
SOFTWARE ARCHITECTURE OF FGC4, CERN’S NEXT-GENERATION
POWER CONVERTER CONTROL PLATFORM

M. Cejp, D. Zielinski, R. Murillo-Garcia, CERN, Geneva, Switzerland

Abstract
The Function Generator/Controller is CERN’s flagship

controls platform for electrical power converters. Despite
a proven track record, the current generation (FGC3) begins
to show its age through performance limitations and com-
ponent obsolescence. The requirements for its successor
are ambitious: 100 kHz regulation rate (a 10-fold increase);
reuse of a CERN-developed hardware platform (Distributed
I/O Tier), improving synergy between CERN departments;
and a software stack based on Linux with modern program-
ming environments. The solution must fit CERN’s acceler-
ator control system, but also be fully usable at other insti-
tutions that use EPICS or TANGO through the Knowledge
Transfer programme.

This paper discusses the software architecture, shaped
by the need to separate real-time control processes from
the Linux OS, which is achieved by dedicating separate
CPU cores to each. Integration of CERN converter control
libraries (CCLIBS) allows profiting from years of accumu-
lated experience in the power converter domain. Results
of performance characterization under different control sce-
narios are also presented, as well as lessons learned during
integration in a test-bench environment.

BACKGROUND AND HISTORY
Electromagnets, sources and certain RF equipment in the

particle accelerator complex at CERN are driven by electri-
cal power converters. These converters are predominantly
built in a modular way, with different teams designing the
power electronics and the control system. Historically, a
variety of controls solutions have been used, but in the early
2000s, a new universal controls platform was conceived,
called the Function Generator/Controller (FGC). Although
originally intended for the LHC, later generations are now
increasingly being deployed in other accelerators at CERN.

The current generation, FGC3 [1], has been successfully
used internally for a multitude of upgrade and consolidation
projects (totalling over 2,100 devices deployed at CERN),
as well as at external laboratories. However, the platform
is starting to show its age through component obsolescence
and performance limitations.

CERN Converter Control Libraries (CCLIBS)
The Converter Control Libraries [2] are a set of C libraries

that aid in controlling the current, field or voltage in a circuit
driven by a power converter. By creating libraries of the
core control activities, the same code can be used in most
FGC converter control platforms.

Besides their essential features, these libraries accumu-
late years of experience with power converter operation in-

cluding subtle details in handling of various edge cases. It
is therefore important to carry this previous work over to
FGC4.

REQUIREMENTS AND CONSTRAINTS
The set of functional requirements is given implicitly by

the capabilities of the current-generation system. However,
certain demanding applications call for an increased iteration
rate, up to 100 kHz.

The software architecture is shaped by two main con-
straints: the hardware platform chosen by the project, and
the needs of CCLIBS (detailed below).

To reduce the cost of development and maintenance, the
aim is to re-use existing software components as much as
possible, and to minimize the amount of code in environ-
ments that are difficult to develop for, such as inside the
Linux kernel or on “bare metal”.

Hardware Platform
The hardware platform of FGC4 is the DI/OT Sys-

tem Board (Fig. 1), developed by the BE-CEM group at
CERN. The central computing element is a Zynq UltraScale+
System-on-Chip (SoC). This SoC provides 4 CPU cores
(ARM Cortex-A53) and programmable logic (FPGA) in one
package.

Figure 1: DI/OT System Board.

An important aspect of the platform is the amount of
flexibility provided by the programmable logic. Historically,
dozens of distinct FPGA designs have been developed to
satisfy the needs of different types of power converters –
often branching out from a main codebase with only minor
changes.

The FGC4 departs from this model by providing a unified
gateware design with an unprecedented degree of configura-
bility exposed to the software layer. This design includes
peripherals such as multi-channel ADC and DAC drivers,
general-purpose I/O, timers, pulse generators and PWM
generators. A typical power converter will consist of sev-
eral electronic cards sharing a backplane, interconnected by
multi-gigabit serial links.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPM080

3754

MC7.T11: Power Supplies

WEPM080

WEPM: Wednesday Poster Session: WEPM

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



CCLIBS Architecture
CCLIBS requires 2 independent threads of execution:

a real-time task (RTP) and a background processing task
(BGP). The real-time task is triggered at a fixed frequency in
order to read up-to-date measurements, execute one iteration
of a regulation algorithm, output a new actuation value, and
carry out critical functions such as interlocks, limits and
signal logging. The background processing task carries out
activities which do not have a strict real-time constraint; one
example is the arming of reference functions.

