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A search for the resonant production of a heavy scalar 𝑋 decaying into a Higgs boson and
a new lighter scalar 𝑆, through the process 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾), where the two photons
are consistent with the Higgs boson decay, is performed. The search is conducted using an
integrated luminosity of 140 fb−1 of proton-proton collision data at a centre-of-mass energy
of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is
performed over the mass range 170 ≤ 𝑚𝑋 ≤ 1000 GeV and 15 ≤ 𝑚𝑆 ≤ 500 GeV. Parameterised
neural networks are used to enhance the signal purity and to achieve continuous sensitivity
in a domain of the (𝑚𝑋, 𝑚𝑆) plane. No significant excess above the expected background is
found and 95% CL upper limits are set on the cross section times branching ratio, ranging
from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for
(𝑚𝑋, 𝑚𝑆) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.
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Figure 1: Example of a Feynman diagram showing gluon–gluon fusion production of a scalar 𝑋 decaying into a
scalar 𝑆 and a Standard Model Higgs boson, which in turn decay into a pair of 𝑏-quarks and a pair of photons.

1 Introduction

The properties of the Higgs boson (𝐻) discovered in 2012 [1, 2] by the ATLAS and CMS experiments at
the Large Hadron Collider (LHC) are consistent with the Standard Model (SM) predictions [3, 4]. However
the current experimental precision does not exclude that 𝐻 may have a small mixing with additional scalar
bosons, and may be part of an extended Higgs sector. Many Beyond the Standard Model (BSM) theories
predict such an extended Higgs sector, where one of the physical Higgs boson states could correspond to
the spin-0 boson observed with a mass of 125 GeV, while additional scalars remain to be discovered [5].

In this paper, the complete proton-proton dataset collected by the ATLAS experiment during Run 2 of the
LHC is used to search for two additional scalar bosons 𝑋 and 𝑆. Under the condition 𝑚𝑋 > 𝑚𝑆 + 𝑚𝐻 ,
the decay 𝑋 → 𝑆𝐻 is kinematically allowed. This phenomenology may arise in models where the SM
Higgs sector is extended with either a complex singlet [6] or two real singlets [7], and in models such as
the complex two-Higgs-doublet model (2HDM) [8], the 2HDM extended by a real scalar singlet [9, 10] or
the Next-to-Minimal Supersymmetric Standard Model [11, 12].

The sensitivity of the LHC to the decay 𝑋 → 𝑆𝐻 has been explored in several benchmark scenarios [7, 13,
14]. The decay of the scalar 𝑆 is model- and mass-dependent. The CMS Collaboration has performed
searches for 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝑏�̄�), 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝜏𝜏) and 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) using Run 2
data [15–17]. In the 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) final state, CMS observed a deviation from the background-
only hypothesis with a local (global) significance of 3.8 (2.8) standard deviations at 𝑚𝑋 = 650 GeV and 𝑚𝑆

= 90 GeV. ATLAS published results on the search for 𝑋 → 𝑆(→𝑉𝑉)𝐻 (→𝜏𝜏), where 𝑉 denotes a 𝑊 or 𝑍
boson [18].

This paper is focused on the search for 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) and uses the same Run 2 dataset already
exploited by ATLAS to search for Higgs boson pair production [19]. A di-photon mass peak arises from
𝐻 → 𝛾𝛾, while the two 𝑏-tagged jets arise from the 𝑆 → 𝑏�̄� decay, thus leading to a characteristic signal
with three resonant mass peaks from 𝐻 → 𝛾𝛾, 𝑆 → 𝑏�̄� and 𝑋 → 𝑏�̄�𝛾𝛾. The natural widths of the new
bosons are assumed to be much smaller than the experimental resolutions. In the particular scenario where
the scalar 𝑆 has couplings similar to those of the SM Higgs boson, 𝑆 → 𝑏�̄� is the predominant decay
for 𝑚𝑆 < 130 GeV. The Feynman diagram for the main production mode of this process is illustrated in
Figure 1.

The rate of production for the scalar 𝑋 , and the decay branching ratios 𝐵𝑅(𝑋 → 𝑆𝐻) and 𝐵𝑅(𝑆 → 𝑏�̄�),
are strongly dependent on which model is realised, and on the specific values of the parameters of the
extended Higgs sector. Therefore, the results are expressed as 95% confidence level (CL) upper limits on
𝜎(𝑝𝑝 → 𝑋) × 𝐵𝑅(𝑋 → 𝑆𝐻) × 𝐵𝑅(𝑆 → 𝑏�̄�) × 𝐵𝑅(𝐻 → 𝛾𝛾), denoted 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾), rather
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than on specific models, probing the 𝑚𝑋 range between 170 and 1000 GeV and the 𝑚𝑆 range between 15
and 500 GeV.

This article is structured as follows. Section 2 briefly introduces the ATLAS detector. Data and simulated
event samples are given in Section 3. Object definitions are introduced in Section 4 while the event
selection is described in Section 5. The strategy for background estimation is explained in Section 6.
Section 7 is devoted to the description of the systematic uncertainties. Statistical modelling, validation of
the background calculations and results are presented in Section 8. Finally the conclusions are given in
Section 9.

2 ATLAS detector

The ATLAS detector [20] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |𝜂 | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)
installed before Run 2 [21, 22]. It is followed by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | < 3.2,
electromagnetic calorimetry is provided by a lead/liquid-argon (LAr) sampling calorimeter with accordion
geometry. It is divided into a barrel section covering |𝜂 | < 1.475 and two endcap sections covering
1.375 < |𝜂 | < 3.2. For |𝜂 | < 2.5, it is divided into three layers in depth, which are finely segmented in 𝜂 and
𝜙. An additional thin LAr presampler layer covering |𝜂 | < 1.8 is used to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |𝜂 | < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers
of precision chambers, each consisting of layers of monitored drift tubes, cover the region |𝜂 | < 2.7,
complemented by cathode-strip chambers in the forward region, where the background is highest. The

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.
Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity is
defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 = 1

2 ln
(
𝐸+𝑝𝑧𝑐
𝐸−𝑝𝑧𝑐

)
in the relativistic limit.

Angular distance is measured in units of Δ𝑅 ≡
√︁
(Δ𝑦)2 + (Δ𝜙)2.
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muon trigger system covers the range |𝜂 | < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [23] detector that records Cherenkov light produced
in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections
made by algorithms implemented in software in the high-level trigger [24]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further
reduces in order to record complete events to disk at about 1 kHz.

A software suite [25] is used in data simulation, in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated event samples

The data used in this search were collected by the ATLAS experiment between 2015 and 2018, from
proton-proton collisions at

√
𝑠 = 13 TeV at the LHC. After data quality requirements [26], this corresponds to

an integrated luminosity of 140 fb−1. The uncertainty in the combined 2015–2018 integrated luminosity is
0.83% [27], obtained using the LUCID-2 detector [23] for primary luminosity measurements, complemented
by measurements using the inner detector and calorimeters.

Events are recorded using diphoton triggers that require two reconstructed photon candidates with minimum
transverse energies of 35 GeV and 25 GeV [28]. The triggers used in 2015 and 2016 require both the photons
to satisfy the Loose photon identification criterion defined in Ref. [29], while the Medium criterion [29] is
used for 2017–2018 to cope with the increased 𝑝𝑝 interaction rate.

The Monte Carlo (MC) simulated event samples used in the analysis are listed in Table 1, along with the
generator used in the simulation, the parton distribution function (PDF) set, the showering model and the set
of tuned parameters (tune). The 𝑋 → 𝑆𝐻 signal process is simulated at leading-order (LO) in QCD with
Pythia 8.2 [30]. The Higgs boson is forced to decay into two photons, while the scalar 𝑆 is forced to decay
into two 𝑏-quarks. The 𝑋 and 𝑆 scalar decays are generated in the narrow-width approximation. A total of
161 signal mass points are generated in the range 170 ≤ 𝑚𝑋 ≤ 1000 GeV and 15 ≤ 𝑚𝑆 ≤ 500 GeV.

The backgrounds can be divided into three categories. The largest background category consists of events
with two photon candidates featuring a smoothly falling, non-resonant diphoton mass spectrum. This
population arises from processes with two prompt photons or from jet processes where one or both the
photon candidates are misidentified jets via instrumental effects. The processes 𝑍 (→𝑞𝑞)𝛾𝛾 and 𝑡𝑡𝛾𝛾 are
also included in this category. All these backgrounds together are referred to as ‘non-resonant diphoton
background’, the category is denoted 𝛾𝛾+jets for short but does include 𝛾+jets and dĳet processes. Due to
the significant contribution from instrumental background in the 𝛾𝛾+jets category, its normalisation is
constrained with data using dedicated control regions detailed in Section 6.1.

The processes 𝛾𝛾+jets and 𝑍 (→𝑞𝑞)𝛾𝛾, with two real photons, are simulated with Sherpa 2.2.4 and
Sherpa 2.2.11 [33] respectively. Matrix elements at next-to-leading-order (NLO) in QCD for up to one
parton and at LO for up to three partons are calculated with the Comix [52] and OpenLoops [53–55]
libraries. An alternative 𝛾𝛾+jets MC sample generated with MadGraph5_aMC@NLO [35] including
production of up to two jets at NLO is considered for evaluation of systematic uncertainties. The 𝑡𝑡𝛾𝛾
process is generated with MadGraph5_aMC@NLO.
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Table 1: Summary of the main signal and background samples, split by production mode: signal samples, continuum
background samples, single Higgs boson processes and Higgs-boson pair production samples. The generator used in
the simulation, the PDF set, the showering model and the set of tuned parameters are also provided.

Process Generator PDF set Showering Tune
𝑋 → 𝑆𝐻 Pythia 8.2 [30] NNPDF2.3lo [31] Pythia 8.2 [30] A14 [32]

𝛾𝛾+jets Sherpa 2.2.4 [33] NNPDF3.0nnlo [34] – –
𝑡𝑡𝛾𝛾 MadGraph5_aMC@NLO [35] NNPDF2.3lo Pythia 8.2 A14
𝑍 (→𝑞𝑞)𝛾𝛾 Sherpa 2.2.11 [33] NNPDF3.0nnlo – –

ggF 𝐻 Nnlops [36–38] [39, 40] PDF4LHC15 [41] Pythia 8.2 AZNLO [42]
VBF 𝐻 Powheg Box v2 [43–46] PDF4LHC15 Pythia 8.2 AZNLO
𝑊𝐻 Powheg Box v2 [47, 48] PDF4LHC15 Pythia 8.2 AZNLO
𝑞𝑞 → 𝑍𝐻 Powheg Box v2 [47, 48] PDF4LHC15 Pythia 8.2 AZNLO
𝑔𝑔 → 𝑍𝐻 Powheg Box v2 [47, 48] PDF4LHC15 Pythia 8.2 AZNLO
𝑡𝑡𝐻 Powheg Box v2 [49] NNPDF3.0nlo Pythia 8.2 A14
𝑏�̄�𝐻 Powheg Box v2 [37] NNPDF3.0nlo Pythia 8.2 A14
𝑡𝐻𝑞 MadGraph5_aMC@NLO NNPDF3.0nlo Pythia 8.2 A14
𝑡𝐻𝑊 MadGraph5_aMC@NLO NNPDF3.0nlo Pythia 8.2 A14

ggF 𝐻𝐻 Powheg Box v2 +FT [46, 50, 51] PDFLHC Pythia 8.2 A14
VBF 𝐻𝐻 MadGraph5_aMC@NLO NNPDF3.0nlo Pythia 8.2 A14

The second largest background category consists of processes with photons from a single Higgs boson
decay, this includes processes where the Higgs boson may be produced in association with other particles.
This includes single Higgs boson production via gluon–gluon fusion (ggF), vector-boson fusion (VBF),
𝑊𝐻, 𝑍𝐻 (𝑞𝑞 → 𝑍𝐻 and 𝑔𝑔 → 𝑍𝐻), 𝑡𝑡𝐻, 𝑏�̄�𝐻, 𝑡𝐻𝑞 and 𝑡𝐻𝑊 . The cross sections of the single Higgs
boson processes are set to the most precise available theoretical values [56].

The last background category consists of Standard Model Higgs boson pair production (𝐻𝐻) processes via
ggF and VBF. The ggF Higgs boson pair production cross section is calculated at next-to-next-to-leading-
order (NNLO) accuracy including finite top-quark mass effects [57–60]. The cross section for Higgs boson
pair production via VBF is calculated at next-to-next-to-next-to-leading-order (N3LO) [57]. The analysis
assumes a branching ratio of 0.227% for the Higgs boson decay into two photons and a branching ratio of
58.2% for the Higgs boson decay into two 𝑏-quarks [56, 61].

The samples use EvtGen [62] for the modelling of 𝑏- and 𝑐-hadron decays. A full simulation of the
ATLAS detector [63] based on Geant4 [64] is used to reproduce the detector response for single Higgs
boson processes. The samples for signal, non-resonant photon production and Standard Model Higgs
boson pair production are processed with the fast simulation AtlFastII [65] which employs Geant4 except
for a parameterisation of the calorimeter response.

Varying numbers of minimum-bias interactions produced with Pythia 8.186 [66] using the NNPDF2.3LO
PDF set with the A3 tune [67] are overlaid on the hard-scattering event of all samples to simulate the effect
of multiple 𝑝𝑝 interactions (pile-up) in the same or nearby bunch crossings. The events are reweighted as a
function of the number of interactions per bunch crossing to match the distribution in data.
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4 Object definitions

Events are required to have at least one reconstructed collision vertex, defined as a vertex associated with at
least two tracks with transverse momentum (𝑝T) larger than 0.5 GeV. The primary vertex is selected from
the reconstructed collision vertices using a neural network algorithm [68] based on extrapolated photon
trajectories and the tracks associated with each candidate vertex.

Photons are reconstructed from topologically connected clusters [29] of energy deposits in the electromag-
netic calorimeter in the region |𝜂 | < 2.37, excluding the transition region between the barrel and endcap
calorimeters 1.37 < |𝜂 | < 1.52. Photon candidates are classified as converted or unconverted based on
whether or not they can be associated to conversion vertices or tracks consistent with photon conversions.

The calibration of the photon energy is based on a multivariate regression algorithm trained with MC
samples, where the simulated distributions of the input variables are corrected with data-driven techniques.
The calibrated energy is brought to the absolute scale by applying scale factors derived from 𝑍 → 𝑒+𝑒−

events [29]. The photon direction is reconstructed using the longitudinal development of the shower
in the calorimeters constrained to the luminous region of the proton-beam collisions. In the case of
converted photons the information about the position of the conversion vertex and the tracks associated
with conversion is also used.

