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Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres
of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds.
These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with
the rate of fake jets in the calorimeters. These two methods are complementary since the BCM
probes backgrounds just around the beam pipe while fake jets are observed at radii of up to
several metres. In order to quantify the correlation between the residual gas density in the LHC
beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests
were performed during LHC Run 2. Local pressure bumps, with a gas density several orders
of magnitude higher than during normal operation, were introduced at different locations.
The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local
pressure variation. In addition the rates of beam-gas events are estimated from the pressure
measurements and pressure bump profiles obtained from calculations. Using these rates, the
efficiency of the ATLAS beam background monitors to detect beam-gas events is derived
as a function of distance from the interaction point. These efficiencies and characteristic
distributions of fake jets from the beam backgrounds are found to be in good agreement with
results of beam-gas simulations performed with the Fluka Monte Carlo programme.
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1 Introduction

The Large Hadron Collider (LHC) [1] is an accelerator of 27 km circumference where proton bunches of a
clockwise beam-1 and a counter-clockwise beam-2 are colliding at four interaction regions (IR). During
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LHC Run 2, between 2015 and 2018, the proton energy was 6.5 TeV. Interesting physics events have to be
extracted from ∼ 109 Hz of minimum-bias collisions overlaid with some beam induced background (BIB).
The intensity of BIB is small compared to the minimum-bias background but some BIB events can mimic
high transverse momentum (𝑝T) objects that are characteristic for exotic new physics [2–4].

At the LHC BIB arises from proton collisions with residual gas in the beam pipe (beam-gas interactions) or
from beam halo protons1 impacting on limiting apertures, e.g. collimators [6–8]. The rate of beam-gas
events (𝑅BG) depends on the beam intensity and the density and molecular composition of the residual gas
in the beam pipe. Beam halo losses have a more complicated dependence on the setting of the various
collimators and on the beam quality.

The two principal BIB observables monitored in the ATLAS experiment [9] are hits in the dedicated Beam
Conditions Monitor (BCM) [10] and fake jets. Energetic particles emitted at very small angles from the
collision of a high-energy proton with a stationary nucleus can initiate particle showers in the accelerator
elements. These showers are mostly confined to small radii just around the beam pipe where they can hit the
BCM detector modules and produce a trigger signature, indicative of BIB. Fake jets arise predominantly
from high-energy muons produced in kaon and pion decays. When traversing the ATLAS calorimeters they
have a small probability to deposit a substantial fraction of their energy through radiative processes. If the
energy deposit of such an event is large enough it can be reconstructed as a (fake) jet.

Simulations [11], which agree well with measurements of total BIB rates, indicate that most of the
background seen by the BCM originates from beam-gas collisions at less than 60 m from the interaction
point (IP). Fake jets, on the other hand, are due to beam losses far upstream – beyond ∼50 m from the IP.
So far there has been no direct experimental verification of these simulation predictions, which was the
main motivation for the study described in this paper.

BIB monitoring and detailed analysis of BIB events collected by the ATLAS detector during LHC Run 1
[12, 13] and Run 2, in particular during dedicated loss-map tests [5], have shown that beam-halo losses are
a minor contribution [14] and most of the BIB observed by ATLAS originates from inelastic beam-gas
collisions.

In order to quantify the sensitivity of ATLAS to beam-gas events at various well-defined locations, a series
of dedicated pressure bump tests was performed during LHC Run 2. In these tests individual non-evaporable
getter (NEG) cartridges [15] were heated such that some of the gas they had absorbed was re-injected into
the LHC beam vacuum. By this method pressure bumps, with a typical extent of ∼1 m FWHM along the
beam direction, were created at four different |𝑧|-locations2 between 19 m and 151 m. In these bumps the
pressure was up to four orders of magnitude higher than during normal beam operation. Given that the BIB
observed in ATLAS, during physics data taking, is dominated by beam-gas collisions distributed over a
typical length of the order of 100 m, these local pressure bumps resulted in a detectable increase of the
BIB. Since the efficiency of ATLAS to record a beam-gas event depends on the location of that event, the
additional BIB rates from some pressure bumps exceeded the normal level by orders of magnitude, while
for some others an excess was barely resolvable.

These pressure bump tests provide detailed data for benchmarking the BIB simulations, and the results
also are useful input for designing LHC beam vacuum upgrades such that the beam-gas background in the
experiments is minimised.
1 Beam halo is composed by a small fraction of particles surrounding the dense beam core [5].
2 In the right-handed ATLAS coordinate system the origin is at the nominal IP and the azimuthal angle, 𝜙, is measured relative to

the 𝑥-axis, which points towards the centre of the LHC ring. The polar angle, 𝜃, is defined with respect to the 𝑧-axis, which
points along the beam-2 direction. The pseudorapidity is given by 𝜂 = − ln tan(𝜃/2).
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Figure 1: Schematic illustration of the pressure bump test. The red arrows and stars indicate particle collisions and
trajectories. The blue text and profile indicate the estimates of the pressure bump profiles, which are discussed in
Section 3.5. The red text refers to quantities and processes simulated with Fluka, as described in Section 4. Black
text is used for detector and accelerator components, real events, actions and measured observables.

1.1 Short overview of the test procedure

Figure 1 shows a schematic summary of the measurement, analysis and simulation procedures. The creation
of the pressure bump and the associated pressure measurement are described in Sections 3.3 and 3.4,
respectively.

Two definitions of the relation between the BIB seen by ATLAS and the pressure increase at the bump
location can be considered.

1. The ratio, 𝜔(𝑧𝑖), between the additional background rate Δ𝐵, observed by a given ATLAS detector,
and the additional pressure, Δ𝑃(𝑧𝑖), measured by a vacuum gauge at the bump location 𝑧𝑖 , i.e.

𝜔(𝑧𝑖) =
Δ𝐵

Δ𝑃(𝑧𝑖)
. (1)

2. The ratio, 𝜀(𝑧), between the additional background rate observed by a given ATLAS detector and
the rate of additional beam gas events, Δ𝑅BG, due to the introduced pressure bump. Here Δ𝑅BG is
the change of the integral over the gas density in the bump area, i.e.

𝜀(𝑧) = Δ𝐵

Δ𝑅BG
=

Δ𝐵

𝑓
Δ𝑃 (𝑧𝑖 )
𝑃calc (𝑧𝑖 )

∫
𝜌calc(𝑧)𝑑𝑧

, (2)

where 𝜌calc(𝑧) denotes the pressure profile that is obtained from calculations described in Section 3.5
and 𝑃calc(𝑧𝑖) is the corresponding calculated pressure at the vacuum gauge location. The ratio of the
measured Δ𝑃(𝑧𝑖) and the calculated value is used to renormalise the profile such that it matches the
measured pressure at the gauge location. The factor 𝑓 is related to the interaction cross section of the
protons and the beam intensity, as described in Section 3.3.

The determination of 𝜔(𝑧𝑖) is described in Section 5. Since 𝜔(𝑧𝑖) is entirely based on measured data, it is
not subject to any of the assumptions and calculations that have to be made in order to derive 𝜀(𝑧). Thus it
is a useful quantity to verify the consistency of the results for the same bump location in different LHC fills.
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Also the |𝑧 |-dependence of the ratio of BCM and fake-jet BIB rates can be assessed from the measured data
by using the respective 𝜔(𝑧𝑖)-values. The downside of the 𝜔(𝑧𝑖)-parameter is that it does not accurately
describe the sensitivity of ATLAS to beam-gas background because a single pressure measurement does
not provide enough information to determine the number of beam-gas collisions. Furthermore, the relation
between 𝑃(𝑧𝑖) and the integrated density profile along the beam trajectory,

∫
𝜌(𝑧)𝑑𝑧, depends on the local

vacuum equipment configuration, e.g. the distance between the point of gas injection and the vacuum gauge.
Since these configurations are different at all bump locations, 𝜔(𝑧𝑖) provides only an approximate measure
of the relative sensitivity between the four pressure bump locations.

The 𝜀(𝑧) represents the real efficiency, i.e. the ratio between observed and produced events, which does
not depend on the local vacuum equipment configuration or the beam conditions. Its determination needs,
however, information about the gas density, 𝜌(𝑧), traversed by the beam in order to determine the rate of
beam-gas interactions. Because the density profile cannot be measured by the LHC instrumentation, 𝜀(𝑧)
cannot be derived from data alone and is subject to the uncertainties of the dedicated pressure calculations,
described in Section 3.5.

The 𝜔(𝑧𝑖) and 𝜀(𝑧) are derived in Sections 5 and 6, respectively and their uncertainties are discussed in
Section 7. BIB simulations with the Fluka code [16, 17] are described in Section 4. These simulations
compute the efficiency per event and can therefore be directly compared with 𝜀(𝑧), which is done in
Section 8.1. The azimuthal and pseudorapidity distributions of the simulated fake jets are compared with
the measurements for different pressure bump locations in Section 8.2.

Section 9 gives a brief report of an unexpected increase of BIB levels after the last pressure bump test and
Section 10 provides the conclusions.

2 Beam background measurements in ATLAS

2.1 The ATLAS experiment

ATLAS [9] is one of the two general purpose experiments, designed to fully exploit the proton–proton
physics at the highest luminosities achievable at the LHC.

The inner detector (ID) provides the tracking and momentum measurement of charged particles up to
|𝜂 | = 2.5. From the smallest to the largest radii it comprises a pixel detector, a silicon micro-strip tracker
and a transition radiation detector. All of these are subdivided into barrel and endcap parts, embedded in a
solenoid, which creates a magnetic field of 2 T along the 𝑧-axis.

The BCM is housed inside the ID and consists of four small diamond sensors on both sides of the IP at
|𝑧 | = 184 cm. Following the ATLAS convention of labelling the sides of the experiment as A and C, the
BCM-A and the BCM-C modules are on the incoming beam-1 and beam-2 sides, respectively. The sensors,
with an active area of 8 × 8 mm2, are arranged as a cross at an average radius of 55 mm from the centre of
the beam line. In order to increase the track length within the sensitive volume, and thereby the signal of a
BIB-particle, the modules are tilted by 45 degrees with respect to the 𝑧-axis [10].

The ID is surrounded by an electromagnetic calorimeter using lead as the absorber and liquid argon (LAr)
as the active medium. The barrel part has a half-length of ∼3 m and extends radially from 𝑟 = 1.5 m to
2.0 m. At central rapidities the hadron energy is measured by a steel/scintillator tile calorimeter, extending
from 𝑟 = 2.3 to 4.3 m and having a half-length of ∼6 m. In the endcaps both calorimeters are based
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on LAr technology and provide coverage up to |𝜂 | = 3.2. These calorimeters are complemented by a
forward calorimeter (FCAL), which reaches up to |𝜂 | = 4.9. All calorimeters provide nanosecond timing
resolution.

The calorimeters are surrounded by a muon spectrometer based on three large air-core superconducting
toroidal magnets with eight coils each: one barrel toroid and two endcap toroids positioned inside the
barrel at both ends of the central solenoid.

The very forward region, behind the FCAL, is filled with massive shielding in order to reduce the radiation
levels in the muon spectrometer. This shielding also serves as a plug of the tunnel entry such that the BIB –
except the high-energy muon component – entering the ATLAS cavern is efficiently suppressed.

Potentially interesting events are selected with a two-stage trigger [18], where the first stage (Level-1)
is hardware-based and fires on simple physics objects. The Level-1 selection is followed by a software
high-level trigger, which further reduces the rate before the selected events are stored for offline analysis.
An extensive software suite [19] is used in the reconstruction of data, in detector operations and in the
trigger and data acquisition systems of the experiment.

2.2 ATLAS beam background triggers

The measurement of BIB utilises bunches that do not collide with bunches of the opposite beam at the
ATLAS IP. In the Level-1 trigger these unpaired bunches form their own bunch group. This grouping
isolates the background trigger items from those used for physics and allows trigger prescales to be applied
independently. This is particularly important for the low-𝑝T single-jet trigger, which is used for fake-jet
monitoring. In colliding bunches low-𝑝T jets appear at overwhelming rates and the only possibility to
collect a sizeable sample of fake-jet events is to trigger independently on the unpaired bunches without the
need reduce the rate by a prescale.

ATLAS data-taking is subdivided into luminosity blocks (LBs) with a typical duration of ∼60 s. This time is
short enough to consider variations of beam conditions to be negligible.3 Although individual events have
a time-stamp with nanosecond accuracy the LBs provide convenient time-bins for trend monitoring. This
also ensures that Level-1 trigger rates (which are always averaged over a LB), offline data and information
received from the LHC can be analysed within a common time binning.

The signature of BIB in the BCM, shown schematically in Figure 2, is formed by one early hit in any of
the four sensors on one side and an in-time hit in any sensor on the other side of the IP. An early hit is
defined to be in a 5.46 ns wide time-window, centred ∼6 ns before the nominal collision time. An in-time
hit has the same window width, but centred ∼6 ns after the nominal collision time, i.e. aligned in time with
the collision products from the IP. Due to its location the BCM is particularly sensitive to BIB showers
developing at small radii, just outside the beam pipe.

