vector-Higgs
interaction that we assume is never generated in a Yang-Mills theory in this model [81].

4 Tree-level generated operators mixing into Higgs decays

In the previous section, we explicitly confirmed that the EFT operators associated to the Higgs
decay processes h→ gg, h→ γγ and h→ γZ are generated only at loop level. It is therefore
relevant to consider whether their one-loop running can be triggered by operators that are
generated at tree level. As discussed in section 2.2, the non-renormalization theorem of
ref. [45] does not exclude such mixing effects at dimension eight, in contrast to dimension six.

In ref. [43] an alternative argument was proposed to rule out mixing into the operators
for h→ gg and h→ γγ from a TLO at dimension six. This argument is based on Higgs low-
energy theorems, which relate amplitudes with different numbers of external Higgs particles
in the limit of vanishing Higgs momentum [82–84]. Because of this limit, the low-energy
theorems of refs. [82–84] are thus unable to fully capture the effects at higher orders in p2

h/M
2
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or m2
h/M

2, where ph and mh are the Higgs momentum and mass, respectively, and M is
the mass of the heavy particle inside the loop (with mh ≪ M). Said in another way, the
argument of ref. [43] cannot be directly applied to dimension eight and beyond. We will
therefore explicitly study the RGEs of the decays in the SMEFT at dimension eight.

The SMEFT contributions to the considered Higgs decays up to dimension eight involve
the following terms:

ASMEFT[hV V ] = A[hV V ](6) +A[hV V ](6×6) +A[hV V ](8) , (4.1)

where V V = {gg, γγ, γZ}. These amplitudes have been defined in section 2.1. We need to
consider the one-loop RG contribution to all of these terms, which can be triggered by a single
insertion of a dimension-six coefficient, c(6); by two dimension-six coefficients, c(6) × c(6); or
by a dimension-eight coupling, c(8). This structure is schematically depicted in table 2, where
we only consider the renormalization triggered by potentially tree-level generated couplings.

Various entries in table 2 are zero at the orders we consider, which simplifies the analysis
below. The zeros in the first row, related to the dimension-six part of the amplitude, follow
from the arguments of the previous paragraphs (and from the explicit results of ref. [34]) for
the insertion of c(6) and from the explicit results of refs. [36, 37] for c(6)× c(6). The running of
A[hV V ](6×6), defined in eqs. (2.3), (2.5) and (2.6), is also not triggered by TLOs through the
insertion of c(6) (at the one-loop order of the full expression). Insertions of c(6) × c(6) or c(8)

in A[hV V ](6×6) are proportional to µ2
ϕ/Λ6, which we neglect here, because of the additional

1/Λ2 factor.7 Lastly, the dimension-eight amplitude cannot receive contributions from a
single insertion of c(6), based on the power counting in 1/Λ. but higher order contributions
are possible and need to be studied in more detail.

In the remainder of this section, we will consider the dimension-eight RGEs calculated
in refs. [36–38] in combination with the explicit matching results to compute the non-zero
terms in table 2 and assess whether TLOs mix into the considered Higgs decay processes.
All RGEs presented in this section contain only the part triggered by potentially tree-level
generated operators. (The dimension-eight RGEs including terms that are triggered by LLOs
are computed in [85, 86].) Towards the end of the section, we translate our results to an
alternative basis that emphasizes reoccurring patterns. This basis makes the distinction
between TLOs and LLOs and their mixing structure more transparent.

4.1 h → gg

To study the renormalization of h → gg, described by the amplitudes defined in eq. (2.3),
we only need to consider double insertions of dimension-six effective couplings and single
insertions of dimension-eight ones. The former do not renormalize the amplitudes relevant
for the gluon decay according to the results of refs. [36, 37]. We are therefore left with the

7These O(µ2
ϕ/Λ6) contributions are not of the same order as the κ2/Λ6 — see table 1 — which we found in

the dimension-eight matching of scalar UV completions; in fact, once the matching conditions are considered,
the neglected O(µ2

ϕ/Λ6) contributions would actually be of O(µ2
ϕκ/Λ8).
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c(6) c(6)×c(6) c(8)

16π2µdA[h→V V ](6)

dµ 0 0 ×
16π2µdA[h→V V ](6×6)

dµ 0 O(µ2
ϕ/Λ6) O(µ2

ϕ/Λ6)

16π2µdA[h→V V ](8)

dµ ∅ × ×

Table 2. Schematic depiction of the renormalization of the different contributions to h→ V V , with
V V = {gg, γγ, γZ} through insertions of potentially tree-level generated Wilson coefficients. A “0”
means that there is no contribution (in explicit results [36]), whereas “∅” means that the respective
contribution cannot exist on the basis of dimensional analysis. Contributions at O(µ2

ϕ/Λ6) are ignored
in our work, because they correspond to higher-order effects. Finally, entries labeled with a “×” will
be the ones under scrutiny in sections 4.1, 4.2 and 4.3.

dimension-eight induced RGEs, which read [38]

16π2µ
d
dµ

(A[hgg]
v3/Λ4

)
= 12

µ2
ϕ

v2 C
(1)
ϕ4G2 +

(
4γϕ − 3g′2 − 9g2 − 14g2

s + 48λ
)
C

(1)
ϕ4G2

+ 2gs
(
Tr
[
C†
qdGϕ3Yd + Y †

dCqdGϕ3 + C†
quGϕ3Yu + Y †

uCquGϕ3

])
,

(4.2)

where gs is the gauge coupling of SU(3)c, γϕ = Tr[3YuY †
u + 3Yd Y

†
d + Ye Y

†
e ], where Yu,d,e

are the SM Yukawa couplings of the up, down and electron fields, respectively (we follow
the convention of ref. [36]) and CqψGϕ3 are the WCs of dimension-eight dipole operators
OqψGϕ3 = q σµνT

A ψΦ(ϕ†ϕ)GA,µν , with ψΦ = u ϕ̃ or dϕ, where ϕ̃ ≡ iσ2ϕ∗. Note that
the first term in eq. (4.2), proportional to µ2

ϕ, corresponds to the renormalization of the
dimension-six part of the amplitude, A(6), triggered by a dimension-eight coefficient.

With eq. (4.2), one can now explore whether TLOs mix into this loop-level process.
Equation (4.2) receives contributions from C

(1)
ϕ4G2 and CqψGϕ3 . We have previously argued

that the former is a loop-level generated coefficient, because the Higgs decay to two gluons
is a loop-level process. We also argue that the dimension-eight dipole operators are loop-
level generated, like their dimension-six counterparts, thereby refining the classification of
refs. [46, 47]. The reason is that a contribution to the dipole moment of light fermions cannot
exist at tree level in any weakly coupled renormalizable theory, and CqψGϕ3 is the only operator
that contributes to the dipole kinematic structure at tree level (in the basis of ref. [47]) —
see for example ref. [87] for the matching conditions to the low-energy EFT dipole operator.
We therefore conclude that the running of h→ gg is not affected at one loop by TLOs.

Another perspective on the fact that h→ gg does not run at one loop in the EFT comes
from explicit full-theory calculations in generic UV extensions. For example, the amplitudes
of ref. [83] are free of logarithms in the heavy mass expansion, regardless of the SM extension.
This implies that the mixing of tree-level generated operators into the loop-level h → gg

decay will be absent at one loop at all mass dimensions.
To illustrate that the dipole operators are not generated at tree level, we work out

a concrete matching example. We consider a toy UV model with two vector-like quarks
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(VLQs), Qu and Qq, with the same quantum numbers as the right-handed singlet up-quark
(u) and the quark doublet (q), respectively. The Lagrangian we consider has the following
extra interactions,

LSM+VLQ ⊃
(
yQu q̄ ϕ̃ Qu + yQqQ̄q ϕ̃ u+ yQqQuQ̄q ϕ̃ Qu + h.c.

)
, (4.3)

where we consider degenerate masses for simplicity. We matched this model to the SMEFT
up to dimension eight at tree level using Matchete [29]. This simple extension is instructive
because it generates a tree-level Feynmann diagram with the same external fields as the dipole
operator. However, once we project the results from Matchete into Murphy’s basis [47], we
observe that the contribution to CqψGϕ3 cancels.

To see this cancellation more explicitly, we can start from the result from Matchete,

L VLQ
SMEFT ⊃

1
M4
Q

|ϕ|2Dµq̄ ϕ̃
(
2yQu

y∗QqQu
+ YuyQq

)
Dµu

+ gs
M4
Q

|ϕ|2q̄ ϕ̃
(
2yQu

y∗QqQu
+ YuyQq

)
σµνG

µνu,
(4.4)

where we ignored other operators not relevant for the discussion. Projecting the first operator
to Murphy’s basis involves using integration by parts,

|ϕ|2Dµq̄ ϕ̃D
µu = −1

2
(
|ϕ|2D2q̄ ϕ̃u+ |ϕ|2q̄ ϕ̃D2u

)
+ · · · , (4.5)

where the ellipsis denotes irrelevant operators with derivatives on the Higgs fields. The dipole
operators can then be obtained using the identity D2ψ = /D

2
ψ + gsσ

µνGµνψ (ignoring other
gauge bosons). It thus follows that the tree-level contribution to CqψGϕ3 is cancelled in this
example. Said in another way, the combination of terms in eq. (4.4) does not contribute
to the on-shell three-point dipole vertex.