Photon identification is based on the lateral shower profile of the energy deposits in the first and second
electromagnetic calorimeter layers and on the energy leakage fraction into the hadronic calorimeter [29]. It
reduces the misidentification of hadronic jets containing large neutral components, primarily neutral pions,
which decay into a pair of highly collimated photons. Identification criteria are tuned for converted and
unconverted photons separately, and the Tight criteria defined in Ref. [29] are applied.

To improve rejection of misidentified photons, two isolation variables are defined to quantify the amount
of activity around a photon. Calorimeter-based isolation 𝐸 iso

T is defined as the sum of the transverse
energy of topological clusters within a cone of size Δ𝑅 =

√︁
Δ𝜂2 + Δ𝜙2 = 0.2 around the photon, after first

correcting for the energy of the photon candidate itself and for an average expected pile-up contribution.
Track-based isolation 𝑝iso

T is defined as the scalar sum of the transverse momenta of all tracks with 𝑝T >
1 GeV originating from the primary vertex and within a cone of size Δ𝑅 = 0.2 around the photon. To
be considered isolated a photon must have 𝐸 iso

T /𝐸T < 0.065 and 𝑝iso
T /𝐸T < 0.05. For isolated photons

with transverse energies between 30 GeV and 250 GeV, the identification efficiency ranges from 84% to
98% [29].

Electrons are reconstructed from energy deposits measured in the electromagnetic calorimeter that are
matched to ID tracks [29]. They are required to be in the region |𝜂 | < 2.37, excluding the transition region
between the barrel and endcap calorimeters 1.37 < |𝜂 | < 1.52, and to have 𝑝T > 10 GeV. Electrons are
required to satisfy a Medium identification criterion based on the shower shape, track-cluster matching and
TRT information in a likelihood-based algorithm [29]. Muons are reconstructed from high-quality tracks
found in the MS [69]. A matching of the MS tracks to ID tracks is required in the region |𝜂 | < 2.5. Muons
are required to have |𝜂 | < 2.7 and 𝑝T > 10 GeV and to satisfy a Medium identification criterion [70].
Electrons and muons are both matched to the primary vertex via requirements on the longitudinal and
transverse impact parameters on the tracks, |𝑧0 | and |𝑑0 |, respectively. These requirements are |𝑧0 | sin 𝜃 <
0.5 mm, and |𝑑0 |/𝜎𝑑0 < 5 (3) for electrons (muons).

Reconstructed jets are based on particle-flow objects built from noise-suppressed positive-energy topological
clusters in the calorimeter and reconstructed tracks [71]. The anti-𝑘𝑡 algorithm [72, 73] with radius
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parameter 𝑅 = 0.4 is used. The jet energy is calibrated by applying several simulation-based corrections
and techniques correcting for differences between simulation and data [74]. Jets are required to have
rapidity |𝑦 | < 4.4 and 𝑝T > 25 GeV. To suppress jets produced in pile-up interactions, each jet within the
tracking acceptance of |𝜂 | < 2.4 and with 𝑝T < 60 GeV is required to satisfy the Tight jet-vertex tagger [75]
criteria used to identify jets from the selected primary vertex.

The flavour of jets is determined using a deep-learning neural network, DL1r [76]. The DL1r 𝑏-tagging is
based on distinctive features of 𝑏-hadron decays in terms of the impact parameters of the tracks and the
displaced vertices reconstructed in the ID. The inputs of the DL1r network also include discriminating
variables constructed by a recurrent neural network (RNNIP) [77], which exploits the spatial and kinematic
correlations between tracks originating from the same 𝑏-hadron. For each jet, DL1r gives three different
probabilities 𝑝b-, 𝑝c- and 𝑝light for the jet to originate from a 𝑏, 𝑐 or light quark respectively. The three
probabilities are combined to define the final discriminant. The DL1r algorithm is optimised to maximise
performance on particle-flow jets and extends the algorithm performance to very high jet 𝑝T. Only central
jets with |𝜂 | < 2.5 are considered for flavour tagging. Working points are defined by single requirement
values on the DL1r discriminant output distribution, and can be chosen to provide a specific 𝑏-jet efficiency
for an inclusive 𝑡𝑡 MC sample. The analysis makes use of the DL1r working point with a 77% efficiency to
select jets containing 𝑏-hadrons in simulated 𝑡𝑡 events. For this working point the misidentification rate is
1/130 for light-flavour jets and 1/4.9 for charm jets. Scale factors are applied to correct for differences in
𝑏-tagging efficiency between data and simulation. The scale factors are measured as a function of the jet
𝑝T using a likelihood-based method in a sample enriched in 𝑡𝑡 events [78].

Scale factors are applied to correct for differences in 𝑏-tagging efficiency between data and simulation.
The scale factors for jets originating from a 𝑏 quark are measured as a function of the jet 𝑝T using a
likelihood-based method in a sample enriched in 𝑡𝑡 events [78]. The scale factors for jets originating from a
𝑐 quark are measured in 𝑡𝑡 events containing a 𝑊 → 𝑐𝑠 decay [79]. For light flavour jets, the scale factors
are derived using 𝑍+jets events [80].

The energy of 𝑏-tagged jets is corrected for the possible contribution of muons from semileptonic 𝑏-hadron
decays. Additionally, the undetected energy of neutrinos and out-of-cone effects are corrected for with
scale factors derived as a function of the 𝑏-jet 𝑝T from a 𝑡𝑡 MC sample. The two corrections together
improve the resolution of the invariant mass of the two jets with the highest 𝑏-tagging discriminant by
about 20%. This procedure closely follows that in Ref. [81].

Overlap removal procedures are applied to avoid using the same detector signals to reconstruct multiple
objects. In this analysis priority is given to photons, by removing jets, electrons and muons within Δ𝑅 < 0.4
of a selected photon. Next, jets within Δ𝑅 < 0.2 of electrons are removed. Finally, electrons and muons
within Δ𝑅 < 0.4 of any remaining jet are removed.

5 Analysis strategy

A wide range of masses is considered for the scalars 𝑋 and 𝑆, leading to significantly varying event
kinematics at different hypothetical values of 𝑚𝑋 and 𝑚𝑆 . When 𝑚𝑋 ≫ 𝑚𝑆 + 𝑚𝐻 , the scalar 𝑆 can become
so boosted that its decay products, two 𝑏-quarks, become very collimated and are reconstructed within the
same 𝑅 = 0.4 jet. For smaller values of 𝑚𝑋 − (𝑚𝑆 + 𝑚𝐻), two separate 𝑏-tagged jets are reconstructed.
Therefore two mutually exclusive regions are defined with either one or two 𝑏-tagged jets, referred to as the
1 𝑏-tagged and 2 𝑏-tagged regions, and respectively dedicated to the boosted and non-boosted scenarios. A
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preselection, common to both regions, is introduced below. A final discriminating variable is then defined
for each signal hypothesis using parameterised neural networks. The final experimental constraint on the
signal is obtained from a signal-plus-background fit to the distribution of the discriminating variable in
data. In the special case where 𝑚𝑆 =125 GeV, this analysis strategy can be compared with an alternative
strategy similar to that applied in the ATLAS search for 𝐻𝐻 → 𝑏�̄�𝛾𝛾 [82], and it was found that for any
given signal point the difference between estimated upper limits on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) is small.

5.1 Event preselection

Events are selected using diphoton triggers described in Section 3. Beyond the trigger requirements, events
are selected if:

• At least two photons satisfy the requirements in Section 4.

• The invariant mass of the two leading photons satisfies 105 < 𝑚𝛾𝛾 < 160 GeV.

• The leading photon has 𝑝T > 0.35𝑚𝛾𝛾 and the subleading photon has 𝑝T > 0.25𝑚𝛾𝛾 .

• No electrons or muons, as defined in Section 4, are present.

• The number of central (|𝜂 | < 2.5) jets is at least two and no more than five. This reduces the 𝑡𝑡𝐻
background where top quarks decay hadronically.

• There is exactly one or two 𝑏-tagged jet at the 77% working point. Events with more than two
𝑏-tagged jets are removed to ensure orthogonality with the 𝑏�̄�𝑏�̄� final state from the same signal.

5.2 Signal region definitions

The number of 𝑏-tagged jets is used to categorise events in two regions, requiring 1 or 2 𝑏-tagged jets. The
signal events contain the characteristic 𝐻 → 𝛾𝛾 decay with the 𝑚𝛾𝛾 distribution peaking around the Higgs
boson mass at ∼125 GeV. Therefore, two mutually exclusive signal regions (SR) dedicated respectively to
the boosted and non-boosted scenarios are defined requiring 120 < 𝑚𝛾𝛾 < 130 GeV. The shape of the
final signal-to-background discriminant, defined in Section 5.3 for each signal hypothesis, and obtained in
the signal region, is used for the final statistical test of the signal-plus-background and background only
hypothesis.

Events with 𝑚𝛾𝛾 outside the [120, 130] GeV interval are instead used to construct the sideband control
regions for background estimation as described in Section 6. The 2 𝑏-tagged and 1 𝑏-tagged sideband
regions (SB) are found to contain about 85% of 𝛾𝛾+jets with two real photons and are expected to contain
less than 0.1% of Higgs boson processes.

The fraction of signal events with two resolved 𝑏-tagged jets is below 50% if 𝑚𝑆/𝑚𝑋 < 0.09, as derived from
simulations. The 1 𝑏-tagged signal region is thus used to analyse signal points for which 𝑚𝑆/𝑚𝑋 ≲ 0.09
and, conversely, the 2 𝑏-tagged selection is used to analyse signal points for which 𝑚𝑆/𝑚𝑋 ≳ 0.09.
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5.3 Final signal-to-background discriminant

Multivariate discriminants are used to separate signal from background events in the signal regions. Two
distinct parameterised neural networks (PNNs) [83] are trained with events in the 2 𝑏-tagged and the 1
𝑏-tagged signal and sideband regions. PNNs take as input a vector of event characteristics 𝑥 and a vector of
phase space parameters 𝜃 and yield a response function that is parameterised in 𝜃. The parameterisation
provides a unique discriminant for each signal hypothesis, separating the targeted signal events from
background events. Therefore, for each value of 𝜃 = (𝑚𝑆 , 𝑚𝑋), the PNN(𝜃) is effectively a different
observable. The PNNs provide sensitivity over the considered mass range and allow interpolation to values
of 𝜃 not explicitly included in the training. In the 2 𝑏-tagged signal region the PNN is parameterised in the
plane of the two particle masses 𝜃 = (𝑚𝑆 , 𝑚𝑋), and as a function of 𝜃 = (𝑚𝑋) in the 1 𝑏-tagged region.

The decay chain 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) and the masses 𝑚𝑆 and 𝑚𝑋 are encoded in the invariant mass of
the final state particles, thus the most effective features to train the PNNs are the invariant masses of the
final state photons and 𝑏-tagged jets.

For the 2 𝑏-tagged signal region the input features are 𝑥 = (𝑚𝑏𝑏, 𝑚
∗
𝑏𝑏𝛾𝛾) where 𝑚∗

𝑏𝑏𝛾𝛾 = 𝑚𝑏𝑏𝛾𝛾 − (𝑚𝛾𝛾 −
125 GeV). The replacement of 𝑚𝛾𝛾 by the Higgs boson mass of 125 GeV allows to remove correlations
between the PNN score and 𝑚𝛾𝛾 , allowing to create sideband regions for background normalisation
as described in Section 6.1. For the 1 𝑏-tagged signal region the input variables are 𝑥 = (𝑝𝑏T, 𝑚∗

𝑏𝛾𝛾)
where 𝑝𝑏T is the 𝑝T of the 𝑏-tagged jet, and 𝑚∗

𝑏𝛾𝛾 is derived from the invariant mass 𝑚𝑏𝛾𝛾 of the only
available 𝑏-tagged jet and the two photons as 𝑚∗

𝑏𝛾𝛾 = 𝑚𝑏𝛾𝛾 − (𝑚𝛾𝛾 − 125 GeV). Additional variables were
considered in the training but did not bring significant improvements and were therefore disregarded. The
usage of the variables 𝑚𝑏𝑏 and 𝑚∗

𝑏𝑏𝛾𝛾 alone allows for the signal interpolation applied in the 2 𝑏-tagged
signal region and described in Section 5.4.

The PNNs are trained using Keras [84] with the Tensorflow [85] backend. The training is performed
using 69 simulated signal samples chosen from the entire investigated mass grid, as well as the largest
background processes: non-resonant diphoton+jets, 𝑡𝑡𝐻, 𝑍𝐻 and ggF 𝐻. In the 1 𝑏-tagged signal region
the VBF 𝐻, and Higgs boson pair production processes are also considered for training. As the vector of
parameters 𝜃 is not meaningful for the background samples, each background event has 𝜃 values assigned
at random from the distribution of values in the signal samples during training.

After the signal region selections, most events arise from the 𝛾𝛾 + jets background category, leading to
very unbalanced training classes, which makes it difficult for the PNNs to differentiate between signal and
background. The imbalance is reduced by giving a unit weight to all MC events used in the training. The
effect of using a unit event weight on the shape of the input features 𝑥 is found to be negligible.

The PNN internal architectures are optimised using KerasTuner [84], which chooses the hyper-parameters
maximizing the Area-Under-Curve calculated on an evaluation set and using Bayesian Optimisation [86].
The class weight defined as 𝑤c = 0.5𝑛tot/𝑛c is used, where 𝑐 is either signal or background, 𝑛c is the
number of events in the given class and 𝑛tot is the total number of events. Furthermore, given the number 𝑛𝑠
(𝑛𝑏) of signal (background) events, an initial bias of log(𝑛𝑠/𝑛𝑏) is applied to the last layer of the PNN.

The PNNs use binary cross entropy as the loss function and stochastic gradient-based optimisation using
the Adam algorithm [87]. All hidden layers have a standard dense training layer using a rectified linear unit
activation function and each has a dropout layer with a dropout rate between 2% and 20%. The output
layers have a single node and use a sigmoid activation function. The PNN used in the 2 𝑏-tagged signal
region is trained with signal samples with 𝑚𝑋 ≥ 170 GeV and 𝑚𝑆 ≥ 30 GeV. For the 1 𝑏-tagged signal
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region, only signal points where 𝑆 has enough boost are used, this includes eleven points with 15 ≤𝑚𝑆

≤70 GeV. The PNN of the 2 𝑏-tagged signal region has four hidden layers with 85, 49, 45 and 81 nodes.
The PNN of the 1 𝑏-tagged signal region has three hidden layers with 101, 29 and 101 nodes. After training,
the PNN output shape is compared between data and MC in dedicated sideband regions to validate the
modelling of the PNN distribution. The results of these comparisons are covered in Section 8.2.