These two processes can share the same CPU, in which
case the real-time task would be woken up by a periodic
timer interrupt to take priority over the background process-
ing. This approach, illustrated in Fig. 2, has been used in the
current-generation FGC3. However, a split architecture is
also conceivable, where the processes run on different CPUs
(or different cores of a single physical CPU) and communi-
cate via shared memory.

DSP (TI C67x)

RTP BGP

MCU (Rx610)

Task Task …

RTOS

FPGA

Dual-
port
RAM

Figure 2: Multi-processing architecture of FGC3 (current
generation). Performance and memory constraints dictate
that real-time processing take place in a Digital Signal Pro-
cessor (DSP) and non-real-time processing is split across
the DSP and a general-purpose microcontroller.

DESIGN OF THE SOFTWARE
ARCHITECTURE

Operating System and Environment
Linux would be a natural choice of operating system, not

least because it is widely used across the Accelerator Control
System. An important concern, however, is whether the sys-
tem can provide the necessary hard-real-time performance:
a 100 kHz regulation rate corresponds to 10 µs per iteration.
If we assume that the processing takes, for example, 8 µs,
this leaves 2 µs of margin for any scheduling jitter without
overrunning the iteration period.

In a series of tests performed internally, with a heavily
tuned kernel (PREEMPT_RT, CPU isolation, IRQ affinity,
memory page lock), the achieved jitter figure was approxi-
mately 3.84 µs. While this is impressive for a Linux system,
it was perceived as cutting too much into the iteration time
budget.

As one possible alternative, the vendor provides support
for FreeRTOS [3]. This real-time operating system is explic-
itly designed for environments where low and predictable
interrupt latency is required.

Unlike Linux, FreeRTOS is not a standalone operating
system with an interactive shell. Instead, it is always linked
as an integral part of the application being deployed. This
greatly reduces its footprint, but makes it more difficult to up-
date the application after boot time. It also does not provide
any facilities for recovery from program errors and crashes,
or for debugging in general.

Finally, the main feature of FreeRTOS is providing multi-
ple threads of execution with real-time guarantees. In our
case, however, only one hard real-time thread is required.
All other tasks would better be moved to Linux, which is an
easier environment to develop for and to debug.

In light of these considerations, it was decided to dedicate
one CPU core to execute the real-time tasks on bare metal
(plus optionally a second core for a voltage control loop,
when required for the given converter type), and moving all
other responsibilities to Linux executing on the remaining
cores, as illustrated in Fig. 3. This setup is also known as
asymmetric multiprocessing (AMP). We further refer to a
bare-metal realm and a Linux realm.

Zynq UltraScale+ MPSoC

Core #1

BGP Task …

Linux

Core #2

Task Task …

Linux

Core #3

Bare-metal monitor

Core #4

RTP

Programmable logic

Bare-metal monitor

Voltage control loop 
(optional)

Figure 3: Multi-processing architecture of FGC4 (next gen-
eration). Real-time code runs on “bare metal” (with no
underlying OS), while all other tasks execute in Linux user-
space processes.

It is responsibility of the Linux realm to bring up the
processor, and to load, start and monitor the real-time pro-
gram. Afterwards, the program has full control over its CPU
core. Occasionally it is necessary to “reclaim” control of
the core, typically when a software update is requested, or if
the program has crashed. For this purpose, a small monitor
program was developed. This monitor program executes at a
high privilege level (EL3), making it immune to corruption
caused by errors in the main real-time program. It does not
normally interfere with execution, but intervenes if triggered
by an inter-processor interrupt (IPI).



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPM080

MC7.T11: Power Supplies

3755

WEPM: Wednesday Poster Session: WEPM

WEPM080

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Real-time loop

Command processing 
(low-level)

Regulation

State transitions

Logging of signals

Bare-metal monitor

Main memory

Cache-coherent 
shared memory 

region

User-space process

Network communication

Linux kernel

Command processing 
(high-level)

Timing event reception

Management of 
bare-metal core(s)

Bare-metal realm Linux realm

Figure 4: Task distribution and communication between the two realms. Only a subset of tasks in each realm has been
chosen for illustration; the design of the user-space process (FGCDv2) is described in further detail in [4].

