

Top quark charged-lepton flavour violation <u>arXiv:2403.06742</u>

Jacob Kempster on behalf of ATLAS

LHC EFT + Top Working Groups: Joint Meeting

24 April 2024

Effective Field Theory (EFT)

Maybe New Physics (NP) exists at a significantly higher energy scale ($\Lambda_{\rm NP}$) than LHC can reach...

<u>K. Mimasu, EFTforTop</u>

Operator	Interaction	Lorentz Structure
$O_{\sf lq}^{1(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{q}_k\gamma_\muq_l)$	Vector
$O_{\sf lq}^{3(ijkl)}$	$(\bar{I}_i\gamma^{\mu}\sigma^II_j)(\bar{q}_k\gamma_{\mu}\sigma_Iq_l)$	Vector
$O_{eq}^{(ijkl)}$	$(\bar{e}_i\gamma^\mue_j)(\bar{q}_k\gamma_\muq_l)$	Vector
$O_{lu}^{(ijkl)}$	$(\bar{I}_i\gamma^\muI_j)(\bar{u}_k\gamma_\muu_l)$	Vector
$O_{ ext{eu}}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma_{\mu} u_l)$	Vector
$O_{lequ}^{1(ijkl)}$	$(\bar{l}_ie_j)arepsilon(\bar{q}_ku_l)$	Scalar
$O_{lequ}^{3(ijkl)}$	$(\bar{I}_i \sigma^{\mu \nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu \nu} u_l)$	Tensor

(Same family that enter into the B-anomalies e.g. $b \rightarrow sll$)

Jacob Kempster - University of Sussex 24 April 2024

 $t\bar{t}Z$ -like (diagonal)

FCNC (semi-diagonal)

CLFV (fully off-diagonal)

tĪll

tqll

tqll'

Four-fermion / 2-quark-2-lepton (2Q2L) operator 'family' in context

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p\gamma_\mu e_r)(ar{e}_s\gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$						

Four-fermion operators

Larger picture

EPJC 79 (2019) 505

Charged Lepton Flavour Violation

Neutrino Oscillations / New Physics

New physics which introduces additional terms involving lepton fields in Lagrangian can lead to LFV, e.g. SUSY, leptoquarks, 2HDMs

Recent history

Limits on CLFV branching ratio of top (95% CL):

 $B(t \to ll'q) < 1.86 \times 10^{-5}$ $B(t \to e\mu q) < 6.6 \times 10^{-6}$

ATLAS-CONF-2018-044 (3-lepton final state, 80 fb^{-1})

 $B(t \to e\mu q) < 0.009 - 0.258 \times 10^{-6}$ CMS

 $\frac{\text{CMS-PAS-TOP-22-005}}{(3-\text{lepton final state , 138 fb}^{-1})}$

This analysis is first direct search for CLFV $\mu\tau qt$ coupling.

BSM models predicting CLFV with electrons/muons also apply to taus, often additionally enhanced due to larger mass

	Cross-section $\sigma^{+\text{scale}}_{-\text{scale}} \pm \text{PDF}$ [fb]								
	$c_{ m vector}^{(ijk3)}$	$c_{\text{vector}}^{(ijk3)}$ $c_{\text{lequ}}^{1(ijk3)}$ $c_{\text{lequ}}^{3(ijk3)}$							
Production <i>ll'ut</i>	$118^{+24}_{-19} \pm 1$	$101^{+21}_{-16} \pm 1$	$2150^{+410}_{-320}\pm20$						
Production <i>ll'ct</i>	$7.9^{+1.2}_{-1.0} \pm 1.6$	$6.1^{+1.0}_{-0.8}\pm1.5$	$153^{+21}_{-18}\pm29$						
Decay $\ell \ell' q_k t$	$6.9^{+1.8}_{-1.3} \pm 0.1$	$3.46^{+0.90}_{-0.66}\pm0.03$	$166^{+43}_{-32}\pm 2$						

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{lq}^{-(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_$$

Using <u>dim6top</u>, found to agree with <u>SMEFTsim 3.0</u>

Charged Lepton Flavour Violation

- Single lepton triggers
- Definition of analysis regions including dedicated CRs for fake backgrounds
 - \rightarrow Select events with electrons, muons and hadronically-decaying tau leptons ($\tau_{had-vis}$)
 - ightarrow Trilepton selection: $\mu\mu au_{
 m had-vis}/~e\mu\mu$
- Prompt/real backgrounds estimated in MC (*tt*V, diboson, *tW*)
- Data-driven estimation of fake lepton backgrounds (CRs)
 - ightarrow Fake $au_{\sf had-vis}$ (+ 2 prompt μ): scale factor method
 - \rightarrow Non-prompt muons: template fit method (*takes place in PL fit*)
- Profile likelihood fit to SRs and non-prompt muon CR
- EFT interpretation