Fake jets are almost exclusively due to radiative energy losses of high-energy muons traversing the detector,
in particular bremsstrahlung, resulting in electromagnetic showers with a relatively small extent and
negligible hadronic activity. They are selected in the range |𝜂 | < 3.2 by a single jet trigger [20], which
fires on a transverse energy deposition above 𝐸T > 12 GeV, calibrated at the electromagnetic scale. Since,
however, the fake jet is not associated to any object with 𝑝T defined at the IP, the 𝐸T should be considered an

3 This assumption is not true for fast losses due to sudden beam instabilities, but these are not a subject of the present study.
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Figure 2: Illustration of the BCM background trigger signature for beam-2. The vertical dimensions are not to scale.
In particular, the size of the BCM sensors is exaggerated and their tilt is indicated only schematically. The dot-dashed
line is the beam line and the two solid lines illustrate the wall of the beam pipe. The dashed lines represent the
trajectories of particles produced in proton collisions with residual gas or accelerator elements. The trigger can be
fired either by a single particle traversing a module on both sides of the IP or by two different particles as illustrated
on the upper and lower parts of the figure, respectively. The only requirement is that there are early and in-time hits in
any of the four modules on opposite sides of the IP.

apparent 𝐸T, which is assigned by the reconstruction algorithm on the basis of the position and magnitude
of the energy deposition in the calorimeter.

The jet trigger is fully efficient up to |𝜂 | = 2.8 and has reduced sensitivity up to |𝜂 | = 3.2. At various
stages of the trigger chain the recorded events are subject to dead time, which is evaluated for each LB. A
dead-time correction is applied by scaling the recorded event rate correspondingly. The trigger efficiency
starts to rise gradually above the 𝐸T-threshold of 12 GeV, and full efficiency is reached only around 20 GeV.
For most of the results in this paper the trigger efficiency can be considered an intrinsic property of the
jet-observable that is used to detect a BIB event by the fake-jet monitoring. Thus, whatever the efficiency to
detect the fake jet is, it is the same in the pressure bump test and during normal physics operation. In order
to maximise the number of fake-jet events for the analysis, all jets that have a reconstructed transverse
energy of 12 GeV and for which the corresponding Level-1 jet trigger has fired are retained. However, the
reduced efficiency below 20 GeV becomes significant when comparing measured and simulated fake-jet
rates. For these comparisons only jets at the efficiency plateau, i.e. with 𝐸T >20 GeV, are considered.

2.3 Fake-jet reconstruction and cleaning

Even in unpaired bunches the jet sample has a non-negligible contribution from collisions of protons
in the unpaired bunch with ghost charge in the other beam, i.e. recaptured protons that have left their
original radio-frequency bucket [13]. These ghost collisions take place at the IP but the luminosity of
these encounters is typically ∼3 orders of magnitude below that of two colliding nominal bunches. This
contribution can be removed with high efficiency by applying a vertex veto, i.e. requiring that the event
where the jet is observed has no reconstructed primary vertex [21].

The jets are reconstructed with the anti-𝑘𝑡 jet algorithm [22, 23] from clusters at the electromagnetic
scale [24], using a radius parameter 𝑅 = 0.4. No further calibrations are applied since these would not
be appropriate for the fake jets that do not originate from the IP, are not subject to event pile-up, and
have a negligible hadronic contribution. Standard jet quality criteria [25], are applied in order to remove
instrumental backgrounds, e.g. effects of calorimeter noise.
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Figure 3: Schematic illustration of the LSS up to the D2 dipole, i.e. the part relevant for this study. The pressure
bump locations at 19 m, 22 m, 58 m and 151 m are indicated, as well as the temperatures of the cryogenic elements in
the area. The vertical dimensions are not to scale.

In the barrel calorimeters, the axis of a BIB-induced shower is parallel to the beam direction, instead
of pointing to the IP. Previous studies [11] have shown that Fluka simulations, implementing only a
rudimentary clustering of the total deposited energy, reproduce the fake jet rates reconstructed from the
data. This indicates that, even though the energy deposition is elongated in the wrong direction with respect
to the IP, the cluster in the data is not split by the reconstruction.

2.4 BCM efficiency and purity

The threshold for the BCM to record a hit corresponds to an energy deposition of around 250 keV, above
which the efficiency is assumed to be close to 100%. After a hit, however, an individual module has a dead
time with a typical duration of the order of 10 ns, depending on the deposited energy. Thus a hit before
the trigger window can mask another that would have contributed to the trigger signature. This potential
efficiency drop has to be taken into account when comparing data with simulations.

Since the BCM background trigger involves an early hit, its sensitivity to ghost collisions is strongly
suppressed. Less than 4% of the triggered events would be rejected by a vertex veto. Thus the number of
events collected was maximised and issues of dead-time corrections were mitigated by basing the analysis
on the raw Level-1 trigger rates, recorded from the unpaired bunches.

3 The pressure bump tests

3.1 The IR1 region around ATLAS

Earlier BIB simulation studies, e.g. those presented in Refs. [6, 8, 11], predict that BIB can be observed
from beam-gas interactions in the entire long straight section (LSS) and part of the LHC arc, up to a
distance of about 500 m from the IP.

The main accelerator components in the part of the LSS that is relevant for the pressure bump tests
are illustrated in Figure 3. Between the IP and 𝑧 = 18.5 m, the radius of the beam pipe varies between
28 mm and 120 mm. The cryogenic inner triplet of quadrupole magnets extends from |𝑧 | = 23 m up to
|𝑧 | = 55 m and inside of it a perforated beam screen (BS), kept at a temperature of ∼20 K, reduces the
synchrotron radiation load on the beam-pipe wall. Residual gas in this cryogenic section can pass through
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the perforations and condense on the cold bore, kept at 1.9 K. The triplet is protected by the secondaries
absorber (TAS) from the collision debris created at the IP. The TAS devices, one on either side of the
experiment, starting at |𝑧 | = 19 m, are 1.8 m long copper blocks with an aperture of 17 mm radius for the
passing beams. Vacuum stations with ion pumps and NEG cartridges, placed on either side of the TAS,
provide efficient local pumping.

From |𝑧 | = 55 m to |𝑧 | = 152.5 m the beam pipe is at room temperature. One of the few warm magnets
of the LHC, the D1 separation dipole, is located in this region. Extending from 59 m to 83 m, its role is
to separate the beams from the common pipe at the IP into the two separate pipes in the LHC arc. Other
beam-line elements that are potentially significant for this study are the set of tertiary collimators (TCT)
and the neutral absorber (TAN). The TCTs are located in the region |𝑧 | = 145 m−148 m, and with apertures
of 18.4 mm in the horizontal and 11.6 mm in the vertical plane4 they are likely to intercept some of the
secondaries produced in the most distant pressure bump at 151 m. The role of the TAN is to intercept
neutral particles produced at the IP and that are not deflected by the D1 dipole, before they would impinge
on the D2 dipole, which is operated at 4.5 K.

The room-temperature sections of the LHC beam pipe are coated with a TiZrV NEG layer [26], which
provides distributed pumping. Especially in the region |z|<18 m this NEG coating and a pair of low-capacity
annular ion pumps, located at 𝑧 ≈ ±3.7 m, ensure a good vacuum around the IP.

In the cold arc of the LHC, starting at |𝑧 | ≈ 270 m, a good vacuum is ensured by the cryogenic surfaces of
the magnets, which constitute very efficient pumps. No gauges or other active vacuum equipment exists in
the cold regions, so the pressure bump study is limited to four points in the LSS, |𝑧 | = 19 m, 22 m, 58 m
and 151 m, which are indicated in Figure 3.

3.2 Beam conditions

During Run 2 of the LHC the colliding protons were grouped in bunches with a typical population of
𝑛𝑏 = 1011. A bunch train was composed of a varying number of bunches, spaced by 25 ns. Larger gaps, of
up to 800 ns, were left between the trains to account for the rise-times of injection kickers. One wide gap of
3.1 𝜇s is needed in the bunch pattern in order to allow for a clean beam abort.

Typically twelve unpaired bunches per beam are included in an LHC fill pattern. These are usually grouped
in short trains immediately after the abort gap in order to maximise their separation from the preceding
colliding pairs. In this position the afterglow, i.e. long-lived debris from the collisions [13], is minimised.

Five pressure bump tests were performed in LHC fills 4905, 5005, 5331 (all in 2016), 6239 (in 2017) and
7212 (in 2018). The principal beam parameters of these five fills are summarised in Table 1. In order to
reduce the risk of a beam dump due to the increased local loss rate, all tests were done during the intensity
ramp-up following regular technical stops of the accelerator. Thus all five fills were characterised by a
smaller than nominal number of bunches and, therefore, lower total beam intensity than regular physics
fills.

The beams had typical per-bunch luminosities of ∼ 5×1030 cm−2s−1 for physics production, except for fills
5331 and 7212, during which the beams were separated about half way through the fill in order to provide
low collision rates for dedicated forward physics data-taking. The beam-gas backgrounds are insensitive to
this beam separation.

4 Corresponding to 2016 collimator settings.
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Table 1: Beam conditions of the five fills during which pressure bump tests were performed. 𝛽∗ is the value of the
𝛽-function at the IP and is related to the transverse size of the luminous region [27]. The 𝛽∗ and crossing angle values
refer to the ATLAS IP.

LHC fill
4905 5005 5331 6239 7212

Number of bunches per beam 241 602 169 1358 603
Number of unpaired bunches 12 12 12 12 13
Maximum bunch train length 72 72 48 8 48
𝛽∗ [cm] 40 40 40 30 30
Crossing half-angle [𝜇rad] 185 185 140 150 155
Single beam intensity [1013 protons] 3.2 7.1 1.8 12 6

3.3 LHC beam vacuum description and gas injection procedure

The ultra-high vacuum conditions inside the LHC beam pipe are achieved by distributed pumping, provided
by the NEG coating in the room-temperature sections and cryopumping in the cold sections.

A central parameter for this study is the sticking factor (𝛼) of hydrogen molecules on the NEG coated
surface in the room-temperature sections. This factor represents the probability for a gas molecule, hitting
the surface, to stick on it. Thus it corresponds to the pumping efficiency of the NEG coating. It is shown in
Section 3.5 that the amount of gas in the introduced pressure bump depends strongly on this parameter. In
validation tests [28], prior to installation, 𝛼 was measured to be larger than 10−3 with 𝛼 = 5×10−3 being a
commonly expected value for the installed beam pipe.

Table 2 lists the inelastic proton cross sections for the typical molecules found in the beam vacuum. The
gases relevant for this study are hydrogen and neon. Although the latter is not a common gas in ultra-high
vacuum systems it could have influenced these tests significantly, as is discussed in Section 6.4.

In cryogenic parts of the LHC no NEG coating is needed since the cold bore of a magnet operated at 1.9 K
represents a 100% efficient pump for all gas species except helium [29]. Since, however, the perforations
cover only about 3% of the BS surface, the pumping efficiency, or sticking factor, of the cryogenic sections
is estimated at 3×10−2. Some magnets in the LSS, in particular the D2 dipole, are kept at an elevated
temperature of 4.5 K at which the sticking factor, especially for hydrogen, is significantly reduced. In order
to ensure a good vacuum in these warmer magnets, dedicated cryoabsorber strips of woven carbon fibre are
incorporated into the BS.

In the presence of an intense proton beam, gas is desorbed from the beam-pipe and BS walls by synchrotron
radiation, particles hitting the surface and radio-frequency heating induced by the passing bunches. The
rate of gas release depends on the surface condition and is reduced by the NEG coating and beam scrubbing
in the warm and cryogenic sections, respectively. The latter procedure consists of keeping increasingly
intense low-energy beams in the LHC in order to release the gas molecules from the surface prior to actual
physics operation. The degree of conditioning cannot be directly measured and the actual state of the
surface introduces a significant uncertainty into the pressure around the ring, especially in cold sectors
where no vacuum gauges are located. Since, however, the pressure bumps are introduced by controlled gas
injection and the steady-state background is subtracted, as is explained in Section 5, the uncertainty of the
overall pressure distribution is only of minor importance for this study.
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Table 2: Densities (𝜌) at STP (0° C and 1.013 bar) and inelastic scattering lengths (𝜆) of LHC beam protons for the
common residual gas molecules. The densities and scattering lengths are extracted from the Fluka code. The cross
sections derived from 𝜆 and 𝜌 are given for reference only. The uncertainty on the density is negligible and that on
the scattering length a few percent (Section 7.1.1). The last column gives the relative response of the vacuum gauge
for each gas species with respect to N2 [30]. The uncertainties on these sensitivities are estimated at about 10%, but
are included in the gauge accuracies, which are discussed in Section 7.1.1.

Density (𝜌) Inelastic scattering length (𝜆) Inelastic cross section Gauge response
Gas [g/m3] at STP [m] at STP at 6.5 TeV [mb] at 6.5 TeV [N2 equivalent]

H2 89.9 4900 76 0.42
Ne 900 980 380 0.22

CH4 716 890 420 1.4
CO 1250 630 590 1.05
CO2 1970 410 920 1.4

The typical densities of the residual gases are about 12 orders of magnitude below those at standard
temperature and pressure (STP), which means that the mean free path of a beam proton is of the order
of 1012 km. This implies that the average lifetime of an individual 6.5 TeV proton, before it undergoes a
beam-gas interaction, is about 1000 h.

If the gas densities are known, 𝑅BG can be derived by using the data of Table 2. The mean free path 𝜆(𝑧) is
given by

1
𝜆(𝑧) =

∑︁
𝑗

𝑁𝐴𝜌 𝑗 (𝑧)𝜎𝑗

𝐴 𝑗

, (3)

where 𝑁𝐴 is the Avogadro number and 𝜎𝑗 and 𝐴 𝑗 are the interaction cross section and atomic mass of
residual gas species 𝑗 , respectively. When the proton beam traverses the gas, it sees a 𝑧-dependent density
𝜌 𝑗 (𝑧). In the ultra-high vacuum 𝜆 is very large and the total interaction probability for a single proton
traversing a gas density distribution between 𝑧1 and 𝑧2 is obtained from a linear approximation

𝑃BG =

∫ 𝑧2

𝑧1

d𝑧
𝜆(𝑧) =

∑︁
𝑗

𝑁𝐴𝜎𝑗

𝐴 𝑗

∫ 𝑧2

𝑧1

𝜌 𝑗 (𝑧)𝑑𝑧. (4)

When 𝑃BG is multiplied by the number of protons per bunch (𝑛𝑏) – by convention expressed in units of
1011 protons – and the revolution frequency 𝜈 of the LHC beam, 𝑅BG is obtained in units of Hz/1011 𝑝 for
the 𝑧-range considered. Thus the factor 𝑓 in Eq. (2), for a single gas, is given by

𝑓 = 𝑛𝑏𝜈
𝑁𝐴𝜎

𝐴
, (5)

i.e. it comprises only constants and measured quantities.

