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Abstract: The identification of a hadron in the final state of hadron-collider events that
feature a leptonically decaying vector boson can provide essential information on the parton
content of the colliding protons. Moreover, the study of hadrons inside jets can provide
deeper insights into the fragmentation dynamics. We provide theoretical predictions for
specific observables involving either the production of a Z boson in association with light
charged hadrons inside a jet or the production of a W boson together with a charmed
hadron. We present results for various fragmentation functions and compare our predictions
with measurements by LHCb and ATLAS at

√
s = 13 TeV. Our predictions are obtained

using the antenna subtraction formalism which has been extended to cope with infrared
singularities associated to the fragmentation processes in a hadron-collider environment at
NLO accuracy.
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1 Introduction

With the rapidly growing data set from the LHC and the reduction of both statistical and
systematic uncertainties, more and more observables are becoming accessible for precision
studies. One such frontier comprises processes with identified hadrons from light or heavy
quark flavours.

Identified hadron production is described in perturbative QCD through the production
of partons (quarks and gluons) which subsequently fragment into hadrons. This parton-
to-hadron transition is a non-perturbative process which can be parametrized in terms of
process-independent fragmentation functions (FFs). The latter describe the probability of
a parton fragmenting into a hadron carrying some fraction of its momentum. These FFs
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fulfil Altarelli-Parisi evolution equations in their resolution scale [1], which are in complete
analogy to the evolution of parton distributions functions (PDFs) in the nucleon.

Identified hadron production can arise in two categories of collider observables: inclusive
observables, which are differential in the hadron momentum but inclusive in the kinematics
of all other final state particles; exclusive observables, where the hadrons are identified
in events that are characterized by requiring the additional presence of jets and/or gauge
bosons in the final state.

One-particle inclusive cross sections have been measured for a variety of hadron species
in electron-positron, lepton-hadron and hadron-hadron collisions. On the theory side, using
the factorization properties of QCD, the identified hadron production cross section can be
written as the convolution of a process-dependent coefficient function for the production of
partons with a universal fragmentation function for the parton-to-hadron transition. The
coefficient functions, corresponding to the parton-level cross section can be calculated in
perturbative QCD to the desired orders. At present, these coefficient functions are known
to NLO for hadron-hadron collisions [2] and to NNLO for e+e− annihilation [3, 4] and
lepton-proton scattering [5].

The recent focus on exclusive observables is largely driven by precision studies of vec-
tor boson production in association with identified hadrons at the LHC, with the presence
of leptons from the vector boson decay providing a clean experimental signature. These
exclusive observables can then provide essential information on the quark flavour decom-
position of the colliding protons: for instance, W -boson plus charmed hadron processes are
important handles on the strange content of the proton [6–10].

Other exclusive observables require the presence of a hadron inside a jet [? ]. These
processes can provide significant constraints on fragmentation functions. Recently, observ-
ables involving the production of a Z-boson in association with light hadrons inside a jet
have been performed by the LHCb collaboration [11].

Theory predictions for any of these exclusive observables require the use of a parton-
level event generator implementing all parton-level contributions to a given order and ap-
plying the experimental kinematical requirements on the final state event selection. For
the computation of observables related to processes with hadrons and involving parton-
to-hadron fragmentation functions, any subtraction method originally developed for jet
production needs to be extended: the subtraction procedure must keep track of the identi-
fied parton momentum fraction in the unresolved emissions, which is usually integrated over
for purely jet observables. Such extensions are available at NLO for dipole subtraction [12]
and FKS subtraction [13]. At NNLO, recent work towards the description of fragmentation
processes yielded results for heavy hadron production in top quark decays [14] in the residue
subtraction scheme as well as for photon fragmentation [15, 16] in the antenna subtraction
scheme. An extension of the antenna subtraction formalism to incorporate arbitrary hadron
fragmentation processes at lepton colliders has been outlined in [17]. Very recently, an inter-
face to MG5_aMC@NLO [18] to compute exclusive processes with fragmentation at NLO
through the usage of a hybrid subtraction scheme has been presented [19]. Other theoretical
developments concern the interface of fixed-order NLO calculations to parton showers for
processes with identified hadrons in the final state: for instance, NLO+PS predictions for
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W plus charmed hadron production have been produced in [20, 21].
In this paper, we consider theory predictions for Z-boson plus light hadron and W -

boson plus heavy hadron production. We present the essential ingredients of the antenna
formalism extended to cope with infrared singularities associated to fragmentation processes
at NLO accuracy. This work is a first step towards obtaining NNLO predictions for vector
boson plus identified hadron production at the LHC.

The paper is structured as follows. In section 2, we present the general framework
describing hadron fragmentation processes for hadron collider observables up to NLO level.
In section 3 we give explicit expressions for the subtraction terms and their integrated
counterparts needed for the computation of hadron production in association with a Z or
W boson. As a first application of our formalism, in sections 4 and 5 we present theoretical
predictions using specific parametrizations for the fragmentation functions and perform
in-depth comparisons with LHCb and ATLAS data at 13 TeV. Finally we summarize our
findings in Section 6.

2 Identified hadron production at hadron colliders

We begin by recollecting the main features of the different ingredients that enter the com-
putation of hadron-collider observables associated to the production of identified hadrons
at NLO.

We consider a generic proton–proton to hadron process of the form:

p + p → h(Kh) +X (+jets ) , (2.1)

where the hadron h with momentum Kh may or may not be inside a jet. The fully differ-
ential cross section for a process of this kind can be written in a factorized form

dσh =
∑
i,j

∑
p

∫
dξ1
ξ1

dξ2
ξ2

dη fi(ξ1, µ
2
F )fj(ξ2, µ

2
F )D

h
p (η, µ

2
D) dσ̂

i,j
p (η, µ2

F , µ
2
D) , (2.2)

where fi,j are the parton distribution functions (PDFs) with momentum fractions ξ1,2 and
Dh

p denotes the fragmentation function (FF) describing the transition of a parton p into
a hadron h carrying the momentum fraction η = Kh/kp. After mass factorization, both
the PDFs and FF acquire a dependence on the factorisation (µF ) and fragmentation scale
(µD), respectively, which compensates against the corresponding scale dependence of the
hard scattering cross section dσ̂i,j

p (η, µ2
F , µ

2
D). A sum over the initial-state (i, j) and final-

state (p) partons is performed. Finally, the one-parton exclusive cross section dσ̂i,j
p is

calculated perturbatively as a series expansion in αs and reads

dσ̂p(η, ξ1,2) = dσ̂LO
p (η, ξ1,2) +

(αs

2π

)
dσ̂NLO

p (η, ξ1,2) +
(αs

2π

)2
dσ̂NNLO

p (η, ξ1,2) + . . . , (2.3)

where we specify the fragmenting parton denoted as p but leave the initial state (i, j) im-
plicit. In the following, we describe how the parton-level cross section given in eq. (2.3)
is computed up to NLO. We closely follow the notation adopted in [17], where the for-
malism needed to incorporate arbitrary hadron fragmentation processes for lepton-collider
observables has been outlined up to NNLO.
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For a specific initial state denoted as (i, j) and a fragmenting parton denoted as p in
eq. (2.2), the leading order (LO) cross section is defined as the integration over the n-particle
phase space of the tree-level Born partonic cross section as

dσ̂LO
p (η, ξ1,2) =

∫
n
dσ̂B

p (η, ξ1,2) , (2.4)

with,

dσ̂B
p (η, ξ1,2) = NB dΦn(k1, . . . , kn; ξ1P1, ξ2P2)

1

Sn
M0

n(k1, . . . , kn) J
(m)
n ({k1, . . . , kn}n, ηkp) .

(2.5)
Here, NB denotes the normalisation factor at Born-level, Sn a symmetry factor related to
the final-state particles, M0

n the tree-level matrix element for 2 → n scattering, and dΦn

the phase space for a n-parton final state with total four-momentum Q = ξ1P1 + ξ2P2.
Throughout the remainder of the paper, we will define the initial-state partons (i, j) as
(1, 2), use p1,2 = ξ1,2P1,2, and leave the PDF momentum fractions and the flavour content
of the initial-state partons implicit.

The jet function J
(m)
n in eq. (2.5) implicitly describes how the jet cross sections are

computed. In particular, it includes the jet clustering algorithm and application of cuts on
jet observables in case their reconstruction is part of the process definition. Compared to
standard jet functions, the jet function J

(m)
n here requires modification for the computation

presented in this work: It depends explicitly on the momentum fraction η relating the
momentum kp of the identified parton and the momentum of the identified hadron Kh =

ηkp. This enables to define and apply cuts on observables that depend explicitly on the
momentum fraction η carried by the hadron.