5.4 Signal interpolation

To set continuous limits in the (𝑚𝑋, 𝑚𝑆) plane, it is desirable to set limits on intermediate signal models
where no sample is simulated. In order to constrain an intermediate signal point defined by (𝑚int

𝑋 , 𝑚int
𝑆 ),

the shape of the PNN output is interpolated from a nearby reference signal sample simulated with low
statistical uncertainty and referred to as (𝑚ref

𝑋 , 𝑚ref
𝑆 ). The distributions of the input features for (𝑚int

𝑋 , 𝑚int
𝑆 )

are derived from the reference sample in two steps: first a rescaling step that takes into account the different
masses at the reference and intermediate points, and second a reweighting step that takes different mass
resolutions at different mass points into account. The interpolated input features are then used as input to
the PNN to obtain the PNN(𝜃) distribution for the interpolated signal.

For each selected event in the reference sample, the four-vectors of 𝐻, 𝑆 and 𝑋 are measured using the
selected 𝑏-jets and photons. The four-vectors of 𝐻 and 𝑆 are recomputed in the rest frame of 𝑋 using
a Lorentz transformation defined by the four-vector of 𝑋 . In absence of any experimental effects, the
four-vectors of 𝐻 and 𝑆 in the 𝑋 rest frame would be set to ideal values defined by the kinematics of the
𝑋 → 𝑆𝐻 two-body decay and the specific values of 𝑚𝑋 and 𝑚𝑆 . In practice, the rest frame quantities are
distributions around their ideal values, while the shape of the distributions are determined by experimental
effects. The kinematics at the intermediate point (𝑚int

𝑋 , 𝑚int
𝑆 ) are emulated from (𝑚ref

𝑋 , 𝑚ref
𝑆 ) by rescaling

the rest frame four-vectors of 𝐻 and 𝑆 so that they are distributed around their new ideal theoretical values
at (𝑚int

𝑋 , 𝑚int
𝑆 ), and events of the reference sample are weighted to reproduce the expected experimental

resolution at the intermediate mass.

The resolution effects are much larger for jets than for photons; therefore, the resolution weighting only
considers the 𝑚𝑏𝑏 resolution. The 𝑚𝑏𝑏 resolution is measured for the simulated points and modelled with
a Bukin probability [88]. Each parameter of the Bukin probability becomes a 2D map in the (𝑚𝑋, 𝑚𝑆)
plane. The values of the Bukin parameters can then be interpolated to any mass point (𝑚int

𝑋 , 𝑚int
𝑆 ) using

Delaunay triangulation [89]. The final distribution of PNN(𝑚int
𝑋 , 𝑚int

𝑆 ) is obtained by feeding the values of
𝑚𝑏𝑏 and 𝑚∗

𝑏𝑏𝛾𝛾 to the PNN, after four-vector rescaling and resolution weighting. This technique works
well at high momenta where the change in resolution effects between nearby simulated points is small.
For this reason the interpolation is only applied in parts of the 2 𝑏-tagged signal region, defined by 𝑚𝑋

>300 GeV and 𝑚𝑆 >70 GeV.

The quality of the PNN shape interpolation is evaluated by studying its impact on the expected upper limits
on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾). The upper limits obtained with the PNN output shape from simulated signal
events are compared with those obtained with the interpolated PNN output shape. In the domain where
the interpolation is applied the expected limits on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) change by less than 5% for 𝑚𝑆

≥100 GeV when replacing the actual PNN output shape with the interpolated one.

For lower masses (below 𝑚𝑆 =70 GeV) fast changes in resolution mean that the limits obtained from
interpolated PNN shapes can differ by more than 10% from those obtained with the actual PNN shape. For
this reason the interpolation procedure is not applied at low masses or in the 1 𝑏-tagged region. Instead a
much finer grid of simulated signal samples in the (𝑚𝑋, 𝑚𝑆) plane is used. The required granularity is
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studied by performing injection tests and checking the sensitivity of one PNN at a given 𝜃 to neighbouring
signal samples generated at a different (𝑚𝑋, 𝑚𝑆) point. The grid spacing is chosen small enough so that
a signal excess at one simulated grid point would also appear in the PNN output of at least one nearby
simulated signal sample.

6 Background estimation

The final interpretation in terms of a search for a possible 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) signal requires the
ability to predict for each background process the number of events in the signal region, and the shape
of the PNN output. In the following sections several methods are employed: a data-driven technique to
study the composition of the non-resonant diphoton background category in terms of events with zero, one
or two misidentified photons, a data-driven method to normalise the non-resonant diphoton background
category, and finally simulations to evaluate contributions from irreducible backgrounds.

6.1 Non-resonant diphoton background

The largest background category is the non-resonant 𝛾𝛾+jets background, which includes instrumental
components such as 𝛾+jets and dĳets where jets are misidentified as photons. Other contributions to this
category are the 𝑡𝑡𝛾𝛾 process which represents less than 2% (0.5%) of the background in the 2 𝑏-tagged
(1 𝑏-tagged) signal region, and the 𝑍 (→𝑞𝑞)𝛾𝛾 process, which represents less than 1% (0.3%) in the 2
𝑏-tagged (1 𝑏-tagged) region. These last two processes are estimated directly from simulation.

The fractions of 𝛾𝛾+jets events with zero, one or two misidentified photons and their associated systematic
uncertainties are determined by the double two-dimensional sideband method, a data-driven technique
which relies on several photon identification criteria, already employed in the search for Higgs boson pair
production in the 𝑏�̄�𝛾𝛾 final state [19], the method is described in Ref. [90] and references therein. The
fractions of misidentified photon backgrounds are derived individually in the 1 and 2 𝑏-tagged regions.
The fraction of events with two real photons is found to be 87% in the 1 𝑏-tagged region and 84% in the
2 𝑏-tagged region. The data-driven method is also used later to derive the 𝑚𝑏𝑏𝛾𝛾 , 𝑚𝛾𝛾 , 𝑚𝑏𝑏 and PNN
distributions for the different components with true or misidentified photons. These distributions are
compared in the sideband regions with the data and the Sherpa 𝛾𝛾+jets MC sample. No large difference is
found between the shapes of the components, indicating that it is possible to directly build high-statistics
templates from Sherpa samples without adding contributions from misidentified photons.

Based on these studies, the zero, one or two misidentified photon components of the 𝛾𝛾+jets background
category are modelled directly with the Sherpa 𝛾𝛾+jets MC sample, with appropriate systematic
uncertainties described in Section 7. The normalisation of the Sherpa 𝛾𝛾+jets MC sample is fitted to the
data in the sideband and signal regions according to the statistical model described in Section 8.1, the fit
effectively rescales the Sherpa 𝛾𝛾+jets MC sample to the sum of the zero, one and two misidentified photon
components of the non-resonant diphoton background in data. The rescaling of the Sherpa 𝛾𝛾+jets MC
sample therefore reflects both misidentified photon contributions and higher order processes present in data
but not in the simulation. Several systematic uncertainties can affect the ratio of the 𝛾𝛾+jets background in
the signal region over the corresponding sideband as detailed in Section 7. In a background-only fit where
only the data in the sidebands are considered, this procedure scales the Sherpa 𝛾𝛾+jets MC sample by a
factor 1.03 ± 0.01 in the 1 𝑏-tagged region and a factor 1.26 ± 0.03 in the 2 𝑏-tagged region.
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The shape of the PNN output for the non-resonant diphoton category is studied in the sideband regions
in both data and simulation, and in the signal regions with simulation. It is observed that the shapes of
the PNN output for the zero, one or two misidentified photon components are well reproduced by the
Sherpa 𝛾𝛾+jets MC sample. In the Sherpa 𝛾𝛾+jets simulation the input variables to the PNN are observed
to be consistent within statistical uncertainties between the signal regions and two narrow sidebands
defined by 𝑚𝛾𝛾 ∈ [115,120] ∪ [130,135] GeV. Finally the modelling of the PNN output by simulation is
validated in the full sideband control regions, by comparing the predicted PNN distributions from Sherpa
𝛾𝛾+jets simulations, with the observed PNN distributions in data. Theoretical and experimental systematic
uncertainties in the PNN output shapes for the 𝛾𝛾+jets background category are considered in Section 7.

6.2 Higgs boson processes

This category of background consists of all processes that contain single Higgs boson production via ggF
or VBF, 𝑊𝐻, 𝑍𝐻 (𝑞𝑞 → 𝑍𝐻 and 𝑔𝑔 → 𝑍𝐻), 𝑡𝑡𝐻, 𝑏�̄�𝐻, 𝑡𝐻𝑞 and 𝑡𝐻𝑊 . Higgs boson pair production
via ggF and VBF is also included in this category. Following the strategy in Ref. [19], the normalisation
and shape of these processes are obtained from simulated MC samples generated at NLO, and normalised
using state-of-the-art theoretical cross sections [56]. Several systematic uncertainties are assigned to these
processes as discussed in Section 7.

7 Systematic uncertainties

Three categories of systematic uncertainties are considered. Experimental systematic uncertainties account
for possible differences between the performance of the detector in simulation and in data, they are
applied to all quantities derived from simulation and are described in Section 7.1. Theoretical systematic
uncertainties arise where theoretical inputs are used, such as cross sections, or where effects on shapes from
higher-order corrections should be considered, this is described in Section 7.2. The 𝛾𝛾+jets background
is derived from a combination of MC simulation and a data-driven technique, and the related sytematic
uncertainties are detailed in Section 7.3.

7.1 Experimental systematic uncertainties

Experimental systematic uncertainties affect selection efficiencies and PNN shapes for all Higgs boson
processes and the 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) signal. The effect of experimental systematic uncertainties is
also propagated to the PNN shape of the 𝛾𝛾+jets background. The experimental systematic uncertainties
are categorised into four groups, in order of decreasing impact on the expected upper limits on 𝜎(𝑋 →
𝑆𝐻 → 𝑏�̄�𝛾𝛾): flavour tagging, photons, jets and pile-up. The limits on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) are
compared with and without experimental systematic uncertainties. For 𝑚𝑋 above ∼400 GeV the effect of
experimental systematic uncertainties on the limits is less than 1% but grows to 2%–20% at lower 𝑚𝑋

values.

Flavour tagging uncertainties [78–80] are the leading source of experimental uncertainties in this search.
They include the uncertainties in the efficiency to 𝑏-tag a jet containing a 𝑏-hadron, and the probability
to 𝑏-tag a jet containing a 𝑐-hadron or a light-flavour jet by mistake. The combined effect of all flavour
tagging uncertainties is the largest in the 2 𝑏-tagged signal region with a 5% uncertainty in the signal
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efficiency for models with low 𝑚𝑆 and decreasing to 2% at high 𝑚𝑆 . In the 1 𝑏-tagged signal region that
uncertainty remains in the range 0.5%–1.5%. The corresponding uncertainty in the predicted number
of single and double Higgs boson processes is about 3%. Once incorporated into the fit and taking into
account the effect on both the yields and the PNN shapes of signal and backgrounds, flavour tagging
uncertainties impact the upper limits by about 6%.

The category of photon-related uncertainties includes uncertainties from efficiencies of the photon triggers,
photon identification and isolation, and uncertainties in the photon energy resolution and scale. These
are computed in data using data-driven techniques [28, 29] and are propagated to the simulation-based
estimates of background yields and signal efficiencies. The combined effect of all photon uncertainties
on the predicted signal efficiency and predicted number of events from single and double Higgs boson
processes is about 2.5% in both the signal regions. Once incorporated into the fit and taking into account the
effect on both the yields and the PNN shapes on signal and backgrounds, these translate into an uncertainty
of 2%–4.5% in the signal sensitivity.

The category of jet-related uncertainties include uncertainties in the jet energy scale and jet energy
resolution. These are derived using data-driven techniques [74] and compared with their counterpart in
simulation. These uncertainties are propagated to the signal efficiency and background estimates. The
combined effect of all jet-related uncertainties is largest in the 2 𝑏-tagged signal region with up to 14%
uncertainty in the signal efficiency for models with low 𝑚𝑆 and decreasing to about 2% at high 𝑚𝑆 . In the
1 𝑏-tagged signal region that uncertainty remains smaller than 3%. The corresponding uncertainty in the
predicted number of single and double Higgs boson processes is 5% (7%) in the 1 𝑏-tagged (2 𝑏-tagged)
signal region. However the effect of these systematic uncertainties on the PNN shape remains small, of the
order of 1% in the most signal-like PNN bin. Once incorporated into the fit and taking into account the
effect on both the yields and the PNN shapes of signal and backgrounds, these translate into an uncertainty
of about 1.5% in the signal sensitivity for 𝑚𝑆 > 110 GeV. The impact grows at lower masses where it can
reach up to 15%.

The category of pile-up related uncertainties comes from the reweighting of the MC simulation to the
pile-up profile in data. This results in an uncertainty of at most 1% in the predicted number of events from
Higgs boson processes. The effect on the signal efficiency is smaller than 1% in both the signal regions
and for most of the parameter space, except in the 2 𝑏-tagged signal region for low 𝑚𝑋 where it can reach
1.8%. Finally the 0.83% uncertainty in the measured ATLAS Run 2 integrated luminosity is propagated to
all processes normalised with their theoretical cross sections.

7.2 Theoretical systematic uncertainties

Theoretical systematic uncertainties affect the backgrounds normalised by their theoretical cross sections,
but also the signal efficiency, and the non-resonant diphoton background. The latter is discussed in
Section 7.3.

For processes with significant contributions to the 1 𝑏-tagged and 2 𝑏-tagged signal regions and where the
dominant heavy-flavour production is already taken into account at LO (𝑡𝑡𝐻 and 𝑍𝐻), several theoretical
systematic uncertainties are considered. Scale uncertainties due to missing higher-order corrections in the
production rates are estimated by varying the factorisation and renormalisation scales up and down from
their nominal values by a factor two, taking the envelope of these variations. Parton shower uncertainties
are evaluated by comparing against alternative samples where the parton shower is performed with
Herwig 7.1.5 [91, 92]. The resulting bin-to-bin variations of the PNN output range from a few percent up
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to 10% in some bins, while the resulting impact on the exclusion limits is below 1%. Effects of the choice
of PDF and 𝛼𝑆 are estimated by varying them following the prescription in Ref. [41]. These systematic
uncertainties can lead to up to 5% bin-to-bin variations in the shape of the PNN discriminant output, but
have a small impact on the limits.