4.2 h → γγ

Let us now turn our attention to the di-photon Higgs decay. Unlike in h→ gg, a non-trivial
result for the running of this amplitude can be obtained without Yukawa couplings. We
therefore consider the limit of vanishing Yukawa couplings.8 The result for the renormalization
of h → γγ is [36–38]

16π2µ
d
dµ

(A [hγγ]
v3/Λ4

)
= −3e2g′

2
(
C

(1)
ϕ4W 2

g2 +
C

(3)
ϕ4W 2

g2 −
C

(1)
ϕ4WB

g′g
+
C

(1)
ϕ4B2

g′2

)

+ e2g2
(
− 9

C
(1)
ϕ4W 2

g2 + 3
C

(3)
ϕ4W 2

g2 + 3
C

(1)
ϕ4WB

g′g

− 9
C

(1)
ϕ4B2

g′2
+ 3

2
C

(1)
Wϕ4D2

g
+ 3

2
C

(1)
Bϕ4D2

g′

)
8Fermionic operators do not contribute in the limit of vanishing Yukawas. The presence of fermions in the

theory does affect the RGE of the SM charges and the wavefunction renormalization of the bosonic effective
operators. These contributions are included in the RGEs of refs. [36–38] that we used. We checked, however,
that their combined effect is zero.
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+ e2λ

(
36
C

(1)
ϕ4W 2

g2 + 28
C

(3)
ϕ4W 2

g2 − 32
C

(1)
ϕ4WB

g′g

+ 36
C

(1)
ϕ4B2

g′2
−
C

(1)
Wϕ4D2

g
−
C

(1)
Bϕ4D2

g′

)
, (4.6)

which includes contributions from the running of the couplings, 16π2µdg′/dµ = 41g′3/6,
16π2µdg/dµ = −19g3/6, besides that of the WCs. We note that double insertion of dimension-
six coefficients contribute to the RGEs of the individual WCs that appear in the h → γγ

amplitude, eq. (2.5), but these cancel even before imposing any matching condition on
the WCs.

Inspection of eq. (4.6) suggests that TLOs could renormalize h → γγ due to the de-
pendence on operators of the classes X2ϕ4 and Xϕ4D2, which are potentially tree-level
generated. However, as we have seen in section 3, some linear combination of TLOs in these
two classes are actually LLOs. We therefore directly substitute the WCs by the corresponding
tree-level matching results in table 1, which accounts for all renormalizable and weakly
coupled UV completions that can give a non-zero tree-level contribution to fully bosonic
operators with four Higgs bosons.

The matching results are

16π2µ
d
dµ

(A [hγγ]
v3/Λ4

)
= e2


g2
B1
(λ− 3

2g
2)(kB1 − 1), B1 ∼ (1, 1, 1)

1
2g

2
W(λ− 3

2g
2)(kW − 1), W ∼ (1, 3, 0)

1
4g

2
W1

(λ− 3
2g

2)(kW1,1 − 1), W1 ∼ (1, 3, 1)

, (4.7)

where the tree-level matching conditions of the scalar extensions and B ∼ (1, 1, 0) set eq. (4.6)
to zero. The scalar extensions do not generate any of the WCs in eq. (4.6), while the heavy
Abelian vector model generates them in a correlated way that sets the overall expression to
zero. For the remaining vector extensions, which are charged under the SM gauge group, the
result is proportional to (kX − 1), with kX defined in eq. (3.2). As discussed in section 3,
kX = 1 is necessary to ensure tree-level perturbative unitarity and the renormalizability
of the heavy vector theory. We also explicitly verified that the amplitude h → γγ with a
heavy vector inside the loop generates a divergence proportional to (kX − 1). Under our
assumptions of a weakly coupled and renormalizable theory, i.e. kX = 1, the conclusion is
therefore that TLOs do not mix into h → γγ.

Similarly to the non-renormalization of the h→ gg decay amplitude, this is also implied
by the full one-loop results for the h→ γγ amplitude in generic SM extensions [83], where
the heavy mass expansion does not produce any logarithmic dependence. (Reference [83]
assumes kX = 1 for the heavy vector extension.)

4.3 h → γZ

In contrast to the previous case, the RGE of A[hγZ] (eq. (2.6)) is induced by fermionic
operators, even in the limit of vanishing Yukawa couplings. These, however, have only two
Higgs fields, which means that they are not generated at tree level in the considered UV
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scenarios with vanishing Yukawa matrices. We therefore again neglect fermionic operators
from the outset. In this case, the RGE for h → γZ is given by

16π2µ
d
dµ

(A [hγZ]
v3/Λ4

)
= g′3g

6

(
23
C

(1)
ϕ4W 2

g2 + 23
C

(3)
ϕ4W 2

g2 + 12CϕWB

g′g
− 47

Cϕ4B2

g′2

− 9
2
C

(1)
Wϕ4D2

g
+ 17

4
CBϕ4D2

g′

)

+ g′g3

6

(
− 49

C
(1)
ϕ4W 2

g2 + 47
C

(3)
ϕ4W 2

g2 − 24CϕWB

g′g
+ 73

Cϕ4B2

g′2

+ 13
C

(1)
Wϕ4D2

g
− 27

4
CBϕ4D2

g′
+ 9

4C
(1)
ϕ4 −

9
4C

(2)
ϕ4

)

+ g′gλ

(
72
C

(1)
ϕ4W 2

g2 + 56
C

(3)
ϕ4W 2

g2 − 72
Cϕ4B2

g′2
− 9

C
(1)
Wϕ4D2

g
+ 9

CBϕ4D2

g′

)

+ 16π2µ
d
dµ

(
g2 − g′2
g′g

A[hγγ]
v3/Λ4

)
. (4.8)

The running of h→ γZ receives contributions from WCs of the ϕ4D4 class, which can
be generated at tree level, for example by scalar extensions of the SM. The relevant linear
combination responsible for the h→ γZ renormalization is C(1)

ϕ4 − C(2)
ϕ4 , which is non-zero for

the two SU(2)L triplet scalar models considered; no cancellation happens with contributions
from other operators, as the classes Xϕ4D2 or X2ϕ4 are not generated in these models
(see table 1). As for the heavy vectors, we observe that for kX = 1, B1 and W also give
a non-zero result to eq. (4.8),

16π2µ
d
dµ

(A [hγZ]
v3/Λ4

)
= g′g3



3
2
κ2

Ξ
Λ2 , Ξ ∼ (1, 3, 0),

−3 κ
2
Ξ1

Λ2 , Ξ1 ∼ (1, 3, 1),
9
4g

2
B1
, B1 ∼ (1, 1, 1), kB1 = 1,

−9
8g

2
W , W ∼ (1, 3, 0), kW = 1

. (4.9)

This result proves through explicit calculation that TLOs can mix into the decay h→ γZ.
We will explore this effect in more detail in section 5, where we reproduce the loga-

rithm in a full-theory calculation (with the real scalar triplet UV model, Ξ) and study its
phenomenological impact.

4.4 An alternative operator basis

The above results have been presented in terms of the basis in eq. (2.2). We are, however,
interested in the specific linear combinations of Wilson coefficients that contribute to the
h → γγ and h → γZ processes. In addition, all weakly coupled UV models generate the
EFT operators in a correlated way, namely C(1)

Wϕ4D2 = −C(1)
Bϕ4D2 = 8C(1)

W 2ϕ4 = −8C(1)
B2ϕ4 . To
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Scalar extensions Vector extensions

S Ξ Ξ1 Bµ Bµ1 Wµ Wµ
1

(1, 1, 0) (1, 3, 0) (1, 3, 1) (1, 1, 0) (1, 1, 1) (1, 3, 0) (1, 3, 1)

O(1)
ϕ4 4 −2 2 1/2

O(2)
ϕ4 8 2 1/2

O(3)
ϕ4 2 −2 −2 −1

Chγγ

ChγZ
1
32(kW1,2 − kW1,1)

C3

0
1
8(kB1 − 1) 1

16(kW − 1) 1
32(kW1,1 − 1)

C4
1
32(kW1,2 − 1)

C5
1
4(1− kB1) 1

8(1− kW)

CTLO
1
4

1
4 −3/16

Table 3. The same as table 1, restricted to dimension-eight operators with exactly four Higgs fields.
The operators with field-strength tensors have been translated to the basis defined in eqs. (4.10)
and (4.14), which makes the correlations in the matching results more transparent. In particular, it
manifests that there is only one tree-level generated operator with field strengths when the UV is
renormalizable (kX = 1). We suppressed an overall factor of κ2/M6 for the scalar extensions and
g2

X /M
4 for the vector extensions.

make this more transparent, we consider a change of basis of the dimension-eight operators
with field-strength tensors, defined through the following full-rank matrix,

Chγγ

ChγZ

C3

C4

C5

CTLO



≡



1
2

1
2 −1

2
1
2 0 0

1
2

1
2 0 −1

2 − 1
16

1
16

0 −1 1
2 0 −1

8 −1
8

0 1 0 0 0 0

0 0 0 0 1
8

1
8

0 0 0 0 1
16 − 1

16





1
g2 C

(1)
ϕ4W 2

1
g2 C

(3)
ϕ4W 2

1
g′g C

(1)
ϕ4WB

1
g′2
C

(1)
ϕ4B2

1
g C

(1)
Wϕ4D2

1
g′ C

(1)
Bϕ4D2



. (4.10)

The first two operators in this basis are more directly related to the physical decay
channels, such that only one or two EFT parameters will be constrained from these observables.
The dimension-eight amplitudes of eq. (2.6) are

A [hγγ](8)

v3/Λ4 = 2e2Chγγ ,

A [hγZ](8)

v3/Λ4 = 2e2 g
2 − g′2
g′g

Chγγ + 2g′g ChγZ . (4.11)
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Furthermore, all couplings but CTLO have been chosen such that they are not generated at
tree level in any of the considered UV models (for kB1 = kW = kW1,1 = kW1,2 = 1). We
present the matching results in the new basis in table 3 and figure 3. Finally, C3 has been
chosen as the only linear combination of Wilson coefficients that mixes into Chγγ (besides
Chγγ itself). The RGE of A [hγγ] (4.6) can thus be rewritten as

16π2µ
d
dµ

(A [hγγ]
v3/Λ4

)
=−6e2g′

2
Chγγ−6e2g2 (3Chγγ+2C3)+8e2λ(9Chγγ+C3) . (4.12)

This provides an alternative perspective on the fact that C3 is loop-level generated (for
kB1 = kW = kW1,1 = kW1,2 = 1), besides our explicit matching results.