At higher orders, infrared divergences due to the emission of soft and/or collinear
radiation appear in the parton-level cross section. For sufficiently inclusive observables these
divergences are guaranteed to cancel between real and virtual contributions. A subtraction
method is needed however, in order to regulate these divergences at intermediate stages
of the calculation. In the antenna subtraction formalism, used in this work, subtraction
terms are constructed with products of antenna functions and reduced matrix elements of
lower multiplicity. The antenna functions capture all unresolved radiation between a pair
of hard radiators, thus reproducing the behaviour of the matrix element in the singular
limits. The integrated subtraction terms are then obtained by analytically integrating the
antenna functions over their respective factorised phase space. Those integrated subtraction
terms are then added back at the virtual level in order to cancel the explicit poles in the
virtual matrix elements and additional mass-factorisation counterterms present in a hadron-
collider setup. Most of the ingredients needed to deal with the computation of hadron-
collider jet observables at NNLO using the antenna formalism [22] can also be applied
here in the context of identified hadron production. However, the explicit identification
of a final-state parton in dσ̂i,j

p spoils the cancellation mechanism of collinear divergences
between real and virtual contributions. For instance, a hard object composed of a single
quark or a collinear quark–gluon cluster are distinguished as separate objects in this case.
The associated collinear divergence remains uncancelled and is instead absorbed into the
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bare fragmentation function through mass factorization counterterms. This renormalization
procedure introduces a dependence on an arbitrary fragmentation scale µD at which this
subtraction is performed. In the context of the application of the antenna subtraction
formalism, this procedure has been presented in [17].

To account for the presence of an identified particle, and to guarantee that the hadron-
level cross section can be computed as a convolution of the parton-level cross section and
the parton-to-hadron fragmentation function as given in eq. (2.2), one needs to keep track
of the momentum fraction of the fragmenting parton at all stages of the computation of
the short-distance cross section. As a consequence, the construction of subtraction terms
at unintegrated and integrated level within the antenna subtraction formalism must be
modified accordingly.

In general, these subtraction terms will involve so-called fragmentation antennae, where
an identified parton is tracked and its momentum dependence is kept explicitly. The in-
tegrated subtraction terms will involve the integration of these fragmentation antennae
over the relevant phase spaces while retaining their dependence on the momentum frac-
tion of the fragmenting parton. After integrating over all kinematical variables except the
momentum fraction of the identified parton, these integrated fragmentation antennae will
have the proper structure to be combined with virtual contributions and mass-factorisation
counterterms associated with final-state collinear divergences of the identified parton. The
analytic pole cancellation occurs before the convolution with the fragmentation function
has taken place and the finite remainder can be evaluated numerically using a parton-level
event generator, like NNLOjet [? ].

In the remainder of this section we present the general structure of the unintegrated
and integrated subtraction terms needed to account for the presence of identified-hadron
production in a hadron-collider environment at NLO.

2.1 Subtraction at next-to-leading order

At NLO level, the one-parton exclusive cross section as given in eq. (2.3) comprises two sep-
arately divergent contributions: the real-emission corrections containing implicit soft and
collinear divergences and the virtual loop-corrections with explicit divergences regulated as
1/ε poles in dimensional regularisation. These two types of corrections feature different
particle multiplicities, thus requiring a separate numerical integration. The antenna sub-
traction scheme at NLO level is used to construct a real subtraction term dσ̂S

p and a virtual
subtraction term dσ̂T

p in order to deal with these divergences in the intermediate stages of
the computation. As a consequence, for a specified identified parton p, the η dependent
parton-level cross section dσ̂NLO

p (η) in eq. (2.3) may be written as:

dσ̂NLO
p (η) =

∫
n+1

[
dσ̂R

p (η)− dσ̂S
p (η)

]
+

∫
n

[
dσ̂V

p (η)− dσ̂T
p (η)

]
, (2.6)

with the two integrals over each particle multiplicity n and n + 1 being separately finite
and thus suitable for a numerical implementation.
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2.1.1 Subtraction at real level

The real partonic cross section dσ̂R
p has the same structure as the Born-level cross section

in eq. (2.5) with an additional parton and a corresponding real-level normalisation factor.
It is composed of several terms that cover all the possibilities of having one of its n +

1 partons becoming unresolved with a further decomposition according to their colour
structure. Similarly, we decompose the real subtraction term dσ̂S

p with an identified parton
p into a sum of contributions in which parton j can become unresolved

dσ̂S
p =

∑
j

dσ̂S
p,j . (2.7)

The term dσ̂S
p,j covers all relevant colour orderings and can be further split into two parts:

dσ̂S
p,j = dσ̂S,non-id.p

p,j + dσ̂S,id.p
p,j . (2.8)

Here, the subtraction term denoted as dσ̂S,non-id.p
p,j deals with contributions in which the

unresolved parton j is not colour connected to the identified parton p. This type of term
is constructed using the standard antenna formalism with conventional NLO antenna func-
tions X0

3 . In addition, the jet function ensures that the fragmenting particle is hard, i.e.
cannot go unresolved. Since their construction is well established, we will not discuss
dσ̂S,non-id.p

p,j further here.
The subtraction term dσ̂S,id.p

p,j is instead composed of contributions in which the unre-
solved parton j is colour connected to the identified parton p. In this case, the dependence
on the fragmentation momentum fraction carried by the identified parton must be retained
explicitly. For the case of initial-state parton 1 being the colour-connected partner of p, a
generic real subtraction term of this type takes the following form:

dσ̂S,id.p
p,j = NRdΦn+1(k1, . . . , kp, . . . , kn+1; p1, p2)

1

Sn+1
X0,id.p

3 (p1; kj , k
id.
p )

×M0
n(k1, . . . , k̃p, . . . , kn+1;xp1, p2) J({. . . , k̃p, . . .}n, η z k̃p) , (2.9)

where NR = NBC(ϵ)/C(ϵ), with

C(ϵ) =
(4πe−γE )ϵ

8π2
, C(ϵ) = (4πe−γE )ϵ . (2.10)

In this equation X0,id.p
3 is a standard three-parton initial–final antenna function involving

the identified particle with momentum denoted as kp. The momentum of the identified
particle after an n+1 → n mapping, as it enters in the reduced matrix element, is denoted
as k̃p. The information on the momentum fraction z must be retained through the mapping
such that the hadron momentum of the subtraction term is given by kh = ηzk̃p. With the
common definition of the momentum fraction x related to initial state emissions (with p1
denoting the momentum of an initial state parton),

x =
Q2

2p1 · q
, q2 = (pq − kp − p1)

2 = −Q2 , (2.11)
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in the case of initial–final kinematics, the momentum fraction z can be chosen as:

z = x
(kp − p1)

2

Q2
=

s1p
s1p + s1j

, (2.12)

to satisfy the desired properties. In particular, the momentum entering the jet function at
this level is ηzk̃p as given in eq. (2.9).

2.1.2 Subtraction at virtual level

The virtual-level subtraction term for the one-particle exclusive cross section in eq. (2.6) is
given by the combination of the integrated real-level subtraction terms and mass factorisa-
tion counterterms as:

dσ̂T
p (η) = −

∫
1
dσ̂S

p (η)− dσ̂MF
p (η). (2.13)

Focussing on the first term of this equation, the integration of standard antenna func-
tions with initial–final kinematics is expanded using the phase space factorisation presented
in [23]. Here we focus on the integration of the fragmentation antennae containing the iden-
tified particle as given in eq. (2.9). The first step is to factorise the initial–final phase space
and include the explicit integration over the momentum fraction z. This results in

dΦn+1(k1, . . . , kp, kj , . . . , kn+1; p1, p2) = dΦn(k1, . . . , k̃p, . . . , kn+1;xp1, p2)
dx

x
dz

× Q2

2π
dΦ2(k

id.
p , kj ; p1, q)δ

(
z − s1p

s1p + s1j

)
.(2.14)

Similarly to the photon fragmentation case [15], we define the integrated fragmentation
antenna function denoted as X 0,id.p

3 (x, z) over the two-parton phase space as present in
eq. (2.14) as:

X 0,id.p
3 (x, z) =

1

C(ϵ)

∫
dΦ2(k

id.
p , kj ; p1, q)

Q2

2π
X0

3 (p1; kj , k
id.
p )δ

(
z − s1p

s1p + s1j

)
=

Q2

2

eγEϵ

Γ(1− ϵ)

(
Q2

)−ϵ J (x, z)X0,id.p
1,jp (x, z) . (2.15)

Note that no integration is needed at this stage, i.e. just an expansion in distribution is
required here. The Jacobian factor present in eq. (2.15) is given by

J (x, z) = (1− x)−ϵxϵz−ϵ(1− z)−ϵ . (2.16)

The latter factor arises from writing the two-body phase space integral as a single
integral over z. The product of the x- and z-dependent Jacobian and antenna functions
in eq. (2.15) leads to terms of the form (1 − x)−1−ε and (1 − z)−1−ε which regulate the
end-point soft divergences. These can be expanded in term of distributions according to