The 𝑅BG arising from the pressure distribution during normal operation was studied thoroughly with
simulations for LHC Run 1 [11] and good agreement between simulated and measured BIB rates was
obtained. Although the bunch spacing was reduced from 50 ns to 25 ns and the beam energy was increased
for Run 2, the BIB levels recorded by the BCM in the pressure bump fills, prior to the gas injection, were
very similar to those seen in Run 1. This suggests that the 𝑅BG distribution as a function of 𝑧, presented
in Ref. [11], provides a good estimate for the pedestal 𝑅BG in the pressure-bump fills. According to that
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study the 𝑅BG is about 0.01 Hz/(1011 𝑝 · m) for |𝑧 | ≲ 20 m and varies between 0.05 Hz/(1011 𝑝 · m) and
0.5 Hz/(1011 𝑝 · m) for larger |𝑧 |. These 𝑅BG values were used to define the target pressure for the bump
tests, i.e. to determine how much additional gas was needed in order to induce about an order of magnitude
increase in the BIB rate seen by the BCM. For the most distant bump location, at 151 m, only a factor of
about five increase of the BIB rate was reached at a pressure of ∼1 nbar, which was considered the safe
limit.

Local vacuum stations, typically comprising ion pumps, NEG cartridges and vacuum gauges, are installed
in the warm sections. The NEG cartridges, Capacitorr D-400 of SAES getters [31], are composed of
sintered discs of non-evaporable getter material, contained in a protective stainless steel grid. They are
equipped with a heater element for activation. In these tests the heaters were used to provoke an emission
of gas from the cartridges at the locations indicated in Figure 3. The rate of gas release was controlled by
the current used to heat the NEG and the pressure was monitored with the nearby gauges. Upon heating the
NEG is assumed to release predominantly hydrogen, which is least strongly bound into the NEG material.
Thus the gas composition of an introduced pressure bump differs significantly from the average in that
region during normal operation. Given that the pressure in the bumps was up to four orders of magnitude
above normal, the additional beam-gas interactions were initially assumed to all be 𝑝-H collisions, although
this assumption had to be revised in the course of the analysis.

Since only BIB events from unpaired bunches were used, the observed background could be unambiguously
associated with one of the two incoming beams. Therefore it was possible to heat two NEG cartridges
simultaneously, one on either side of ATLAS. It took typically 5–10 minutes to reach the target level, where
the pressure was stabilised for about 20 minutes in order to collect a sufficient number of events. Between
consecutive pressure bumps on the same beam about 20 minutes were left for the BIB to fall close enough
to the initial level.

3.4 Pressure measurement

The warm sections of the LHC beam pipe are equipped with vacuum gauges in order to monitor the pressure
constantly. In the regions where the pressure bumps are introduced, two different gauge technologies are
utilised:

VGPB: cold cathode gauges [30], Pfeiffer vacuum IKR 070, triaxial and

VGI: hot cathode gauges [32], custom CERN made.

The measurement ranges of both gauge types cover the full pressure variation during the bump tests.

During the tests two or three gauges provided data in the vicinity of each pump but the positioning of the
gauges with respect to the beam line and the NEG cartridge is different at each pressure bump location.
Some gauges exhibited erratic behaviour in one or more fills. Therefore only the data from the most
appropriate devices, in terms of vicinity to the activated NEG cartridge and consistency of the data in all
fills, were used. In most cases, selecting an alternative gauge would have had only a very small influence
on the results. This is discussed as a systematic uncertainty in Section 7.1.1.
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3.5 Estimation of pressure bump profiles

Because a vacuum gauge does not provide any information about the gas density profile along the beam
line, pressure calculations have to be invoked to estimate the profiles, 𝜌(𝑧), which are needed to calculate
𝑅BG from Eq. (4).

For the calculation of pressure profiles at the various bump locations, two conceptually different vacuum
calculation/simulation programs were used:

1. Vasco [33] uses a simple one-dimensional model to produce a pressure profile along the beam line,
based on the requirement that various sources (outgassing mechanisms), drains (local or distributed
pumps) and the diffusion of gas between sources and drains, are in equilibrium.

2. MolFlow+ [34] is a detailed three-dimensional Monte Carlo simulation which transports individual
gas molecules until they are removed by a pump or absorbed on a surface. In order to benefit fully
from the power of MolFlow+, a detailed three-dimensional description of the vacuum system is
needed.

Initially, only Vasco calculations, based on the best knowledge of the pumping efficiency in the room
temperature and cryogenic parts of the beam pipe, were produced for all four pressure bump locations.
These, however, resulted in unphysically low values of 𝑅BG for the nearby pressure bumps at |𝑧 |<23 m, as
is seen in Section 6.3. Therefore more detailed MolFlow+ simulations were set up for the 19 m and 22 m
pressure bumps, exploring various alternative pumping efficiencies of the NEG coating. No sufficiently
detailed MolFlow+ geometry models are available for the 58 m and 151 m locations, so the original Vasco
results are used for these distant pressure bumps. The uncertainties associated with these calculations are
discussed in Section 7.1.

The NEG cartridges and vacuum gauges are not directly on the beam pipe, but recessed on the same or
different chimneys. When gas is emitted from the NEG cartridge, the pressure at the gauge is typically
different than at the chimney exit. Being one-dimensional, the Vasco calculations do not consider the
various chimneys in detail, so they do not provide estimates for the pressures at the gauge locations. The
MolFlow+ simulations, on the other hand, can provide an estimate of the gas density profiles along the
beam line where the protons pass, but also at the location of the gauge where the pressure is measured.

Figure 4 shows the MolFlow+ results for pressure bumps at 19 m and 22 m, for different values of the
NEG sticking factor 𝛼. The value of 𝛼 is found to have a particularly large effect on the pressure profile of
the 19 m bump. The reason is that between 19 m and 20.8 m the TAS, with its small aperture, reduces the
gas flow while the beam pipe towards the IP is wide, and for low 𝛼 the pressure bump extends almost to the
IP. It is also seen that with increasing 𝛼 the difference between the value at the gauge and the maximum at
the beam line increases.

The situation is quite different at 22 m where the pressure bump is constrained between the TAS on the IP
side and the 𝑇 = 1.9 K region of the inner triplet, starting at |𝑧 | ≈ 23.5 m. The cold bore of the quadrupole
magnet is considered a 100% efficient pump for all gas species. So any gas molecule traversing the pumping
holes, which cover about 3% of the BS, is considered to be absorbed. Since this cold part has no NEG
coating, the effect of 𝛼 is restricted to the region between the inner triplet and the TAS and, for the small
amount of gas passing through it, the beam pipe on the IP side of the TAS. This restriction from both sides
is very evident when comparing Figures 4(b) and 4(a): for 𝛼 = 0.005 the pressure drops by two orders of
magnitude when the gas is injected at 22 m and has to traverse the TAS. If the injection point is at 19 m the
profile towards the IP is much wider.

13



|z| [m]

22− 20− 18− 16− 14− 12− 10− 8− 6− 4−

-e
qu

iv
al

en
t p

re
ss

ur
e 

[p
ba

r]
2

N

1−10

1

10

210

Beam-2, |z| = 19 m
 = 0.0001α
 = 0.0005α
 = 0.001α
 = 0.0025α
 = 0.005α
 = 0.01α

Simulated at gauge

T
A

S  Simulation+MolFlow

(a)

|z| [m]

25− 20− 15− 10− 5−

-e
qu

iv
al

en
t p

re
ss

ur
e 

[p
ba

r]
2

N

1−10

1

10

210

Beam-2, |z| = 22 m
 = 0.0001α
 = 0.0005α
 = 0.001α
 = 0.0025α
 = 0.005α
 = 0.01α

Simulated at gauge

C
ry

og
en

ic
 s

ec
tio

n

T
A

S  Simulation+MolFlow

(b)

Figure 4: Pressure profiles at (a) 19 m and (b) 22 m as simulated with MolFlow+ for different assumptions of 𝛼. The
profile for the expected value, 𝛼 = 5×10−3, is indicated by the thicker line. The MolFlow+ simulations also provide
an estimate of the pressure at the relevant vacuum gauge, which can be used to scale the simulation results to the
pressure actually measured in any particular fill, as is detailed in Section 6.2. The blue shaded area in (b) indicates
the cryogenic region of the inner triplet.

4 Beam background simulations with Fluka

Most LHC beam background simulations [8] are performed with the Fluka Monte Carlo simulation code.
Recently these have been extended [11] to include hit simulation and trigger emulation in the ATLAS
sub-detectors that are relevant for studies of BIB. Thus the Fluka simulations can be used to predict the
efficiency of ATLAS to detect a beam-gas event as a function of its 𝑧-position.

The Fluka simulations are performed as outlined in Ref. [11]. Beam-gas events are modelled as inelastic
𝑝-H scattering and the 𝑧-coordinates are sampled from the simulated pressure profiles, which are described
in Section 3.5. For the nearby pressure bumps, i.e. |𝑧 | < 23 m, the position of the beam-gas interaction in
the 𝑥𝑦-plane is determined from the offset due to the vertical crossing angle and smeared according to the
divergence caused by the 𝛽-squeeze and transverse emittance of the beams. In all simulations 185 𝜇rad and
40 cm are assumed for the crossing half-angle and 𝛽∗, respectively. These do not match the values given in
Table 1 for all fills but the results depend only very weakly on the exact values of these parameters. In the
case of the two distant pressure bumps, the transverse position of the event is placed on the ideal beam
orbit and the shower is transported with Fluka to a virtual interface plane at 𝑧 = 22.6 m where particles
are picked up by the ATLAS simulation, as described in Ref. [11]. In these computing-intensive LHC
simulations, where particle showers are tracked in the accelerator structure and LHC tunnel over more than
100 metres, the primary 𝑝-H collisions have a uniform 𝑧-distribution of ±5 m around the centre of each
pressure bump. For the ATLAS simulations the events are selected according to the calculated pressure
bump profiles along 𝑧. This allowed different pressure profiles to be studied, using the same set of events
from the LHC simulations.

Fake-jet events are rare, and the number of events available from the LHC simulations determines the
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statistical uncertainty: 9.5 million and 22.5 million events were selected for the 58 m and 151 m locations,
respectively. As practically all fake jets are generated by radiative energy losses of muons, only these were
picked up at the interface plane for further transport through ATLAS.

Obtaining a sufficient number of BIB events in the BCM background simulations is not an issue for any of
the pressure bump locations. Thus only a small fraction of the events produced in the LHC simulations
was used: 2×104 for the pressure bumps at 58 m and 2×105 for the 151 m location. For the nearby bumps,
where the efficiency is very high, 8000 events, sampled from the pressure profiles, sufficed to obtain a
negligible statistical error. All particles were transported until their energy fell below 100 keV, which is
lower than the hit threshold of the BCM modules. In order to account for the dead-time of a BCM module,
only the first hit within the ±12.5 ns window, centred around the bunch passage at the IP, was considered
for any individual module.

5 Background versus measured pressure

5.1 Determination of pedestal and bump pressure

During normal operation the BIB is dominated [14] by beam-gas interactions, distributed along the LSS
and adjacent arc [11]. The gas injection causes localised pressure bumps into this distributed source. The
observed background (𝐵) is therefore parameterised as a function of the change of local pressures (Δ𝑃(𝑧𝑖))
reported by vacuum gauges at locations 𝑧𝑖:

𝐵 = 𝐶 +
∑︁
𝑖

𝜔(𝑧𝑖)Δ𝑃(𝑧𝑖), (6)

where 𝑧𝑖 , with 𝑖 = 1−4, refers to the four pressure bump locations and the pressure differences are measured
with respect to the value prior to the gas injection. The parameter 𝜔(𝑧𝑖) relates Δ𝑃(𝑧𝑖) and the change
of detected background while 𝐶 describes the pedestal BIB level, arising from beam-halo losses at the
TCT collimators and from beam-gas interactions in the absence of the pressure bump. Another minor
contribution to 𝐶, for fake jets, comes from energy depositions by cosmic rays.

The accuracy with which Δ𝑃(𝑧𝑖), as measured by a vacuum gauge, reflects the pressure at the beam line
depends on the local configuration of the vacuum equipment. In addition, the local pressure measurements
provide no information on how far the injected gas spreads in the beam pipe, i.e. what is the gas density
profile traversed by the beam. The dependence between Δ𝑃(𝑧𝑖) and the gas density, integrated along the
beam trajectory, is reflected in the value of 𝜔(𝑧𝑖), which therefore differs from the absolute BIB detection
efficiency that is discussed in Section 6. Since BIB is generated only by the incoming beam, Eq. (6) is
evaluated separately for positive and negative 𝑧.