For smaller Higgs boson backgrounds where the dominant heavy flavour production occurs at LO, the
inclusive cross section uncertainties from Ref. [56] are used along with scale, parton shower, PDF and 𝛼𝑆

uncertainties derived as described above. The same procedure is followed for the 𝑍 (→ 𝑞𝑞)𝛾𝛾 process.
The final impact of these uncertainties on the results is small.

In single Higgs boson processes where 𝑏-quarks are not produced at LO (VBF 𝐻, 𝑊𝐻, ggF 𝐻), a single
100% normalisation uncertainty is used. This is motivated by studies of heavy-flavour production in
association with top-quark pairs [93, 94] and of 𝑊-boson production in association with 𝑏-jets [95]. These
have a very small impact on the final sensitivity, except when searching for models with low 𝑚𝑆 , where the
100% uncertainty in ggF 𝐻 can lead to a 10% decrease in sensitivity to the signal.

The uncertainties in the Higgs boson decay branching ratios 𝐵𝑅(𝐻 → 𝛾𝛾) and 𝐵𝑅(𝐻 → 𝑏�̄�) propagate
to the background yields, impacting the 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) limits by ∼3% and ∼1.5% respectively.

To better understand the overall impact of theoretical background systematic uncertainties, the limits on
𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) are computed with and without the theoretical background systematic uncertainties
described above. It is observed that the limits worsen by about 4% when including theoretical background
systematic uncertainties. It can be noted that this is smaller than the effect of systematic uncertainties in the
non-resonant diphoton background described in the next section and smaller than the effect of theoretical
signal systematic uncertainties.

Theoretical systematic uncertainties are also considered for the 𝑋 → 𝑆(→𝑏�̄�)𝐻 (→𝛾𝛾) signal, both in
terms of the shape of the PNN output and the predicted event yields. They include scale, parton shower,
PDF and 𝛼𝑆 uncertainties calculated as described earlier. The impact of these systematic uncertainties
on the signal efficiency and the shape of the PNN output are taken into account. These uncertainties
lead to 2%–10% bin-to-bin variations of the PNN output shape, it is most pronounced for the parton
shower uncertainty. The systematic uncertainties obtained by changing to an alternative PDF and 𝛼𝑆 lead
to up to 11% change in the predicted signal yield, particularly at high 𝑚𝑋 ∼1000 GeV. The impact of
theoretical signal uncertainties on the sensitivity to 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) can reach 10%. A systematic
uncertainty associated with the interpolation of the PNN score in the region 𝑚𝑋 >300 GeV and 𝑚𝑆 >70 GeV
is estimated by considering a shape systematic uncertainty in the PNN score, derived by varying the
parameters of the Bukin probabilities within their errors. The impact on the exclusion limits at interpolated
(𝑚𝑋,𝑚𝑆) points is at most 10%.

7.3 Systematic uncertainties in the non-resonant diphoton background

The normalisation of the non-resonant diphoton background is derived in a fit which includes the sideband
control regions. The following theoretical uncertainties, introduced earlier, affect the PNN output shape
and the overall estimated number of events in the signal and sideband regions: scale uncertainties, choice of
PDF, 𝛼𝑠 and parton shower. The uncertainties associated with the scales, PDFs and 𝛼𝑠 are calculated using
the same methods as described in Section 7.2. The parton shower uncertainties are evaluated by using
alternative samples generated with MadGraph [35] for the parton shower. An additional MC modelling
uncertainty is considered by using an alternative 𝛾𝛾+jets sample generated with MadGraph5_aMC@NLO.
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This sample models diphoton production with up to two jets at NLO. The corresponding uncertainty is
found to be the most significant in the analysis; its impact in the 2 𝑏-tagged signal region degrades the
expected upper limits on the signal by up to 20%. This impact is larger for low values of 𝑚𝑋, while for 𝑚𝑋

above 600 GeV the impact is always below 5%. For the 1 𝑏-tagged signal region the modelling uncertainty
has an impact of a few percent on the upper limits, except for two signal points at (500, 30) GeV and
(230, 15) GeV where the effect is around 40% due to statistical fluctuations in the alternative MadGraph
samples.

8 Results

8.1 Statistical model

The results of the analysis are obtained from a maximum-likelihood fit of the binned PNN output distribution,
performed simultaneously over a signal region and its corresponding sideband region. The PNN binning
is constructed starting from the rightmost signal-like bin. The size of this bin is chosen to maximise the
signal-to-background ratio and widened until there is at least one background event. The same procedure is
repeated with the next bin, and requiring that the number of background events is above a certain threshold,
in order to avoid bins with large statistical errors. When the signal-to-background ratio in the bin drops
below that of the full un-binned distribution, the iterative process is stopped and a single background-like
bin is constructed for the remaining distribution at PNN outputs close to zero. The binning is optimised
independently for each signal hypothesis. For the 1 𝑏-jet selection a similar method is used.

The likelihood function is defined as:

L = Pois

(
𝑛SB

�����𝜇𝛾𝛾𝑁𝛾𝛾
SB (𝜃𝜃𝜃) +

∑︁
𝑝

𝑁 𝑝
SB(𝜃𝜃𝜃)

)
·
∏
𝑖

Pois

(
𝑛SR,𝑖

�����𝜇𝛾𝛾𝑁𝛾𝛾
SR (𝜃𝜃𝜃) 𝑓 𝛾𝛾𝑖 (𝜃𝜃𝜃) +

∑︁
𝑝

𝑁 𝑝
SR(𝜃𝜃𝜃) 𝑓

𝑝
𝑖 (𝜃𝜃𝜃)

)
·𝐺 (𝜃𝜃𝜃)

(1)

where the index 𝑝 runs over physics processes other than 𝛾𝛾+jets, the index 𝑖 runs over the bins of the
PNN output, 𝑛SR,𝑖 and 𝑛SB are the observed number of events in the signal region PNN bin 𝑖 and in the
corresponding sideband region, 𝑁 𝑝

SR(𝜃𝜃𝜃) is the expected number of events from process 𝑝 in the signal
region, and 𝑁SB(𝜃𝜃𝜃) is the total expected number of events in the corresponding sideband region. The
superscript 𝛾𝛾 is used for parameters that specifically apply to the 𝛾𝛾+jets background. The factor 𝜇𝛾𝛾
is the free parameter that fits the 𝛾𝛾+jets normalisation to the data. The function 𝑓 𝑝𝑖 gives the shape or
probability density function (pdf) of the PNN output discriminant for each background or signal process;
therefore 𝑁 𝑝

SR 𝑓 𝑝𝑖 is the expected number of events of process 𝑝 in the PNN bin 𝑖. Finally 𝜃𝜃𝜃 is a vector
of nuisance parameters, and 𝐺 (𝜃𝜃𝜃) are constrained pdfs for the nuisance parameters. Correlation of the
nuisance parameters across different signal and background components, as well as categories, is taken
into account.

The nominal yields of the single and double Higgs boson background processes are initially set to values
from simulation. The likelihood function includes all the nuisance parameters that describe the systematic
uncertainties. The signal cross section is a free parameter in the fit. The measurement of the parameter
of interest is carried out using a statistical test based on the profile likelihood ratio [96]. In the absence
of signal, upper limits on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) at the 95% CL are set. The limits are calculated using

15



1−10

10

310

510

710

810

E
ve

nt
s 

/ b
in

ATLAS
-1 = 13 TeV, 140 fbs

γγbb→SH→X
-tagged SBb2 

Pre-fit (B-only)

Data

 1.26×+jets γγ
Single Higgs

γγZ

γγtt
HH

+jets unc.γγ

200 300 400 500 600 700 800 900 1000 1100
 [GeV]γγbbm*

0

0.5
1

1.5
2

D
at

a 
/ B

kg
.

(a)

1−10

10

310

510

710

910

E
ve

nt
s 

/ b
in

ATLAS
-1 = 13 TeV, 140 fbs

γγbb→SH→X
-tagged SBb2 

Pre-fit (B-only)

Data

 1.26×+jets γγ
Single Higgs

γγZ

γγtt
HH

+jets unc.γγ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 = 100 GeV)

S
 = 250 GeV, m

X
PNN(m

0

0.5
1

1.5
2

D
at

a 
/ B

kg
.

(b)

1−10

10

310

510

710

910

E
ve

nt
s 

/ b
in

ATLAS
-1 = 13 TeV, 140 fbs

γγbb→SH→X
-tagged SBb1 

Pre-fit (B-only)

Data

 1.03×+jets γγ
Single Higgs

γγZ

γγtt
HH

+jets unc.γγ

200 400 600 800 1000
 [GeV]γγbm*

0

0.5
1

1.5
2

D
at

a 
/ B

kg
.

(c)

1

310

610

910

1210

E
ve

nt
s 

/ b
in

ATLAS
-1 = 13 TeV, 140 fbs

γγbb→SH→X
-tagged SBb1 

Pre-fit (B-only)

Data

 1.03×+jets γγ
Single Higgs

γγZ

γγtt
HH

+jets unc.γγ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 = 70 GeV)

S
 = 1 TeV, m

X
PNN(m

0

0.5
1

1.5
2

D
at

a 
/ B

kg
.

(d)

Figure 2: Distributions of (a) 𝑚∗
𝑏𝑏𝛾𝛾 , (c) 𝑚∗

𝑏𝛾𝛾 and (b,d) PNN for two choices of 𝜃 = (𝑚𝑆 , 𝑚𝑋) in data and in the
predicted model, in the sidebands of the 2 𝑏-tagged region (top) and 1 𝑏-tagged region (bottom). The 𝛾𝛾 + jets
background is rescaled to its post-fit normalisation in a background-only fit. The variables 𝑚∗

𝑏𝑏𝛾𝛾 and 𝑚∗
𝑏𝛾𝛾 are

defined as 𝑚∗
𝑏𝑏𝛾𝛾 = 𝑚𝑏𝑏𝛾𝛾 − (𝑚𝛾𝛾 − 125 GeV) and 𝑚∗

𝑏𝛾𝛾 = 𝑚𝑏𝛾𝛾 − (𝑚𝛾𝛾 − 125 GeV). The 𝛾𝛾 + jets category
represents the sum of 𝛾𝛾 + jets, 𝛾 + jets and dĳet backgrounds. The error band corresponds to the dominant
uncertainty, which arises from the non-resonant 𝛾𝛾 + jets background.

the asymptotic formula with a profile-likelihood-ratio-based test statistic [96], and are based on the CLS
method [97]. The binning in PNN score was chosen to ensure that the asymptotic approximation would be
valid.

8.2 Control region validation

The ability of the background model to reproduce the data is studied in the sideband regions where a
background-only fit is performed to the data. Distributions are then compared between the post-fit model
and the data as shown in Figure 2. A good agreement between the data and the model shows the ability of
the model to reproduce the PNN discriminant output in both the 2 𝑏-tagged and 1 𝑏-tagged regions. For
each value of 𝜃 = (𝑚𝑆 , 𝑚𝑋) the PNN(𝜃) is effectively a different observable, for this reason the post-fit
data-to-prediction comparison in the sideband is performed for all analysed signal mass points, and good
agreement is observed.
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8.3 Result and interpretation

The results of the background-only fit in the signal regions and sidebands to the data is shown in Table 2.
The signal region and sideband yields are independent of the parameterised neural network, while the
column "Signal-like bin" illustrates the signal and background yields in the most signal-like bin of the
PNN for two choices of 𝜃, namely (250, 100) GeV and (1000, 70) GeV. Figure 3 illustrates the post-fit
distribution of the PNN in the 2 𝑏-tagged and 1 𝑏-tagged regions at two different 𝜃. PNN(𝜃) is sensitive
not only to a signal at the same masses defined by 𝜃, but also to signals with nearby masses 𝜃′. To check
for discovery of a wide range of signal masses, the background-only hypothesis is tested against the data
for a highly granular grid of PNN parameters 𝜃. The step size between two consecutive parameters 𝜃 is
selected by studying the sensitivity of PNN(𝜃) to a signal with different masses 𝜃′. If there was an excess in
data due to a signal with masses 𝜃′ observed with the discriminant PNN(𝜃), the significance of this excess
would degrade with increasing distance between 𝜃′ and 𝜃. A step size in the 𝜃 grid is chosen such that the
degradation of the significance does not exceed 10% between two consecutive grid points. In practice the
step size goes from 5 GeV in the densest regions to 25 GeV for 𝑚𝑋 ≥ 250 GeV, and to 50 GeV for 𝑚𝑋

≥ 600 GeV and 𝑚𝑆 ≥ 200 GeV.

For most mass points good agreement is observed between data and the SM background-only expectation;
however some deviation is observed for a few points. The largest excess of the observation over the SM
background-only hypothesis occurs for (𝑚𝑋, 𝑚𝑆) = (575, 200) GeV with a local significance of 3.5𝜎. The
‘look-elsewhere effect’ is taken into account using the asymptotic method described in Ref. [98]. An
asymptotic formula for the Euler characteristic as a function of the maximum of the test statistic across
each signal point is derived using toy MC experiments. The resulting global significance is calculated to
be 2.0𝜎. At this mass point the signal PNN output shape was initially derived from interpolation. The
analysis was repeated using a simulated sample; the observed significance remained however unchanged,
confirming the validity of the interpolation method.

A parameter point of particular interest is (𝑚𝑋, 𝑚𝑆) = (650, 90) GeV where the CMS Collaboration
reports a deviation between observation and background-only expectation, corresponding to a local (global)
significance of 3.8 (2.8) standard deviations [17]. Injecting a MC signal with a production cross section of
0.35 fb (the best fit reported by the CMS experiment) in the analysis performed in this paper yields a local
excess in observation to SM expectation of 2.7 standard deviations, demonstrating the sensitivity of this
analysis to a signal consistent with the excess observed by CMS. The results of the analysis of ATLAS data
for this specific parameter point instead shows good agreement between observation and SM background
expectation (the p-value of the background-only hypothesis is larger than 0.5). The 95% CL upper limit on
𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) for this specific mass point is 0.2 fb.