(1− y)−1−kε = − 1

kε
δ(1− y) +

∑
n

(kε)n

n!
Dn(y) , (2.17)
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with plus-distributions of the form

Dn(y) =
( logn(1− y)

1− y

)
+
. (2.18)

Using the integrated form of the fragmentation antenna as given in eq. (2.15) the inte-
grated subtraction term for an identified parton denoted as p with momentum kp before
the mapping, is given by∫

1
dσ̂S,id.p

p,j = NV

∫
dx

x
dz dΦn(k1, . . . , k̃p, . . . , kn+1;Q)

1

Sn
X 0,id.p
3 (x, z)

×M0
n(k1, . . . , k̃p, . . . , kn+1;xp1, p2) J({. . . , k̃p, . . .}n, η z k̃p) , (2.19)

with NV = NRC(ϵ) = NBC(ϵ).
To achieve explicit pole cancellation at virtual level with an n-particle configuration

as formulated in eq. (2.6), we further need to include mass-factorisation counterterms to
the integrated subtraction terms (2.19). In the case of hadron-collider observables with
an identified parton in the short distance cross section, those mass-factorisation countert-
erms will be needed for regulating collinear divergences coming from two different origins:
initial-state collinear divergences associated with PDFs and final-state collinear singularities
involving an identified parton that are associated with a FF.

With that in mind, one needs to consider mass-factorisation counterterms which are
built with splitting kernels depending on both the initial-state momentum fraction x as well
as the final-state momentum fraction of the fragmenting parton z: For the one identified
parton denoted as p, the general structure of this mass-factorisation counterterm has the
following form:

dσ̂MF,id.p
p,(if) (η) = −NV

∫
dx

x
dz dΦn(k1, . . . , k̃p, . . . , kn;xp1, p2)

×Γ
(1)
rs;kp(x, z)

1

Sn
M0

n(k1, . . . , k̃p, . . . , kn;xp1, p2)

×J({k1, . . . , k̃p, . . . , kn}n, η z k̃p) . (2.20)

We define the x- and z-dependent mass-factorisation kernel Γ(1)
rs;kp(x, z) as the sum of two

terms depending either on x, and the factorisation scale (µF ) or on z and the fragmentation
scale (µD) individually. It reads:

Γ
(1)
rs;kp(x, z) = δ(1− z)δpsµ

−2ϵ
F Γ

(1)
k←r(x) + δ(1− x)δkrµ

−2ϵ
D Γ(1)

p←s(z) . (2.21)

In this formula, the fragmenting parton is denoted by p and there is in addition an implicit
sum over r and s, respectively denoting the particle types of the initial- and final-state
partons. The general form of the mass-factorisation counterterms needed in space-like and
time-like kinematics is well known. In the context of the antenna subtraction formalism,
explicit expressions have been presented in [22] and [17] respectively.

Combining the expressions for the integrated subtraction term given in eq. (2.19) and
for the mass factorisation counterterm as given in eq. (2.20), one can express the virtual
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subtraction term given in eq. (2.13) in terms of fragmentation dipoles denoted as J
(1),id.p
2

below:

dσ̂Tid.p
p (η) = −NV

∫
dx

x
dz dΦn(k1, . . . , k̃p, . . . , kn+1;Q)

1

Sn

[
X 0,id.p
3 (x, z)− Γ

(1)
rs;kp(x, z)

]
×M0

n(k1, . . . , k̃p, . . . , kn+1;xp1, p2) J({. . . , k̃p, . . .}n, η z k̃p) ,

= −NV

∫
dx

x
dz dΦn(k1, . . . , k̃p, . . . , kn+1;Q)

1

Sn
× J

(1),id.p
2 (p1, k̃p, x, z)

×M0
n(k1, . . . , k̃p, . . . , kn+1;xp1, p2) J({. . . , k̃p, . . .}n, η z k̃p) .

(2.22)

3 Infrared structure of vector boson and hadron production

In this section, we provide explicit expressions needed to compute observables for the pro-
cess p p → V +h (V = Z, W ) at NLO accuracy in the antenna subtraction formalism. The
formulae are given in a form valid both for Z and W production as indicated by the label
V appearing in the matrix element and phase space. Before discussing the individual con-
tributions, we first provide some general comments on our notation of the matrix elements
and the overall factors used in the remainder of this section.

• The matrix element denoted as Bℓ
n corresponds to processes involving one correlated

qq̄ pair, n gluons and a vector boson at ℓ loops. At NLO, we will also require the
sub-leading colour matrix element B̃ℓ

n, the NF part B̂ℓ
n, as well as Cℓ

n including two
qq̄ pairs and Dℓ

n, which is the interference part of the processes with two qq̄ pairs of
identical flavour.

• Although we employ a non-diagonal CKM matrix in our computation for the process
involving a W boson, we refrain from explicitly including the flavour assignment
and CKM dependence for clarity and generality between the neutral- and charged-
current processes. This information can easily be reinstated from the given formulae
if necessary.

• For V = W , the initial state denoted as qq̄ corresponds to qq̄′′, with q′′ being the
isospin partner of q. We assume that the flavour of q (q̄) is fixed (or becomes q̄′′ (q′′)
if a W is coupled) while new quark flavours that appear at NLO are denoted as q′

(q̄′), also admitting q = q′ (q̄ = q̄′).

• The overall colour-independent factors that are denoted as Nij for i, j = q, q̄, g below
depend on the initial-state configuration and are defined as

Nqg = Nq̄g =
g2sC2

V (N
2 − 1)

4N(N2 − 1)
and Nqq̄ = Nqq̄′ = Nqq = Nqq′ =

g2sC2
V (N

2 − 1)

[2N ]2
,(3.1)
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where g2s = 4παs and CV = 2(4παV (MV )) are the QCD and electroweak couplings
respectively, where the latter differ for the Z and W cases [23]:

αW =
GF M2

W

√
2

4π
, αZ =

GF M2
Z

√
2

64π
. (3.2)

• For ease of readability, we fix the position of the identified parton to be 3 with an
additional superscript (id.), while the initial-state particles are assigned to positions
1 and 2.

3.1 Leading order

At leading order, the short-distance cross section for V +h receives contributions from three
different sub-processes with initial states, qg, q̄g and qq̄:

dσ̂LO = dσ̂LO
(qg) + dσ̂LO

(q̄g) + dσ̂LO
(qq̄) . (3.3)

They are in one-to-one correspondence to the case of an identified quark (q), anti-quark
(q̄), and gluon (g) and read

dσ̂LO
q = NqgB

0
1(1q, 2g, 3

id.
q , 4V )× dΦ2(kV , k

id.
3 ; p1, p2)J

(1)
1 ({kid.

3 }; ηkid.
3 ) , (3.4)

dσ̂LO
q̄ = Nq̄gB

0
1(3

id.
q̄ , 2g, 1q̄, 4V )× dΦ2(kV , k

id.
3 ; p1, p2)J

(1)
1 ({kid.

3 }; ηkid.
3 ) , (3.5)

dσ̂LO
g = Nqq̄B

0
1(1q, 3

id.
g , 2q̄, 4V )× dΦ2(kV , k

id.
3 ; p1, p2)J

(1)
1 ({kid.

3 }; ηkid.
3 ) . (3.6)

3.2 Next-to-leading order

In this section, we explicitly construct the NLO corrections to all sub-processes and possible
cases of identified partons.

3.2.1 Real matrix element contributions

The real corrections receive contributions from the following initial-state parton-level pro-
cesses:

dσ̂R = dσ̂R
(qg) + dσ̂R

(q̄g) + dσ̂R
(qq̄) + dσ̂R

(gg) + dσ̂R
(qq′) + dσ̂R

(qq̄′) + dσ̂R
(q̄q̄′) , (3.7)

which we decompose into separate identified-parton pieces. The case in which a quark q is
identified has contributions from the channels qg, gg, qq′ and qq̄′:

dσ̂R
q = αs

C̄(ϵ)

C(ϵ)

(
MR

q,(qg) +MR
q,(gg) +MR

q,(qq′) +MR
q,(qq̄′)

)
×J

(2)
1 ({kid.