The RGE of A [hγZ] (4.8) becomes

16π2µ
d
dµ

(A [hγZ]
v3/Λ4

)
= g′g3

(
6CTLO+3

8C
(1)
ϕ4 −

3
8C

(2)
ϕ4

)
+g′g3

(
4Chγγ−

61
3 ChγZ−4C3+12C4+

1
6C5

)
+16g′gλ(9ChγZ−C4)

+g′3g
(
−4Chγγ+

35
3 ChγZ−

1
6C5

)
+16π2µ

d
dµ

(
g2−g′2
g′g

A[hγγ]
v3/Λ4

)
,

(4.13)

where the second and third lines are necessarily two-loop effects when the EFT is related to
any weakly coupled renormalizable UV theory. Note that even though CTLO, C(1)

ϕ4 and C
(2)
ϕ4

are generated by B ∼ (1, 1, 0), their effect cancels and no running contribution to A[hγZ]
is generated in this model from TLOs. One can also understand this from the full model
perspective, since B is a singlet.

Besides the mixing of TLOs into A[hγZ], we computed explicitly that C3, C4, C5 in
eq. (4.10) also receive RG mixing contributions from tree-level generated parameters. That is,
all LLOs (in this subset of operators) except the operator associated to Chγγ are renormalized
by TLOs. The tree-level generated coefficient CTLO is renormalized by TLOs and C5. This is
consistent with the classification in figure 3, which portrays the non-renormalization result of
ref. [45]. Remarkably, mixing at quadratic order in the dimension-six (potentially) tree-level
generated WCs does not affect any of the loop-level generated parameters in figure 3. In
contrast, CTLO and the ϕ4D4 operators do have such terms in their RGEs.

In terms of operators, the redefinition of eq. (4.10) implies that the dimension-eight
part of eq. (2.2) is rewritten as

LSMEFT⊃
Chγγ

Λ4

(
g2O(1)

ϕ4W 2+g′2O(1)
ϕ4B2

)
+ChγZ

Λ4

(
g2O(1)

ϕ4W 2−g′2O(1)
ϕ4B2

)
(4.14)

−4 C3

Λ4 (ϕ†ϕ)(ϕ† [Dµ,Dν ] [Dµ,Dν ]ϕ) − 4 C4

Λ4 (ϕ† [Dµ,Dν ]ϕ)(ϕ† [Dµ,Dν ]ϕ)

−4 C5

Λ4

(
(ϕ†ϕ)(ϕ† [Dµ,Dν ] [Dµ,Dν ]ϕ)+2(ϕ†ϕ)(Dµϕ

† [Dµ,Dν ]Dνϕ)
)

+2i CTLO

Λ4

(
(ϕ†ϕ)

(
ϕ†(gWµν−g′Bµν) [Dµ,Dν ]ϕ

)
+4(ϕ†ϕ)

(
Dµϕ†(gWµν−g′Bµν)Dνϕ

))
,

where Wµν = W a
µνσ

a.
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w

8 Chγγ , ChγZ , C3, C4

6 C5, CTLO

4 ϕ4D4 (×3) C5, CTLO Chγγ , ChγZ , C3, C4

4 6 8
w

RG mixing

O Loop-level generated

O Potentially tree-level generated

Figure 3. The same as figure 2, for the specific operator basis defined in eq. (4.10) and (4.14). The
operators in red are tree-level generated, while LLOs are written in black. There are three operators
in the ϕ4D4 class, which can all be generated at tree level.

5 A top-down look at h → γZ

Having studied the Higgs decays from the EFT perspective, we now analyse in more depth
specific UV scenarios which can generate the logarithmic contribution at dimension eight.
This is particularly relevant because evidence for h → γZ has been found by ATLAS and
CMS [3, 4]. Regardless of whether a BSM signal is found, or the SM proves to be enough to
describe this process, important bounds for heavy physics scenarios can be achieved through
the SMEFT parameterization, making it imperative to understand the effect of higher-order
terms in these processes. We will therefore study if these contributions can be quantitatively
important and if they should be taken into account in phenomenological studies.

We begin this section by computing the amplitude for h→ γZ in the UV model with
a neutral SU(2)L triplet scalar and we perform the heavy mass expansion to relate to the
EFT results. In section 5.2, we make the connection between the logarithmic enhancement of
the h→ γZ decay at dimension eight and custodial symmetry breaking in scalar extensions
of the SM. We point out that this correlation is broken in UV models with heavy vector
bosons. Finally, we extend the analysis from amplitudes to observables in section 5.3, and
we conclude that there exist observables in which the renormalization of the h→ γZ decay
has a significant impact.

5.1 A UV theory calculation of h → γZ

Let us consider the SM extended by an SU(2)L triplet scalar Ξ with zero hypercharge, which
we matched to the SMEFT in section 3. The Lagrangian for Ξ is introduced in eq. (B.2),
which we also state here for clarity:

LΞ = 1
2DµΞaDµΞa − 1

2M
2ΞaΞa − κΞΞaϕ†σaϕ . (5.1)

The scalar potential is chosen such that no extra sources of EWSB are present and the model
can be projected onto the SMEFT, as studied in detail in ref. [61]. The analysis of more
general cases when this restriction is lifted would require matching onto HEFT.

After EWSB, both the Higgs and the triplet acquire a vev and will therefore mix due
to the interaction term proportional to κΞ. The mixing between neutral (charged) scalars
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h

Zµ

γν

,

(a)

h

Zµ

γν

+ h

Zµ

γν

(b)

Figure 4. Feynman diagrams relevant to the computation of AH,scalar (a) and AH,mixed (b) in
eqs. (5.3, 5.4). Diagrams that contribute only to the Lorentz structure ηµν have been omitted, because
the full integral can be reconstructed from the Lorentz structure pν

Zp
µ
γ , see [88, 89] and appendix C.2.

Diagrams with reversed arrows should also be included.

is parametrized by the angle θ0 (θ+), and we name the physical scalars h, ξ0 and ξ±,
corresponding to the SM-like Higgs and novel neutral and charged scalars, respectively. For
more details of EWSB in this model, we refer the reader to appendix C.

The direct contributions to the amplitude of h→ γZ from loops with additional charged
scalar particles have previously been computed in [88, 90]. We split the amplitude according
to the type of diagrams that contribute,

iAH = iAH,scalar + iAH,mixed, (5.2)

where AH,scalar only contains pure scalar ξ± loops and AH,mixed involves mixed loops of
scalars and W± bosons, see figure 4. The full results are reported in appendix C.2. The
subscript H is included in iAH to emphasize that we only include diagrams that have at
least one heavy particle in the loop; other contributions with only SM particles in the loop
and indirect contributions from modifications of SM parameters are not included. We come
back to the latter in section 5.3 and discuss them in more detail in appendices A and C.

In the limit that the mass of the triplet, which is given by M at leading order in κΞ,
is much larger than the EW scale, the amplitudes in eq. (5.2) yield

AH,scalar =
e2 cot θW
48π2

(
κΞ
v

)2 v3

M4

[
1 + m2

Z + 2m2
h

15M2

]
+O

( 1
M8

)
, (5.3)

AH,mixed = − e2

16π2s2W

(
κΞ
v

)2 v3

M4

1 + 2m2
Z − 5m2

h − 54m2
W + 54m2

W log
(
M2

m2
W

)
9M2


+O

( 1
M8

)
, (5.4)

where we have stripped off the common factor of 2(pνZpµγ − (pZ · pγ)ηµν), with pγ,Z being
the 4-momenta of the photon and the Z boson. In these expressions, we have omitted
terms of order O

(
κ4

Ξ
)
, which do not come with a logarithm. It is worth mentioning that

the contribution to h → γγ can be obtained by substituting the Z boson in iAH,scalar by
another photon, i.e. taking mZ → 0 and e2 cot θW → e2. Mixed diagrams (figure 4(b)) do
not contribute to h→ γγ, since the electromagnetic current is diagonal in the fields.
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Neutral triplet model Ξ∼ (1, 3, 0)
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A(6)
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A(6)
H +A(8)
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Neutral triplet model Ξ∼ (1, 3, 0)
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A(6)
H

A(6)
H +A(8)

H +A(10)
H

A(6)
H +A(8)

H

A(6)
H +A(8)

H, log

M
=

1
T

eV

Figure 5. Plot of the amplitude AH , expanded up to different orders in the triplet mass M , normalized
by the result in eq. (5.2). We emphasize that AH contains only loop diagrams with at least one heavy
particle inside the loop, while the full amplitude is discussed in section 5.3.