The statistical analysis sets 95% CL upper limits on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) for all values of 𝜃 = (𝑚𝑋, 𝑚𝑆)
by performing a signal-plus-background fit to the PNN output distribution in data. For each mass point the
signal region which gives the best expected upper limit is selected. The resulting expected and observed
upper limits are presented in Figure 4, and range from observed (expected) limits of 39 (25) fb at 𝑚𝑋 =
170 GeV and 𝑚𝑆 = 30 GeV, to 0.09 (0.14) fb at 𝑚𝑋 = 1000 GeV and 𝑚𝑆 between 250 and 300 GeV. The
upper limits improve at higher masses, consistent with the fact that signals with higher 𝑚𝑋 become easier
to differentiate from SM processes. In contrast, they worsen in the boosted signal regime at lower 𝑚𝑆 ,
where the 1 𝑏-tagged region is employed, and consistent with the lower signal-to-background ratio shown
in Table 2 for the 1 𝑏-tagged region. At low 𝑚𝑋 the sensitivity suffers from an increasing fraction of 𝑏-jets
falling below the jet 𝑝T reconstruction threshold.
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Figure 3: Post-fit distributions of the PNN discriminant output in the (a) 2 𝑏-tagged signal region for 𝑚𝑋 = 250 GeV
and 𝑚𝑆 = 100 GeV and (b) 1 𝑏-tagged signal region for 𝑚𝑋 = 1000 GeV and 𝑚𝑆 = 70 GeV, after a background-only
fit to data. The signals corresponding to the two PNN parameterisations, normalised to a 1 fb cross section, are
illustrated for comparison. The 𝛾𝛾+ jets category represents the sum of 𝛾𝛾+ jets, 𝛾 + jets and dĳet backgrounds.
The error band corresponds to the total systematic uncertainty after fit.

(a) (b)

Figure 4: (a) Expected and (b) observed 95% CL upper limits on the signal cross section times branching fraction
for the 𝑋→ 𝑆𝐻 signal, in the (𝑚𝑋, 𝑚𝑆) plane. The points show where the limits were evaluated. The band at
𝑚𝑆 = 125 GeV is not shown as those points are equivalent to those already probed in Ref. [19].
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Table 2: Number of events for the different process categories obtained from a background-only fit to data in the signal
regions and sidebands. Observed and fitted event yields in the two signal regions and sidebands, independent of phase
space parameters 𝜃, are given in the columns "Signal region" and "Sideband". The yields in the most signal-like bin of
the PNN distribution depend on the selected phase space parameters 𝜃, here shown under the column "Signal-like bin"
for 𝜃 = (𝑚𝑋, 𝑚𝑆) = (250, 100) GeV and (1000, 70) GeV. The expected number of events from the two corresponding
benchmark signals with a 1 fb cross section is also given. The uncertainties are symmetrised around the central value.
The uncertainty in the total background is calculated taking correlations between the individual contributions into
account. For the single Higgs boson processes, “Other” includes the following production modes: VBF, 𝑊𝐻, 𝑡𝐻𝑞,
and 𝑡𝐻𝑊 .

2 𝑏-tagged region 1 𝑏-tagged region
Background Sideband Signal region Signal-like bin Sideband Signal region Signal-like bin

Non-res. 𝛾𝛾 1480± 37 372± 16 1.64± 0.37 13450± 110 3392± 53 2.45± 0.43
Single Higgs 0.46± 0.11 19.9± 5.3 0.04± 0.01 2.3± 1.1 92± 44 0.21± 0.10

ggF+𝑏�̄�𝐻 0.14± 0.11 6.5± 5.2 0.01± 0.01 1.5± 1.1 56± 43 0.11± 0.09
𝑡𝑡𝐻 0.21± 0.01 7.91± 0.77 0.01± 0.01 0.31± 0.01 11.4± 1.1 0.03± 0.01
𝑍𝐻 0.08± 0.01 3.56± 0.30 0.02± 0.01 0.17± 0.01 7.35± 0.60 0.02± 0.01
Other 0.03± 0.01 1.94± 0.70 < 0.005 0.40± 0.23 17± 10 0.05± 0.03

Double Higgs 0.03± 0.01 1.65± 0.25 < 0.005 0.03± 0.01 1.79± 0.27 0.01± 0.01

Total 1480± 37 394± 16 1.67± 0.37 13450± 110 3486± 48 2.67± 0.45

Signal (𝑚𝑋 , 𝑚𝑆)
(250, 100) GeV 0.38± 0.04 8.3± 1.2 1.43± 0.21
(1000, 70) GeV 0.97± 0.10 33.3± 5.8 23.9± 4.2

Data 1479 395 0 13450 3491 4

9 Conclusion

A search for a signal from a hypothetical scalar 𝑋 is performed, considering the case where it decays into
another hypothetical scalar 𝑆 and a Higgs boson, which subsequently decay into pairs of 𝑏-quarks and
photons, respectively. Two signal regions targeting resolved or boosted 𝑆 → 𝑏�̄� decays are analysed using
parameterised neural networks, which provide continuous sensitivity in the probed (𝑚𝑋, 𝑚𝑆) plane. In the
region 𝑚𝑋 > 300 GeV and 𝑚𝑆 > 70 GeV the validity of the limits for intermediate mass points is ensured
by interpolating the signal shapes to a much finer signal grid, and the finer grid spacing is guided by the
sensitivity range of the PNN to values of (𝑚𝑋, 𝑚𝑆) where it was not trained. At lower masses the validity of
the limits for intermediate mass points is ensured by using a very fine grid of simulated signal samples.

No significant excess with respect to the Standard Model background is found. Therefore, 95% CL upper
limits are set on 𝜎(𝑋 → 𝑆𝐻 → 𝑏�̄�𝛾𝛾) in the ranges 170 ≤ 𝑚𝑋 ≤ 1000 GeV and 15 ≤ 𝑚𝑆 ≤ 500 GeV,
expanding earlier LHC results to lower masses and providing higher sensitivity. The largest deviation from
the background-only expectation occurs for (𝑚𝑋, 𝑚𝑆) = (575, 200) GeV with a local (global) significance
of 3.5 (2.0) standard deviations. For the mass point (𝑚𝑋, 𝑚𝑆) = (650, 90) GeV, where CMS reported
an excess with a local (global) significance of 3.8 (2.8) standard deviations, this analysis shows good
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agreement with the background-only hypothesis and sets a 95% CL upper limit on the signal cross section
of 0.2 fb.
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1 Introduction

The Higgs boson was discovered by the ATLAS [1] and CMS [2] Collaborations in 2012 [3, 4]. Since then,
an important goal has been to determine the Higgs boson properties and to perform precision measurements
using proton–proton (𝑝𝑝) collision data from the Large Hadron Collider (LHC). Up until now, all measured
properties are consistent with the Standard Model (SM) Higgs boson predictions [5, 6]. This discovery not
only demonstrates the existence of the Higgs boson, but it also opens up new frontiers in particle physics
that aim to address the limitations of the SM. There are a variety of beyond-the-SM scenarios that introduce
additional scalar bosons such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [7, 8],
the Two-Real-Singlet Model (TRSM) [9, 10] or two-Higgs-Doublet Models (2HDM) [11].

The 2HDM+𝑆 model [12] extends the 2HDM hypothesis by considering the production of a heavy CP-even
scalar boson (𝑋) that could decay into an SM Higgs boson (𝐻) and a hypothetical scalar singlet (𝑆). A
representative diagram of the 𝑋 → 𝑆𝐻 production via gluon–gluon fusion is shown in Figure 1. The
𝑋 → 𝑆𝐻 branching ratio is assumed to be 100%.

Searches inspired by the 2HDM+𝑆 probing 𝑋 → 𝑆𝑆 → 𝑊𝑊∗𝑊𝑊∗ [13], 𝑋 → 𝑆𝐻 → 𝑏𝑏𝛾𝛾 [14] and
𝑋 → 𝑆𝐻 → 𝑉𝑉𝜏𝜏 [15], where 𝑉 can be either a 𝑊± or 𝑍 boson, have been performed by the ATLAS
Collaboration. For the latter, no significant excess is observed above the expected SM processes, and 95%
confidence level (CL) upper limits are set on the signal production cross-section between 542 fb and 72 fb
in the mass ranges 500 ≤ 𝑚𝑋 ≤ 1500 GeV and 200 ≤ 𝑚𝑆 ≤ 500 GeV [15]. The 𝑋 → 𝑆𝐻 search in the
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Figure 1: Illustrative Feynman diagram for 𝑋 → 𝑆𝐻 production via gluon–gluon fusion.

𝑏𝑏𝛾𝛾 final state [14] set upper limits on the cross-section times the branching ratio ranging from 39 fb to
0.09 fb, over the mass ranges 170 ≤ 𝑚𝑋 ≤ 1000 GeV and 15 ≤ 𝑚𝑆 ≤ 500 GeV. The CMS Collaboration
has also performed searches for 𝑋 → 𝑆𝐻 in the 𝑏𝑏𝛾𝛾 [16], 𝑏𝑏𝜏𝜏 [17], and 4𝑏 [18] decay modes. In the
diphoton plus two 𝑏-quarks search, the upper limits on the product of the production cross-section and
the decay branching ratios of the signal process lie in the range of 0.9 − 0.04 fb [CMS:2023boe], in the
explored mass ranges 300 ≤ 𝑚𝑋 ≤ 1000 GeV and 90 ≤ 𝑚𝑆 ≤ 800 GeV. For the search with a pair of tau
leptons and 𝑏-quarks in the final state, limits are set on the production cross-section ranging from 125 fb to
2.7 fb in the mass ranges 240 ≤ 𝑚𝑋 ≤ 3000 GeV and 60 ≤ 𝑚𝑆 ≤ 2800 GeV [17]. Comparable limits are
found in the search involving four 𝑏-quarks in the final state, ranging from 150 to 0.1 fb in the mass ranges
0.9 ≤ 𝑚𝑋 ≤ 4 TeV and 60 ≤ 𝑚𝑆 ≤ 600 GeV [18]. All these results are obtained assuming for the 𝑆 boson
the same mass-dependent branching ratios as for the SM Higgs boson [19] (denoted SM-like branching
ratios in the following).

This paper is focused on the search for 𝑋 → 𝑆𝐻 → 𝑉𝑉𝛾𝛾. The final state of interest is characterised by
two photons from the SM Higgs boson decay (𝐻 → 𝛾𝛾), and one or two leptons (electrons or muons)
originating from the vector bosons produced in the 𝑆 → 𝑉𝑉 decays. This signature benefits from a good
diphoton mass (𝑚𝛾𝛾) resolution [20] and the 𝑚𝛾𝛾 distribution is used as the final discriminant. The
requirement of at least one lepton rejects some SM background processes and therefore increases the
signal-to-background ratio. The events are classified by the number and flavour of the leptons (electrons
and muons) in the final state and multivariate analysis techniques are used to enhance the sensitivity of the
search. The algorithm is trained to distinguish between the dominant SM backgrounds (multi-jet processes
and vector bosons produced in association with a pair of photons) and the 𝑋 → 𝑆𝐻 → 𝑉𝑉𝛾𝛾 signal. This
search is performed over the mass ranges 300 ≤ 𝑚𝑋 ≤ 1000 GeV and 170 ≤ 𝑚𝑆 ≤ 500 GeV. It allows to
explore lower mass ranges than other final states with 𝑏-quarks where the signal becomes boosted at low
𝑚𝑆 values, and suffer from low energetic 𝑏-quarks falling below the reconstructed threshold in the low 𝑚𝑋

region. In the interpretation of the search results, the 𝑆 boson is assumed to have SM-like branching ratios.
Two additional scenarios wherein the 𝑆 boson decays with a 100% branching ratio into a pair of 𝑊± or 𝑍
bosons, 𝑆 → 𝑊+𝑊−/𝑍𝑍 , are also considered.

This paper is organised as follows. A brief description of the ATLAS detector is given in Section 2.
Data and simulation samples are described in Section 3. The object reconstruction and event selection
are outlined in Section 4. The background estimation and the systematic uncertainties are described in
Section 5 and Section 6, respectively. Section 7 presents the results of this search, which are summarised
in Section 8.
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2 ATLAS detector

The ATLAS detector [1] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |𝜂 | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)
installed before Run 2 [21, 22]. It is followed by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |𝜂 | < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |𝜂 | < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers
of precision chambers, each consisting of layers of monitored drift tubes, cover the region |𝜂 | < 2.7,
complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range |𝜂 | < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [23] detector that records Cherenkov light produced
in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections
made by algorithms implemented in software in the high-level trigger [24]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further
reduces in order to record complete events to disk at about 1 kHz.

A software suite [25] is used in data simulation, in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.
Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity is
defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 = 1

2 ln
(
𝐸+𝑝𝑧𝑐
𝐸−𝑝𝑧𝑐

)
in the relativistic limit.

Angular distance is measured in units of Δ𝑅 ≡
√︁
(Δ𝑦)2 + (Δ𝜙)2.
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3 Data and simulation samples

3.1 Data Samples

The data used were collected with the ATLAS detector during 2015–2018, from 𝑝𝑝 collisions at a
centre-of-mass energy

√
𝑠 = 13 TeV, corresponding to an integrated luminosity of 140 fb−1 with an

uncertainty of 0.83% [26] after data quality requirements [27]. Events were recorded using diphoton
triggers that require two reconstructed photon candidates with minimum transverse energies of 35 GeV and
25 GeV [28]. During the 2015–2016 data taking period, a Loose identification requirement was applied for
this diphoton trigger while it was replaced by the Medium selection criteria to keep a tolerable trigger rate
in 2017–2018 due to the increased instantaneous luminosity.

3.2 Monte Carlo simulated samples

3.2.1 Signal samples

The Monte Carlo (MC) simulated signal samples were produced with the Pythia 8 generator [29] with the
matrix element calculation at leading order (LO) accuracy in quantum chromodynamics (QCD), followed
by parton showering, hadronisation and underlying event modelling using the A14 set of tuned parameters
(“tune”) [30] and the NNPDF2.3lo parton distribution functions (PDF) [31]. During the sample generation,
both 𝑋 and 𝑆 were assumed to have a narrow width compared with the experimental resolution, and their
widths are fixed to 10 MeV. A total of 20 signal samples for various 𝑚𝑋 and 𝑚𝑆 were generated. The
𝑋 boson was required to decay into 𝑆 and 𝐻 with 𝑆 only decaying into a pair of 𝑊 or 𝑍 bosons and 𝐻
decaying into a pair of photons. By considering leptonic decays of 𝑊 or 𝑍 bosons, the following three
final state samples were produced for each 𝑚𝑋 and 𝑚𝑆 combination: 𝑊𝑊 (ℓ𝜈𝑞𝑞′) + 𝛾𝛾, 𝑊𝑊 (ℓ𝜈ℓ𝜈) + 𝛾𝛾,
and 𝑍𝑍 (ℓℓ𝑞𝑞/ℓℓ𝜈𝜈) + 𝛾𝛾, where ℓ = 𝑒, 𝜇, or 𝜏. The 𝑍𝑍 (4ℓ) + 𝛾𝛾 decay sample is excluded due to its
negligible contribution. To achieve a better signal generation efficiency, the samples were produced by
requiring to have at least one lepton with transverse momentum (𝑝T) greater than 7 GeV and pseudorapidity
|𝜂 | < 3 at the generator level.