3 , kj}; ηkid.
3 ) dΦ3(kV , k

id.
3 , kj ; p1, p2) . (3.8)
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The corresponding matrix elements denoted as Mq can be further colour decomposed ac-
cording to the colour-ordered matrix elements introduced above:

MR
q,(qg) = NqgN

{
B0

2(1q, 2g, jg, 3
id.
q , 5V ) + [2g ↔ jg]−

1

N2
B̃0

2(1q, 2g, jg, 3
id.
q , 5V )

}
, (3.9)

MR
q,(gg) = NggN

∑
i=u,d

Ni

{
B0

2(j̄i, 1g, 2g, 3
id.
i , 5V ) + [1g ↔ 2g]

− 1

N2
B̃0

2(j̄i, 1g, 2g, 3
id.
i , 5V )

}
, (3.10)

MR
q,(qq′) = Nqq′

{
C0
0 (1q, jq′ , 2q′ , 3

id.
q , 5V )−

1

N
D0

0(1q, jq′ , 2q′ , 3
id.
q , 5V )

}
, (3.11)

MR
q,(qq̄′) = Nqq̄′C

0
0 (1q, 2q̄′ , jq̄′ , 3

id.
q , 5V ) . (3.12)

Note that in practice, all NF contributions are split into Nu and Nd types due to the
different electroweak couplings of the u- and d-type quarks to the vector boson. Further, the
identification of q and q′ has to be performed independently since their flavour correlations
are different.
When q′ is the identified parton, the real level short-distance contributions read:

dσ̂R
q′ = αs

C̄(ϵ)

C(ϵ)

(
MR

q′,(qq′) +MR
q′,(qq̄)

)
×J

(2)
1 ({kid.

3 , kj}; ηkid.
3 ) dΦ3(kV , k

id.
3 , kj ; p1, p2) , (3.13)

with

MR
q′,(qq′) = Nqq′

{
C0
0 (1q, 3

id.
q′ , 2q′ , jq, 5V )−

1

N
D0

0(1q, 3
id.
q′ , 2q′ , jq, 5V )

}
, (3.14)

MR
q′,(qq̄) = Nqq̄

{ ∑
i=u,d

NiC
0
0 (1q, 3

id.
i , j̄i, 2q̄, 5V )−

1

N
D0

0(1q, 3
id.
q̄ , jq, 2q̄, 5V )

}
, (3.15)

where eq. (3.14) does not contain any singular limits. The contributions when the anti-
quark q̄ or q̄′ are identified are respectively similar to eqs. (3.8)–(3.12) or eqs. (3.13)–(3.15)
with the exchange of quarks and anti-quarks in both initial and final states.
We focus next on the real-level partonic contributions where a gluon g is the identified
particle. Those contributions arise from the qg, q̄g and qq̄ initial-state combinations and
read:

dσ̂R
g = αs

C̄(ϵ)

C(ϵ)

(
MR

g,(qg) +MR
g,(q̄g) +MR

g,(qq̄)

)
×J

(2)
1 ({kid.

3 , kj}; ηkid.
3 ) dΦ3(kV , k

id.
3 , kj ; p1, p2) , (3.16)

where the contributions from MR
g,(qg) and MR

g,(q̄g) are the same upon the exchange q ↔ q̄.
Explicitly, the matrix elements labelled as Mg from the channels qg and qq̄ admit the
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following colour decomposition:

MR
g,(qg) = NqgN

{
B0

2(1q, 2g, 3
id.
g , jq, 5V ) + [3id.

g ↔ 2g]

− 1

N2
B̃0

2(1q, 2g, 3
id.
g , jq, 5V )

}
, (3.17)

MR
g,(qq̄) = Nqq̄

N

2!

{
B0

2(1q, 3
id.
g , jg, 2q̄, 5V ) + [3id.

g ↔ jg]

− 1

N2
B̃0

2(1q, 3
id.
g , jg, 2q̄, 5V )

}
. (3.18)

3.2.2 Real subtraction terms

The real-level subtraction terms are made of two categories of terms depending if the
unresolved parton j is colour connected to the identified parton or not. If the fragmenting
particle is not colour connected to the unresolved parton, the subtraction terms mirror
those for V + jet production [23]. These terms are associated to initial–initial kinematical
configurations for which we use the notation 1̃p and 2̃p and no «id.» index on the X3

0 antenna
functions. When instead, the fragmenting particle participates actively in the unresolved
limit, an initial–final fragmentation subtraction of the type given in eq. (2.9) is needed.
These terms include the fragmentation antennae denoted with the «id.» index and we use
1̃p or 2̃p, together with (̃3j)

id.
p to indicate the mapped momenta. These subtraction terms

have been constructed for the first time for the computations presented in this work. For
each of the identified particles, we present the real-level subtraction terms including both
categories.

The real-level subtraction terms associated to parton j becoming unresolved and cor-
responding to an identified quark q denoted as dσ̂S

q has itself four separate contributions
related to the initial states qg, gg, qq′ and qq̄′. The sum of those contributions takes the
form:

dσ̂S
q = αs

C̄(ϵ)

C(ϵ)

(
MS

q(q),(qg) +MS
q(q),(gg) +MS

q(q),(qq′) +MS
q(q),(qq̄′)

)
×J

(1)
1 ({kid.

3 }; ηkid.
3 )dΦ3(kV , k

id.
3 , kj ; p1, p2) . (3.19)

The explicit expressions for the contributions from each initial-state channel read:

MS
q(q),(qg) = NqgN

{
D0

3(1q, jg, 2g)B
0
1(1̃q, 2̃g, 3

id.
q , 4V )

+ d0,id.q3 (3id.
q , jg, 2g)B

0
1(1q, 2̃g, (̃3j)

id.
q , 4V )

− 1

N2
A0,id.q

3 (3id.
q , jg, 1q)B

0
1(1̃q, 2g, (̃3j)

id.
q , 4V )

}
, (3.20)

MS
q(q),(gg) = −NggNFN

(
1 +

1

N2

)(
d03(jq̄, 2g, 1g)B

0
1(3

id.
q , 1̃g, 2̃q, 4V ))− [1̃q ↔ 2̃g]

)
,(3.21)

MS
q(q),(qq̄′)

q̄′↔q′
= MS

q(q),(qq′) = Ngq′E
0
3(1q, jq̄′ , 2q′)B

0
1(1̃q, 2̃g, 3

id.
q , 4V ) . (3.22)

The contribution where the quark q′ is identified has only a contribution from the initial
state qq̄. It reads:

dσ̂S
q′ = αs

C̄(ϵ)

C(ϵ)

(
MS

g(q′),(qq̄)

)
J
(1)
1 ({kid.

3 }; ηkid.
3 )dΦ3(kV , k

id.
3 , kj ; p1, p2) . (3.23)
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This equation is related to a contribution in which the flavour of the identified particle
in the reduced matrix element is not the same as the one in the real correction. This is
usually denoted as an identity changing (IC) subtraction term. In this specific case, the
quark q′ becomes a gluon g in the reduced matrix element. Further expanding in products
of antennae and reduced matrix elements, the individual contribution read:

MS
g(q′),(qq̄) = Nqq̄NFE

0,id.q
3 (1q, jq̄′ , 3

id.
q′ )B

0
1(1̃q, (̃3j)

id.
g , 2q̄, 4V ) , (3.24)

where the flavour changing feature is specified with the labelling g(q′) on the left-hand side
of the equation.
Finally, we present the explicit expression for the subtraction term involving the identified
parton to be the gluon. The general expression is the sum of three terms:

dσ̂S
g = dσ̂S

g(g) + dσ̂S
q(g) + dσ̂S

q̄(g) . (3.25)

The first term denoted as dσ̂S
g(g) is of identity preserving nature and reads:

dσ̂S
g(g) = αs

C̄(ϵ)

C(ϵ)

(
MS

g(g),(qg) +MS
g(g),(q̄g) +MS

g(g),(qq̄)

)
×J

(1)
1 ({kid.

3 }; ηkid.
3 )dΦ3(kV , k

id.
3 , kj ; p1, p2) , (3.26)

with

MS
g(g),(q̄g)

q↔q̄
= MS

g(g),(qg) = −NqgN
{(

1− 1

N2

)
A0

3(1q, 2g, jq)B
0
1(1̃q, 3

id.
g , 2̃q̄, 4V )

}
,(3.27)

MS
g(g),(qq̄) = Nqq̄N

{(
d0,id.g3 (1q, 3

id.
g , jg) + [jg ↔ 3id.

g ]
)
B0

1(1̃q, (̃3j)
id.
g , 2q̄, 4V )

+
(
d0,id.g3 (2q̄, ig, 3

id.
g ) + [jg ↔ 3id.

g ]
)
B0

1(1q, (̃3j)
id.
g , 2̃q̄, 4V )

+
1

N2
A0

3(1q, jg, 2q̄)B
0
1(1̃q, 3

id.
g , 2̃q̄, 4V )

}
. (3.28)

The second and third terms of eq. (3.25) are of identity changing nature and we have
dσ̂S

q̄(g)

q↔q̄
= dσ̂S

q(g). In this case, only the qg (q̄g) channel contributes:

dσ̂S
q(g) = αs

C̄(ϵ)

C(ϵ)

(
MS

q(g),(qg)

)
J
(1)
1 ({kid.