OF SUSSEX

11

Event selection with $139 \, \text{fb}^{-1}$

- Top quark decay and production diagrams differ by 1-jet
- Trilepton event selection including hadronic taus
- Same-sign muons produce significant background reduction

	SR	CRτ	$\mathbf{C}\mathbf{R}t\bar{t}\mu$
Lepton flavour	2µ1	$ au_{ m had}$	$2\mu 1e \ (\ell_3 = \mu)$
$N_{\rm jets}$	≥ 1	≥ 2	≥ 1
$N_{b-{\rm tags}}$	1	1	≤ 2
$ au_{ m had} \; p_{ m T}$	> 20 GeV	> 20 GeV	—
Muon $p_{\rm T}$	> 15 GeV	> 15 GeV	> 10 GeV
Higher $p_{\rm T}$ muon	Tight	Tight	Tight
Lower $p_{\rm T}$ muon	Tight	Tight	Loose
Muon charges	SS	OS	_
$m_{\mu\mu}^{\rm OS}$	—	_	>15 GeV
$ m_{\mu\mu}^{\rm OS} - M_Z $	—	<10 GeV	>10 GeV
$3p_{\rm T}^{\dot{\mu}_1} + \sum m_{\ell\ell}^{\rm OS}$	_	_	< 400 GeV

 \bar{u}, \bar{c}

economic and a second

Yields

Process	SR SR			C	Rtīµ	l
$t\bar{t} + NP \mu$	7.9	±	3.4	164	±	14
$t\bar{t}W$	3.5	±	1.8	1.2	±	0.6
$t\bar{t}H$	3.1	±	0.4	1.26	±	0.14
$t\bar{t}Z$	2.9	±	0.5	0.88	±	0.33
t+X	2.48	±	0.18		_	
WZ	3.6	±	1.3	7.3	±	2.4
ZZ	0.59	±	0.22	1.8	±	0.6
VVV	0.01	±	0.05	0.47	±	0.24
Fake electron		_		7	±	4
Fake $ au$	3.3	±	0.4		_	
Fake τ + NP μ	3.7	±	2.7		_	
t +X + NP μ	0.29	±	0.31	15	±	5
$Z + NP \mu$	0.192	±	0.010	1.8	±	1.0
Other NP μ	0.051	±	0.010		_	
Other	0.23	±	0.11	1.1	±	0.6
Signal $(t\bar{t})$	0.19	±	0.14	0.025	±	0.019
Signal (single-top)	6	±	4	0.022	±	0.023
Total	38	±	5	201	±	14
Data	37			202		

Post-fit yields

Fake-tau estimation

UNIVERSITY OF SUSSEX

Fakes are usually due to mis-identified jets

Dedicated CR (does not enter the fit)

Scale factors (SF) are used to correct the rate of the fake-tau background

SFs are parameterised by:

- Track multiplicity (1-prong / 3-prong)
- Tau-jet width
 - This is a good proxy for the quarkgluon fractions which may differ slightly between SR/CR and between data and MC
- Systematics for SM backgrounds are propagated to the SFs and correlated appropriately in the fits

Fake/Non-prompt (NP) muon estimation

Dedicated CR (enters the fit)

Targeting non-prompt muons from *b*-jets in $t\bar{t}$ events

Normalisation is controlled by a profile-likelihood fit (next slides)

Signal region

Binned in HT to capture energy growth behaviour of EFT operators

Signal shown is inclusive EFT (upinitiated, charm-initiated, all operators)

For up-quark operators, the production mode (blue) dominates the cross-section and sensitivity

For charm-quark operators, the production and decay modes are more balanced

Profile-likelihood fit

Jacob Kempster - University of Sussex 24 April 2024

Profile-likelihood fit

Good agreement between data and background-only model

Statistically limited result

Largest systematics are signal, $t\bar{t}W$ and diboson modelling

'Inclusive' BR limits set assuming all EFT operators are of equal magnitude

mitsset		95% CL upper limits on $\mathcal{B}(t \to \mu \tau q)$				
T		Stat. uncertainty	Stat.+syst. uncertainties			
ofequal	Expected	4.6×10^{-7}	5.0×10^{-7}			
	Observed	8.2×10^{-7}	8.7×10^{-7}			