When translating the results to an EFT expansion, terms proportional to κ2
ΞM

−4 and
κ2

ΞM
−6 correspond to mass dimension six and eight, respectively. The logarithm in the

expansion of AH,mixed, given by

A(8)
H,log = −3g′g3

64π2

(
κΞ
v

)2 v5

M6 log
(
M2

m2
W

)
, (5.5)

then follows from the tree-level matching result in eq. (4.9), setting Λ = M and µ = mW ,
while the identification of the other terms in eqs. (5.3, 5.4) in an EFT computation would
require a full one-loop matching as discussed in the introduction. In the scalar triplet model,
the absence of running contributions to h → γγ (4.7) follows from the absence of mixed
diagrams in that case.

What remains is a quantitative measure of the importance of this logarithm. In order
to see how relevant the effect in eq. (5.5) is compared to the contribution at dimension six,
we expand the amplitude AH as

AH = A(6)
H +A(8)

H +A(10)
H + · · · , (5.6)

where A(n)
H corresponds to the EFT expansion at dimension n. We then plot this amplitude

expanded up to several different orders in figure 5, normalized by the full result without
performing the mass expansion, obtained from eqs. (C.19) and (C.24). The grey line is the
full result, which is equal to one given our normalization. The dashed orange, dotted black
and dash-dotted green curves are, respectively, the results truncated up to dimension six,
eight and ten. In solid blue we present the dimension-six piece augmented by the logarithmic
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contribution at dimension eight in eq. (5.5). The addition of the logarithm to A(6)
H brings the

expansion much closer to the full result, although overshooting it by a relatively small amount.
We highlight in the plot the value for which M = 1TeV with the vertical gray dashed

line. For this value of the mass, A(6)
H is off by approximately 24% from the full result, while

A(6)
H +A(8)

H,log is only 7% larger than the full amplitude. Adding the non-logarithmic part at
dimension eight, which has the opposite sign, brings the result closer to the full theory. We
stress that, in this case, the dimension-eight contribution to the amplitude is dominated by
the logarithm, which itself corresponds to 31% of the full result (in magnitude) versus the 7%
of the non-logarithmic part. These results indicate that truncating the EFT at dimension six
might lead to inaccurate results. Besides providing already a result close to the full theory,
the further advantage of adding only the dimension eight logarithm A(8)

H,log lies in the fact
that it is easily computed from the tree-level matching results in table 1 and the RGEs in
eqs. (4.6) and (4.8). The complete contributions at dimension six and eight, on the other
hand, require a full one-loop matching calculation.

5.2 Custodial symmetry and UV patterns

An immediate concern regarding the neutral scalar triplet model introduced in the previous
section, is that the relevant coupling, κΞ, breaks custodial symmetry at tree level by con-
tributing to the W boson mass without affecting the Z boson mass (see eq. (C.18)), resulting
in large contributions to δρ = ρ − 1 =

(
m2

W

c2
Wm2

Z
− 1

)
[91, 92].

In order to avoid bounds from custodial symmetry breaking while preserving a sizable
logarithm, we can consider more elaborate UV models. The remaining scalar extension
that can generate TLO mixing into the loop-level process h → γZ is the complex triplet,
Ξ1 ∼ (1, 3, 1), which also breaks custodial symmetry at tree level. This can be seen from the
matching results in table 1, where the dimension-six WC CϕD, which parameterizes deviations
of the ρ parameter from unity,9 is generated by both of these scalar extensions. One could try
to restore custodial symmetry following the Georgi-Machacek model [93, 94], by considering
an extension with both the neutral and complex triplets such that the contribution to ρ

vanishes, which implies CϕD = 0 at tree level in the EFT. However, the linear combination
of dimension-eight WCs responsible for TLO mixing into LLO for the scalar extensions,
C

(1)
ϕ4 − C(2)

ϕ4 (see eq. (4.8)), would equally vanish in this case. This follows from the results
in table 1, where we observe that the generation of C(1)

ϕ4 − C(2)
ϕ4 is correlated with that of

CϕD for scalar extensions.
Alternatively to the explicit matching results, this correlation can also be understood

from the fact that in the Georgi-Machacek model, given the custodial transformations of the
introduced scalars, one cannot draw the mixed Feynman diagram in figure 4(b) — the one
responsible for the logarithmic behaviour. A mixed diagram exists in this model, akin to
figure 4(b), but only where the external scalar is the fiveplet-custodial scalar, H5

0 → γZ [90],
not for the process of interest with a physical Higgs. That is, couplings needed to obtain

9Custodial breaking effects will also occur at dimension eight and higher [77]. For simplicity, when
considering relations among UV couplings that would follow from custodial symmetry, we impose only that
CϕD is zero after tree-level matching, but higher order corrections to these relations will also exist.
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the diagram of figure 4(b), i.e. the vertices ξ+W−Z and ξ+W−h, do not exist in the Georgi-
Machacek model for the same ξ+ and the Higgs. We remark that custodial symmetry was
also found to offer an extra suppression to the contributions to h → γZ in the context of
Composite Higgs models [52].

In order to avoid this correlation between the generation of the dimension-eight RGEs
and custodial symmetry breaking, we can consider heavy vector extensions for which this
connection is not observed. For example, from the results of eq. (4.9) and table 1, we observe
that, while B ∼ (1, 1, 0) does not generate the TLO mixing into LLO effect, it generates CϕD
in a way that can cancel the contribution from Ξ1. To achieve δρ = 0 at tree level, we can
thus take a UV model with Ξ1 and B and choose their couplings in eqs. (B.3) and (B.4) to
satisfy g2

B = 2 (κΞ1/MΞ1)2. This model generates a logarithmic contribution to the h→ γZ

decay, while custodial bounds are expected to be respected.
Another suitable combination of fields which could achieve the logarithmic enhancement

in the h→ γZ decay while respecting custodial bounds is the charged vector singlet B1 ∼
(1, 1, 1) and the neutral scalar triplet of the previous section, with the couplings fixed by
setting g2

B1
= 2(κΞ/MΞ)2. This relation between couplings allows for the cancellation of the

contribution to CϕD at tree level. Unlike the previous example, B1 ∼ (1, 1, 1) also induces
TLO mixing into LLO, but enforcing CϕD = 0 does not cancel this effect, because both
particles contribute to the logarithm with the same sign. We have used eq. (4.9) and table 1
to observe these patterns.

Let us finally remark that there is one remaining single-field extension capable of
generating TLO mixing into LLO: the heavy neutral triplet W ∼ (1, 3, 0). This model is
the only one that does not generate CϕD at tree level.10 A complete study of this heavy
vector would need a complete model [95] including the details of the spontaneous symmetry
breaking from which W obtains a mass and is therefore left for future work.

5.3 Observable RG mixing effects

Let us finally estimate the size of the contributions from dimension-eight RGEs to observables,
paying close attention to models that avoid constraints from custodial symmetry breaking. By
considering only loop diagrams that involve the heavy scalar, figure 5 pointed to the relevance
of the dimension-eight logarithmic contribution relative to the dimension-six one. However,
a different picture emerges upon including all contributions to h→ γZ, in particular those
coming from tree-level generated operators which redefine SM parameters and fields. (We
exemplified the origin of such indirect effects in appendix A.) Figure 6(a) shows δRγZ , which
is defined as the deviation from the SM prediction of the h→ γZ decay width (normalized by
the SM value). We computed δRγZ using the numerical values obtained in refs. [96, eq. 4.10]
and [55, eq. 4.16] (the former for the dimension-six piece and the latter for the tree-level
contribution from dimension-eight WCs) trading the arbitrary WCs by matching to the
neutral scalar triplet model. We find that the effect of the dimension-eight RGE is around
1% or less of the full dimension-six contribution for MΞ = 1TeV. Figure 6(a) emphasizes
the importance of the indirect contributions at dimension six, which follow from a tree-level

10This model could generate CϕD if one allows for complex couplings [31], but we restrict our analysis to
real couplings in this work.
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Figure 6. Evaluation of the deviations from the SM value of the h→ γZ decay width (panels a and
b) and of the leading term in the expansion of the ratio introduced in eq. (5.7) (panels c and d) as a
function of the heavy mass M . Panels a and c show the results for the scalar triplet model, while
panels b and d are for the scalar triplet plus the charged SU(2)L singlet vector in the custodial limit,
CϕD = 0 (further assumptions made during the matching calculation are explained in the text). The
dot-dashed green lines represent only the direct contributions at dimension six, resulting from X2ϕ2

operators; the dashed orange lines contain all dimension six terms, including also indirect contributions
such as those arising from redefining SM parameters; the dotted red lines correspond to contribution
from the dimension-eight logarithm; the solid blue lines are the sum of all of these contributions. In
all panels we use as benchmark κΞ =M .

matching computation affecting the SM loop-level amplitude. These dominate over both the
dimension-eight logarithm but also over the dimension-six direct contributions (which follow
from a one-loop matching computation to the X2ϕ2 class of operators).

One could conjure more complicated models to cancel these indirect dimension-six
effects. However, a more interesting approach is to take a step back and return to a
model-independent bottom-up approach, and consider an observable for which these indirect
contributions partially cancel. To this end, we propose the ratio between the decay width
of h → γγ and h → γZ. In the SMEFT, considering again the numerical results from
refs. [55, 96], including all significant dimension-six effects up to one-loop and only the
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logarithmic part at dimension eight.11 This gives

1 + δRγγ
1 + δRγZ

= 1 + δRγγ − δRγZ +O
(
δR2

)
= 1−

(1 TeV
Λ

)2 (
0.12CϕD − 0.02Cuϕ,33 + 0.049C̄ϕB − 0.002C̄ϕW − 0.024C̄ϕWB

)
+ 0.0007

(1 TeV
Λ

)4 (
6CTLO + 3

8C
(1)
ϕ4 −

3
8C

(2)
ϕ4

)
log
(
mh

Λ

)
+O

(
δR2

)
, (5.7)

where for the barred coefficients C̄ϕX we have factored out the loop factor and the corre-
sponding powers of gauge couplings, i.e. CϕX = g2

XC̄ϕX/(16π2), with g2
X = g2, g′2, g′g for

X =W,B,WB, respectively. In the second line we have already substituted the dimension-
eight WCs responsible for the direct contribution to the h → γZ decay by their RGEs,
including only the terms proportional to TLOs, following eq. (4.13); CTLO is the only
potentially tree-level generated coefficient introduced in the new basis defined in eq. (4.10).