3 }; ηkid.
3 )dΦ3(kV , k

id.
3 , kj ; p1, p2) , (3.29)

with

MS
q(g),(qg) = NqgN

{
d0,id.g3 (jq, 3

id.
g , 2g)B

0
1(1q, 2̃g, (̃3j)

id.
q , 4V )

+
1

N
A0,id.g

3 (1q, 3
id.
g , jq)B

0
1(1̃q, 2g, (̃3j)

id.
q , 4V )

}
. (3.30)

3.2.3 Virtual matrix element contributions

The virtual one-loop contributions arise from the same channels as the ones present at
Born level and given in eq. (3.3). Those comprise three initial-state configurations that are
associated with the identified partons being a quark, an anti-quark or a gluon,

dσ̂V = αsC̄(ϵ)
(
MV

q,(qg) +MV
q̄,(q̄g) +MV

g,(qq̄)

)
J
(1)
1 ({kid.

3 }; ηkid.
3 )dΦ2(kV , k

id.
3 ; p1, p2) , (3.31)
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where,

MV
q,(qg) = Nqg N

{
B1

1(1q, 2g, 3
id.
q , 4V )−

1

N2
B̃1

1(1q, 2g, 3
id.
q , 4V )

+
NF

N
B̂1

1(1q, 2g, 3
id.
q , 4V )

}
, (3.32)

MV
g,(qq̄) = Nqq̄N

{
B1

1(1q, 3
id.
g , 2q̄, 4V )−

1

N2
B̃1

1(1q, 3
id.
g , 2q̄, 4V )

+
NF

N
B̂1

1(1q, 3
id.
g , 2q̄, 4V )

}
, (3.33)

with MV
q,(q̄g)

q↔q̄
= MV

q,(qg).
The infrared behaviour of the virtual matrix elements B1

1 , B̃1
1 and B̂1

1 is the same
regardless of the type of vector boson and can be expressed in terms of the Catani one-loop
factorisation formula [24] with the colour-ordered singularity operators I(1)ij whose forms are
given explicitly in the appendix of [22]. For the process at hand, we have three different
crossings for the B-type matrix element, one for each channel. In the case of the qg-initiated
process, the pole structure is

Poles
(
B1

1(1q, 2g, 3q, 4V )
)
= 2

(
I(1)qg (ϵ, s12) + I(1)qg (ϵ, s23)

)
×B0

1(1q, 2g, 3q, 4V ) , (3.34)

Poles
(
B̃1

1(1q, 2g, 3q, 4V )
)
= 2

(
I(1)qq (ϵ, s13)

)
×B0

1(1q, 2g, 3q, 4V ) , (3.35)

Poles
(
B̂1

1(1q, 2g, 3q, 4V )
)
= 2

(
I
(1)
qg,F (ϵ, s12) + I

(1)
qg,F (ϵ, s23)

)
×B0

1(1q, 2g, 3q, 4V ) ,(3.36)

which is the same as for the q̄g-channel. For qq̄-initiated process and in the case of Z + h

or for the qq̄′′ initiated process in the case of W + h production, the pole structure of the
virtual matrix element contributions take the form:

Poles
(
B1

1(1q, 3g, 2q̄, 4V )
)
= 2

(
I(1)qg (ϵ, s13) + I(1)qg (ϵ, s23)

)
×B0

1(1q, 3g, 2q̄, 4V ) , (3.37)

Poles
(
B̃1

1(1q, 3g, 2q̄, 4V )
)
= 2

(
I(1)qq (ϵ, s12)

)
×B0

1(1q, 3g, 2q̄, 4V ) , (3.38)

Poles
(
B̂1

1(1q, 3g, 2q̄, 4V )
)
= 2

(
I
(1)
qg,F (ϵ, s13) + I

(1)
qg,F (ϵ, s23)

)
×B0

1(1q, 3g, 2q̄, 4V ) .(3.39)

3.2.4 Virtual subtraction terms

As discussed in section 2.1.2, we construct the virtual-level subtraction term as

dσ̂T(η, x1, x2, z) = −
∫
1
dσ̂S(η, x1, x2, z)− dσ̂MF(η, x1, x2, z) , (3.40)

where
∫
1 dσ̂

S is the integrated real-level subtraction term and dσ̂MF the mass-factorisation
term. We combine both terms using integrated fragmentation dipoles J (1),id.p

2 as defined in
eq. (2.22) as well as the standard integrated dipoles J

(1)
2 [22].

We present the complete virtual subtraction term separately for the different identified
partons. For the identified-quark (q) contribution, the virtual subtraction term denoted as
dσ̂T

q reads:

dσ̂T
q =

∫
dx1
x1

dx2
x2

dz αsC̄(ϵ)
(
MT

q(q),(qg) +MT
q(q),(gg) +MT

q(q),(qq′) +MT
q(q),(qq̄′)

)
×J

(1)
1 ({kid.

3 }; ηkid.
3 )dΦ2(kV , k

id.
3 ; p1, p2) , (3.41)
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where

MT
q(q),(qg) = NqgN

{ (
J

(1),II
2,QG (s12) + J

(1),F I,id.q
2,QG (s23) − 1

N2
J

(1),IF,id.q
2,QQ (s13)

− 2NFJ
(1),II
2,hQG(s12)

)
×B0

1(1q, 2g, 3
id.
q , 4V )

}
J
(1)
1 ({kid.

3 }; ηkid.
3 ) ,(3.42)

MT
q(q),(gg) = NggNF

(
N − 1/N

){
− J

(1),II
2,GQ,g→q(s12)B

0
1(1q, 2g, 3

id.
q , 4V )

− J
(1),II
2,QG,g→q(s12)B

0
1(2q, 1g, 3

id.
q , 4V )

}
, (3.43)

MT
q(q),(qq̄′)

q↔q̄
= MT

q(q),(qq′) = −Nqq′J
(1),II
2,QG,q′→g(s12)B

0
1(1q, 2g, 3

id.
q , 4V ) . (3.44)

In the case where the quark q′ is the identified particle, the virtual subtraction term
dσ̂T

q′ reads:

dσ̂T
q′ =

∫
dx1
x1

dx2
x2

dz αsC̄(ϵ)
(
MT

g(q′),(qq̄)

)
J
(1)
1 ({kid.

3 }; ηkid.
3 )dΦ2(kV , k

id.
3 ; p1, p2) ,(3.45)

with

MT
g(q′),(qq̄) = −NqgNFJ

(1),IF,id.q′
2,QG,q←g (s13)B

0
1(1q, 3

id.
g , 2q̄,, 4V ) . (3.46)

For the case where q̄ and q̄′ are the identified partons, the terms have the same structure
as for q and q′ respectively. Finally, the case in which the gluon is the identified parton is
given by:

dσ̂T
g =

∫
dx1
x1

dx2
x2

dz αs
C̄(ϵ)

C(ϵ)

(
MT

g(g),(qg) +MT
g(g),(q̄g) +MT

g(g),(qq̄) +MT
q(g),(qg)

+MT
q(g),(q̄g)

)
× J

(1)
1 ({kid.

3 }; ηkid.
3 )dΦ2(kV , k

id.
3 ; p1, p2) , (3.47)

where

MT
g(g),(qg) = −Nqg

(
N − 1

N

)
J

(1),II
2,QQ,g→q(s12)B

0
1(1q, 3

id.
g , 2q̄, 4V ) , (3.48)

MT
g(g),(qq̄) = −NqgN

(
J

(1),F I,id.g
2,GQ (s23) + J

(1),IF,id.g
2,QG (s13) + J

(1),II
2,QQ (s12)

+NF

(
J

(1),IF,id.q′
2,QG,q←g (s13) + J

(1),F I,id.g
2,hQG (s13)

))
B0

1(1q, 3
id.
g , 2q̄, 4V ) , (3.49)

MT
q(g),(qg) = NqgN

(
− J

(1),F I,id.g
2,QG,g←q (s23)

− 1

N2
J

(1),IF,id.g
2,QQ,g←q(s13)

)
B0

1(1q, 2g, 3
id.
q , 4V ) , (3.50)

with the contributions from the q̄g channel being the same as the qg channel after the
exchange of the quark for an anti-quark.