L

EFT Result breakdown

	95% (95% CL upper limits on $\mathcal{B}(t \to \mu \tau q)$ (× 10 ⁻⁷)							
	$c_{ q}^{-(ijk3)}$	$c_{ m eq}^{(ijk3)}$	$c_{ m lu}^{(ijk3)}$	$c_{ m eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{3(ijk3)}$			
Expected (u)	2.3	2.0	1.9	2.2	1.2	3.0			
Observed (u)	4.0	3.6	3.3	3.8	2.0	5.2			
Expected (c)	33	32	32	33	20	41			
Observed (c)	56	54	53	54	34	67			

	95% CL upper limits on $ c /\Lambda^2$ [TeV ⁻²]							
	$c_{ m lq}^{-(ijk3)}$	$c_{\rm eq}^{(ijk3)}$	$c_{ m lu}^{(ijk3)}$	$c_{\rm eu}^{(ijk3)}$	$c_{\mathrm{lequ}}^{1(ijk3)}$	$c_{\mathrm{lequ}}^{3(ijk3)}$		
Previous (u)	12	12	12	12	18	2.4		
Expected (u)	0.33	0.31	0.3	0.32	0.33	0.08		
Observed (u)	0.43	0.41	0.4	0.42	0.44	0.10		
Previous (c)	14	14	14	14	21	2.6		
Expected (c)	1.3	1.2	1.2	1.2	1.4	0.28		
Observed (c)	1.6	1.6	1.6	1.6	1.8	0.36		

EFT limits improve upon previous results (<u>re-interpretation of ATLAS</u> <u>FCNC tZq analysis</u>):

EFT Result breakdown

Scalar leptoquark with cross-generational couplings could produce CLFV processes.

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{LQ} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix}$$

Cross-generational couplings introduce many degrees of freedom, which may be simplified with a hierarchical modal:

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{LQ} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix}$$

This reduces 10 degrees of freedom (9 coupling, 1 mass) into 2 (1 coupling, 1 mass).

Various theory papers apply hierarchical coupling models, with different magnitudes spanning steps of $\sqrt{2}$ to $\frac{1}{16}$ [1,2,3,4,5]

Analysis is not re-optimised for LQ signal, but HT is already a very good discriminating variable. Signals $0.5 < m_{LQ} < 2.5$ TeV, and $0.5 < \lambda^{LQ} < 3.5$ are fit independently:

<i>m</i> _{<i>S</i>₁} [GeV]	Limit on λ^{LQ} (95% CL)						
	Observed	Expected					
500	1.3	1.1					
750	1.7	1.5					
1000	2.1	1.8					
1250	2.5	2.2					
1500	2.9	2.5					
1750	3.3	2.9					
2000	3.7	3.2					

Summary

- Top CLFV search with muons and tau-leptons
 - Optimised beyond previous CONF note (<u>ATLAS-CONF-2023-001</u>) improving sensitivity by a factor of two
 - LQ interpretation added
- Results are consistent with SM within 1.6σ small deviation in highest HT bin
- First direct limits set on relevant EFT couplings with muon and tau flavour indices
- Analysis is heavily statistically limited
- Leptoquark Interpretation first attempted at setting limits on single-LQ production for a model with multi-generational couplings
 - Coupling hierarchy utilised to simplify interpretation
 - Limits set as a function of leptoquark mass and coupling strength

BACKUP

Jacob Kempster - University of Sussex 24 April 2024

Top-EFT and the B-anomalies (quick aside)

SM prediction

- Best fit 2021 R_K (LHCb arXiv:2103.11769, 3.1 σ)
 - But remember 2022 result (LHCb arXiv:2212.09152) brought this inline with SM

<u>arXiv:2104.00015</u>

Top-EFT and the B-anomalies (quick aside)

$b \rightarrow s\ell\ell$ transitions

• Flavour Changing Neutral Current (FCNC) $b \rightarrow s(d)l^+l^-$ decays, such as $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, are forbidden at tree level in the SM

29

EFT Result breakdown

EFT Result breakdown

Fake tau estimation region

Process	CRτ (1p)			CF	R τ (3	p)
Fake $ au$	1150	±	80	364	±	28
Fake τ + NP μ	1.6	±	1.2	0.3	±	0.5
WZ	22	±	7	6.5	±	2.0
ZZ	11	±	4	3.1	±	1.0
t+X	12.0	±	0.9	3.41	±	0.28
$t\bar{t}Z$	16	±	7	4.8	±	2.3
$t\bar{t}W$	0.65	±	0.34	0.25	±	0.15
$t\bar{t}H$	0.84	±	0.12	0.26	±	0.04
VVV	0.12	±	0.06	0.027	±	0.014
$t\bar{t} + NP \mu$	1.0	±	0.8	0.16	±	0.24
$Z + NP \mu$	0.022	±	0.009		_	
Other	17	±	9	6.1	±	3.1
Total	1230	±	90	389	±	30
Data	1324			373		