The ratio defined in eq. (5.7) is still very sensitive to custodial symmetry breaking, as
CϕD is the WC with the largest numerical pre-factor. Indeed, in figure 6(c) we show that this
ratio is not yet sensitive enough to dimension-eight effects for the Ξ extension, with the result
still being completely dominated by the dimension-six contributions. A UV direction which
could result in a larger relative contribution of the dimension-eight logarithm corresponds to
models where custodial symmetry is preserved at tree level, which can be achieved without
canceling the dimension-eight RGE effect, as we discussed in the previous section.

Focusing on these custodial symmetric UV scenarios, we can consider a specific scenario
of the previous section, a custodial model with B1 and Ξ. We choose M = MΞ = MB1

for simplicity. Following from the tree-level and loop-level matching computations from
refs. [30, 31] — the latter only for the scalar — the dimension-six contributions to eq. (5.7)
cancel, up to C̄ϕX , resulting in

1 + δRγγ
1 + δRγZ

≈ 1− 0.024
(1 TeV

M

)2 (κΞ
M

)2
+ 0.004

(1 TeV
M

)4 (κΞ
M

)2
log
(
mh

M

)
+O

(
δR2

)
,

(5.8)
where we used g2

B1
= 2(κΞ/M)2 to obtain CϕD = 0 and have further assumed that C̄ϕX =

κ2
Ξ/M

2. The latter assumption was made since there is no one-loop matching dictionary
for heavy vectors. We remark, however, that this assumption would be conservative in the
neutral scalar triplet model, in which the C̄ϕX WCs are suppressed by an additional numerical
factor of 1/16 [30]. A complete theory behind the mass generation of the heavy vector would
be required to perform this one-loop matching.

Under the assumption of C̄ϕX = κ2
Ξ/M

2, figures 6(b) and 6(d) show how much more
sensitive the new observable can be to dimension-eight effects in the custodial limit. At this

11For these estimates, we have not considered non-logarithmic one-loop contributions at dimension eight,
neither from dimension-six squared WCs [55] nor from dimension-eight coefficients. We have also neglected
dimension-six WCs which will not be generated by the considered UV extensions or which are suppressed
by Yukawa couplings (other than the top Yukawa) in their matching conditions, such as Cdϕ,33. Note that
O
(
δR2) terms can also be numerically important, especially for the C2

ϕD term, but we dropped them here
because they consist of two-loop corrections and in custodial-symmetric models which we will consider they
are suppressed.
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stage, it is reasonable to suggest that the dimension-eight contribution can provide a relevant
effect: for particles with M = 1TeV, the dimension-eight part corresponds to ≈ 25% of the full
result. This effect can be probed by future experiments. At the FCC, the observables δRγγ
and δRγZ are expected to be measured with a precision of 0.33% and 0.66%, respectively [97,
table 7]. To provide an observable effect, the dimension-eight logarithm contribution must be
larger than the error associated with the measurement. From eq. (5.8), this amounts to(

κΞ
M

)2
∼ δFCC

0.004
(M/1 TeV)4

| log(mh/M)| , (5.9)

where δFCC denotes the corresponding precision for the observable in eq. (5.7). Since in
ref. [97] there is no estimate for δFCC, we roughly approximate it using simple quadrature
as δFCC ∼

√
(0.33)2 + (0.66)2 ≃ 0.74%. For the benchmark choice of κΞ =M , we find that

the FCC is sensitive to the logarithm up to masses M ≲ 1TeV. Therefore, at the FCC, the
ratio proposed in eq. (5.7) will be able to probe dimension-eight effects and it can thereby
help to distinguish new physics models.

6 Conclusion

We have studied the radiative Higgs decays and their renormalization in the SMEFT,
assuming weakly coupled renormalizable UV physics. Under this assumption, the Higgs
decay amplitudes h → gg, h → γγ and h → γZ are loop-level processes, which translates
to loop-suppression factors in some of the EFT parameters. At subleading order in the
EFT expansion (i.e. mass dimension eight), we concluded that the renormalization group
equations may lead to sizable — logarithmically enhanced — contributions to observables
related to the h→ γZ decay in various models. This therefore provides a promising avenue
for future more detailed phenomenological studies.

The logarithmic enhancement of h→ γZ is the result of renormalization group mixing of
operators that can be generated by matching at tree level into operators responsible for the
loop-level decay amplitude. This one-loop effect is absent at any mass dimension in the other
Higgs decays (h→ gg and h→ γγ), which follows from results in generic UV completions, as
well as for h → γZ at dimension six. We established the renormalization of h → γZ with
explicit tree-level matching calculations, supplemented by the known one-loop RGEs from the
literature. For simplicity, we worked in the absence of Yukawa couplings and CP violating
operators, and we chose heavy field extensions in which the SM gauge symmetry is not broken
in the UV, such that we can match onto the SMEFT. Under these assumptions, we considered
all bosonic weakly coupled renormalizable single-particle UV extensions in which the mixing
of tree-level generated operators into the Higgs decays could be expected. We confirmed this
effect in four of the models. Unless cancellations occur, such as in the Georgi-Machacek model,
we generically expect this effect also in multi-particle extensions whenever loop diagrams
exist with both heavy and light particles in the loop (similar to those in figure 4(b)).

Our matching conditions for the scalar extensions and the singlet vector extension in
tables 1 and 4 agree with existing results in the literature. For the charged heavy vectors,
we obtained new results by including an additional interaction — the magnetic dipole term
— between heavy vectors and gauge bosons, defined in eq. (3.2). It was found that this
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interaction plays a crucial role in the consistency of our analysis: the vanishing of the h→ γZ

decay amplitude at tree level requires its coefficient (which we left free in the matching
calculations) to be fixed to the value that also respects perturbative unitarity in the full
theory. The results thus indicate that a relatively large h→ γZ amplitude at low energies —
resulting from a tree-level matching contribution — could signal the breakdown of perturbative
unitarity in the UV. In addition, the non-renormalization of the h → γγ amplitude also
requires the UV (with heavy vectors) to respect tree-level perturbative unitarity. We find
that dimension eight is the leading mass dimension at which the additional interaction affects
matching calculations at tree level.

In a generic dimension-eight basis (such as the basis of ref. [47]), both the one-loop
suppression of the Higgs decays and the non-renormalization of h→ γγ are encoded through
intricate cancellations between multiple WCs that are generated in a correlated way in tree-
level matching calculations. The verification of such relations therefore constitutes a valuable
consistency check on matching calculations, operator basis transformations and the RGEs.
We made the correlations between the WCs more transparent by proposing an alternative
operator basis. This basis illuminates that there is only one CP-even tree-level generated linear
combination of WCs of all operators in the X2ϕ4 and Xϕ4D2 classes. All other directions in
the parameter space correspond to loop-level processes in the UV, such as the Higgs decays.
This is consistent with, but refines the classification of ref. [46]. The improved classification
could motivate the use of a restricted set of EFT parameters in phenomenological studies,
instead of naively constraining all WCs from a purely bottom-up approach.

With the complete set of models which result in tree-level generated operators mixing
into the h→ γZ decay (disregarding the Yukawa couplings), we studied the relation between
UV symmetries and the occurance of this new renormalization effect. We observed that
for scalar extensions, the logarithmic enhancement is correlated with custodial symmetry
breaking in the UV, leading to important constraints. To break this correspondence, heavy
vector particles have to be included.

Our first study on the phenomenological impact of the renormalization of the logarithmi-
cally enhanced h→ γZ amplitude motivates future research in this direction. The ratio of
observables in eq. (5.8) enhances the relative importance of the dimension-eight logarithmic
contribution to a potentially observable level. It would be useful to reconsider this quantitative
prediction in a UV model that includes the mass-generation mechanism of the heavy vector
boson B1. Furthermore, for a consistent treatment it would also be necessary to include the
non-logarithmic one-loop matching contributions from integrating out the heavy vector fields.

Finally, we have assumed the absence of CP-violating and fermionic effects. We do not
expect that these effects lead to drastically different conclusions, but it would be worthwhile
to complete our study by including all possible corrections to the Higgs decays. We leave
this, and a systematic study of the UV scenarios which could maximize the relevance of
the dimension-eight contributions for future work.
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A EFT contributions from redefining SM fields and parameters

In this appendix, we exemplify the indirect effects that result from redefinitions of SM
parameters after spontaneous symmetry breaking, due to the presence of higher-dimensional
operators. Such effects are complementary to the direct effects considered in section 2.1,
and they are relevant to the determination of the full one-loop decay rates considered in
section 5.3. In that section, we use the results from refs. [55, 96]. Moreover, the same
redefinitions also affect the coefficients of EFT operators, leading to the terms at quadratic
order in the dimension-six WCs given in eqs. (2.3), (2.5) and (2.6).