Figure 5 shows, as an example, the BCM background rates and pressures at 58 m and 151 m for beam-1 in
fill 6239. The pedestal background, 𝐶, is determined, both for BCM and fake-jet rates, by averaging over
the grey-shaded area indicated in Figure 5. The pressures reported by the selected gauges are averaged over
the same period in order to determine the corresponding pedestal pressures. Figure 5 reveals that after the
gas injection is terminated the pressure does not promptly return to its initial value, i.e. some pressure,
additional to the pedestal, remains when further bumps are introduced at other locations. This residual,
however, is at the percent level or below and therefore has no significant impact on the value of Δ𝑃(𝑧𝑖).
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Figure 5: BCM background observed on beam-1 in fill 6239 and pressures measured by the vacuum gauges at
𝑧 = 58 m and 𝑧 = 151 m. The grey-shaded area before the first bump indicates the time periods over which the
pedestal pressure and background are averaged. The green shaded areas correspond to the averaging over the stable
pressure periods of each of the two bumps.

The background rates and pressures due to the gas injection are taken from the green-shaded time intervals,
which correspond to the stable pressure periods at the top of each bump. For each fill and pressure bump
these shaded areas are determined by eye, requiring that the quality of the pressure and background
measurements is as good and stable as possible throughout each period. In particular, periods obviously
affected by instrumental noise or beam instabilities, not related to the test itself, are excluded.

5.2 Calculation of the 𝝎(𝒛𝒊) parameters

The rate of BIB, especially the beam-gas component, depends on the bunch intensity and residual pressure
around the accelerator ring. The latter varies with the total beam intensity. This variation, however, is a
function of the 𝑧-location, and the information available is insufficient to take all local pressure changes into
account when propagating 𝐶. Therefore only the intensity decrease of the unpaired bunches is considered
when propagating 𝐶 to later times.

The pedestal 𝐶 is subtracted from the background rate 𝐵, measured at maximum bump pressure, i.e. the
periods indicated by the green shades in Figure 5. The Δ𝑃(𝑧𝑖) is determined as the difference between the
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pressure in the green- and grey-shaded periods.

Since only one pressure bump at a time is introduced per beam, 𝜔(𝑧𝑖) can be solved from Eq. (6):

𝜔(𝑧𝑖) =
𝐵 − 𝐶

Δ𝑃(𝑧𝑖)
=

Δ𝐵

Δ𝑃(𝑧𝑖)
, (7)

which is the same as Eq. (1).

Both, 𝐵 − 𝐶 and Δ𝑃(𝑧𝑖) are evaluated separately for each LB in the green shaded area.

The final 𝜔(𝑧𝑖) for each 𝑧-location is obtained by averaging over all LBs in the green-shaded area of the
corresponding pressure bump. The uncertainties on the mean values are estimated from the LB to LB
variation. Upon insertion of the constant 𝐶 and the obtained 𝜔(𝑧𝑖)-values, Eq. (6) represents a global
parameterisation of the BIB as a function of local pressure changes with time.

5.3 Parameterisation results

Figure 6 compares some representative BIB predictions, using the pressure parameterisation defined in
Eq. (6), with the observed background. The data-points outside of the shaded areas, shown in the plots,
are not included when determining the parameters 𝜔(𝑧𝑖). Thus any background anomalies that are not
explained by the pressures at the considered gauges appear as differences instead of biasing the 𝜔(𝑧𝑖)-values.
Equation (6) agrees with the data also at the right edge of each plot. This confirms that the variation of
𝐶 is negligible over the short duration of the tests, even though a correction with the overall decrease of
dynamic pressure has not been applied.

Ideally 𝜔(𝑧𝑖) should be determined from a stable period around the maximum bump pressure. For several
bumps, especially those at 19 m and 22 m, the pressure, however, could not be stabilised at a plateau value.
In these cases a range with as stable as possible a pressure was selected, while taking care to maintain a
reasonable number of events. In any case, the effect of a pressure variation should largely cancel since
𝜔(𝑧𝑖) is the ratio between the observed background and measured pressure and is evaluated for each LB
separately. Thus 𝜔(𝑧𝑖) is constant, as long as the background change is proportional to the change of
the pressure. Should, however, this proportionality be violated by a different time dependence of the two
quantities, then this will be reflected in the uncertainty of 𝜔(𝑧𝑖) such that it includes in addition to statistical
fluctuations also an unresolved systematic component. Such a non-linearity might appear, especially, at the
start and end of the gas injection when the pressure bump profile is not yet, or not any more, stabilised.

In fill 7212 the tests started with a pressure bump at 19 m. Figure 6(a) shows that initially the pressure fit
follows the rise of the background very closely. The pressure could not be perfectly stabilised at the target
level but was gradually decreasing with time, as was the background rate. When the heating of the NEG
cartridge was terminated, at about 20:00 UTC, the pressure dropped back to the initial value within about
20 minutes but the background remained at a higher level. Thus the 22 m pressure bump started with a
factor of about two offset with respect to the initial pedestal background. The level, however, still was only
about 10% of that at the top of the bump. An interesting feature of the leading edge of the 22 m pressure
bump is that the background rises more rapidly than the pressure and overshoots the parametrisation in
the first few minutes after the maximum pressure is reached. A possible reason for this is discussed in
Section 6.4. No stable pressure could be established for the 22 m bump; both pressure and background
dropped by about a factor of three over the shaded region which was considered for the averaging. When
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Figure 6: Comparison of BIB predictions using Eq. (6), with the observed (a) BCM and (c) fake-jet backgrounds
from beam-1 pressure bumps at 19 m and 22 m in fill 7212. Figures (b) and (d) show the corresponding results at
58 m and 151 m for BCM and fake jets, respectively, for beam-2 in fill 6239. Only the data in the shaded regions are
used to determine the parameters 𝐶 and 𝜔(𝑧𝑖), which are needed in Eq. (6) to produce the dotted blue histogram. The
time-dependence arises from the time variation of the local pressures 𝑃(𝑧𝑖).

the gas injection was terminated it took about 2 hours for the background and pressure to return to their
initial levels.

Figure 6(c) shows that no additional fake jets can be resolved from the pedestal for the 19 m and 22 m
pressure bumps. This is the case also for all other fills where gas was injected at these nearby locations. On
the right side of Figure 6(c) the parameterisation overestimates the data. This is due to a separation of the
beams at about 20:30 UTC, which causes a drop of the jet background from ghost collisions. Despite the
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Table 3: Values of the pedestal background (𝐶) and 𝜔(𝑧𝑖) averaged over all fills where the corresponding pressure
bump was introduced. The uncertainties include the statistical variation within any given fill but are dominated by the
fill-to-fill variation. As explained in the text, they might also include a component due to a non-linearity between
measured pressure and observed background.

BCM background rate Fake-jet background rate
Unit Beam-1 Beam-2 Beam-1 Beam-2

𝐶 Hz/1011 𝑝 0.80 ± 0.09 0.60 ± 0.07 0.012 ± 0.002 0.012 ± 0.002
𝜔(151 m) Hz/(1011 𝑝 · pbar) (4.2 ± 0.2)×10−3 (3.4 ± 0.5)×10−3 (8.8 ± 0.5)×10−5 (8.1 ± 0.8)×10−5

𝜔(58 m) Hz/(1011 𝑝 · pbar) (1.8 ± 0.3)×10−2 (2.9 ± 0.2)×10−2 (1.9 ± 0.3)×10−5 (4.0 ± 0.4)×10−5

𝜔(22 m) Hz/(1011 𝑝 · pbar) 0.82 ± 0.03 0.610 ± 0.006 — —
𝜔(19 m) Hz/(1011 𝑝 · pbar) 1.53 ± 0.05 0.80 ± 0.04 — —

applied vertex veto some contribution of these remains in the pedestal that is derived from the grey-shaded
period, which corresponds to a time when the beams were still colliding head-on.

Contrary to the nearby bumps, pressures were stable for the 58 m and 151 m bumps in fill 6239, shown
in Figures 6(b) and 6(d) for BCM and fake-jet rates, respectively. The pressure parameterisations follow
very closely the BCM backgrounds, except for a minor overshoot on the rising edge of the 58 m bump and
a slightly faster return to the initial level. Excess jet rates are clearly resolved for these distant pressure
bumps, even though the pedestal level is rather noisy.

A common feature of several pressure bumps is that when the outgassing is stopped, the background decays
slower than the measured pressure. This effect is particularly clear at 19 m and less pronounced or totally
absent at the three other locations. A possible explanation is that some gas that has diffused far into the
beam pipe is pumped out slower, i.e. when the outgassing from the NEG is stopped the low pressure is
quickly re-established in the vicinity of the NEG cartridge where the gauges and additional ion pumps are
located. Further away along the beam pipe a small fraction of the injected gas seems to reside for longer,
maintaining a background excess. This is discussed in more detail in Section 6.

The 𝜔(𝑧𝑖) values obtained from Eq. (7) and averaged over all relevant fills are listed in Table 3. They
have units of Hz/1011 𝑝 per pbar because they express the change of the observed background rate with
respect to the measured N2-equivalent pressure change. Since the 𝜔(𝑧𝑖)-values are based on the pressure
measurement and not on the actual amount of additional gas traversed by the beam, they are not exactly
comparable for locations with different vacuum gauge configurations. Nevertheless, they still give some
indications of the relative importance of background sources as a function of 𝑧. The general trend is that the
efficiency of the BCM to detect beam-gas events decreases as the distance between the pressure bump and
the IP increases. This is expected from the fact that the BCM probes the BIB at very small radii; even from
beam-gas collisions only a few metres from the IP some secondaries can reach the radial range of the BCM
sensors. This is consistent with simulations [11], where the efficiency is found to increase between 𝑧 ≈ 5 m
and 𝑧 ≈ 10 m and then stay roughly constant up to 𝑧 ≈ 25 m. Beyond this the attenuation in accelerator
components, notably the TAS, and the lateral spread of the shower start to reduce the probability of a BCM
module to be hit.

One striking observation that can be made from Table 3 is that for the BCM background, 𝜔(19 m) and
𝜔(22 m) are significantly higher for beam-1 than for beam-2 although the beam line, the instrumentation
and the BCM detector are symmetric on both sides. This finding, which here is based purely on data, has
implications for the discussion in Section 6.
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Table 4: Ratio (BCM/Jet) of the average values given in Table 3. The simulated ratios are derived from Tables 8 and 9
in Section 6, i.e. their uncertainties include only the statistical errors given there. No simulations exist for the value of
𝐶.

Position Beam-1 Beam-2 Simulation
𝐶 64±11 49±8 N.a.

58 m 950±230 740±80 790 ± 45
151 m 48±3 41±7 52 ± 2

Contrary to the BCM, the probability to observe fake jets increases with distance from the IP. This is
explained by the fact that fake jets are produced by energetic muons that reach the calorimeter radii only if
they are produced sufficiently far away. In particular, if they originate from beyond the D1 magnet they are
deflected by its field, which increases their spread in the horizontal plane.

The rates reported in Table 3 provide a purely experimental determination of the relative sensitivity of
ATLAS to detect BIB through BCM trigger and fake-jet rates: since for any given position the backgrounds
originate from the same pressure distribution, all unknown factors, especially the pressure profile, cancel
from the ratios of the BCM and fake-jet rates. These ratios, presented in Table 4, reveal several interesting
features:

• The ratio of the constant terms is slightly higher for beam-1. Table 3 shows that this difference is
entirely due to an asymmetric BCM background. The BCM sensitivity is highest for nearby beam-gas
events, which do not produce fake jets. Thus a beam-1/beam-2 ratio larger than one suggests that
there are more nearby beam gas events on the incoming beam-1 side, i.e. for an unknown reason the
vacuum in the vicinity of ATLAS seems worse on that side.

• For both distant pressure bump locations the BCM/Jet ratios are consistent between the two beams,
as would be expected from the symmetry of the beam line and the ATLAS detector.

• The BCM/fake-jet ratio is almost 20 times larger for beam-gas events at 58 m than at 151 m.

• The agreement with simulations is nearly perfect. Since the simulations are done with the same
methods as in Ref. [11], these measurements provide a valuable benchmark for that earlier work.

• The most interesting observation arises from a comparison with Ref. [14], where the ATLAS beam
backgrounds resulting from proton losses on the TCTs, at |𝑧 | ≈145–148 m from the IP, are reported.
In those data, at 𝛽∗ = 40 cm, the BCM/fake-jet ratio was found to be 5.4± 0.3 for beam-1 and
6.1± 0.3 for beam-2. The corresponding ratios in Table 4 for the 151 m pressure bump are higher
by a factor of about seven. The explanation of this substantial difference is deferred to the end of
Section 8.1.

6 Absolute beam-gas detection efficiency

6.1 Definition

The values of 𝜔(𝑧𝑖), derived from Eq. (7), are based entirely on data and show that the observed background
rates are strongly correlated with the magnitude of the locally introduced pressure bumps. Although they
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provide an experimental determination of the BCM/fake-jet background ratio as a function of the pressure
bump location, they do not allow for determining the real efficiency to detect beam-gas events by the BCM
(𝜀BCM(𝑧)) or as fake jets (𝜀JET(𝑧)) from different 𝑧-locations. Furthermore, since the 𝜔(𝑧𝑖) are specific to
the local configuration of vacuum gauges and NEG cartridges used to inject the gas, they are not even
suited to accurately determine the relative efficiency between different 𝑧-locations.

The generally good agreement of the time-dependence between the observed background and the measured
pressure, seen in Figure 6, confirms that the introduced pressure bumps dominate the background rates.
Other contributions are negligible, especially for the BCM.

The ultimate goal of these pressure bump tests was to determine the absolute efficiency of ATLAS to detect
beam-gas events as a function of their 𝑧-location. This, however, requires that 𝑅BG is known for each bump.
Once 𝑅BG is determined, 𝜀BCM(𝑧) and 𝜀JET(𝑧) are obtained from Eq. (2), i.e. as the ratio between the
observed background rate increase and the additional 𝑅BG due to the introduction of the pressure bump.