The virtual subtraction dipoles denoted as J
(1)
2 can be separated into two categories

depending whether there is (or not) a colour connection between the identified particle
and the unresolved parton. In the case where there is no colour connection, the virtual
subtraction dipoles are all of the initial–initial type. Those are known [22] and recalled
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here for completeness:

J1,II
2,QG = δ(1− z)

[
D0

3,qg(x1, x2)− δ(1− x2)Γ
(1)
qq (x1)−

1

2
δ(1− x1)Γ

(1)
gg (x2)

]
,(3.51)

J
(1),II
2,QQ = δ(1− z)

[
A0

3,qq̄(x1, x2)− δ(1− x2)Γ
(1)
qq (x1)− δ(1− x1)Γ

(1)
qq (x2)

]
, (3.52)

J
(1),II
2,QQ,g→q = δ(1− z)

[
−A0

3,qg(x1, x2)− δ(1− x1)Γ
(1)
qg (x2)

]
, (3.53)

J
(1),II
2,GQ,g→q = δ(1− z)

[
−D0

3,gg(x1, x2)− δ(1− x2)Γ
(1)
qg (x1)

]
, (3.54)

J
(1),II
2,QG,g→q = δ(1− z)

[
−D0

3,gg(x1, x2)− δ(1− x1)Γ
(1)
qg (x2)

]
, (3.55)

J
(1),II
2,QG,q′→g = δ(1− z)

[
−E0

3,q′q(x1, x2)− δ(1− x2)Γ
(1)
gq (x1)

]
, (3.56)

J
(1),II
2,hQG = −1

2
δ(1− z)

[
δ(1− x1)Γ

(1)
gg,F (x2)

]
. (3.57)

For the case where the identified particle participates in the unresolved limit, the frag-
mentation dipoles are derived here for the first time. Those are separated according to the
nature of the identified parton involved. In the case where a quark is identified, the required
dipoles read:

J
(1),F I,id.q
2,QG = δ(1− x1)

[
D0,id.q

3,g (x2, z)− δ(1− x2)Γ
(1)
qq (z)−

1

2
δ(1− z)Γ(1)

gg (x2)

]
, (3.58)

J
(1),IF,id.q
2,QQ = δ(1− x2)

[
A0,id.q

3,q (x1, z)− δ(1− x1)Γ
(1)
qq (z)− δ(1− z)Γ(1)

qq (x1)
]
, (3.59)

J
(1),IF,id.q′
2,QG,q←g = δ(1− x2)

[
−E0,id.q′

3,q (x1, z) + δ(1− x1)Γ
(1)
qg (z)

]
. (3.60)

For the identified-gluon case, the dipoles used here instead read:

J
(1),F I,id.g
2,GQ = δ(1− x1)

[
D0,id.g

3,q (x2, z)− δ(1− z)Γ(1)
qq (x1)−

1

2
δ(1− x1)Γ

(1)
gg (z)

]
, (3.61)

J
(1),IF,id.g
2,QG = δ(1− x2)

[
D0,id.g

3,q (x1, z)− δ(1− z)Γ(1)
qq (x2)−

1

2
δ(1− x2)Γ

(1)
gg (z)

]
, (3.62)

J
(1),IF,id.g
2,QQ,g←q = δ(1− x2)

[
−A0,id.g

3,q (x1, z) + δ(1− x1)Γ
(1)
gq (z)

]
, (3.63)

J
(1),F I,id.g
2,QG,g←q = δ(1− x1)

[
−D0,id.g

3,g (x2, z) + δ(1− x2)Γ
(1)
gq (z)

]
, (3.64)

J
(1),F I,id.g
2,hQG = −1

2
δ(1− x2)

[
δ(1− x1)Γ

(1)
gg,F (z)

]
. (3.65)

In the final-state identity-changing cases we use a right-to-left arrow, while in the initial-
state identity-changing cases we use a left-to-right arrow. We can sum all virtual subtrac-
tion terms presented in section 3.2.4 and the corresponding virtual-level matrix element
contributions presented in section 3.2.3 and show that it is free from explicit poles,

Poles

(
dσ̂V(η)−

(
−
∫
1
dσ̂S(η)− dσ̂MF(η)︸ ︷︷ ︸
≡dσ̂T(η)

))
= 0 . (3.66)

The finite remainder can then be integrated numerically.
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4 Z boson in association with a hadron inside a jet

In this section we provide predictions for observables related to the production of charged
hadrons inside hadronic jets in association with a leptonically decaying Z-boson. We com-
pare our results with the corresponding LHCb measurement [11] at

√
s = 13 TeV and

consider both unidentified charged hadron as well as pion production.

4.1 Observable definition and setup

Following [11], the LHCb measurement is performed by considering events with at least one
reconstructed hadronic jet and by identifying a hadron inside it. In case multiple jets are
reconstructed in the event, the one with the largest transverse momentum (j1) is considered.
Determining the longitudinal momentum fraction carried by the hadron within the jet,

z =
ph · pj1

|pj1 |2
, (4.1)

where ph and pj1 are the hadron and the jet three-momenta respectively, the measured
observable is given by the normalised distribution

Fexp.(z) =
1

NZ+jet

dNh(z)

dz
, (4.2)

where Nh(z) is the number of events with a hadron carrying a longitudinal momentum
fraction z inside the leading jet, while the normalization factor NZ+jet corresponds to the
number of Z + jet events. On the theory side, eq. (4.2) is mirrored by

Fth.(z) =
1

σZ+jet

dσZ+h

dz
, (4.3)

where the differential distribution present in the numerator require the presence of both
a jet and a hadron inside it, whereas the inclusive cross section σZ+jet only demands the
presence of a jet.

The LHCb measurement is performed within the following fiducial volume:

20 < pT,j1 < 100 GeV, 2 < ηj1 < 4,

ph > 4 GeV, pT,h > 0.25 GeV, ∆R(j1, h) < 0.5,

pT,ℓ± > 20 GeV, 2.5 < ηℓ± < 4.5, ∆R(j1, ℓ) > 0.5, ∆R(j1, Z) > 7π
8 , (4.4)

and jets are reconstructed using the anti-kT algorithm [26] with cone size R = 0.5.
We consider predictions for F (z) in three different pT,j1 intervals: 20 < pT,j1 < 30 GeV,

30 < pT,j1 < 50 GeV and 50 < pT,j1 < 100 GeV. We adopt the NNPDF3.1 [27] PDF set,
with αs = 0.118 and nmax

f = 5: both the PDF and the αs values are accessed through the
LHAPDF library [28]. Lastly, the central renormalisation and factorisation scale are chosen
to be equal to

µR = µF =

√
m2

Z +
∑
j∈jets

p2T,j , (4.5)
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where the sum runs over all the jets in the event. For the fragmentation scale, on the other
hand, we choose the central scale

µD = R · pT,j1 , (4.6)

where R = 0.5 is the cone size used in the jet algorithm. This particular choice for the scale
µD is motivated by the fact that the hadron in the process definition must be contained
within the leading jet, thereby indicating that the resolution scale for the fragmentation
process should be related to the jet characteristics. For the numerator, the theoretical
uncertainties are determined by the envelope of the common 7-point scale variation, by
correlating the variation of µF and µD and otherwise independently halving or doubling
the scales and omitting the most extreme variations. In the case of the denominator, we
determine the Z + jet cross section at the same central scale as in eq. 4.5.

We provide two categories of predictions depending on the hadron types produced inside
the jet recoiling against the Z-boson. In section 4.2 we consider the sum of unidentified
charged hadrons, including pion, kaon and proton contributions. In section 4.3 we separately
consider the pion contribution, the latter being by far the dominant contribution (kaons
and protons contribute in a similar way, with the size of their contributions amounting to
20–30% of the pion contribution).

4.2 Results for unidentified charged hadron production

Predictions for charged hadron production are computed using three different sets of frag-
mentation functions: BKK [29], NNFF1.1 [30], DSS07 [31, 32]. BKK and DSS07 have been
directly implemented in the NNLOJET infrastructure, while NNFF1.1 is available through
the LHAPDF interface. From these, only NNFF1.1 provides error sets, thus we refrain from
showing the corresponding errors in our results so that the treatment is the same in the
three cases, allowing us to compare better their features. In the following, we provide some
details on each of the three fragmentation function sets.

The BKK set [29] was obtained by fits to LEP and HERA data from the early 90’s.
The unidentified charged hadron FF is defined as the arithmetic sum of the charged pion
and kaon contributions. The parton-to-charged pions and parton-to-charged kaons FFs are
provided as simple analytic functions which encode the DGLAP evolution at LO and NLO
level. The NNFF1.1 set [30] does not consider individual charged hadron contributions, but
directly determine an unidentified charged hadron FF through a global NLO fit of a large
variety of measurements at e+e− colliders, the Tevatron and LHC. In the DSS07 set [31, 32],
the determination of the unidentified charged hadron FF is related to the FFs for identified
pions, kaons and (anti-)protons by imposing the sum rule:

Dh±
a = Dπ±

a +DK±
a +Dp/p̄

a +Dres.±
a (4.7)

as a constraint. In particular, Dπ±
a , DK±

a and D
p/p̄
a are individually fitted, and then used

as input in a subsequent fit to determine the residual charged hadron contribution Dres.±
a .

The different FFs are determined through a global NLO fit of data from electron–positron
annihilation, proton–proton collisions and deep-inelastic lepton–proton scattering.
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Figure 1 presents our predictions for F (z) for three different pT,j1 intervals and using
the three different FF sets. Predictions using the BKK parametrization are shown on the
top row, NNFF1.1 in the middle row, and DSS07 in the bottom row. Each row has three
sub-figures corresponding to three different pT,j1 intervals: [20, 30], [30, 50], [50, 100] GeV.
Each sub-figure is made of two panels: the top panel shows the F (z) distributions, and the
bottom one shows the ratio to NLO.