3.2.2 Background samples

The main background contributions result from SM single and double-Higgs boson production, forming a
resonance on the diphoton mass (𝑚𝛾𝛾) spectrum, and other SM processes giving a smoothly falling 𝑚𝛾𝛾

spectrum (continuum background). The corresponding events were generated with MC simulation.

Simulated events for single Higgs boson production via gluon–gluon fusion (ggF) were produced with
the Powheg Box v2 generator [32–36] at next-to-next-to-leading order (NNLO) accuracy in QCD and
interfaced with Pythia 8. The NNLO accuracy for arbitrary inclusive 𝑔𝑔 → 𝐻 observables was achieved
by reweighting the Higgs boson rapidity spectrum in Hj-MiNLO [37–39] to that of HNNLO [40]. The
PDF4LHC15nnlo PDF set [41] and the AZNLO tune [42] of Pythia 8 were used and the decays of 𝑏- and
𝑐-hadrons were modelled by the EvtGen 1.6.0 programme [43]. These events were normalised using the
NNLO cross-section in QCD plus electroweak corrections at next-to-leading order (NLO) [19, 44–53].

Simulated single Higgs boson events produced via vector-boson fusion (VBF) were generated with
Powheg Box v2 at NLO accuracy in QCD and interfaced with Pythia 8. The PDF4LHC15nlo PDF
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set and AZNLO tune were used. Simulated events were normalised using an approximate-NNLO QCD
cross-section with NLO electroweak corrections [54–56].

Events of single Higgs boson produced in association with a vector boson (𝑉𝐻, 𝑉 = 𝑊/𝑍) were simulated
using Powheg Box v2 and interfaced with Pythia 8. The Powheg prediction is accurate to NLO in QCD
for 𝑉𝐻+1jet distributions by using the MiNLO [57] prescription. The loop-induced 𝑔𝑔 → 𝑍𝐻 process was
generated separately at LO. The PDF4LHC15nlo PDF set and the AZNLO tune were used. Cross-sections
calculated at NNLO in QCD with NLO electroweak corrections for 𝑞𝑞/𝑞𝑔 → 𝑉𝐻 and at NLO and
next-to-leading-logarithm accuracy in QCD for 𝑔𝑔 → 𝑍𝐻 [58–64] were used for the normalisation of the
MC samples.

Events corresponding to Higgs boson production in association with a pair of top or bottom quarks (𝑡𝑡𝐻 or
𝑏�̄�𝐻) were simulated using Powheg Box v2 at NLO with the NNPDF3.0nlo PDF set [65]. The events
were interfaced with Pythia 8 using the A14 tune and the NNPDF2.3lo PDF set. The decays of bottom
and charm hadrons were performed with EvtGen 1.6.0.

Finally, events for single Higgs boson production in association with a single top quark were simulated
with the MadGraph_ aMC@NLO 2.3.3 [66] generator at NLO with the NNPDF3.0nlo PDF set. The
events were interfaced with Pythia 8 using the A14 tune and the NNPDF2.3lo PDF set.

In addition to the single Higgs boson processes, events corresponding to the SM double Higgs boson ggF
and VBF production modes are also considered. Those events were generated with Powheg Box v2 at NLO
accuracy in QCD using the PDF4LHC15nlo PDF set and interfaced with Pythia 8. During the sample
generation, one of the Higgs bosons was required to decay into two photons and the other Higgs boson was
required to decay into 𝑊𝑊 , 𝑍𝑍 or 𝜏𝜏, giving a final state with a pair of electrons or muons, or with one
electron and one muon. Leptons were required to have 𝑝T > 7 GeV and |𝜂 | < 3 at the generator level.

The normalisation of all Higgs boson samples accounts for the decay branching ratios calculated with
HDECAY [67–69] and Prophecy4f [70–72].

Continuum background from 𝛾𝛾+jets, 𝑉+𝛾𝛾, and 𝑡𝑡+𝛾𝛾 processes is considered. Their contributions are
described with corresponding MC simulated samples that are exclusively used for the event selection
optimisation. These samples were normalised with cross-sections as predicted by their corresponding MC
generators.

Events from 𝛾𝛾+jets production were simulated using the Sherpa 2.2.4 generator [73] at NLO accuracy in
QCD with up to one additional parton and at LO with up to three additional partons. The matrix elements
of these events were calculated with the Comix [74] and OpenLoops [75, 76] libraries and then matched to
the Sherpa parton shower [77] using the MEPS@NLO prescription [78–81]. The NNPDF3.0nnlo PDF
set [65] was used to describe the parton distributions in the incoming protons. A generator-level selection
was applied to these events with the requirement of the invariant mass of the two photons to be between
90 GeV and 175 GeV.

The 𝑉 + 𝛾𝛾 events were generated using Sherpa 2.2.4 at NLO accuracy in QCD with up to one additional
parton and up to three extra partons at LO. The calculation procedure is the same as in 𝛾𝛾+jets event
generation. Events were generated separately according to their final states as listed: 𝑒𝑒+𝛾𝛾, 𝜇𝜇+𝛾𝛾,
𝜏𝜏+𝛾𝛾, 𝑒𝜈+𝛾𝛾, 𝜇𝜈+𝛾𝛾, 𝜏𝜈+𝛾𝛾, and 𝜈𝜈+𝛾𝛾. The generator-level photon 𝑝T was required to be greater
than 17 GeV and the invariant mass of the two photons should be larger than 80 GeV for these events.
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Table 1: Summary of MC simulated samples used in this analysis.

Process Generator PDF Tune
Signal

𝑋 → 𝑆𝐻 → 𝑉𝑉 + 𝛾𝛾 Pythia 8 NNPDF2.3lo A14
SM Single and double Higgs boson production

ggF 𝐻 Powheg+Pythia 8 PDF4LHC15nnlo AZNLO
VBF 𝐻 Powheg+Pythia 8 PDF4LHC15nlo AZNLO
𝑊𝐻 Powheg+Pythia 8 PDF4LHC15nlo AZNLO

𝑞𝑞 → 𝑍𝐻 Powheg+Pythia 8 PDF4LHC15nlo AZNLO
𝑔𝑔 → 𝑍𝐻 Powheg+Pythia 8 PDF4LHC15nlo AZNLO

𝑡𝑡𝐻 Powheg+Pythia 8 NNPDF3.0nlo A14
𝑏�̄�𝐻 Powheg+Pythia 8 NNPDF3.0nlo A14
𝑡𝐻𝑏 𝑗 MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14
𝑡𝐻𝑊 MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14

ggF 𝐻𝐻 → 𝑉𝑉 + 𝛾𝛾 Powheg+Pythia 8 PDF4LHC15nlo A14
VBF 𝐻𝐻 → 𝑉𝑉 + 𝛾𝛾 Powheg+Pythia 8 PDF4LHC15nlo A14

Continuum background
𝛾𝛾 + jets Sherpa NNPDF3.0nnlo –
𝑉 + 𝛾𝛾 Sherpa NNPDF3.0nnlo –
𝑡𝑡𝛾𝛾 MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14

Lepton-dependence samples
𝛾𝛾 + 0ℓ + jets MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14
𝛾𝛾 + 1ℓ + jets MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14
𝛾𝛾 + 2ℓ + jets MadGraph_aMC@NLO+Pythia 8 NNPDF3.0nlo A14

The 𝑡𝑡+𝛾𝛾 process is simulated with the MadGraph5_aMC@NLO generator at LO and interfaced with
Pythia 8. The NNPDF2.3lo PDF set and A14 tune were used for this production. The decays of bottom
and charm hadrons were performed with EvtGen 1.6.0.

In addition, dedicated samples (denoted “lepton-dependence samples”) corresponding to final states of
𝛾𝛾 + 0ℓ + jets, 𝛾𝛾 + 1ℓ + jets, and 𝛾𝛾 + 2ℓ + jets are generated to study the 𝑚𝛾𝛾 distribution difference
for cases with different lepton multiplicity at the generator level. These samples were produced with
MadGraph5_aMC@NLO interfaced with Pythia 8. All possible SM processes with described final states
except for those with 𝐻 → 𝛾𝛾 were included in the event generation.

All simulated events except for the signals, 𝛾𝛾+jets and lepton-dependence samples were passed through a
detailed detector simulation of the ATLAS detector implemented with Geant4 [82, 83]. The remaining
samples were simulated using AtlFastII [83], which exploys Geant4 except for a parameterisation of
the calorimeter response [84]. The effect of multiple interactions in the same and neighbouring bunch
crossings (pile-up) was modelled by overlaying the simulated hard-scattering event with inelastic 𝑝𝑝 events
generated with Pythia 8 [85] using the NNPDF2.3lo PDF set and the A3 tune [86]. A summary of MC
simulated samples can be found in Table 1.
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4 Object and event selection

4.1 Object selection

Vertices from 𝑝𝑝 collisions are reconstructed if they have associated at least two ID tracks with 𝑝T > 0.5 GeV.
The diphoton primary vertex (PV) is chosen by using a neural network algorithm that uses information
about the ID tracks as well as the photon candidates [87].

Photons are reconstructed based on a dynamic, topological cell clustering-based algorithm from the
energy deposits in the electromagnetic calorimeter in the region |𝜂 | < 2.37, excluding the transition
region between the barrel and endcap calorimeters 1.37 < |𝜂 | < 1.52 [88]. The photon identification
criteria is constructed using information from the shower shapes and the primary identification criteria is
labelled as 𝑇𝑖𝑔ℎ𝑡. The photon isolation criteria quantifies the activity near the photons from the tracks
of nearby charged particles, or from energy deposits in the calorimeter [88]. This analysis considers
events by selecting photon candidates which are required to satisfy a set of preselection criteria. The two
photons with the highest transverse momentum, referred to as leading (𝛾1) and subleading (𝛾2) photons,
must satisfy 𝑝T > 22 GeV and |𝜂 | < 2.37, excluding the transition region between the barrel and endcap
calorimeters 1.37 < |𝜂 | < 1.52. Photon candidates are separated from multi-jet backgrounds by applying
𝑇𝑖𝑔ℎ𝑡 identification and further isolation requirements to suppress jets misidentified as photons.

Electrons are reconstructed and identified based on clusters built from energy deposits in the electromagnetic
calorimeter, which are matched to a track in the inner detector [88]. The muon reconstruction is performed
using information from the inner detector and muon spectrometer, as well as the electromagnetic and
hadronic calorimeters [89]. In this search, electron candidates are required to have 𝑝T > 10 GeV and
|𝜂 | < 2.47, excluding the transition region between the barrel and endcap calorimeters 1.37 < |𝜂 | < 1.52.
Muon candidates should have 𝑝T > 10 GeV and |𝜂 | < 2.7. Leptons must satisfy 𝑀𝑒𝑑𝑖𝑢𝑚 identification
and 𝐿𝑜𝑜𝑠𝑒 isolation [88, 89], and a set of requirements based on the longitudinal and transverse impact
parameters relative to the vertex and the beam axis.

Jets are reconstructed using a particle flow algorithm [90] from noise-suppressed positive-energy topological
clusters [91] in the calorimeter using the anti-𝑘𝑡 algorithm [92, 93] with a radius parameter 𝑅 = 0.4. The
jet energy scale calibration restores the jet 𝑝T, energy, and mass to that of jets reconstructed at particle
level [94]. In this search, jets are required to have 𝑝T > 25 GeV and to be in the central region of the
detector, |𝜂 | < 2.5. To suppress jets from pileup, a jet-vertex-tagger multivariate discriminant [95] is
applied to jets with 𝑝T < 60 GeV. Jets containing 𝑏-hadrons are identified (𝑏-tagged) using the 77%
efficiency working point of the DL1r 𝑏-tagging algorithm [96].

An overlap removal procedure is performed to avoid double-counting objects. First, electrons overlapping
with any of the two selected photons (Δ𝑅 < 0.4) are removed. Jets overlapping with the selected photons
(Δ𝑅 < 0.4) or electrons (Δ𝑅 < 0.2) are removed. Electrons overlapping with the remaining jets (Δ𝑅 < 0.4)
are removed to match the requirements imposed when measuring isolated electron efficiencies. Finally,
muons overlapping with photons or jets (Δ𝑅 < 0.4) are removed.

The missing transverse momentum, with magnitude 𝐸miss
T , is defined as the negative vector sum of the

transverse momenta of the selected photon, electron, muon, and jet objects, as well as of the transverse
momenta of remaining low-𝑝T particles estimated by using tracks associated with the diphoton primary
vertex but not assigned to any of the selected objects [97].

The above requirements constitute the event preselection of this search.

8



Table 2: Event selection and classification strategy.

Preselection Two photon candidates and no 𝑏-tagged jets
Region 1ℓ 𝑒𝜇 2ℓ(𝑊𝑊) 2ℓ(𝑍𝑍)
Number of leptons 1 2 2 2
Total electric charge – 0 0 0
Same flavour leptons – No Yes Yes
|𝑚ℓℓ − 𝑚𝑍 | [GeV] – – > 10 < 10
Number of jets ≥ 2 – - ≥ 2
Strategy BDT Cut-based BDT Cut-based
Number of signal regions 2 1 2 1
𝑚𝛾𝛾 region [105, 160] GeV

4.2 Event selection

This search selects events with two photons from the Higgs boson decay, and one or two leptons coming
from the vector bosons originated from the 𝑆 → 𝑉𝑉 process. Events are required to pass diphoton triggers
as described in Section 3. Moreover, photons are required to have 𝑝

𝛾1(2)
T /𝑚𝛾𝛾 > 0.35 (0.25) [20]. Selected

events must contain one or two additional leptons (𝑒 or 𝜇) with 𝑝T > 10 GeV. To suppress backgrounds
with top quarks, events containing one or more 𝑏-tagged jets are rejected.