Let us consider the subset of operators in eq. (2.2) that contain two field-strength tensors
that are either Bµν or W a

µν . The redefinitions of gluon fields and associated couplings are
considerably simpler. (We consider pure-Higgs operators, which generate a redefinition of
the Higgs field, in eq. (A.18) below.) The considered Lagrangian is

LXϕ = − 1
4BµνB

µν − 1
4W

a
µνW

aµν

+ CϕW
Λ2 |ϕ|

2W a
µνW

aµν + CϕB
Λ2 |ϕ|

2BµνB
µν + CϕWB

Λ2 (ϕ†σaϕ)BµνW aµν

+
C

(1)
ϕ4W 2

Λ4 |ϕ|4W a
µνW

aµν +
C

(3)
ϕ4W 2

Λ4 (ϕ†σaϕ)(ϕ†σbϕ)W a
µνW

bµν

+
C

(1)
ϕ4B2

Λ4 |ϕ|
4BµνB

µν +
C

(1)
ϕ4WB

Λ4 |ϕ|2(ϕ†σaϕ)BµνW aµν .

(A.1)

After the Higgs takes a vev, all effective operators above contribute to the kinetic term
of the gauge bosons,

LXϕ ⊃ −
1
4

1− 2v2CϕB
Λ2 −

v4C
(1)
ϕ4B2

Λ4

BµνBµν

− 1
4

1− 2v2CϕW
Λ2 −

v4C
(1)
ϕ4W 2

Λ4

W 1,2
µν W

1,2µν

− 1
4

[
1− 2v2CϕW

Λ2 − v4

Λ4

(
C

(1)
ϕ4W 2 + C

(3)
ϕ4W 2

)]
W 3
µνW

3µν

−
v2CϕWB

2Λ2 +
v4C

(1)
ϕ4WB

4Λ4

W 3
µνB

µν .

(A.2)
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Note that the kinetic terms of W 3 and W 1,2 are corrected by effective operators in different
ways at dimension eight. The first step to go back to a canonical kinetic term, whilst preserving
the form of the covariant derivatives, is to redefine the fields and gauge couplings as

Bµ → Bµ

[
1− 2 v

2

Λ2CϕB −
v4

Λ4C
(1)
ϕ4B2

]−1/2

,

g′ → g′
[
1− 2 v

2

Λ2CϕB −
v4

Λ4C
(1)
ϕ4B2

]1/2

,

W 3
µ →W 3

µ

[
1− 2 v

2

Λ2CϕW −
v4

Λ4 (C
(1)
ϕ4W 2 + C

(3)
ϕ4W 2)

]−1/2

,

g → g

[
1− 2 v

2

Λ2CϕW −
v4

Λ4 (C
(1)
ϕ4W 2 + C

(3)
ϕ4W 2)

]1/2

,

(A.3)

where we use the notation of g′ and g for the U(1)Y and SU(2)L gauge couplings. Similar
redefinitions would apply for operators with gluons. After these redefinitions, the kinetic
term becomes

LXϕ ⊃ −
1
4
(
Bµν W

3
µν

) 1 −S
−S 1


 Bµν

W 3µν

 , (A.4)

with
S = − v

2

Λ2

[
CϕWB

(
1 + v2

Λ2 (CϕW + CϕB)
)
+ v2

2Λ2C
(1)
ϕ4WB

]
. (A.5)

In order to diagonalize the kinetic term above we (i) perform the “usual” weak rotation
with the angles defined in terms of g′, g and then (ii) perform a non-orthogonal rotation
to remove the kinetic-mixing. For step (i) we the writeBµ

W 3
µ

 =

cW −sW
sW cW


Ãµ
Z̃µ

 , cW ≡
g√

g2 + g′2
, sW ≡

g′√
g2 + g′2

. (A.6)

Therefore,

LXϕ ⊃ −
1
4
(
Bµν W 3µν

) 1 −S
−S 1


Bµν
W 3
µν


= −1

4
(
Ãµν Z̃µν

)1− s2WS −Sc2W

−Sc2W 1 + s2WS


Ãµν
Z̃µν

 .
(A.7)

For step (ii) we useÃµ
Z̃µ

 =

1 + s2W
2 S + 3s2

2W
8 S2 c2WS

(
1 + s2W

2 S
)

0 1− s2W
2 S + S2

2
(
s4
W + s2

W c
2
W + c4

W

)

Aµ
Zµ

 , (A.8)
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and consequently

LXϕ ⊃ −
1
4
(
Ãµν Z̃µν

)1− s2WS −Sc2W

−Sc2W 1 + s2WS


Ãµν
Z̃µν


= −1

4AµνA
µν − 1

4ZµνZ
µν ,

(A.9)

which is finally in canonical form. The total rotation is the product of the transformations
in eqs. (A.6) and (A.8):Bµ

W 3
µ

 =

cW
(
1 + s2W

2 S + 3s2
2W
8 S2

)
−sW + Sc3

W + sW
2 S2

(
c2W − 3

4s
2
2W

)
sW

(
1 + s2W

2 S + 3s2
2W
8 S2

)
cW − Ss3

W + cW
2 S2

(
c2W + 3s2

2W
4

)

Aµ
Zµ

 .
(A.10)

After this rotation, the mass matrix becomes diagonal with eigenvalues

m2
A = 0, m2

Z = v2

4
(
g′

2 + g2
) [

1− s2WS + S2
]
. (A.11)

This implies the following form of the effective coupling,

g2
Z =

(
g′

2 + g2
) [

1− s2WS + S2
]
. (A.12)

With that, we have rewritten the original Lagrangian in terms of the physical photon and
Z boson fields, Aµ and Zµ. Let us reemphasize that the Z boson mass receives further
contributions from operators that were not part of eq. (A.1), such as the ones considered
in eq. (A.16) below.

The transformation in eq. (A.10) modifies the structure of the covariant derivative. In
order to put it in the same form as in the SM, that is

Dµ ⊃ ieQAµ + igZZµ(T 3 − s̃2
WQ), (A.13)

with Q, T 3 the U(1)EM and third SU(2)L generators, we define the physical electric charge e as

e = e

(
1 + s2W

2 S + 3s2
2W
8 S2

)
, (A.14)

where e = g′cW = gsW . In addition, s̃W is defined by

s̃2
W = s2

W

[
1− S

(
cW
sW
− s2W

)
− 2S2c2

W c2W

]
. (A.15)

In addition to redefinitions that arise from canonically normalizing the gauge boson
kinetic terms, there are further indirect effects that arise from redefinitions of the Higgs field.
Let us therefore consider the operators that contain only Higgs doublets (and derivatives),

Lϕ = Cϕ
Λ2 |ϕ|

6 + CϕD
Λ2 |ϕ

†Dµϕ|2 +
Cϕ□
Λ2 |ϕ|

2□|ϕ|2

+
Cϕ8

Λ4 |ϕ|
8 +

C
(1)
ϕ6

Λ4 |ϕ|
4Dµϕ

†Dµϕ+
C

(2)
ϕ6

Λ4 |ϕ|
2(Dµϕ

†σaDµϕ)(ϕ†σaϕ).
(A.16)
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After the Higgs takes a vev, ϕ = (0, v + h̃)/
√
2, its kinetic term becomes

Lϕ ⊃
1
2(∂h̃)

2
{
1− 2 v

2

Λ2

[
Cϕ□ −

CϕD
4

]
+ v4

4Λ4

[
C

(1)
ϕ6 + C

(2)
ϕ6

]}
, (A.17)

which is normalized by

h̃ = h

{
1− 2 v

2

Λ2

[
Cϕ□ −

CϕD
4

]
+ v4

4Λ4

[
C

(1)
ϕ6 + C

(2)
ϕ6

]}−1/2

, (A.18)

where h is the canonically normalized Higgs field. The decays h → γγ and h → γZ can
then be computed by keeping terms with one Higgs in eq. (2.2) and after performing the
transformations in eqs. (A.3), (A.10), (A.14) and (A.18). The result of all these steps is
given in eqs. (2.5) and (2.6) up to O

(
1/Λ4).

B Weakly coupled UV models and off-shell matching results

In this appendix we list the single-particle extensions to the SM considered in section 2.1.
For each model, we integrate out the heavy particles at tree level and keep contributions up
to dimension eight. We match these results to the Green’s basis of refs. [28, 72, 73], resulting
in table 4. Afterwards, we reduce them to the physical basis in refs. [47, 53]. The matching
results in the physical basis are presented in table 1.

In the Lagrangian for each UV model, M denotes the mass of the heavy particle,
κS , κΞ, κΞ1 are dimensionful couplings for scalar extensions and gB, gB1 , gW , gW1 are
dimensionless couplings in the case of vector extensions. We have assumed that all these
couplings are real. Quantum numbers are presented with respect to the SM gauge group
SU(3)c × SU(2)L × U(1)Y .

• Real scalar singlet S ∼ (1, 1, 0)

LS = 1
2∂µS∂

µS − 1
2M

2S2 − κSS|ϕ|2. (B.1)

The SM with an additional singlet scalar field is one of the simplest extensions of the
SM, therefore being the subject of many studies. We refer the reader to refs. [98–101]
and references therein.

• Real scalar triplet Ξ ∼ (1, 3, 0)

LΞ = 1
2DµΞaDµΞa − 1

2M
2ΞaΞa − κΞΞaϕ†σaϕ. (B.2)

This model, first introduced in ref. [102], has a rich phenomenology (see for instance
refs. [74, 77, 103–118]). We study this model in more detail in section 5.3 and appendix C.

• Complex scalar triplet Ξ1 ∼ (1, 3, 1)

LΞ1 = DµΞa†1 D
µΞa1 −M2Ξa†1 Ξa1 −

(
κΞ1Ξa1ϕ†σaϕ̃+ h.c.