For low z values, we do not expect fixed-order perturbative result to be adequate
in describing the data, as this region prone to soft physics, where resummation becomes
mandatory.

We first note that when moving from LO to NLO, predictions change in shape, with
the size of NLO corrections increasing towards high z values to up to 25%. We also note a
reduction of scale uncertainties. We find that predictions using the BKK and DSS07 charged
hadron FF best describe the data: for mid z values, both sets show alignment between NLO
and data for the three pT,j1 bins, with the exception of the [30, 50] GeV pT,j1 interval where
BKK underestimates the data; for high z values, NLO predictions with both BKK and
DSS07 fail to describe the data in the highest pT,j1 interval, with the LO predictions being
closer to the experimental data points. In the lower pT,j1 cases, the agreement at high z

values improves, most notably in the middle [30, 50] GeV pT,j1 interval. In contrast, the
results computed using NNFF1.1 are consistently above the data. Furthermore, the shape
of the distributions differ for each FF.

It is interesting to have a closer look into the hardest available region, which corresponds
to the third interval in transverse momentum, i.e. we focus on the 50 < pT,j1 < 100 GeV
bin and restricting the z range to values z > 0.02. This is shown in Fig. 2, where we
plot the ratio to data of all three NLO predictions for F (z). We observe a compatibility
of the results for the three FFs in the highest and lowest bins of Fig. 2 within the shown
range: for z < 0.06, data and theory are compatible within uncertainties, while for z > 0.35

theory predictions start to be above the data, with larger experimental uncertainty. In
the intermediate range of z, BKK and DSS07 seem to provide a better description of data
compared to NNFF1.1.

4.3 Results for charged pion production

We now move on to Z-tagged events associated with the production of charged pions inside
jets. We adopt the pion FFs from BKK [29], NNFF1.0 [33] and DSS07 [31]. Note that
in this context, we adopt the NNFF1.0 set instead of NNFF1.1 above: this is due to the
fact that NNFF1.1 only provides an unidentified charged hadron set, whereas NNFF1.0
provides individual pions, kaons and (anti-)proton FF sets. As for NNFF1.1, also NNFF1.0
is provided via the LHAPDF interface.

Our results for F (z) using the BKK, NNFF1.0 and DSS07 pion FFs are shown in Fig. 3
using the same layout as in Fig. 1.

When comparing Fig. 3 to the analogous plot for unidentified hadrons in Fig. 1, we
notice similar features. However, compared to Fig. 1, in the mid z region, the results
computed using NNFF1.0 and DSS07 pion FFs show a tendency to overshoot the data,
whereas the results using the BKK FF describe the data in a satisfactory manner. In
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Figure 1. Comparison of LO (green) and NLO (blue) results for F (z) obtained with the BKK (top
row), NNFF1.1 (middle row) and DSS07 (bottom row) fragmentation functions with LHCb data
(red dots) at 13 TeV. From left to right, each column corresponds to the pT,j1 ranges [20, 30], [30,
50] and [50, 100] GeV. In each figure, the top panels show the F (z) distributions and the bottom
one shows the ratio to NLO.
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Figure 2. Comparison of the NLO results obtained for the different sets of FFs shown in Fig. 1 for
pT,j1 ∈ [50, 100] GeV. Note that when comparing with Fig. 1, the lower z edge is here increased to
z ∼ 0.02.

the high z region, BKK and DSS07 seem to better describe the data compared to the
unidentified hadron case, with the BKK set offering the best description. In all three pT,j1
intervals, for intermediate to high values of z, we find that the NLO corrections give positive
corrections of up to 25% with respect to the LO results.

In order to further study the impact of the different FFs on the theory predictions,
in Fig. 4 we compare the F (z) distributions for pion production with the three FF sets
in the highest pT,j1 bin. Predictions using BKK fragmentation functions provide the best
description of data, while the three sets are compatible among each other in the high z-
region.

In summary, from our analysis at NLO level, we find that the three FFs considered
(BKK, NNFF1.0 or NNFF1.1, DSS07) show qualitative differences in the description of
LHCb hadron-in-jet data, with none of the three sets able to describe all the kinematical
bins equally well. It is likely that this dataset is able to offer important constraints on
FFs when included in global fits. Indeed, such LHCb dataset has been included in a very
recent NLO global analysis of FFs [34]: it has been shown how these hadron-in-jet data
are useful to better determine the gluon-to-hadron fragmentation functions, which other
datasets leave largely unconstrained. As our goal here is to study how publicly available
FFs obtained through fits of one-particle inclusive datasets are able to describe this new
exclusive dataset, we refrain from presenting results obtained using the FFs of [34].

5 W boson in association with a charmed hadron

In this section, we present predictions for the associated production of a W boson with a
D(∗) meson. More specifically, the following processes are considered: W++D−, W−+D+,
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Figure 3. Comparison of LO (green) and NLO (blue) results for F (z) obtained with the BKK
(top row), NNFF1.0 (middle row) and DSS07 (bottom row) fragmentation functions for pions with
LHCb data (red dots) at 13 TeV. From left to right, each column corresponds to the pT,j1 ranges
[20, 30], [30, 50] and [50, 100] GeV. The top panel shows the F (z) distributions and the bottom
one shows the ratio to NLO.
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Figure 4. Comparison of the NLO results obtained for the different sets of fragmentation functions
shown in Fig. 3 in the region pT,j1 ∈ [50, 100] GeV. Note that when comparing with Fig. 3, the
lower z edge is here increased to z ∼ 0.02.

W+ + D∗− and W− + D∗+, with a leptonically decaying W boson. The predictions are
compared to data from the ATLAS experiment at 13 TeV [10]. The cross sections measured
in [10] are differential either in the transverse momentum pT,h of the D(∗) hadron or in the
absolute value of the pseudo-rapidity |ηℓ| of the lepton from the W -boson decay.

In the following, we first provide details about the kinematical cuts and the numerical
setup adopted, and we discuss our choice of D(∗)-meson fragmentation functions. We then
divide the presentation in the rest of the section according to the observable considered.

5.1 Fiducial cuts and numerical setup

The fiducial region of the ATLAS measurement is defined as follows:

pT,h > 8 GeV, |ηh| < 2.2, pT,ℓ > 30 GeV, |ηℓ| < 2.5, (5.1)

without any requirement on the presence of reconstructed jets. As in section 4, we provide
predictions using the NNPDF3.1 PDF set [27] with values of αs = 0.118 and nmax

f = 5.
The central renormalisation, factorisation and fragmentation scales are chosen to be equal
to the transverse mass of the W boson:

µR = µF = µD = mW
T . (5.2)

We estimate theoretical uncertainties with a 7-point scale variation using the same scheme
as for the Z+hadron results in section 4, i.e. by maintaining µF = µD while varying µR by
separately halving or doubling their values, and by discarding pairs of extreme variations.
The electroweak parameters are computed in the Gµ-scheme with values

MZ = 91.1876 GeV, ΓZ = 2.4952 GeV ,

MW = 80.379 GeV, ΓW = 2.085 GeV, Gµ = 1.1663787 · 10−5 GeV−2 . (5.3)
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Furthermore, we use a non-diagonal CKM matrix with Wolfenstein parametrisation given
by λ = 0.2265, A = 0.79, ρ̄ = 0.141 and η̄ = 0.357 [35].

In our predictions, we compare the results obtained using two D(∗)-meson fragmentation
function sets, CNO [36] and KKKS08 [37]. We first provide some details concerning the
individual sets, given that they feature quite substantial differences in the methodology
adopted for their determination.

The CNO set is derived by exploiting the perturbative fragmentation function formal-
ism for heavy quarks [38], in order to resum large logarithms of a hard scale over the charm
quark mass. Namely, the NLO perturbative initial condition at the charm-mass scale—
further supplemented with next-to-leading-logarithmic soft gluon resummation—is evolved
with a NLO DGLAP evolution to the higher scales. A three-parameter non-perturbative
component (Colangelo–Nason form supplemented with a hard term) is added on top of the
perturbative result, with values for the parameters obtained through a fit to CLEO and
BELLE data. See [36] for additional details.

Instead, the KKKS08 set is obtained through a global fit of BELLE, CLEO, ALEPH
and OPAL data in a way similar to light-hadron FFs fits, without any perturbative input.
Namely, both the charm and bottom FFs are parametrised with a Bowler-like form with
three parameters at their respective mass scales, and then they are evolved to higher scales
with a NLO DGLAP evolution. Two variants of the KKKS08 are presented in [37]: a
zero-mass (ZM) variant, where all quark masses are neglected, and a general-mass (GM)
approach, which includes b- and c-quark finite-mass corrections. In the following, we will
present predictions for the GM variant only, in order to have two D(∗)-meson FF sets as
different as possible.