The events are classified into four different regions depending on the number and flavour of leptons
originating from the vector boson decays in the 𝑆 → 𝑊±𝑊∓ and 𝑆 → 𝑍𝑍 processes. Events in the
one-lepton (1ℓ) region are required to have one lepton and at least two jets. The other regions account
for events with two leptons with opposite electric charge. Events with two leptons of different flavour are
targeted in the 𝑒𝜇 region. Events having two leptons of same flavour (SF) are further split by checking the
compatibility of the dilepton invariant mass with the 𝑍-mass pole. Events with at least two jets and satisfying
|𝑚ℓℓ − 91.2 GeV| < 10 GeV are classified in the 2ℓ(𝑍𝑍) region, which targets the 𝑆 → 𝑍𝑍 → ℓℓ+jets
process. The remaining SF events are included in the 2ℓ(𝑊𝑊) region.

Two optimisation strategies are adopted. For each of the 1ℓ and 2ℓ(𝑊𝑊) regions, a Boosted Decision Tree
(BDT) is used to enhance the analysis sensitivity. The 1ℓ and 2ℓ(𝑊𝑊) regions further split the events by
dividing the BDT output distribution into the loose (low BDT score) and tight (high BDT score) signal
regions. The 𝑒𝜇 and 2ℓ(𝑍𝑍) signal regions are limited in statistics and have higher signal-over-background
ratios than the BDT-based regions. Due to this, the 𝑒𝜇 and 2ℓ(𝑍𝑍) signal regions follow an inclusive
cut-based strategy and events are not further split into sub-regions. This analysis strategy results in six
signal regions.

The final discriminant of this search is the diphoton invariant mass spectrum. To be consistent with the
𝐻 → 𝛾𝛾 process and to exclude the region of the 𝑍-boson resonance, the range of 𝑚𝛾𝛾 is limited to the
[105, 160] GeV region. The signal region is defined as the 𝑚𝛾𝛾 within [120, 130] GeV. Events outside
the signal region, referred to as sideband events, are used to estimate the main background processes as
described in Section 5. After all selections described above are applied, the combined acceptance and
selection efficiency for the signal production ranges from 11% to 25%, which increases for higher 𝑚𝑋

hypotheses. Table 2 summarises the event selection and strategy for each of the signal regions.
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4.3 Boosted Decision Tree strategy

The dominant signal process in this search is the 𝑆 → 𝑊+𝑊− decay given the larger branching ratio
compared with the 𝑆 → 𝑍𝑍 process for the explored 𝑚𝑆 range. In the 1ℓ region one of the 𝑊 bosons
decays leptonically and the other decays hadronically. In the 𝑒𝜇 and 2ℓ(𝑊𝑊) regions both 𝑊 bosons
decay leptonically resulting into a pair of leptons with different and same flavour, respectively. Two BDTs
are built based on the kinematic observables from the final-state objects in the 1ℓ and 2ℓ(𝑊𝑊) regions.
The different signal samples are grouped according to the 𝑆 mass into four groups: 𝑚𝑆 = 170 GeV,
𝑚𝑆 = 200 GeV, 𝑚𝑆 = 300 GeV and 𝑚𝑆 = 400, 500 GeV. These groups contain from four to six signal
samples depending on the 𝑚𝑋 values in each group. The BDT algorithms are trained for each group against
the total background from MC simulation using the parameterised BDT method [98].

Twelve and nine variables for the 1ℓ and 2ℓ(𝑊𝑊) regions respectively are used to train each BDT, as listed
in Table 3. The BDT input variables list excludes 𝑚𝛾𝛾 as it is used as the main discriminant; these variables
are selected to have small correlation with 𝑚𝛾𝛾 . The BDT variable with the highest separation power is the
transverse momentum of the pairs of photons from the SM Higgs boson decay (𝑝𝛾𝛾T ). The comparison of the
𝑝
𝛾𝛾
T distributions for data, the expected SM background processes and the (𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV

signal from simulation is shown in Figure 2 for the 1ℓ and 2ℓ(𝑊𝑊) regions.
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Figure 2: Transverse momentum of the diphoton system, 𝑝𝛾𝛾T , in the (a) 1ℓ and (b) 2ℓ(𝑊𝑊) regions for data and
the expected SM background from simulation after the event selection is applied. The 𝑉𝛾𝛾 and 𝛾𝛾+jets simulated
background is scaled to match the data yield excluding the 120 < 𝑚𝛾𝛾 < 130 GeV region. The contribution from the
SM single and double Higgs boson processes (denoted “SM Higgs”), which is estimated from the MC simulation, is
also shown. The (𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV signal prediction (open red histogram) for the scenario of SM-like
ℬ(𝑆 → 𝑊𝑊/𝑍𝑍) is also shown, normalised to a cross-section corresponding to the 95% CL upper limit shown in
Figure 6. An additional normalisation factor, as indicated in the legend, is applied to scale the signal for visibility.
The last bin in each distribution contains the overflow.

Figure 3 shows the BDT output distributions for data, the expected SM background processes and the
(𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV signal from simulation. The BDT output discriminant is used to further
split events in loose and tight BDT regions: 1ℓloose and 1ℓtight regions are defined for the 1ℓ region, as
well as 2ℓloose and 2ℓtight signal regions for the 2ℓ(𝑊𝑊) region. The BDT score threshold values used
range from −0.1 to 0.2 depending on the signal mass hypothesis, and result from a scan using the root
square of the signal significance in each region added in quadrature: 𝑍comb =

√︃
𝑍2

loose + 𝑍2
tight, being
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Table 3: Variables used as inputs to the BDT in the 1ℓ and 2ℓ(𝑊𝑊) regions. The highest-𝑝T (leading) lepton is
denoted ℓ1, and the subleading lepton is denoted ℓ2. The numbers indicate the ranking of each input variable, with 1
corresponding to the most highly ranked variable.

Variable Description BDT-based regions
1ℓ 2ℓ(𝑊𝑊)

Δ𝑅(𝛾𝛾, ℓ𝜈 𝑗 𝑗) Δ𝑅 between the diphoton system and the ℓ + 𝐸miss
T 𝑗 𝑗 system 10

Δ𝑅(𝛾𝛾, ℓ𝜈ℓ𝜈) Δ𝑅 between the diphoton system and the ℓℓ + 𝐸miss
T system 9

Δ𝑅( 𝑗 𝑗 , ℓ𝜈) Δ𝑅 between the dĳet system and the ℓ + 𝐸miss
T system 9

Δ𝑅(ℓ1𝜈, ℓ2) Δ𝑅 between leading lepton + 𝐸miss
T and subleading lepton 8

𝑝
ℓ+𝐸miss

T 𝑗 𝑗

T 𝑝T of the ℓ + 𝐸miss
T 𝑗 𝑗 system 2

𝑝
𝛾𝛾
T 𝑝T of the diphoton system 1 2

Δ𝜙(𝛾𝛾, ℓ(1) ) Δ𝜙 between the diphoton system and the (leading) lepton 12 7

Δ𝑅(ℓ, 𝐸miss
T ) Δ𝑅 between the lepton and the 𝐸miss

T 8
𝑝
ℓ(1)
T 𝑝T of the (leading) lepton 4 4

𝑝
ℓ1+𝐸miss

T
T 𝑝T of the leading lepton and 𝐸miss

T system 3
𝑚T(ℓ(1)𝐸miss

T ) Transverse mass of the (leading) lepton and 𝐸miss
T 11 5

𝑚ℓℓ Invariant mass of the dilepton system 6
𝐸miss

T Missing transverse energy 3 1

Δ𝑅( 𝑗 , 𝑗) Δ𝑅 between the two jets with closest mass to 𝑚𝑊 6
𝑝
𝑗 𝑗
T 𝑝T of the the two jets with closest mass to 𝑚𝑊 5

𝑚 𝑗 𝑗 Invariant mass of the dĳet system with closest mass to 𝑚𝑊 7

𝑍loose/tight =

√︂
2 ×

[
(𝑠 + 𝑏) ×

(
ln

𝑠 + 𝑏

𝑏

)
− 𝑠

]
loose/tight

, (1)

where 𝑠 represents the signal event yields and 𝑏 is the background yield in each BDT region. Both signal
and background yields are calculated by considering events in the region of 120 < 𝑚𝛾𝛾 < 130 GeV. The
selected threshold values are established by maximising 𝑍comb under the requirement of the presence of
at least one sideband data event in the tight BDT regions. Table 4 shows the SM expected event yields,
estimated as detailed in Section 5, and the observed data for each of the analysis regions. The expected
signal yields for (𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV, considering a 𝑔𝑔 → 𝑋 → 𝑆𝐻 production cross-section of
1 pb, are provided for comparison. The 𝑆 scalar boson is assumed to decay into other SM particles with the
same mass-dependent branching ratios of the SM Higgs boson.
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Figure 3: BDT output distributions in the (a) 1ℓ and (b) 2ℓ(𝑊𝑊) regions for data and the expected SM background
from simulation after the event selection is applied. The 𝑉𝛾𝛾 and 𝛾𝛾+jets simulated background is scaled to match
the data yield excluding the 120 < 𝑚𝛾𝛾 < 130 GeV region. The contribution from the SM single and double
Higgs boson processes (denoted “SM Higgs”), which is estimated from the MC simulation, is also shown. The
(𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV signal prediction (open red histogram) for the scenario of SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍)
is also shown, normalised to a cross-section corresponding to the 95% CL upper limit shown in Figure 6. An
additional normalisation factor, as indicated in the legend, is applied to scale the signal for visibility. The BDT score
threshold values are represented by the dashed vertical lines. The shaded band represents the statistical uncertainty
on the background prediction. The last bin in each distribution contains the overflow.

Table 4: Observed data and expected event yields for the different analysis regions after the full selection from
Table 2 is applied. The continuum background includes the 𝑉𝛾𝛾, 𝛾𝛾+jets and 𝑡𝑡𝛾𝛾 processes estimated as described
in Section 5. The contribution from the SM single and double Higgs boson processes (denoted “SM Higgs”) is
estimated from simulation. The uncertainties include all sources of systematic uncertainty described in Section 6.
Event yields for the (𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV signal are also shown assuming 𝜎(𝑔𝑔 → 𝑋 → 𝑆𝐻) = 1 pb and
SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍).

BDT-based regions Cut-based regions
1ℓtight 1ℓloose 2ℓtight 2ℓloose 2ℓ(𝑍𝑍) 𝑒𝜇

Continuum 6.0 ± 2.4 405 ± 20 2.0 ± 1.4 100 ± 10 2.0 ± 1.4 2.0 ± 1.4
SM Higgs 0.55 ± 0.08 6.8 ± 0.9 0.46 ± 0.06 3.35 ± 0.46 0.52 ± 0.08 0.24 ± 0.03
Total background 6.6 ± 2.8 412 ± 23 2.46 ± 1.6 103 ± 11 2.52 ± 1.6 2.24 ± 1.5
Signal (𝑚𝑋, 𝑚𝑆)
(1000, 300) GeV 20.9 ± 2.4 2.90 ± 0.34 2.96 ± 0.35 0.016 ± 0.002 2.03 ± 0.24 2.08 ± 0.24

Data 6 405 2 100 2 2

5 Background estimation

Background processes can be classified into “resonant” or “continuum” based on their 𝑚𝛾𝛾 spectrum.
The SM Higgs boson single and pair production events form the resonant background component. These
processes are purely estimated from MC simulation.

The continuum background component arises mostly from multi-jet processes associated with two photons
(𝛾𝛾+jets), and vector boson or top-antitop-quark production in association with a pair of photons (𝑉 + 𝛾𝛾
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and 𝑡𝑡𝛾𝛾). Contributions from these processes are checked with the MC simulated samples as described in
Section 3.2.2 and used for the event selection optimisation. No dedicated MC simulated events are produced
for processes with small contribution such as 𝑉𝑉+𝛾𝛾 or processes with jets or leptons misidentified as
photons. Their contributions are included in the data-driven background, which accounts for all possible
processes. The contribution from the continuum background is estimated from a fit to the data 𝑚𝛾𝛾

distribution in the sideband region with a template. This template is generated from an analytic function
that is obtained from a fit to the 𝑚𝛾𝛾 distribution in a dedicated data control region due to low statistics
of sideband data in the signal region. These control regions are defined by requiring zero leptons and at
least two photons passing looser identification and isolation criteria but failing the signal region photon
selections as described in Section 4.1. Two different control samples are defined based on the number of
leptons in each signal region using the selected jet to mimic the lepton behaviour. The control sample
for the 𝛾𝛾 + 1ℓ region selects events with a pair of photons accompanied by one jet. For the other signal
regions with a pair of leptons in the final state, the control sample requires the presence of at least two jets.
A schematic diagram presenting the definitions of different regions is shown in Figure 4. The fitted 𝑚𝛾𝛾

shape difference between the signal region and control region is considered as a systematic uncertainty in
the background shape estimation. In addition, the 𝑚𝛾𝛾 shape difference related to the number of leptons
in the generator-level is also evaluated and included as a systematic uncertainty. This uncertainty is
estimated by comparing the fit results to the full 𝑚𝛾𝛾 mass range distributions in the control region and the
validation region using dedicated lepton-dependence MC samples as described in Section 3.2.2, where the
validation region is defined by applying almost the same event selections as the signal region but inverting
identification and isolation requirements as same as in the control region.
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Background 
templates

Figure 4: Definition of signal and control regions. The red arrow represents the 𝑚𝛾𝛾 template generated in the
0-lepton control region which is applied to the signal regions. The systematic uncertainty in the background shape,
obtained from differences between the control and the validation regions, is indicated by the blue arrow.

Three types of analytic functions are explored: exponential function, exponential function of a 2nd

order polynomial, and a Chebyshev polynomial of order 𝑛 = 1, . . . , 5. The functional form is chosen
via a spurious signal test as described in Ref. [99]. The spurious signal is extracted by performing a
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signal-plus-background fit to the data 𝑚𝛾𝛾 distribution in the control region (denoted “background-only”
template), which is assumed to only include contributions from continuum background processes. The
selection criteria follow the strategy as documented in Ref. [20]. The spurious signal should be less than
20% of the background uncertainty. In addition to the spurious signal requirement, the goodness of the
fit with background functional form to the background-only template is evaluated with a 𝜒2 test and the
corresponding 𝑝-value is required to be greater than 5%. When multiple functions pass the criteria, the
one with the smallest degrees of freedom is chosen. The corresponding spurious signal for the selected
function is treated as the systematic uncertainty due to background modelling with the analytic function.
In total 80 continuum background functions are estimated corresponding to various signal regions. Of
these 80 functions, 78 are exponential functions of 2nd order polynomials and the remaining two are simple
exponential functions. Due to the low statistics in the 𝑒𝜇 and 2ℓ(𝑍𝑍) signal regions and the fact that the
𝑚𝛾𝛾 distribution shows a negligible dependence on the flavour of leptons, the continuum background shape
estimated in the 2ℓtight region is also applied to these two regions.