)
, (B.3)

with ϕ̃ = iσ2ϕ∗. The complex triplet has been employed, for example, in the Georgi-
Machacek model [93, 94] and also in neutrino mass models [119].
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• Real Abelian vector B ∼ (1, 1, 0)

LB = 1
2
(
∂µBν∂νBµ − ∂µBν∂µBν +M2BµBµ

)
+
(
igBBµϕ†Dµϕ+ h.c.

)
. (B.4)

The addition of a SM-singlet vector is a well motivated extension of the SM, for it
surges out of Abelian extensions of the SM gauge group. This class of models has a
very rich phenomenology, see for instance ref. [120] and references therein.

• Complex SU(2)L singlet vector B1 ∼ (1, 1, 1)

LB1 = DµB†1νDνBµ1 −DµB†1νDµBν1 +M2B†1µBµ1 +
(
igB1Bµ1ϕ†Dµϕ̃+ h.c.

)
− ig′kB1Bµ†1 Bν1Bµν . (B.5)

This model has previously been studied in, for example, refs. [80, 97, 121] in the context
of EFTs.

• Real SU(2)L triplet vector W ∼ (1, 3, 0)

LW =1
2
(
DµWa

νD
νWµa −DµWa

νD
µWνa +M2Wa

µWµa
)

+
(
igWWµaϕ†σaDµϕ+ h.c.

)
− 1

2g kWϵ
abcWµaWνbW c

µν .
(B.6)

This model was previously studied in the context of the LHC in ref. [122] and in a
more general context in ref. [123]. It was also used to explain the (g − 2) anomaly, for
instance in ref. [70], and as a source of neutrino-less double beta decay [121].

• Complex SU(2)L triplet vector W1 ∼ (1, 3, 1)

LW1 =DµWa†
1νD

νWµa
1 −DµWa†

1νD
µWνa

1 +M2Wa†
1µWµa

1

+
(
igW1Wµa

1 ϕ†σaDµϕ̃+ h.c.
)

− g kW1,1ϵ
abcWµa†

1 Wνb
1 W c

µν − ig′kW1,2Wµa†
1 Wνa

1 Bµν .

(B.7)

This model is much less studied in the literature compared to other models, being
mentioned in refs. [121, 122], for example. More recently, ref. [81] argued that the
coupling of W1 to two Higgs fields cannot emerge from a Yang-Mills theory.

C Details on the scalar triplet model

In this appendix, we review the UV model of section 5.1 in more detail.

C.1 Mixings and diagonalization

We add to the SM particle content a SU(2)L triplet of zero hypercharge, Ξ, described by
the Lagrangian

LΞ = 1
2DµΞaDµΞa − 1

2M
2ΞaΞa − κΞΞaϕ†σaϕ, (C.1)
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Scalar extensions Vector extensions

S Ξ Ξ1 Bµ Bµ1 Wµ Wµ
1

(1, 1, 0) (1, 3, 0) (1, 3, 1) (1, 1, 0) (1, 1, 1) (1, 3, 0) (1, 3, 1)

|ϕ|4 ∗ 0 0 0 0 0 0 0

Oϕ□ −1/2 −1/2 −1/2 −1/8

OϕD −2 4 −2 1 −1/4

R′
ϕD 2 4 −1 −1/2 −1/4

O(1)
ϕ4 4 −2 2 1/2

O(2)
ϕ4 8 2 1/2

O(3)
ϕ4 2 −2 −2 −1

R(4)
ϕ4 2 −2

R(6)
ϕ4 4

R(8)
ϕ4 1/2 1/2

0
R(10)
ϕ4 2 4

R(11)
ϕ4 1 −1 4

R(12)
ϕ4 8

gO(1)
Wϕ4D2 −2 4 −1/2− kW −kW1,2/2

gR(6)
Wϕ4D2 1 −kW/4

gR(7)
Wϕ4D2 2 −1 kW1,2/4

g′O(1)
Bϕ4D2 −2 −2kB1 3/2

g′R(3)
Bϕ4D2 0 −kB1/2 1/2 kW1,1/8

g2O(1)
ϕ4W 2 3/8 −1/16− kW/8 −1/32

g2O(3)
ϕ4W 2 −1/4 1/8 −1/32

g′gO(1)
ϕ4WB −1/2 1/2− kB1/4 1/8− kW/8 (kW1,1 − 2)/16

g′2O(1)
ϕ4B2 −1/4 −kB1/4 3/16 (kW1,1 − 1)/16

Table 4. Tree-level matching contributions to the SMEFT in the Green’s basis from single-particle
extensions of the SM. The higher-dimensional operators are defined in table 6. The operators denoted
by R are chosen to be removed by field redefinitions when we transform to the physical basis. We
have suppressed an overall factor of κ2/M2 in the results for the scalar extensions, as well as an
overall factor of g2

X in the results for the vector extensions. Powers of 1/M can be reconstructed by
dimensional analysis. Empty entries are zero and operators that are omitted do not receive matching
contributions from any of the considered models.
* Any contribution to the renormalizable |ϕ|4 operator has been negated by a redefinition of λ, which
does not affect any other matching condition.
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with M2 and κΞ dimensionful parameters. The covariant derivative is explicitly given by

DµΞc =
(
∂µΞc − gW a

µΞbϵabc
)
, (C.2)

where we use the convention Ξ = σaΞa for the triplet components, that leads to following
kinetic term

1
2DµΞaDµΞa = 1

2(∂µΞ
c)2 − gϵabcW a

µΞb∂µΞc +
g2

2
[
(W a

µ )2(Ξb)2 − (W a
µΞa)2

]
. (C.3)

The potential describing the dynamics of the scalars is written as

V (ϕ,Ξ) = −µ2
ϕ|ϕ|2 + λ|ϕ|4 + κΞΞaϕ†σaϕ+ 1

2M
2ΞaΞa. (C.4)

In general, both scalars can take a vev. We therefore expand the fields as

ϕ =

 ϕ+

v+ϕ0
√

2

 , Ξ =

vT + Ξ0 √
2Ξ+

√
2Ξ− −(vT + Ξ0)

 , (C.5)

where v, vT are the vevs of ϕ and Ξ, respectively, and we have defined

Ξ1 = Ξ+ + Ξ−
√
2

, Ξ2 = −Ξ
+ + Ξ−

i
√
2

, Ξ3 = Ξ0, (C.6)

in terms of the charge eigenstates Ξ0,Ξ±. The associated tadpole equations then read

∂V

∂Reϕ0

∣∣∣
ϕ,Ξ=0

= v
(
−µ2

ϕ + λv2 − κΞvT
)
= 0,

∂V

∂Ξ0

∣∣∣
ϕ,Ξ=0

=M2vT −
1
2κΞv

2 = 0,
(C.7)

that are solved by

v2 =
2µ2

ϕM
2

2M2λ− κ2
Ξ
, vT = κΞv

2

2M2 =
κΞµ

2
ϕ

2M2λ− κ2
Ξ
. (C.8)

We now proceed to diagonalize the mass matrices. We start with the neutral sector.
The relevant term is

V ⊃ 1
2(Reϕ0 Ξ0)

 2λv2 −κΞv

−κΞv M2


Reϕ0

Ξ0

 , (C.9)

which is diagonalized by

U =

cθ0 −sθ0

sθ0 cθ0

 , s2θ0 = − 2κΞv

m2
h −m2

ξ0
, (C.10)

where we use the notation sα ≡ sinα, cα = cosα. The physical states h, ξ0 are defined byReϕ0

Ξ0

 = U

h
ξ0

 , (C.11)
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with masses given by

m2
h,ξ0 =

(
λv2 + 1

2M
2
)
±
(
λv2 − 1

2M
2
)√

1 + 4κ2
Ξv

2

(2λv2 −M2)2 . (C.12)

Hence, h is associated to the SM-like Higgs, while ξ0 is the novel neutral scalar state.
The charged sector is a bit more complicated, because Ξ± enters in the definition of

the Goldstones. To determine the mass matrix, we first need to identify the gauge-fixing
Lagrangian:

Lgf ⊃ −
1
ξW

∣∣∣∣∂µW+
µ + igξW

(
vTΞ+ − v

2ϕ
+
)∣∣∣∣2 + g2ξW

∣∣∣∣vTΞ+ − v

2ϕ
+
∣∣∣∣2 , (C.13)

where ξW is the gauge-fixing parameter for W±
µ . The mass matrix for the charged sector

then reads

V ⊃ (ϕ+ Ξ+)

−κΞvT κΞv

κΞv M2


ϕ−
Ξ−

+ g2ξW

∣∣∣∣vTΞ+ − v

2ϕ
+
∣∣∣∣2 . (C.14)

Notice that only a particular combination, namely vTΞ+ − v
2ϕ

+, enters in the gauge fixing,
meaning that this is the combination that plays the role of the Goldstone boson for the
charged vectors. Then, the natural choice for us is to rotate the charged states to give us
this specific combination. Thus,G+ ≡ cθ+ϕ

+ − sθ+Ξ+

ξ+ ≡ sθ+ϕ
+ + cθ+Ξ+

, sθ+ = −vT√
v2
T + (v/2)2

, cθ+ = −v/2√
v2
T + (v/2)2

. (C.15)

The transformation above not only selects appropriately the Goldstone, but also diagonalizes
the mass matrix in eq. (C.14). The complete mass matrix becomes

V ⊃ g2ξW

(
v2
T + v2

4

)
G−G+ +m2

ξ±ξ
+ξ−, (C.16)

with the charged mass given by

m2
ξ± = c2

θ+M
2 + 2s2

θ+vTκΞ + 2cθ+sθ+vκΞ. (C.17)

Through these rotations we can now consistently take the limit ξW → ∞ to go to unitary
gauge and completely decouple the Goldstone G±.