Lastly, in our predictions we must take into account the opposite sign minus same
sign (OS−SS) prescription applied in the measurement. Such a prescription consists in
subtracting the contributions where the W boson and the D hadron have the same sign
(SS) to the contributions where they have opposite sign (OS). In order to consistently apply
such a prescription in our theoretical predictions, we first compute observables for all the
sign combinations of W and D(∗) and then we perform the OS−SS subtraction on the
resulting distributions and fiducial cross sections. For example

σOS−SS
W−+D+ ≡ σW−+D+ − σW−+D− (5.4)

is the OS−SS fiducial cross section for W− + D+ production. Note that due the fact
that the charm-to-D− fragmentation function is small but non-zero, the SS piece already
contributes at LO. This is in contrast to predictions for W + c-jet production [39], where
SS contributions only contribute starting from NLO.

5.2 Results for the |ηℓ| observable

We first consider predictions for differential distributions in |ηℓ|. Results for W -boson
plus D-hadron and W -boson plus D∗-hadron production are shown in Fig. 5 and Fig. 6,
respectively. In each figure, the OS−SS results for W− +D+ (W− +D∗+) and W+ +D−

(W+ + D∗−) are given on the left and on the right column respectively. The top row
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Figure 5. Comparison of LO (green) and NLO (blue) predictions with data (red). The |ηℓ|
distribution is integrated over each differential bin and is shown for all the D-hadron cases. The
top plots have been produced using the CNO fragmentation function, while the bottom plots using
KKKS08. The left and right columns show the results for W− and W+, respectively. All include
the OS−SS prescription.

contains plots with predictions using the CNO set, whereas the bottom row features plots
adopting the KKKS08 set. Each plot is divided into two panels, showing the distributions
in absolute value (top panel) and their ratio to NLO (bottom panel).

We first note that the NLO correction is about 40% and quite flat across the entire |ηℓ|
spectrum. The results obtained with the CNO fragmentation functions describe the data
better in the central region, while the distributions obtained with KKKS08 instead show
better agreement in the forward region. On the other hand, in the D∗-hadron case presented
in Fig. 6, we observe that the |ηℓ| distributions are fairly similar for the two sets of FF.
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Figure 6. Comparison of LO (green) and NLO (blue) predictions with data (red). The |ηℓ|
distribution is integrated over each differential bin and is shown for all the D∗-hadron cases. The
top plots have been produced using the CNO fragmentation function, while the bottom plots using
KKKS08. The left and right columns show the results for W− and W+, respectively. All include
the OS−SS prescription.

Also in Fig. 6 NLO corrections are very flat in |ηℓ| and amount to about 40%. However, the
W− +D∗+ prediction is in better agreement with the data with respect to the W+ +D∗−

process, especially for the CNO fragmentation function. Finally, the last rapidity bin in
the forward region is poorly described in both processes by both FFs. Overall, we can see
a clear improvement in the quality of description of data moving from LO to NLO.

A direct comparison between the predictions obtained with the CNO and the KKKS08
fragmentation functions is given in Fig. 7 for the |ηℓ| distribution. The plot is composed by
four panels, each one showing the ratio of the corresponding NLO distribution to data, for
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Figure 7. Comparison of the NLO results obtained for the different sets of fragmentation functions
shown in Fig. 5 and Fig. 6. The plots correspond to the ratio to data of the |ηℓ| distribution for D-
and D∗-hadrons.

a different process. From Fig. 7 we can better assess the impact of changing the fragmen-
tation function between CNO and KKKS08 on the |ηℓ| distribution which is fairly small,
as expected. As we already noticed from the D-hadron plots in Fig. 5, the KKKS08 dis-
tribution slightly overshoots the data in the central region. We also notice that both the
distributions are below the data in the forward region for the D∗-hadron case, but KKKS08
is closer to data.

5.3 Results for the pT,h observable

In addition to the lepton rapidity |ηℓ|, we also consider predictions differential in pT,h both
for W -boson plus D-hadron and W -boson plus D∗-hadron production. They are shown in
Fig. 8 and Fig. 9, respectively, with the same format as in Figs. 5 and 6.

Overall, we note that also the pT,h distributions are in good agreement with the data.
In the D-hadron case shown in Fig. 8, the NLO correction is about a 40% in the whole pT,h
region. It is interesting to notice that the results obtained with the CNO fragmentation
function are compatible with the data in the full spectrum, while we observe disagreement
in the high-pT,h region for the predictions with KKKS08. The pT,h distribution for the
D∗-hadron case is shown in Fig. 9 and similarly to the D-hadron case features a NLO
correction of 40%. Here, predictions with both FF sets undershoot the data points in the
low-pT,h region, however remaining generally compatible within uncertainties. We again
observe some disagreement in the high-pT,h region when the KKKS08 set is adopted.
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Figure 8. Comparison of LO (green) and NLO (blue) predictions with data (red). The pT,h

distribution is integrated over each differential bin and is shown for all the D-hadron cases. The
top plots have been produced using the CNO fragmentation function, while the bottom plots using
KKKS08. The left and right columns show the results for W− and W+, respectively. All include
the OS−SS prescription.

A direct comparison of the pT,h distribution obtained with the two sets of fragmentation
functions is shown in Fig. 10. From this plots it is easier to notice that the pT,h distribution
is better described by the prediction obtained using the CNO fragmentation function in the
low pT,h region, while the results obtained with KKKS08 are closer to data in the high-pT,h
region, especially for the D∗-hadron cases. However, it is interesting to notice that the
difference between the two seems to be just a shift that does not affect the shape of the
distributions.
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Figure 9. Comparison of LO (green) and NLO (blue) predictions with data (red). The pT,h

distribution is integrated over each differential bin and is shown for all the D∗-hadron cases. The
top plots have been produced using the CNO fragmentation function, while the bottom plots using
KKKS08. The left and right columns show the results for W− and W+, respectively. All include
the OS−SS prescription.

6 Conclusions

In this paper, we have provided theoretical predictions for observables related to identified
hadron production at LHC. In the first part, we have described how the antenna formal-
ism has been extended to deal with infrared singularities associated to identified parton
production in the short-distance cross section. We have detailed the analytical ingredients
necessary for the computation of observables related to the production of a hadron in as-
sociation with an electroweak boson decaying leptonically at NLO accuracy. In the second
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Figure 10. Comparison of the NLO results obtained for the different sets of fragmentation functions
shown in Fig. 8 and Fig. 9 The plots corresponds to the ratio to data of the pT,h distribution for D
and D∗-hadrons.

part, we have performed a detailed comparison between our predictions and experimental
data for both the production of a Z boson in association with charged hadrons inside a
jet, as measured by the LHCb collaboration [11], as well as the production of a W boson
in association with charmed hadrons, as measured by the ATLAS collaboration in [10]. In
our predictions, we have considered various choices of light- or heavy-quark fragmentation
functions.

In observables related to the production of a hadron inside a jet in association with
a Z-boson, we have found that our results depend significantly on the choice of the frag-
mentation function, highlighting the importance of including this data in FF fits. The
agreement of theory predictions with experimental data is also largely determined by the
kinematical region considered, as for low values of the longitudinal momentum fraction of
the hadron inside the jet we cannot expect perturbative fixed-order calculations to provide
a fair description of data. It would be interesting to match our NLO calculations with
resummation, possibly including non-perturbative modelling, in order to enlarge the range
of validity of our theoretical predictions.

Predictions for W -boson production in association with a charmed hadron have instead
been found to be less dependent on the heavy quark fragmentation function adopted. We
have shown that two rather different FF sets (CNO and KKKS08) give similar sizeable
NLO corrections, which bring theory predictions in good agreement with data, for both the
lepton rapidity |ηℓ| and the hadron transverse momentum pT,h distributions. Both CNO
and KKKS08 sets contain parameters that have been fitted to e+e− data and it is reassuring
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to observe that these FF sets are also able to provide a reasonable description of LHC data.
Of course, it would be desirable to push our theory predictions to NNLO and the work

presented in this paper is a first step towards this direction. Consistent NNLO fixed-order
predictions would also require the availability of NNLO heavy quark fragmentation func-
tions. Within the perturbative fragmentation function framework, choices related to the
delicate treatment of non-perturbative effects in association with soft gluon resummation
have been shown to give rather different results [40]. This behaviour is also enhanced by
the small value of the charm mass, which is barely above the non-perturbative energy scale.
Hence, pushing the accuracy of predictions for identified hadron production at the LHC to
NNLO will require not only technical work within the antenna subtraction formalism but
also improvements on the conceptual side to better understand the heavy quark fragmen-
tation dynamics.
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