6.2 Absolute scale of the pressure profiles

The pressure profile calculations, described in Section 3.5, are performed for a single outgassing rate of
the NEG cartridge. In order to adjust the calculations to the conditions of a particular fill the pressure
measurement provided by the vacuum gauges is invoked: the calculated density profiles (𝜌calculated(𝑧)) are
rescaled, as illustrated in Figure 7(a), such that the calculated 𝑃 at the gauge position matches the measured
𝑃, averaged over the period considered for the analysis. Formally the rescaling can be described as

𝜌rescaled(𝑧) =
𝑃measured(gauge)
𝑃calculated(gauge) 𝜌calculated(𝑧). (8)

The right side of Eq. (8) is equivalent to the pressure ratio and density integral in the denominator of Eq. (2).
The rescaling brings two advantages:

1. it accounts for the measured pressure data, and

2. it renders the single pressure profile calculation universal, i.e. the same profile, at a given location, is
equally applicable to all fills.

It is important to emphasise that this rescaling procedure is in no sense a correction introduced to
compensate for deficiencies of the calculation. It is purely a factor applied to adjust the assumptions made
in the calculations to the observed conditions of a particular fill.

The gauges report the nitrogen equivalent pressure (𝑃Neq). In order to compare this with the calculated
density of residual gas molecules 𝑛𝑖, the latter is converted into 𝑃Neq at room temperature using the
formula

𝑃Neq = 𝑘𝐵𝑇
∑︁
𝑖

𝑟𝑖𝑛𝑖 , (9)

where 𝑘𝐵 is the Boltzmann constant and 𝑟𝑖 the gas-dependent gauge response taken from Table 2. The
sum runs over all gas species. The ratio of measured and calculated 𝑃Neq is used in Eq. (8) to perform
the rescaling of the calculated gas density. The MolFlow+ simulations provide the pressure at the gauge
location and consider only the injected hydrogen, ignoring the other gases, which contribute only to the
pedestal pressure. In this case only one single gas contributes to the pressure change, and the rescaling
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Figure 7: Illustration of the profile rescaling to the measured pressures in the case of beam-2. (a) MolFlow+-simulated
pressure profiles at 19 m assuming 𝛼 = 5×10−3 before and after rescaling the calculations to the pressure reported by
the vacuum gauge in fill 7212. The neon profile, shown in the figure, is normalised to a total of 6×1012 atoms, as is
discussed in Section 6.4. (b) Vasco-calculated pressure profiles at 151 m before and after rescaling the value at the
profile maximum to the value reported by the VGPB935 gauge in fill 6239.

procedure is straightforward. The procedure is slightly more complicated at 58 m and 151 m where Vasco
is used to calculate the pressure profiles. Vasco takes into account also the other gases, which contribute to
the pressure in the absence of the gas injection, so the breakdown of 𝑃Neq into individual gas densities is
ambiguous. The injected gas, however, dominates the pressure in the bump by orders of magnitude. Since
it is assumed to be hydrogen, only the partial pressure of hydrogen is changed in the rescaling procedure.
Contrary to MolFlow+, Vasco calculations do not consider the gauge explicitly. Thus the beam-line
pressure at the 𝑧-location of the gauge is compared with the measured value, i.e. 𝑃calculated(gauge) is
replaced by 𝑃calculated(𝑧gauge) in Eq. (8). The pressure profiles for the bump at 𝑧 = 151 m are shown in
Figure 7(b). At this location two vacuum gauges, separated by only 25 cm, provide pressure measurements.
A significant difference between the values from the two gauges is seen. The gauge VGPB935 is located
next to the NEG cartridge used to emit the gas and is therefore considered to provide the more relevant
measurement. The mismatch, seen in Figure 7(b), between the rescaled profile and the pressure reported by
the VGPB938 gauge is discussed in Section 7.1.3.

The calculated pressure profiles are rescaled such that they correspond to the conditions of a particular fill.
Then the integral over the rescaled profiles is used in Eq. (4) to determine the increase of 𝑅BG due to the
introduction of the bump. The results, as a function of 𝛼, are shown in Figure 8 for all nearby, i.e. 19 m and
22 m, bumps. For each fill and pressure bump, the 𝑅BG that equals the observed BCM background rate
increase is indicated on the curves by an asterisk. For all fills these points agree rather well on a unique 𝛼

value for any given bump location. An 𝑅BG lower than the indicated value is unphysical, as it would imply
that more beam-gas events are detected than produced. The 𝛼 values for which MolFlow+ gives the same
𝑅BG as Vasco are indicated by the open circles. With the exception of the 22 m pressure bump in beam-2,
they all fall into the unphysical region.

22



α

4−10 3−10 2−10

 p
]

11
B

ea
m

-g
as

 r
at

e 
[H

z/
10

10

210

Fill 4905
Fill 5331
Fill 7212

=1.0BCMε
VASCO result

Beam-1 bump at 19 m
ATLAS

(a)

α

4−10 3−10 2−10

 p
]

11
B

ea
m

-g
as

 r
at

e 
[H

z/
10

10

210

Fill 5005
Fill 5331
Fill 7212

=1.0BCMε
VASCO result

Beam-1 bump at 22 m
ATLAS

(b)

α

4−10 3−10 2−10

 p
]

11
B

ea
m

-g
as

 r
at

e 
[H

z/
10

10

210

Fill 4905
Fill 5331
Fill 7212

=1.0BCMε
VASCO result

Beam-2 bump at 19 m
ATLAS

(c)

α

4−10 3−10 2−10

 p
]

11
B

ea
m

-g
as

 r
at

e 
[H

z/
10

10

210

Fill 5331

Fill 7212

=1.0BCMε

VASCO result

Beam-2 bump at 22 m
ATLAS

(d)

Figure 8: Beam gas rates in the 19 m and 22 m bumps, calculated from the pressure profiles obtained with MolFlow+
when assuming different values of 𝛼. The dashed vertical line indicates the standard assumption for 𝛼 and the
adjacent shade shows the reasonable range of downward variation. The asterisks indicate the point where 𝑅BG
equals the observed BCM background rate increase in the given fill, i.e. 𝜀BCM (𝑧) = 1.0. The dashed part of the lines
represents the unphysical region 𝜀BCM (𝑧) > 1.0. The open circles show, for each individual fill, the 𝛼 values for
which MolFlow+ gives the same 𝑅BG as Vasco.

6.3 Determination of BIB detection efficiencies

Tables 5 and 6 give, for each individual fill, the BIB detection efficiencies that are obtained as the ratio
between observed additional background events and the estimated 𝑅BG at the pressure bump location. It
is expected that 𝛼 is around 5×10−3 for gases, including H2, which are pumped by the NEG coating of
the beam-pipe wall. Therefore the MolFlow+ profiles corresponding to 𝛼 = 5×10−3 are used for the
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Table 5: Ratio between the BCM background rate and the estimated 𝑅BG due to the pressure bump. A ’—’ means
that no bump was introduced in that position in the given fill. The uncertainties are based on the LB-to-LB variation,
i.e. are mostly statistical but reflect also a possible non-linearity between the pressure and background measurements.
The values for the 19 m and 22 m bumps correspond to 𝛼 = 5×10−3. As discussed in the text, as efficiencies they are
unphysical, but they serve here only to indicate the consistency of data obtained in different fills.

Position, beam-1
LHC Fill 19 m 22 m 58 m 151 m
4905 4.9 ± 0.4 — (2.84 ± 0.03)×10−2 —
5005 — 1.65 ± 0.02 (2.99 ± 0.02)×10−2 —
5331 5.5 ± 0.2 1.7 ± 0.2 (2.63 ± 0.03)×10−2 (6.34 ± 0.08)×10−3

6239 — — (3.13 ± 0.03)×10−2 (7.29 ± 0.04)×10−3

7212 5.5 ± 0.3 1.7 ± 0.2 — —

Position, beam-2
LHC Fill 19 m 22 m 58 m 151 m
4905 2.9 ± 0.3 — (3.29 ± 0.03)×10−2 —
5005 — — (4.07 ± 0.03)×10−2 —
5331 3.0 ± 0.4 1.23 ± 0.07 (4.7 ± 0.1)×10−2 (4.88 ± 0.06)×10−3

6239 — — (5.46 ± 0.03)×10−2 (6.47 ± 0.07)×10−3

7212 2.69 ± 0.08 1.27 ± 0.01 — —

Table 6: Ratio between the fake-jet background rate and the estimated 𝑅BG due to the pressure bump. A ’—’ means
that no bump was introduced in that position in the given fill. The uncertainties are based on the LB-to-LB variation,
i.e. are mostly statistical but reflect also a possible non-linearity between the pressure and background measurements.
No ratios are given for the 19 m and 22 m bumps, where no excess of fake jets could be resolved from the pedestal
background.

Position, beam-1 Position, beam-2
LHC Fill 58 m 151 m 58 m 151 m
4905 (2.6 ± 0.6)×10−5 — (5.3 ± 0.8)×10−5 —
5005 (2.7 ± 0.4)×10−5 — (6.3 ± 0.5)×10−5 —
5331 (1.5 ± 0.8)×10−5 (1.4 ± 0.1)×10−4 (6.7 ± 0.7)×10−5 (1.20 ± 0.08)×10−4

6239 (2.6 ± 0.5)×10−5 (1.49 ± 0.07)×10−4 (7.0 ± 0.5)×10−5 (1.46 ± 0.06)×10−4

nearby pressure bumps. The pedestals of 𝑅BG and the background event rate, in the absence of a pressure
bump, are determined from the grey-shaded areas in Figure 6 (and equivalent figures for other fills) and
are subtracted before forming the ratio. Despite varying beam conditions, the efficiencies in different fills
are consistent to better than 30%. The only exception is the 𝜀BCM(58 m) for beam-2, which is about 60%
higher in fill 6239 than in 4905.

The 𝜀BCM(19 m) and 𝜀BCM(22 m) values given in Table 5 exceed unity by a significant amount. This is
obviously unphysical and therefore suggests that the density of gas traversed by the beam is severely
underestimated. Figure 8 indicates that 𝛼 should be much smaller than assumed in order to increase 𝑅BG
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Figure 9: Beam-gas induced background detection efficiency of the BCM as a function of 𝛼 assumed in the MolFlow+
simulations. The dashed vertical line indicates the standard assumption for 𝛼, and the adjacent grey shade shows
the reasonable range of downward variation. The values are averaged over all fills in which a pressure bump at
the indicated location was introduced, i.e. those shown in Figure 8. In all cases the error bars due to the fill-to-fill
variation are smaller than the symbols. The red-shaded area indicates the unphysical region where the number of
detected background events would exceed the number of produced beam-gas collisions. The simulated 𝜀BCM (𝑧)
should not depend on 𝛼, but a weak dependence arises because the 𝑧-locations of the events are sampled from the
pressure profiles shown in Figure 4. Especially at 19 m the average of this distribution moves away from the IP when
𝛼 increases.

to the same level as the observed background. This is even better illustrated by Figure 9 where 𝜀BCM(𝑧),
averaged over all relevant fills, is plotted as a function of 𝛼.

Several interesting observations can be made from Figure 9:

• for both locations, 𝜀BCM(𝑧) for beam-1 is systematically higher than for beam-2,
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• the dependence of 𝜀BCM(𝑧) on 𝛼 is much stronger for the 19 m than for the 22 m pressure bumps,

• the Fluka simulations predict almost equal 𝜀BCM(𝑧) for beam-gas events at the 19 m and 22 m
locations.

The last observation is particularly interesting: while the absolute rates obtained from the simulations
have substantial uncertainties, many of these cancel from the ratio 𝜀BCM(19 m)/𝜀BCM(22 m), notably
those associated with the BCM hit and trigger simulation, beam-gas event generation and accuracy of
the beam-line geometry description at 𝑧 < 19 m. Therefore this ratio is considered to be a much more
reliable prediction than the absolute value of 𝜀BCM(𝑧), obtained from the simulations. This means that
𝜀BCM(19 m) = 𝜀BCM(22 m) can be considered a rather strong constraint, although it arises from the Fluka
simulations.

Figure 9 is based on the MolFlow+ simulations, assuming that only hydrogen is released from the NEG
cartridge. The points of intersection of the curves suggest that 𝛼 must be slightly below 10−3 for beam-2
and about three times lower for beam-1 in order to obtain 𝜀BCM(19 m) = 𝜀BCM(22 m) for a given beam.

Table 3 reveals that the ratio between BCM background and measured pressure is highest for the 19 m
bump on the beam-1 side, lowest for the 22 m bump on the beam-2 side and intermediate for the two other
nearby locations. This is qualitatively consistent with the order of the curves in Figure 9 at 𝛼 = 5×10−3, i.e.
the purely data-driven results also indicate a significant difference for the two sides of ATLAS.

An independent verification of the calculated pressure profiles is obtained by monitoring the pressure
increase at 19 m when gas is injected at 22 m and vice versa. Since MolFlow+ provides the pressure at the
gauges, this ratio can also be derived from the pressure simulations. A comparison of these measured and
simulated ratios reveals that the best agreement is obtained for 𝛼 < 10−3. This value, as well as the fact that
it is found to be lower for beam-1 than beam-2, is in good agreement with Figure 9.

Such low values of 𝛼, and a large difference on the two sides of the IP, do not seem plausible [28]. One
possible explanation for the apparently low and non-uniform 𝛼 is that in addition to hydrogen, another gas,
not considered in the MolFlow+ simulations, was emitted from the NEG cartridge.

6.4 Possible neon contribution

During each annual technical stop, the experimental beam pipe within |𝑧 | < 22 m is filled with ultra-pure
neon to atmospheric pressure [35] in order to protect the pipe walls from accidental collapse during
maintenance of the ATLAS experiment. Although noble gases are not pumped by NEGs, it is possible
that some neon atoms reside on the large surface of very porous material of the NEG cartridge [36]. Upon
heating, this neon would be released alongside the hydrogen.