Cross-realm Communication

Figure 4 illustrates how the bare-metal and Linux realms
are divided. The communication between the two relies on
shared memory; a region of the memory space is dedicated
for this purpose. Bare-metal programs access this region via
its physical address while on the Linux side, the /dev/mem
device is used to expose the memory to the userspace process
via an mmap system call. This setup requires building the
kernel with customized options, but it avoids the necessity
to write a custom kernel module.

Cache coherency is an important concern in this type of ar-
chitecture, since the individual cores each have their private
L1 cache. The Cortex-A53 CPU includes a Snoop Control
Unit (SCU), which maintains coherency of L1 caches across
the cores. This eliminates the need to flush cache lines when
exchanging data. For the SCU to work correctly, it is impor-
tant that both cores configure their memory access attributes
in a compatible way. Specifically, any shared pages must be
mapped in a way that does not bypass the L1 cache.

Even with cache coherency, code must be written care-
fully to avoid creating race conditions among the different
cores. In a conventional program, this could be solved by
synchronization mechanisms such as mutexes. However,
since the regulation code has a hard real-time constraint, it
must never be required to wait for the Linux process which
has much looser latency guarantees. Therefore, any data
is always passed through lock-free data structures, such as
double buffers or circular FIFOs.

As a concrete example, one essential feature of the FGC is
to make the circuit current follow a waveform specified by the
user (to play a function in FGC terminology). The generation
of this waveform happens in the real-time process, but it is
governed by a number of parameters that are remotely set by
the user, which means that they are first received by the Linux
realm. They must then be copied into a double buffer in the
shared memory space. Next, the waveform is validated and
“armed” for playback. Finally, it can be started by the user
immediately, or synchronized to an external timing event.

PERFORMANCE
To ensure fitness for the application, the platform was

evaluated in June 2022. Two realistic control scenarios were
selected to represent different operating modes of CCLIBS.
In one, a reference function is armed and played back; the
other consists of smooth transitions between DC levels. The
scenarios were executed on the ARM CPU. The achievable
iteration frequency was then calculated by taking the recip-
rocal of the worst-case iteration time, as shown in Table 1.

Table 1: Benchmarking Results

Scenario #1 Scenario #2

Mean iteration time 8.56 µs 8.46 µs
Maximum iteration time 10.52 µs 9.62 µs
Corresponding iter. rate 95.1 kHz 104.0 kHz

It can be seen that in the more demanding Scenario #1,
the iteration rate drops below the 100 kHz target. However,
the tests were carried out on a slower variant of the CPU:
1.2 GHz, as opposed to the 1.5 GHz final part. With this
CPU upgrade, we expect to fit in the iteration time budget.

CONCLUSION
The FGC4 represents an important step forward in terms

of converter control capabilities.
An important lesson was learned during the development

of the bare-metal program. At the beginning, no hardware-
assisted debugging was possible and the monitor program
did not exist. This led to a slow development process, as
it was often necessary to reboot the entire system due to
programming errors crashing the CPU. The solution was
to implement the privileged monitor, and to enable remote
access to a JTAG debugging adapter connected to the devel-
opment board.

The development of FGC4 is ongoing, with first proto-
types to be delivered at the end of 2023. With the new
capability of executing voltage control loops developed by
other teams, FGC4 is not just a self-contained product, but
an open platform that will continue evolving to meet our
users’ needs.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPM080

3756

MC7.T11: Power Supplies

WEPM080

WEPM: Wednesday Poster Session: WEPM

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



REFERENCES
[1] D. O. Calcoen, Q. King, and P. F. Semanaz, “Evolution of the

CERN Power Converter Function Generator/Controller for Op-
eration in Fast Cycling Accelerators”, in Proc. ICALEPCS’11,
Grenoble, France, Oct. 2011, paper WEPMN026, pp. 939–942.

[2] Q. King, K. T. Lebioda, M. Magrans de Abril, M. Martino,
R. Murillo-Garcia, and A. Nicoletti, “CCLIBS: The CERN
Power Converter Control Libraries”, in Proc. ICALEPCS’15,

Melbourne, Australia, Oct. 2015, pp. 950–953.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF106

[3] FreeRTOS, https://freertos.org/.

[4] D. Zielinski, M. Cejp, and R. Murillo-Garcia, “Architecture
Overview of the FGCDv2, CERN’s Brand-new Power Convert-
ers Control Framework.”, presented at the IPAC’23, Venice,
Italy, May 2023, paper WEPM081, this conference.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPM080

MC7.T11: Power Supplies

3757

WEPM: Wednesday Poster Session: WEPM

WEPM080

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