6 Systematic uncertainties

Systematic uncertainties arise from the theory modelling of signal and background, the detector simulation
and instrumental effects, and the estimation of the continuum background.

6.1 Theoretical uncertainties

Theoretical uncertainties are considered for signal and the SM single and double Higgs boson backgrounds.
Uncertainties from six sources are considered: from PDF set and strong coupling constant 𝛼𝑆 , from the
QCD factorisation and renormalisation scales (𝜇F and 𝜇R), and from the parton shower parameters and
hadronisation models.

To evaluate the impact of varying the PDF set choice and 𝛼𝑆 value, event weights corresponding to
alternative PDF sets and 𝛼𝑆 values are generated for each event along with the nominal weight. Effects on
signal region yields are considered as systematic uncertainties. Variations on signal and SM Higgs boson
yields are found to be 6% and 4% respectively.

The systematic uncertainty due to higher-order QCD effects is estimated by independently varying the
QCD factorisation and renormalisation scales up and down from their nominal values by a factor of two,
taking the envelope of the 7-point variation. Their impacts on signal and SM Higgs boson background
yields are about 9% and 13% respectively.

The uncertainty due to the parton shower and hadronisation model is estimated by comparing the yields
from the nominal MC samples using Pythia 8, with alternative samples using instead Herwig 7. The
corresponding uncertainties in the signal and Higgs boson background yields are 5% and 3% respectively.

6.2 Experimental uncertainties

Systematic uncertainties arising from the luminosity determination, pileup modelling, and trigger, recon-
struction and selection efficiencies, as well as energy scales and resolutions, are considered for signal,
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single and double Higgs boson events. Their impacts on both the normalisation and shape are included in
the statistical analysis for the final results.

The uncertainty in the integrated luminosity for 2015–2018 data taking period is 0.83% [26], obtained
using the LUCID-2 detector for the primary luminosity measurement, complemented by measurements
using the inner detector and calorimeters.

The uncertainty in the modelling of the pileup distribution in the simulation is estimated to have 2%–3%
impacts on yields of signal, single and double Higgs boson events.

The photon reconstruction, identification and isolation efficiencies are measured using three data-driven
techniques as mentioned in Ref. [100]. Their effects on yields and shapes are estimated by varying the
measured efficiency scale factors between data and simulation, resulting in less than 2% variations for
signal yields. Uncertainties in the photon energy scale and resolution described in Ref. [88] are considered
as well. These uncertainties affect the signal yield less than 0.5%; a similar impact is found for single
Higgs boson and double Higgs bosons events. The uncertainty in the photon trigger efficiency is also
considered and its impact on event yields is found to be negligible.

Uncertainties in the electron reconstruction, identification and isolation efficiencies are reported in Ref. [100].
They affect the signal and SM Higgs boson yields by about 2%. Uncertainties in electron energy scale and
resolution are also evaluated and found to have a negligible impact.

In addition, uncertainties in muon reconstruction, identification, isolation efficiencies as well as the muon
momentum scale and resolution [89], and uncertainties in the jet energy scale and resolution [94] are
also considered. Furthermore, uncertainties arising from jet property selections: jet-vertex-tagger [95]
and 𝑏-jet tagging [101–103] are included. Finally, the uncertainty related to 𝐸miss

T resulting from tracks
not associated with the selected objects [97] is considered. All these uncertainties were found to have a
negligible impact on the signal and SM Higgs boson yields.

6.3 Continuum background modelling uncertainty

The continuum background estimation (see Section 5) assumes no significant shape differences between
the control region (events with no leptons) and the signal region (events with at least one lepton). An
uncertainty (called lepton-dependence uncertainty) associated with the background modelling is evaluated
by comparing the shape of the 𝑚𝛾𝛾 distribution in 𝛾𝛾 +0ℓ events with that in 𝛾𝛾 + ℓ𝜈jj and 𝛾𝛾 + ℓ𝜈ℓ𝜈 events
from dedicated MC simulated samples (see Section 3.2.2). The variations between diphoton events with
and without leptons are computed using the 𝑚𝛾𝛾 distribution in the [105, 160] GeV range. The average
variation over all bins is about 2% for all signal regions. In addition to lepton-dependence uncertainty, a
2% uncertainty arises from the comparison of the shape of the 𝑚𝛾𝛾 distribution in the control and the signal
regions. The systematic uncertainty arising from a potential bias from the background shape functional
form choice is accounted by the spurious signal uncertainty (see Section 5).

7 Results

The contribution of a potential signal in the data is extracted through a simultaneous fit to the 𝑚𝛾𝛾

distributions in all six signal regions, which is implemented with the RooFit [104] and RooStats [105]
frameworks. The fit is performed with a binned likelihood model built from the product of the Poission
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distribution in each bin and region, and including Gaussian distributions to describe the effect of systematic
uncertainties. For each 𝑚𝛾𝛾 distribution, 22 equal width bins in a range of 105 GeV to 160 GeV are
used in the fit. The parameter-of-interest is 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻) and is left unconstrained in the
fit. The shape of the signal for each individual region is obtained from simulated events. Contributions
from the single and double Higgs boson processes are estimated from MC simulated samples with their
normalisation fixed to SM predictions. Theoretical and experimental uncertainties corresponding to both
the signal and the Higgs boson backgrounds are included in the fit and controlled by the nuisance parameters.
For the continuum background, the shape is estimated with the method described in Section 5 and kept
fixed in the fit, while its normalisation is left unconstrained. In total four individual normalisation factors
are included corresponding to 1ℓtight, 1ℓloose, 2ℓtight and 2ℓloose, respectively. The 𝑒𝜇 and 2ℓ(𝑍𝑍)
regions share the same normalisation factor for continuum background as the 2ℓtight region. Background
shape uncertainty and the spurious signal uncertainty are also considered in the fit and described by the
corresponding nuisance parameters. To improve the robustness of the fit, any systematic uncertainty with
less than 0.5% impact on either shape or yield is removed from the fit model. With such requirement,
only uncertainties related to photon and electron, pileup reweighting, theory, and continuum background
estimation are left, and others are ignored during the fit.

Three scenarios are considered for the final results corresponding to three hypotheses on the 𝑆 → 𝑊𝑊/𝑍𝑍
branching ratios: SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍) [19], ℬ(𝑆 → 𝑊𝑊) = 100%, and ℬ(𝑆 → 𝑍𝑍) = 100%.

Figure 5 presents the 𝑚𝛾𝛾 distributions in the six signal regions after performing the signal-plus-background
fit corresponding to a signal with 𝑚𝑋 = 1000 GeV and 𝑚𝑆 = 300 GeV for the SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍)
scenario. Other branching-ratio scenarios and signal-mass hypotheses are also tested and no deviation
with respect to the SM background expectation is observed. Consequently, 95% CL upper limits are set
on 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻) for each branching-ratio scenario and signal-mass hypothesis using the
profile likelihood ratio technique with the asymptotic approximation [106] and the 𝐶𝐿𝑠 [107, 108] method.
The results are validated using pseudo-experiments and found to agree within 20%.

Figure 6 shows the 95% CL observed and expected limits on 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻) as a function of
𝑚𝑋 and 𝑚𝑆 for the SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍) scenario. The observed (expected) limit ranges from 530 fb
(800 fb) to 120 fb (170 fb) depending on the scalar masses. The results are dominated by the 1ℓtight region,
with the other regions contributing with comparably lower sensitivity. In the 1ℓtight region, a slight deficit
in the data yield compared to the background expectation is observed across all mass hypotheses, which
leads to a better observed limit than the expected one for every mass point.
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Figure 5: Distribution of 𝑚𝛾𝛾 after the signal-plus-background fit to data in the (a) 1ℓtight, (b) 1ℓloose, (c) 2ℓtight,
(d) 2ℓloose, (e) 𝑒𝜇 and (f) 2ℓ(𝑍𝑍) regions. The contribution from the SM single and double Higgs boson processes
(denoted “SM Higgs”), which is estimated from the MC simulation, is shown added on top of the continuum
background distribution. The (𝑚𝑋, 𝑚𝑆) = (1000, 300) GeV signal prediction (open red histogram) for the scenario
of SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍) is also shown, normalised to a cross-section corresponding to the 95% CL upper limit
shown in Figure 6. An additional normalisation factor, as indicated in the legend, is applied to scale the signal for
visibility.
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Figure 6: Observed (solid line) and expected (dashed line) 95% CL upper limits on 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻) as a
function of 𝑚𝑋 and 𝑚𝑆 , under the assumption of SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍). The green and yellow shaded areas
indicate the ±1 and ±2 standard deviations around the expected limit.

Limits corresponding to assumptions of the scalar 𝑆 with a 100% decay branching ratio to 𝑊𝑊 or 𝑍𝑍 are
derived and presented in Figures 7 and 8. Under the assumption that ℬ(𝑆 → 𝑊𝑊) = 100%, the observed
limit varies from 470 fb to 91 fb whereas the expected limit ranges from 610 fb to 120 fb. The upper limits
under the scenario ℬ(𝑆 → 𝑍𝑍) = 100% are significantly higher: from 1530 fb to 360 fb for observed
limits and from 2160 fb to 510 fb for expected limits. The analysis sensitivity is limited by the statistical
uncertainty, with systematic uncertainties degrading the expected limits by about 2%.

These results are comparable to the 𝑋 → 𝑆𝐻 → 𝑉𝑉𝜏𝜏 [15] search, which observes an upper limit
on the production cross-section from 540 fb to 72 fb, assuming SM-like ℬ(𝑆 → 𝑊𝑊/𝑍𝑍). Under
the ℬ(𝑆 → 𝑊𝑊) = 100% and ℬ(𝑆 → 𝑍𝑍) = 100% scenarios, the upper limits on the production
cross-section and decay branching ratio are in the ranges 26 – 3 fb and 33 – 6 fb, respectively. By correcting
by the ℬ(𝐻 → 𝜏𝜏), these results can be expressed in upper limits on the 𝑋 → 𝑆𝐻 production cross-section,
and compared to those obtained by this analysis. These upper limits are set in the ranges 410 – 47 fb and
520 – 95 fb for ℬ(𝑆 → 𝑊𝑊) = 100% and ℬ(𝑆 → 𝑍𝑍) = 100%, respectively.

18



30
0

40
0

50
0

60
0

75
0
10

00
40

0
50

0
60

0
75

0
10

00
50

0
60

0
75

0
10

00
60

0
75

0
10

00
75

0
10

00

 [GeV]Xm

500

1000

1500

2000

2500

3000

 S
H

) 
[fb

]
→

   
 (

X
 

×
 X

) 
→

(g
g

σ
95

%
 C

L 
lim

it 
on

 

Observed

Expected

σ 1±Expected 

σ 2±Expected 

ATLAS

ℬ

-1 = 13 TeV, 140 fbs

ℬ  WW) = 100%→(S 

Sm Sm Sm Sm Sm

170 GeV 200 GeV 300 GeV 400 GeV 500 GeV

Figure 7: Observed (solid line) and expected (dashed line) 95% CL upper limits on 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻)
as a function of 𝑚𝑋 and 𝑚𝑆 , under the assumption of ℬ(𝑆 → 𝑊𝑊) = 100%. The green and yellow shaded areas
indicate the ±1 and ±2 standard deviations around the expected limit.

30
0

40
0

50
0

60
0

75
0
10

00
40

0
50

0
60

0
75

0
10

00
50

0
60

0
75

0
10

00
60

0
75

0
10

00
75

0
10

00

 [GeV]Xm

2000

4000

6000

8000

10000

12000

 S
H

) 
[fb

]
→

   
 (

X
 

×
 X

) 
→

(g
g

σ
95

%
 C

L 
lim

it 
on

 

Observed

Expected

σ 1±Expected 

σ 2±Expected 

ATLAS

ℬ

-1 = 13 TeV, 140 fbs

ℬ  ZZ) = 100%→(S 

Sm Sm Sm Sm Sm

170 GeV 200 GeV 300 GeV 400 GeV 500 GeV

Figure 8: Observed (solid line) and expected (dashed line) 95% CL upper limits on 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻) as a
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8 Conclusion

This paper presents the first search for the 𝑋 → 𝑆𝐻 → 𝑉𝑉𝛾𝛾 process by selecting events with a pair of
photons accompanied by one or two leptons (electrons or muons). The analysis is based on 140 fb−1

of proton–proton collision data at
√
𝑠 = 13 TeV recorded with the ATLAS detector at the LHC. The

𝑋 → 𝑆𝐻 → 𝑉𝑉𝛾𝛾 signal is searched for over the 300 ≤ 𝑚𝑋 ≤ 1000 GeV and 170 ≤ 𝑚𝑆 ≤ 500 GeV mass
ranges, probing lower 𝑚𝑋 values than the ATLAS 𝑆𝐻 → 𝑉𝑉𝜏𝜏 search, and complementing the ATLAS
𝑋 → 𝑆𝐻 → 𝑏𝑏𝛾𝛾 search by testing a different 𝑆-boson decay mode.

No excess of events above the expected SM background is observed and 95% CL upper limits are set on
the cross-section times branching ratio, 𝜎(𝑔𝑔 → 𝑋) ×ℬ(𝑋 → 𝑆𝐻), under different assumptions for the
𝑆 → 𝑊𝑊/𝑍𝑍 branching ratios. The observed (expected) upper limits lie in the range of 530 – 120 fb
(800 – 170 fb) under the assumption that ℬ(𝑆 → 𝑊𝑊/𝑍𝑍) corresponding to those the SM Higgs boson
would have at the mass of the 𝑆 particle. The corresponding observed (expected) upper limits on the
cross-section are in the range of 470 – 91 fb (610 – 120 fb) under the assumption of ℬ(𝑆 → 𝑊𝑊) = 100%.
Alternatively, under the assumption of ℬ(𝑆 → 𝑍𝑍) = 100%, the observed (expected) limits are in the
range of 1530 – 360 fb (2160 – 510 fb).
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