Such a two-gas hypothesis could provide a plausible qualitative explanation for the apparently low 𝛼: 𝛼
could well be close to the expected value of 5×10−3 for H2, but since it is zero for neon, a sizeable amount
of emitted neon could result in an apparent5 𝛼 around, or even below, 10−3.

There are two reasons why even a small amount of neon can have a significant impact on 𝜀BCM(𝑧):

5 Apparent 𝛼 refers to Figure 9, i.e. it is the 𝛼 that produces the observed 𝜀BCM (𝑧).
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1. Table 2 shows that the inelastic cross section for 𝑝-Ne scattering is five times larger than for 𝑝-H2
but for the same density of molecules the vacuum gauge will report two times higher pressure for
hydrogen than for neon. Thus, for the same measured pressure, 𝑅BG in pure neon is about ten times
higher than in pure H2. In addition, the Fluka simulations indicate that, due to the higher particle
multiplicity, the efficiency of the BCM to detect 𝑝-Ne events is about 15% higher than for 𝑝-H
collisions.

2. Since neon is not removed by the NEG coating of the beam pipe, i.e. 𝛼 = 0, its distribution can
be expected to be much wider in 𝑧 than for hydrogen. This is the case, especially, for the 19 m
location, where the neon flow towards the IP is restricted only by the ion pump at |𝑧 | = 3.7 m. As
a consequence the ratio between the total amount of gas traversed by the beam and the pressure
measured at the gauge is likely to be much larger than for hydrogen.

Hydrogen is quickly absorbed by the NEG coating of the beam pipe, but if neon is emitted from the NEG at
𝑧 = −19 m it will form a wide bump between 𝑧 ≈ −8 m and 𝑧 ≈ −19 m, as indicated in Figure 7(a). In order
to be removed, this neon has to diffuse to the ion pumps, so it will reside in the beam pipe for a longer time
than hydrogen. The neon profile shown in Figure 7(a) is obtained from MolFlow+, but since the rate of
neon emission is not known, the (possibly time-dependent) mixing ratio of hydrogen and neon cannot be
derived by combining the pressure data with the simulations. Thus only an approximate range of 𝑅BG can
be determined for the mixture, as is discussed in Section 7.1.2.

In the |𝑧 |-region where the neon is contained, according to the MolFlow+ simulations, 𝜀BCM(𝑧) is
roughly constant [11]. Thus Eq. (4) can be used to estimate that ∼ 6×1012 neon atoms are sufficient to
lower 𝜀BCM(19 m) below unity even if 𝛼 is 5×10−3 for hydrogen. In order to verify if neon could be a
viable explanation for the observations, dedicated laboratory tests were carried out by the CERN vacuum
group [37]. In these tests a NEG cartridge was exposed to pure neon at atmospheric pressure for three days
before re-establishing the vacuum. Then the heating on the NEG cartridge was turned on and released gas
composition was monitored with a residual gas analyser and the pressure by a hot cathode vacuum gauge.
The tests indicated that about ∼ 5×1013 neon atoms were released from the cartridge over a 55 minute
period of heating. This result has large uncertainties but it exceeds by almost an order of magnitude the
amount needed to explain the present results. A detailed time dependence of the neon emission, however,
is not determined in these tests. It is not clear if the neon is emitted gradually such that the total amount
would scale with the heating time or predominantly soon after the heating of the NEG cartridge starts. The
early rise and overshoot of the background in Figure 6(a), with respect to Eq. (6), suggests that a significant
fraction of the neon is released promptly when the heating of the NEG starts: 𝜔(22 m) is derived from
Eq. (7) after this overshoot. If hydrogen dominates during that time, 𝜔(22 m) will underestimate the BIB
from the earlier gas composition if that is richer in neon.

No such overshoot is seen for the 19 m bump in Figure 6(a). A possible explanation is provided by the
longer residence time, discussed above: compared to the 22 m bump, the total amount of neon varies
less over time for the 19 m bump, i.e. neon contributes also during the time-interval used to determine
𝜔(19 m). This argument is also consistent with the discrepancy between the background rate and the
pressure parameterisation seen in Figure 6(a) after the 19 m bump: when the NEG heating is terminated,
neon probably still resides far from the ion pumps, e.g. around |𝑧 | ≈ 10 − 15 m, and causes an excess of
beam-gas events.

Another observation that supports the hypothesis of neon emission is that a small pressure increase is
observed on the other side of the TAS if the gas is injected at either 19 m or 22 m. The MolFlow+ profiles
shown in Figure 7(a) indicate that when the NEG at 𝑧 = −19 m is heated, practically none of the emitted
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hydrogen can traverse the NEG-coated TAS if 𝛼 = 5×10−3 is assumed. However, the neon pressure on the
opposite side, at 𝑧 = −22 m, is non-zero and sufficient to cause the pressure gradient through the TAS to
appear equivalent to 𝛼 ≲ 10−3. Without the annular pump at 3.7 m, the neon from an injection at |𝑧 | = 19 m
would spread to the other side of the IP, cause some increase of BIB in the opposite beam, and thereby
provide firm evidence for the two-gas hypothesis. Unfortunately the pump prevents this, as evidenced by
the drop of the MolFlow+-simulated neon pressure for |𝑧 | ≲ 10 m in Figure 7(a).

Although these arguments are consistent with the neon emission hypothesis, and the laboratory measurements
indicate the right order of magnitude of released neon atoms, they cannot be taken as a firm proof for
the neon hypothesis but merely as an indication that it is a likely explanation for the unphysically high
𝜀BCM(19 m) and 𝜀BCM(22 m) values in Table 5. A firm verification would require further tests with a
detailed analysis of the residual gas composition.

One feature, however, remains unexplained: the injection of neon takes place on the incoming beam-1 side,
close to the 22 m NEG cartridge. Although this creates an asymmetry between the sides, it is unclear why
more neon seems to be released from the NEG cartridge on the beam-1 side, although the entire ATLAS
beam pipe is filled with neon at atmospheric pressure for several months during the annual technical stop.

7 Discussion of the level of systematic uncertainties

7.1 Uncertainties affecting the measured values

7.1.1 Common effects

The statistical errors, reported, e.g., in Tables 5 and 6, are in general negligible compared to systematic
uncertainties, which comprise several contributions. Given the nature of the problem and, especially, the
incomplete knowledge of the injected gas composition, only a qualitative discussion of the magnitude of
the systematic uncertainties is provided.

In some cases, when the observed BIB is not well correlated with the pressure change, the 𝜔-factor obtained
from Eq. (7) depends on the averaging range. Such deviations appear, especially, at the rising and falling
edges of the pressure bumps. For instance, if the averaging range for the 22 m pressure bump in Figure 6(a)
would be moved earlier a higher value would be obtained. The effect of small variations of the averaging
ranges was investigated and, as long as the rising and falling edges were excluded, the effect on the results
was found to be negligible. A possible bias caused by erroneously excluding periods that appear suspicious
would be revealed when averaging over several fills. The uncertainties reported in Table 3 are dominated by
the fill-to-fill variation, and they are all of the order of 10% or less. Thus, any significant selection bias in
the analysed fills can be excluded. As the same averaging periods are used in Section 6 to determine the
absolute efficiencies, these fill-to-fill uncertainties apply also to 𝜀BCM(𝑧) and 𝜀JET(𝑧) and are included in
their statistical errors.

A systematic uncertainty that affects both the 𝜔 factors and absolute efficiencies is the choice and accuracy
of the vacuum gauge used for the pressure measurement. For the 19 m and 22 m bumps the gauges that
provided the most consistent output in all relevant fills and for both beams were selected. Using an
alternative gauge has an average effect of 25% at the 22 m location and no effect at all at 19 m. This is
consistent with the expected gauge uncertainty of <10% for VGI gauges, used at 19 m and <30% for VGPB
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gauges, used at 22 m. A gauge uncertainty of <30% is assumed also for the VGPB gauges used at the 58 m
and 151 m locations.

A minor contribution to the uncertainty of the absolute efficiencies arises from the cross sections listed
in Table 2. These affect 𝑅BG through Eq. (4) and thereby the measured values of 𝜀BCM(𝑧) and 𝜀JET(𝑧).
CH4, CO and CO2 contribute only to the pedestal beam-gas rate, which cancels from the final result. The
uncertainty associated with the possibly present neon is entirely dominated by the lack of knowledge of the
amount of that gas, as discussed in Section 7.1.2. Thus only the cross-section uncertainty of 𝑝-H2 is relevant.
For this the values in Table 2 can be compared with the proton–proton cross section from Ref. [38], which
is about 38 mb at 6.5 TeV laboratory momentum. This is consistent with Table 2, and the fit in Ref. [38]
suggests that the uncertainty is less than 5%, which is negligible compared to other contributions.

7.1.2 Nearby pressure bumps at 19 m and 22 m

It is evident from Section 6.4 that the possible emission of another gas, notably neon, in addition to
hydrogen, constitutes a major uncertainty impacting the measured values of 𝜀BCM(19 m) and 𝜀BCM(22 m).
Within this two-gas hypothesis not enough information is available to establish anything other than an
estimated range. Figure 9 indicates that this range is rather limited: clearly 𝑅BG cannot exceed the rate of
detected additional events, i.e. the requirement 𝜀BCM(𝑧) ≤ 1 defines the upper limit. Other possible sources
of spurious BCM background triggers, e.g. noise, ghost collisions or afterglow, are not affected by the
introduction of the pressure bump and therefore are removed by the pedestal subtraction and by rejecting
data in periods that are obviously affected by noise bursts or beam instabilities. The good consistency
between individual fills, seen in Table 5, indicates that this cleaning is efficient and no significant anomalies
remain in the data.

A lower bound for 𝜀BCM(𝑧) is more complicated to establish since in the two-gas hypothesis it arises from
the maximum amount of neon that could contribute to the background. Figure 7(a) indicates that neon
emitted at 19 m would create a wide pressure distribution extending from |𝑧 | ≈ 8 m to the TAS, which
coincides with the region where 𝜀BCM(𝑧) is roughly constant. The volume of the beam pipe in this 𝑧-range
is ∼70 litres. Thus every 1012 neon atoms would increase 𝑅BG by about 7 Hz/1011 𝑝. This can be compared
with the curves in Figure 8: the highest 𝑅BG required for 𝜀BCM(19 m) = 1 is ∼50 Hz/1011 𝑝 as indicated by
an asterisk in Figure 8(a) for fill 5331. The laboratory tests indicate that up to 5×1013 neon atoms could be
emitted by the NEG cartridge upon heating. Taking this as the maximum amount that could contribute
would increase 𝑅BG by about 350 Hz/1011 𝑝. This adds to the ∼10 Hz/1011 𝑝 of 𝑝-H events indicated
in Figure 8(a) if 𝛼 is assumed to be in the expected range ∼ 2.5 − 5×10−3. Reaching 𝜀BCM(19 m) = 1
requires 𝑅BG = 50 Hz/1011 𝑝, which means that 360 Hz/1011 𝑝 corresponds to 𝜀BCM(19 m) ≳ 0.15. In
all other cases 350 Hz of additional rate would have a larger effect. Since the Fluka prediction of
𝜀BCM(19 m) = 𝜀BCM(22 m) is considered reliable and as there is no reason to believe that 𝜀BCM(𝑧) would
be different for the two beams, the highest lower limit of 𝜀BCM(𝑧) applies to all cases. This implies that for
the other pressure bumps the role of the neon must be smaller, which is consistent with Figure 9.

7.1.3 Distant pressure bumps at 58 m and 151 m

For both the 58 m and the 151 m pressure bumps, 𝜀BCM(𝑧) is far below unity, i.e. this hard limit does not
provide any constraint. On the other hand, these positions are not affected by the annual neon injection, so
the assumption that hydrogen is emitted predominantly is justified.
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Only Vasco results are available for the distant pressure bump locations. The accuracy of these can be
estimated by comparing Vasco calculations with the more detailed MolFlow+ simulation results for the
nearby bumps. Figure 8 shows that 𝑅BG values obtained from Vasco are rather consistent with MolFlow+
predictions when 𝛼 ≈ 5×10−3 is assumed for the latter; for the 19 m pressure bumps Vasco gives an only
8% higher 𝑅BG while for the 22 m position it is 23% lower. This good agreement seen for the nearby bumps
provides confidence in the pressure profiles produced by Vasco for the distant bumps.

Since the maximum pressure of the Vasco-calculated profile is scaled to the local gauge reading, an
uncertainty arises from how well the measured pressure represents the maximum at the beam line. At both
distant locations two nearby vacuum gauges are available. One is close to the NEG cartridge used for the
gas injection while the other is about 25 cm away on the other side of a sector valve. Both gauges are on
chimneys, recessed from the beam line. In the absence of the pressure bump they report very consistent
values. When the gas is injected the pressure measurements differ significantly. At both locations the gauge
next to the NEG is used and can be assumed to provide an upper estimate for the pressure at the beam line.
At 58 m the neighbouring gauge remains reasonably consistent with the steep edge of the pressure profile
but for the 151 m bump, shown in Figure 7(b), the pressures reported by the two adjacent gauges differ by
more than an order of magnitude. This effect is systematically seen for all fills and both beams at the 151 m
location.