Lastly, from the kinetic term of the triplet in eq. (C.3) we obtain a contribution to the
W boson mass. Its mass written in term of the Lagrangian parameters is

m2
W = g2v2

4

[
1 + 4

(
vT
v

)2
]
. (C.18)

The mass of the Z boson is given by the SM expression.
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Particles Feynman rule (incoming momenta)

γµξ
+(p+)ξ−(p−) −ie(p− − p+)µ

Zµξ
+(p+)ξ−(p−) −ie cot θW (p− − p+)µ +O(κΞ)

hξ+ξ− ghξ+ξ− = −sθ0s
2
θ+
κΞ − 2cθ0sθ+cθ+(κΞ + 2vTλ)

γµZνξ
+ξ− 2ie2 cot θW ηµν +O(κΞ)

γλ(pγ)W+
µ (p+)W−

ν (p−) −ie [ηµν(p+ − p−)λ + ηλν(p− − pγ)µ + ηµλ(pγ − p+)ν ]

h(ph)ξ±(pξ)W∓
µ ± ig

2 (2cθ+sθ0 − sθ+cθ0)(ph − pξ)µ
ξ±W∓

µ Zν − iegvsθ+
s2W

Table 5. Feynman rules relevant for the computation of h → γZ, to leading order in κΞ and in
unitary gauge.

C.2 Computation of the h → γZ amplitude

We now report the results obtained for the diagrams in figure 4, which give BSM contributions
to h → γZ.

We summarise the relevant Feynman rules in table 5. Using them, we can easily evaluate
the diagrams in figure 4(a) with only charged scalars in the loop. The full result reads

iAH,scalar =
ie2x2

h cot θW ghξ+ξ−

8π2m2
Z(xh − xZ)2 ×

×
{
√
1− 4xhf(xh) + xZf(xh)2 + xZ

xh
− 1−

√
1− 4xZf(xZ)− xZf(xZ)2

}
,

(C.19)

where xi ≡ m2
ξ±/m

2
i and the function f is defined as

f(x) = log
[
1− 1

2x
(
1−
√
1− 4x

)]
. (C.20)

This result, though in a different notation, agrees with was what previously found in the
literature for scalar loops [88, 90, 124].

The result of the loops in figure 4(b) is more involved due to the extra mass scale in
the loop, resulting in dilogarithms. Defining

iAµνH,1 ≡ h

Zµ

γν

ph

k

pZ

q1

pγ

q2

, iAµνH,2 ≡ h

Zµ

γν

ph

k

pZ

q1

pγ

q2

,

(C.21)
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and using the Feynman rules from table 5, we can build the loop integrals:

iAµνH,1 = − 2× ig

2 (2cθ+sθ0 − sθ+cθ0)×
iegvsθ+

s2W
× (−ie)× i3

×
∫ d4k

(2π)4
(ph + k)βηµλ [ηρδ(−q2 − q1)ν + ηνρ(q1 + pγ)δ + ηδν(q2 − pγ)ρ]

[k2 −m2
ξ± ][q2

1 −m2
W ][q2

2 −m2
W ]

×
(
−ηβδ +

q2βq2δ
m2
W

)(
−ηλρ +

q1ρq1λ
m2
W

)
, (C.22)

iAµνH,2 = − 2× ig

2 (2cθ+sθ0 − sθ+cθ0)×
iegvsθ+

s2W
× (−ie)× i3

×
∫ d4k

(2π)4
(q2 − ph)αηµβ(q1 + q2)ν

[k2 −m2
W ][q2

1 −m2
ξ± ][q2

2 −m2
ξ± ]

(
−ηαβ +

kαkβ
m2
W

)
. (C.23)

The factor of 2 in the expressions above come from considering the same diagrams with
reversed arrows. Then, AH,mixed is given by

AH,mixed = (AµνH,1 +A
µν
H,2)

∣∣
pν

Zp
µ
γ piece, (C.24)

where we select only the coefficient proportional to pνZpµγ . As explained in refs. [88, 89], the
Ward identity and on-shell conditions enforce an overall Lorentz structure pνZpµγ − (pZ · pγ)ηµν .
This allows the reconstruction of the full integral from only the Lorentz structure pνZp

µ
γ .

This is also the reason why we omitted other diagrams, which only contribute with terms
proportional to ηµν , due to the particular Lorentz structure of the interactions. The expression
obtained from eq. (C.24) agrees with previous results [88, 90].

D Table of operators

For completeness, we introduce in this appendix the notation for the operators used throughout
this work. This notation has been introduced in refs. [28, 53] for the dimension-six operators
and refs. [47, 73] for operators at dimension eight.
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Class Notation Operators Notation Operators

ϕ8 Oϕ8 ϕ8

ϕ6D2 O(1)
ϕ6 (ϕ†ϕ)2(Dµϕ

†Dµϕ) O(2)
ϕ6 (ϕ†ϕ)(ϕ†σIϕ)(Dµϕ

†σIDµϕ)
R(3)
ϕ6 (ϕ†ϕ)2(ϕ†D2ϕ+ h.c.) R(4)

ϕ6 (ϕ†ϕ)2Dµ(ϕ†i
←→
D µϕ)

ϕ4D4

O(1)
ϕ4 (Dµϕ

†Dνϕ)(Dνϕ†Dµϕ) O(2)
ϕ4 (Dµϕ

†Dνϕ)(Dµϕ†Dνϕ)
O(3)
ϕ4 (Dµϕ†Dµϕ)(Dνϕ†Dνϕ) R(4)

ϕ4 Dµϕ
†Dµϕ(ϕ†D2ϕ+ h.c.)

R(5)
ϕ4 Dµϕ

†Dµϕ(ϕ†iD2ϕ+ h.c.) R(6)
ϕ4 (Dµϕ

†ϕ)(D2ϕ†Dµϕ) + h.c.
R(7)
ϕ4 (Dµϕ

†ϕ)(D2ϕ†iDµϕ) + h.c. R(8)
ϕ4 (D2ϕ†ϕ)(D2ϕ†ϕ) + h.c.

R(9)
ϕ4 (D2ϕ†ϕ)(iD2ϕ†ϕ) + h.c. R(10)

ϕ4 (D2ϕ†D2ϕ)(ϕ†ϕ)
R(11)
ϕ4 (ϕ†D2ϕ)(D2ϕ†ϕ) R(12)

ϕ4 (Dµϕ
†ϕ)(Dµϕ†D2ϕ) + h.c.

R(13)
ϕ4 (Dµϕ

†ϕ)(Dµϕ†iD2ϕ) + h.c.

Xϕ4D2

O(1)
Wϕ4D2 i(ϕ†ϕ)(Dµϕ†σIDνϕ)W I

µν O(2)
Wϕ4D2 i(ϕ†ϕ)(Dµϕ†σIDνϕ)W̃ I

µν

O(3)
Wϕ4D2 iϵIJK(ϕ†σIϕ)(Dµϕ†σJDνϕ)WK

µν O(4)
Wϕ4D2 iϵIJK(ϕ†σIϕ)(Dµϕ†σJDνϕ)W̃K

µν

R(5)
Wϕ4D2 (ϕ†ϕ)DνW

Iµν(Dµϕ
†σIϕ+ h.c.) R(6)

Wϕ4D2 (ϕ†ϕ)DνW
Iµν(Dµϕ

†iσIϕ+ h.c.)
R(7)
Wϕ4D2 ϵIJK(Dµϕ

†σIϕ)(ϕ†σJDνϕ)WKµν O(1)
Bϕ4D2 i(ϕ†ϕ)(Dµϕ†Dνϕ)Bµν

O(2)
Bϕ4D2 i(ϕ†ϕ)(Dµϕ†Dνϕ)B̃µν R(3)

Bϕ4D2 (ϕ†ϕ)DνB
µν(Dµϕ

†iϕ+ h.c.)

X2ϕ4

O(1)
G2ϕ4 (ϕ†ϕ)2GAµνG

Aµν O(2)
G2ϕ4 (ϕ†ϕ)2G̃AµνG

Aµν

O(1)
W 2ϕ4 (ϕ†ϕ)2W I

µνW
Iµν O(2)

W 2ϕ4 (ϕ†ϕ)2W̃ I
µνW

Iµν

O(3)
W 2ϕ4 (ϕ†σIϕ)(ϕ†σJϕ)W I

µνW
Jµν O(4)

W 2ϕ4 (ϕ†σIϕ)(ϕ†σJϕ)W̃ I
µνW

Jµν

O(1)
WBϕ4 (ϕ†ϕ)(ϕ†σIϕ)W I

µνB
µν O(2)

WBϕ4 (ϕ†ϕ)(ϕ†σIϕ)W̃ I
µνB

µν

O(1)
B2ϕ4 (ϕ†ϕ)2BµνBµν O(2)

B2ϕ4 (ϕ†ϕ)2B̃µνBµν

ϕ4D2 OϕD (ϕ†Dµϕ)†(ϕ†Dµϕ) Oϕ□ (ϕ†ϕ)□(ϕ†ϕ)
R′
ϕD (ϕ†ϕ)Dµϕ

†Dµϕ

ϕ6 Oϕ ϕ6

Table 6. Operator notation introduced in the matching calculations performed in the paper. A
redundant operator is labeled with R, whereas a physical one has the label O.
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