In the extreme case of using VGPB938 as the absolute pressure reference at 151 m, 𝑅BG would increase
by an order of magnitude. The VGPB935 gauge, however, is assumed to provide a better estimate of the
pressure at the beam line, although it could slightly overestimate 𝑅BG: the MolFlow+ results shown in
Figure 4 suggest that the gauge on the same chimney as the NEG cartridge overestimates the beam-line
pressure by 30–150%, depending on 𝛼. The equipment configuration at the nearby locations, however, is
very different from that at 151 m. In particular all chimneys have a NEG coating, which is not the case at
151 m. Thus the relevant difference should be that seen for the smallest 𝛼-values, i.e. ∼50% at most.

It is evident from Figure 7(b) that such a 50% correction is not nearly sufficient to establish agreement with
the VGPB938 pressure measurement. The origin of this discrepancy is most likely in the local configuration
of the vacuum equipment: the two gauges are located on different chimneys and the one housing VGPB938
has a much smaller diameter than the beam pipe and therefore lower conductance. Thus the pressure drop
along the chimney is larger than along the beam line. This is also consistent with the difference appearing
only when the gas is injected. This explanation implies that the pressure measured by VGPB938 is not
relevant, i.e. no additional uncertainty is derived from it.

An alternative explanation for the discrepancy between the two gauges is that it is due to an overestimate of
the profile width: if the slope is underestimated on the side of the cold magnet, the pressure at VGPB938 is
overestimated. As the pressure scale in the plot is logarithmic, a steeper slope, passing through the two
measurements, would reduce 𝑅BG by only ∼30%.

Both uncertainties, discussed above, are asymmetric and tend in the direction of 𝑅BG being overestimated.
Although the discrepancy between the two neighbouring gauges is significantly smaller at the 58 m location,
it seems prudent to assign the same uncertainties there as at 151 m.

Table 7 summarises the measurement-related uncertainties discussed above and in Section 7.1.2. For the
nearby pressure bumps the unknown neon contribution dominates all other effects. For the distant bumps it
is not obvious how the uncertainties should be combined. The gauge accuracy can be assumed to represent
a Gaussian uncertainty distribution, centred at the measured value. The asymmetric uncertainties, however,
indicate the possible bias by which the amount of gas might be overestimated. All these uncertainty
components are independent. Due to their different natures it appears justified to add the upper and lower
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Table 7: Summary of uncertainties affecting the determined values of 𝜀BCM (𝑧) and 𝜀JET (𝑧). The first two contributions
apply also to the 𝜔(𝑧𝑖) values discussed on Section 5. The fill-to-fill variation is included in the statistical errors of
Tables 3, 8 and 9. The gauge accuracy is best at 19 m where a VGI-type gauge is used. For the effective 𝛼 no central
value is determined; instead the uncertainty is expressed as a range of 𝜀BCM (𝑧) with the lower limit corresponding to
the largest realistic contribution of neon. For the nearby bumps the last two uncertainties, which are related to the
bump shape, are considered to be part of the effective 𝛼 uncertainty.

|𝑧|-position 19 m 22 m 58 m & 151 m
Proton-H2 cross section 5% 5% 5%
Fill-to-fill 10% 10% 10%
Gauge uncertainty 10% 30% 30%
Effective 𝛼 0.15 − 1.0 0.15 − 1.0 n.a.
Gauge to profile maximum — — 0 − 50%
Bump shape — — 0 − 30%

limits separately in quadrature. This yields a combined uncertainty range from −30% to 70%, which means
that the analysis is slightly biased towards underestimating the BIB detection efficiency.

7.2 Uncertainties of the Fluka simulations

Systematic uncertainties affecting the Fluka simulations arise from the accuracy of modelling the beam-gas
interactions, the geometry description, the shower transport and the signal reconstruction in the detectors.
All of these are difficult to estimate and disentangle since they depend very much on the particular
situation.

The formation of the BCM background trigger signature is based on a simple coincidence of two energy
depositions in thin diamond sensors. The main uncertainty is in the threshold ionisation to record a hit.
Previous simulation studies [11] indicate that within a reasonable range of thresholds the rate varies only
by a few percent, which is negligible compared with the overall uncertainties of the shower simulations.

The jet reconstruction is approximated in the Fluka simulations by an evaluation of local energy
deposition [11]. It was shown that the energy sum depends only weakly on the volume over which the
integration of deposited energy is performed. It is, however, not possible to determine the overall accuracy
of this method, since it is merged with all other simulation uncertainties, which are discussed below.

Extensive comparisons [39] have indicated that the simulations agree with radiation background measure-
ments within 20–30% when the primary source is 𝑝𝑝 collisions at the IP. It is not evident to what extent this
applies to BIB simulations, where the showers extend over a much larger distance and have quite different
characteristics.

The BCM records BIB very close to the beam pipe, where the particle fluences originate mainly from
interactions in the beam-pipe material and other accelerator elements. Thus it can be assumed that the
dominant uncertainty arises from the accuracy with which the beam line is described in the simulation
models. Secondary particle yields and angular distributions of the primary beam-gas interaction are another
significant source of uncertainty for the BCM rates. For the nearby pressure bumps the uncertainties
evaluated for 𝑝𝑝 collisions at the IP should give an indication of the error margin. Based on this a 30%
uncertainty is assigned to the simulated 𝜀BCM(19 m) and 𝜀BCM(22 m) values.
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A minor asymmetric uncertainty, affecting the nearby bumps, arises from the difference of the 𝑝-H and 𝑝-Ne
interactions. The latter produce about 15% more BCM background triggers. The simulations, assuming
only 𝑝-H collisions, might underestimate the BCM background rate by up to 15%, depending on the
amount of neon.

For the two distant pressure bumps the geometry traversed before reaching the BCM is more complicated,
and this must be reflected as a larger uncertainty. The simulated fake jet rates depend on the yield of
high-energy muons in the very forward direction, which is a minor part of the entire event topology. The
muon transport, however, is almost insensitive to small differences in material descriptions.

Previous BIB studies [11, 14] show agreement between data and simulation within a factor of two for the
BCM and fake-jet rates. In those earlier studies, as in the present one, the dominant uncertainties were in
the estimated loss rate of primary beam protons, which provides the absolute scale for the simulations. In
Ref. [11] the loss rate was determined from Vasco pressure simulations for the entire LSS, in Ref. [14]
from the loss rate on the primary collimators of the LHC and in the present work from the gas density in
the locally introduced bumps. These normalisations are totally independent while the Fluka simulations
are very similar in all three cases. The fact that all three studies find agreement within a factor of about
two indicates that the uncertainties of the Fluka simulations, themselves, should be lower. Although this
provides no rigorous argument to quantify the uncertainty associated with the Fluka simulations alone, it
suggests that a factor of 1.5 is reasonable.

8 Comparison with simulations

8.1 BIB detection efficiencies

The comparison of the simulated efficiencies with the averages of the values given in Tables 5 and 6 is the
primary objective of this study. The localised pressure bumps provide much more detailed benchmarking
of the simulations than could be obtained in Ref. [11]. These comparisons are shown in Tables 8 and 9 for
BCM and fake-jet backgrounds, respectively. In order to avoid the 𝐸T-range where the jet trigger is not
yet fully efficient, the jet rates are compared for 𝐸T >20 GeV. Therefore the values given in Table 9 are
considerably lower than the averages over the individual fills shown in Table 6.

The simulations predict that the BCM detects about 40% of 𝑝-H collisions taking place at 19 m and 22 m.
As discussed before, a significant neon contribution would increase the simulated efficiency by up to 15%.
This increase, however, is anti-correlated with the effect neon has on the measurement, in which it pushes
the efficiency towards the lower limit of the range given in Table 8. Assuming 𝛼 = 5×10−3 for H2, the
amount of neon needed to bring the measurement and simulation into consistency can be estimated: for the
beam-1 pressure bump at 19 m about 1.2×1013 neon atoms, which is ∼25% of the amount extracted in
the laboratory tests, in the beam vacuum would result in a measured 𝜀BCM(19 m) ≈ 0.5. With that neon
density about 90% of the beam-gas interactions would be 𝑝-Ne collisions, i.e. the simulated 𝜀BCM(19 m)
would rise by almost 15% with respect to Table 8, reaching the same ∼0.5 as the measurement. For the
other pressure bumps the amount of neon needed to lower the measured 𝜀BCM(𝑧) to ∼0.5 would be less –
around 5×1012 atoms. Even with this amount, 𝑝-Ne collisions would dominate over 𝑝-H. It is, actually,
very difficult to conceive that the measurement and simulations could be consistent if hydrogen is the only
gas contributing, while the two-gas model presented in Section 6.4 could establish consistency.
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Table 8: BCM efficiency to detect a beam-gas event in the various pressure bump locations. The results from all fills
are averaged and compared with the simulations, in which the two beams are assumed identical. As explained in
the text, exact values of 𝜀BCM (19 m) and 𝜀BCM (22 m) cannot be determined due to the possible but not quantifiable
contribution of neon. The lower limit of the given range corresponds to the maximum reasonable neon contribution,
as discussed in Section 7.1.2. The fill-to-fill variation, derived from the per-fill data given in Table 5, is included in
the errors. The systematic effects discussed in Section 7.1.3 are not included for the distant bumps. The simulations
assume 𝑝-H collisions and for the 19 m and 22 m locations a gas density profile corresponding to 𝛼 = 5×10−3 is
assumed. The uncertainties on the simulations are statistical only.

Measured Simulated
Beam-1 Beam-2 Beams 1 or 2

𝜀BCM(19 m) 0.15 − 1.0 0.15 − 1.0 0.424 ± 0.006
𝜀BCM(22 m) 0.15 − 1.0 0.15 − 1.0 0.432 ± 0.006
𝜀BCM(58 m) 0.029 ± 0.001 0.043 ± 0.005 0.0284 ± 0.0014
𝜀BCM(151 m) 0.0071 ± 0.0003 0.0056 ± 0.0008 0.0075 ± 0.0002

Table 9: Efficiency to detect fake jets with 𝐸T > 20 GeV from beam-gas events in the various pressure bump locations.
The results from all fills are averaged and compared with simulation in which the two beams are assumed identical.
The upper table shows results for the full |𝜂 |-range considered in this study. The lower table compares the data and
simulations for 𝜂 | < 1.5, which roughly corresponds to the barrel calorimeters. This reduced range is consistent with
earlier work where similar comparisons are made [11, 14]. The fill-to-fill variation, derived from the per-fill data
given in Table 6, is included in the errors. The systematic effects discussed in Section 7.1.3 are not included. The
uncertainties on the simulations are statistical only.

Measured (|𝜂 | < 3.2) Simulated (|𝜂 | < 3.2)
Beam-1 Beam-2 Beams 1 or 2

𝜀JET(58 m) (1.3 ± 0.2)×10−5 (3.1 ± 0.2)×10−5 (1.5 ± 0.1)×10−5

𝜀JET(151 m) (8.7 ± 0.5)×10−5 (8.3 ± 0.4)×10−5 (6.9 ± 0.1)×10−5

Measured (|𝜂 | < 1.5) Simulated (|𝜂 | < 1.5)
Beam-1 Beam-2 Beams 1 or 2

𝜀JET(58 m) (2.5 ± 0.2)×10−6 (8.7 ± 0.1)×10−6 (5.4 ± 0.6)×10−6

𝜀JET(151 m) (3.3 ± 0.4)×10−5 (3.3 ± 0.3)×10−5 (2.25 ± 0.08)×10−5

For the 151 m bump the simulations agree almost perfectly with the data for the BCM backgrounds, and
underestimate the fake jets by about 20%. For the beam-1 bumps at 58 m the simulations agree rather well
with the BCM backgrounds and the fake-jet measurements, especially if the latter are considered over the
entire |𝜂 |-range. For both, BCM and fake-jet backgrounds, the difference between data and simulation
exceeds significantly the statistical uncertainties for the 58 m bump in beam-2. This is consistent with
Table 3, which is based on pure data and reveals a substantial difference between beam-1 and beam-2 for
the 58 m bump: the BCM background per unit measured pressure is 50% higher for beam-2 than beam-1.
For fake jets the difference seems even larger – about a factor of two. Since the pedestal background and
pressure are subtracted prior to forming these ratios, an additional source, not related to the pressure bump,
can be excluded. This could imply that either the gauge efficiency on the beam-2 side was lower or the
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Figure 10: Detection efficiency of beam-gas events as a function of 𝑧. The measurements correspond to the averages
of both beams in Tables 8 and 9. The error bars are dominated by the estimated systematic uncertainties, as discussed
in Section 7. The average of the measured value for the two nearby points is set to 0.5, which corresponds to assuming
a significant neon contribution, as discussed in the text. The error bars display the range indicated in Table 8. The
error bars on the measurements at the two distant points are dominated by the 50% uncertainty on how well the
pressure measured by a gauge reflects the amount of gas in the bump region.

bump width at 58 m was wider than predicted by the Vasco calculations.6

Figure 10 shows 𝜀BCM(𝑧) and 𝜀JET(𝑧) as a function of 𝑧. The error bars in the plot include the estimated
systematic uncertainties, as discussed in Section 7. For the two nearby points it is assumed that neon plays
a significant role in lowering 𝜀BCM(𝑧) to ∼ 0.5, as discussed above. This summary plot illustrates the
opposite trends of the two BIB observables as a function of 𝑧: the 𝜀BCM(𝑧) decreases with distance from
the IP while 𝜀JET(𝑧) increases. It is worth emphasising that the data shown in Figure 10 span over four
orders of magnitude. Even though the uncertainty estimates are large, they play no significant role in the
principal outcome of this study, which is a demonstration of the strong 𝑧-dependence of the beam-gas
detection efficiency with opposite trends for the BCM and fake-jet backgrounds.

A comparison in the reduced |𝜂 |-range is presented in Table 9 in order to maintain consistency with earlier
work [11, 14]. This ensures that the trigger is fully efficient over the 𝜂-range considered. Another reason for
the restriction is that the simulations assume that all fake jets are produced by high-energy muons. While
this assumption is certainly justified for the barrel calorimeters, the possibility of hadronic showers, initiated
in the beam-pipe walls and reconstructed as jets in the endcaps, cannot be excluded [11]. A comparison of
the results for the two |𝜂 |-ranges in Table 9, however, reveals that considering only central rapidities leads
to a slightly larger reduction of the simulated than the observed fake-jet rates. This confirms that radiative

6 A comparison of the ratios between the two neighbouring gauges at 58 m reveals that the preferred gauge was giving up to 40%
lower readings on the beam-2 side, especially in fills 5331 and 6239. This could explain the higher 𝜀-values seen in Tables 8
and 9 as well as the larger fill-to-fill variation seen in Table 5.
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energy losses of high-energy muons are, by far, the dominant origin of the fake-jet background even in the
endcap calorimeters, but it also suggests that either the efficiency drop of the jet trigger is significant in the
endcap region or the simulations underestimate the radial spread of high-energy muons.

When the BIB detection efficiencies reported in Tables 8 and 9 are compared with those for BIB resulting
from beam-halo losses on the TCT [14], it is seen that they are significantly higher, especially for the BCM.
This indicates that the higher BCM/Jet ratio reported in Table 4, compared to Ref. [14], is due to more
secondaries from beam-gas events staying inside the beam-pipe aperture and reaching the BCM. If protons
interact in the TCT jaws, a larger fraction of the produced particles is absorbed locally or in the accelerator
structures between the collision point and the IP. Because fake jets are the type of BIB that can affect some
physics searches, this large difference is potentially relevant: it indicates that not only the 𝑧-position where
the proton is lost matters, but also the material or accelerator element on which it is lost. Thus a monitoring
of BIB with the BCM alone might severely underestimate the fake-jet rates if beam halo losses on the TCT
become more important with evolving LHC beam optics and collimator settings.

8.2 Jet distributions

Based on earlier simulations [12], the 𝜙-distribution of the muon background originating from |𝑧 | < 60 m
is expected to exhibit maxima in both the horizontal and vertical planes, while muons from farther away are
predominantly in the plane of the LHC ring. This azimuthal distribution should be reflected in the fake-jet
rates. Fake-jet data collected in the absence of a pressure bump, however, show pronounced maxima only
at 𝜙 = 0 and 𝜙 = 𝜋 and only very minor humps at 𝜙 = ±𝜋/2 [11].

With the clear excess of fake jets observed from both, the 58 m and the 151 m locations in the pressure
bump data, it is possible to verify whether the azimuthal jet distribution depends on the |𝑧 |-location of the
beam-gas event. In particular, it is possible to investigate how the azimuthal BIB distribution is affected by
the D1 dipole, which is situated between these two bump locations.

In data the additional fake jets due to the pressure bumps are merged with the distribution from elsewhere
around the ring. Especially for the 58 m location this pedestal is large dilutes the 𝜙-distribution. As it
is impossible to determine the |𝑧 |-origin of an individual fake jet seen in data, the pedestal can only be
subtracted on average. For this the jet counts per azimuthal bin, collected in periods (see, e.g. Figure 6) with
a normal pressure distribution (𝑁Base(Δ𝜙)), are subtracted from those during the gas injection (𝑁Bump(Δ𝜙)),
after weighting with the ratio of wall-clock times (𝑡Bump/𝑡Base) over which the two data sets are collected:

𝑁𝑧 (Δ𝜙) = 𝑁Bump(Δ𝜙) −
𝑡Bump

𝑡Base
𝑁Base(Δ𝜙). (10)

The resulting 𝑁𝑧 (Δ𝜙) is the estimated additional number of counts due to the pressure bump at 𝑧. Table 6
shows that the fake-jet rate per unit measured pressure varies significantly from fill to fill and between the
two beams, especially for the 58 m location. Including this variation would inflate the uncertainties and
render a comparison of the 𝜙-distributions less conclusive. In order to limit the comparison to the shape
only, the different fills are made comparable by normalising all distributions to unity before averaging
𝑁𝑧 (Δ𝜙) over the fills. Due to this normalisation the 𝐸T-cut becomes irrelevant so, unlike in Table 9, all jets
with 𝐸T >12 GeV have been retained in order to maximise the sizes of the samples.7 Even with the relaxed
𝐸T-cut, the data suffer from a low count rate; after subtracting the estimated pedestal, only slightly more

7 Raising the cut threshold to 20 GeV has no effect on the shapes of the distribution.
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Figure 11: Comparison of azimuthal distributions of fake jets seen in data and predicted by simulations for the (a)
58 m and (b) 151 m pressure bumps. All distributions are normalised to unity, thus only the shapes are compared, not
the absolute rates. The data of both beams are added.

than 1100 fake jets remain for the 58 m pressure bump. These are distributed among the 36 𝜙-bins in the
plot, and most entries fall into the peaks. Thus the minima have just a few counts per bin. For the 151 m
pressure bump the count rate is higher: about 5000 fake jets remain after pedestal subtraction.

The count rate in the Fluka simulations has no pedestal but is limited by the number of beam-gas events
available from the LHC simulations. The number of counts is of similar magnitude to that in the data:
slightly more than 3000 jets from both the 58 m and the 151 m locations. For the 151 m position the events
are selected according to the pressure bump profile. At 58 m, where the probability to obtain a jet is lower,
all beam-gas events with a flat distribution in the range 53–63 m had to be used in order to reach this
number of fake jets. The probability for a high-energy muon to generate a fake jet when traversing the
ATLAS calorimeters is at the percent level. Thus the number of simulated events could be doubled by
using twice each muon produced by the LHC simulations. This introduced a minor correlation, i.e. about
1% of the fake jets originated from the same muon and, thereby, fall into the same 𝜙-bin.

The comparisons, shown in Figure 11, confirm that the data and simulations agree on the expected feature:
the 𝜙-distribution of fake jets from 58 m exhibits four peaks while those from 151 m are predominantly in
the plane of the accelerator. The agreement on the shape of the azimuthal distributions is remarkably good
for both locations. The only significant elements between 58 m and the IP, which are not 𝜙-symmetric,
are the quadrupoles of the inner triplet. Between 58 m and 151 m the D1 dipole introduces an additional
breaking of 𝜙-symmetry. Thus Figure 11 confirms the assumption that the four-peak structure arises from
the bending of muon trajectories in the quadrupoles, while the more significant peaks in the accelerator
plane are caused by the dipole fields.

Figure 12 shows the pseudorapidity distributions of the fake jets. The measured distributions are rather
similar for both distant pressure bump locations. There are slightly more fake jets in the downstream half,
i.e. positive 𝑧. The Fluka simulations reproduce these shapes reasonably well, although there are some
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Figure 12: Comparison of pseudorapidity distribution of fake jets seen in data and predicted by simulations for the (a)
58 m and (b) 151 m pressure bumps. The data of both beams are added after inverting 𝑧 for beam-1 unpaired bunches,
i.e. the beam direction is always from negative to positive 𝜂. All distributions are normalised to unity, thus only the
shapes are compared, not the absolute rates.

differences, especially at high |𝜂 |. These are, at least qualitatively, consistent with the drop of the jet trigger
efficiency at |𝜂 | > 2.8, which is not accounted for in the simulations.

The distributions from both beams were inspected separately and found to agree within statistical
uncertainties. Therefore the contributions of both beams are added together in Figures 11 and 12, in the
latter case after inverting the beam-1 direction.

9 Backgrounds excess following a pressure test

In the normal physics fills, following the pressure test in fill 7212, unusually high beam-1 backgrounds
were recorded by the BCM. In the first fill after the test, the background jumped to about 10 times the
normal level and then gradually decreased over the course of the fill. In subsequent fills the same was
observed, although the magnitude of the initial jump was reduced from fill to fill. It took several normal
physics fills for the beam-1 start-of-collision background levels to recover to their pre-test levels. This is
illustrated in Figure 13(a) where the start-of-collision backgrounds in five fills before the pressure test are
compared with those in 13 fills following the test. Only fills starting with high luminosity are included in
the plot, and the backgrounds are averaged over the first 30 minutes of data-taking, provided the average
number of collisions per bunch crossing was higher than 45. This requirement was imposed in order to
prevent start-of-fill emittance scans [40] from biasing the results, since the background jump is obviously
luminosity-related. The background increase seems to affect only beam-1; no sign of a similar increase is
seen for BIB from beam-2. As shown in Figure 13(b), at the same time the vacuum gauges at the 19 m and
22 m positions, where the pressure bumps had been introduced, showed no anomalies. The reason for this
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Figure 13: (a) BCM backgrounds and (b) residual pressures for the two beams observed in normal physics fills just
before the pressure test and in several fills thereafter. Each bin represents the average over the first 30 minutes of
data-taking at high luminosity. The dashed vertical line indicates the pressure test, which itself is excluded from the
plot.

excess is not entirely clear. Possibly some of the injected gas had condensed on the BS and was gradually
desorbed by the particle debris hitting the BS during high-luminosity operation.

Although the increase of the BCM background trigger rate for beam-1 was an order of magnitude, it had
no impact on the operation or data quality of ATLAS. This can be taken as an indication of the margin that
ATLAS at least has with respect to BIB from nearby beam-gas collisions, before data-taking efficiency or
quality of physics data start to be affected.

10 Conclusions

Several dedicated pressure bump tests were undertaken in five different fills during LHC Run 2 in order to
determine the sensitivity of the ATLAS beam-induced background (BIB) monitoring system to beam-gas
events at different distances from the interaction point (IP). In these tests individual non-evaporative getter
(NEG) cartridges in the vicinity of the ATLAS experimental area were heated in order to reverse the
pumping process. In the bumps the gas density was up to four orders of magnitude higher than elsewhere.

A very good correlation between the pressure measured at the bump location and the BIB rates seen in
ATLAS is observed, i.e. the BIB rate can be fitted with a linear combination of a constant term and the
local pressure changes, weighted with 𝑧-dependent proportionality constants.

The ratio of BIB from the different bump locations, seen by the beam conditions monitor (BCM) and
as fake-jet backgrounds in the calorimeters, is evaluated. It confirms previous simulation studies, which
predict that beam-gas events very close to the detector do not produce fake jets, while the BCM has high
sensitivity to BIB originating from that region. With increasing distance from the IP the sensitivity of
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the BCM drops while fake jets become more likely. At |𝑧 | = 58 m the BCM/jet BIB ratio is ∼800 and at
|𝑧 | = 151 m it is only ∼45. This latter value is much larger than the ratio of about six, which has been
measured for BIB from proton halo impacting on the tertiary collimators, only a few metres closer to the IP.
These large differences imply that BCM and fake-jet backgrounds are very weakly correlated and BIB
monitoring by the BCM alone does not provide a reliable measure of the fake-jet rate.

In order to derive absolute background detection efficiencies for the different 𝑧-locations, the amount of
gas traversed by the beam was evaluated from the calculated pressure profile of each bump. Although
the calculations were adjusted to the measured pressure, they are subject to significant uncertainties, in
particular the pumping efficiency of the NEG-coating in the room-temperature sections of the beam pipe.
With a typical NEG efficiency of 𝛼 = 5×10−3 the results for the two nearby pressure bumps indicate that
more beam-gas events are detected than are produced. A possible explanation is that upon heating the
NEG cartridge releases some neon in addition to the expected hydrogen. The neon could be a residue from
filling the beam pipe with an ultra-pure noble gas to atmospheric pressure during access to the experiment.
Neon, which is not pumped by the NEG coating (𝛼 = 0), would have a wider distribution and longer
residence time in the beam pipe than hydrogen. It also has an about ten times higher cross section for
proton scattering.

Even though systematic uncertainties are estimated to be of the order of a factor of two, they are rather minor
compared to the differences of the observed efficiencies, which extend over several orders of magnitude,
depending on the 𝑧-location. The 𝜀BCM(𝑧) values range from just below unity for pressure bumps at 19 m
and 22 m to ∼3% at 58 m and ∼0.6% at 151 m. No fake-jet backgrounds are detected from the two nearby
bump positions. For the 58 m and 151 m bumps the 𝜀JET(𝑧) values, for 𝐸T >12 GeV, are ∼ 4×10−5 and
∼ 1.4×10−4, respectively.

For the nearby pressure bumps the Fluka simulations agree with the data at 𝜀BCM(𝑧) ∼ 0.5, but only if
neon plays a significant role. The simulation results for the two distant bumps are in good agreement with
the measurements. The latter are based on pressure profile calculations that are consistent with 𝛼 ≈ 5×10−3.
In these regions no neon filling is applied, so the assumption of hydrogen dominance should be valid.

The shapes of the fake-jet distributions in the azimuthal plane and as a function of pseudorapidity have been
compared with simulations, and good agreement is found. The data show, in particular, that the azimuthal
distribution of jets from the 58 m position has four about equally high maxima at 𝑛 𝜋

2 , while jets from 151 m
are predominantly in the plane of the accelerator ring, i.e. their distribution peaks at 𝑛𝜋.

All tests were performed parasitically during normal physics data taking. No adverse effects for the
performance of ATLAS or the LHC were seen. Even the unexplained contamination of the beam vacuum,
observed after the last test, had no impact on the operation of the accelerator or the experiment.

This study completes a set of dedicated measurements and simulations that comprise also Refs. [11, 14].
Together these cover the dominant sources of BIB in the ATLAS detector and show that the sources of
these backgrounds are well understood and simulations can reproduce them within a factor of about two.
These results, and the successful benchmarking of the simulation methods, provide important information
for the study and optimisation of future accelerator configurations and BIB mitigation methods.
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