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A fast-switching, high-repetition-rate magnet and power supply have been developed for and
operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The
facility possesses unique operational requirements: a time-averaged beam current of 40 µA with
the ability to switch the beam on or off for several minutes. These requirements are in conflict
with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam
to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with
another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet
which is ramped in 50 µs to a current of 193 A, held there for approximately 1 ms, then ramped
down in the same short period of time. This achieves a 12 mrad deflection which is sufficient to
switch the proton beam between the two facilities. The kicker magnet relies on a high-current, low-
inductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar
transistors (IGBTs). The design and performance of the kicker magnet system and initial beam
delivery results are reported.

I. BACKGROUND MOTIVATION

The TRIUMF cyclotron delivers a nearly continuous
proton beam with a pulse frequency of 1.126 kHz. The
cyclotron accelerates H− ions, using stripper foils to de-
liver protons at various radii (energies) to up to four
beamlines (numbered 1, 2A, 2C, and 4) simultaneously.
The cyclotron typically delivers a total current in excess
of 300µA, at a maximum energy of 520 MeV.

A new ultracold neutron (UCN) source was developed
at TRIUMF, with the initial planning beginning in 2008.
As shall be described, the UCN source requires a minute-
long beam-pulse structure. Accommodating an addi-
tional facility which depends on intermittent beam de-
livery at variable intensity required the ability to share
the beam. This was implemented in beamline 1 at TRI-
UMF and a beam-sharing arrangement made with the
meson-production facilities. Coexistence and simultane-
ous operation of the new UCN facility is only achievable
due to the fast-switching kicker magnet which switches
between the facilities.

Ultracold neutrons are slowly moving (less than 8 m/s)
neutrons which may be contained in material, magnetic,
or gravitational traps for long periods of time (hundreds
of seconds). The new UCN source is based on neutrons
produced from a tungsten target via proton-induced spal-
lation, followed by moderation and superthermal UCN
production in superfluid helium, cooled to temperatures
around 1 K [1–3]. Once produced, UCN may remain in
the source volume for long periods of time. After switch-
ing the proton beam onto the spallation target, the UCN
density asymptotically approaches its maximum value on
a timescale of typically 60 s, at which point the proton
beam may be switched off again and the UCN trans-
ported to sensitive counting experiments. This suggests
that a proton beam that can be switched on and off for
minutes at a time is desirable to build up UCN density
within the source and reduce background during the ex-
periment counting period.

The larger the beam current on the spallation target,
the more spallation neutrons are produced, but also the
more heat is deposited in the superfluid helium by highly

ar
X

iv
:1

90
5.

08
85

7v
2 

 [
ph

ys
ic

s.
ac

c-
ph

] 
 1

1 
A

ug
 2

01
9



2

50s
to

100 s

2/3 beam to BL1A 

1/3 beam to UCN

normal TRIUMF beam

0

0

0

0

0.888 ms

1.8  ms1.8  ms

0.888 ms 0.888 ms
Sharing
with UCN

120 A

120 A

120 A

FIG. 1. Sharing of the main beam from the cyclotron (nor-
mal TRIUMF beam) between beamline 1A and beamline 1U.
Beam is diverted into beamline 1U by switching on the kicker
magnet during the 50–100 µs notch duration, then switching
it off during the next notch. The pulser period is 0.888 ms.

energetic spallation particles. However, the colder the
superfluid helium, the more UCN can be accumulated
in the source. Thus, an adjustable beam current is de-
sirable to find the optimal operating point for a UCN
source. The facility was designed around the require-
ment of 483 MeV protons at a maximum 40µA current
being delivered to the spallation target.

The subject of this paper is the design, fabrication,
testing, commissioning, and successful operation of a
kicker magnet system that uses a pulsed beam struc-
ture to intermittently divert beam from beamline 1 at
TRIUMF into a newly installed beamline 1U with the
spallation target. Several new diagnostic tools had to
be created to ensure successful operation and these are
also described. The system has been operating reliably
at TRIUMF since early 2017.

II. BEAM STRUCTURE

The structure of the beam in the TRIUMF cyclotron
is shown schematically in Fig. 1. Every 0.888 ms, a gap,
or notch, of 50–100 µs exists. The notch is generated
prior to beam injection to the cyclotron and is present
for all simultaneously accelerated beams. The duration
of the notch has been used as a tuning parameter to make
fine adjustments to the power deposition of the beam in
targets in the 2A beamline, where stable and control-
lable power is necessary to generate high-intensity ion
beams for the Isotope Separator and Accelerator (ISAC)
radioactive beams facility [4].

The UCN kicker system is installed in beamline 1
(Fig. 2). The proton beam is normally transported down
beamline 1A through two meson-production targets to a

beam dump. The beam energy is 483 MeV and an aver-
age current of 100–120µA is typically delivered (Fig. 1).

When beam is desired in beamline 1U to produce
spallation neutrons, the current in the kicker magnet is
ramped up within the notch, held at a constant current
of 193 A, and then ramped down during the next notch
(Fig. 1). The period between notches is referred to as
a beam pulse. The beam may be switched on and off
in this fashion so that up to one in three beam pulses
are delivered to beamline 1U, resulting in a repetition
rate of 375 Hz and an average 1U beam current of 33–
40µA. The remaining pulses are delivered to beamline
1A as usual. The time when the beam is being switched
between 1A and 1U in this manner is referred to as a
beam-on period or a kicking period. The beam-on period
is typically 60 s long and the beam-off period is typically
180 s, so that the meson-production targets receive an
integrated current 90% of the original value. The system
can also be operated in continuous (dc) mode, diverting
all pulses into beamline 1U, or at lower repetition rates,
resulting in a lower average current. Typical field rise/fall
times for kicker systems range from tens to hundreds of
nanoseconds and pulse widths generally range from tens
of nanoseconds to tens of microseconds [5]. The ability
to operate in dc mode is an unusual requirement for a
kicker system.

III. BEAMLINE LAYOUT

The layout of beamline 1U is presented in Fig. 2. For
more details about the beamline elements, we refer the
reader to Ref. [6].

Proton beam delivered to beamline 1 comes from ex-
traction port 1, at the south-east side of the cyclotron.
Magnets steer and focus the beam along the first part,
called beamline 1V, towards a tunnel leading into the
TRIUMF Meson Hall and housing the kicker magnet.
This location, partially in the cyclotron vault and par-
tially in an alcove, is semi-sheltered from direct radia-
tion from the cyclotron and contains a bender (1BVB2)
that splits beamline 1V into beamlines 1A and 1B. When
the kicker is energized, the beam is deflected upward by
12 mrad.

After the kicker magnet, the beam passes through the
de-energized bender 1BVB2 and into a Lambertson sep-
tum magnet.The septum magnet is tilted slightly to re-
move the ascension in the 1U beam trajectory and to
bend the beam 9◦ to the left, leaving it horizontal and
70 mm higher than the 1A beam plane. After passing
through a shielding plug, which separates the cyclotron
vault from the 1A tunnel, the 1U beam is bent to the
left an additional 7◦ by a small bender magnet (1UB0),
through the aperture of additional magnets which pro-
vide the desired profile and position on the spallation
target.

From the kicker magnet through the septum and be-
yond, the beam size is of the order of a few millimeters
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FIG. 2. A schematic top view of the proton beamline for the UCN facility at TRIUMF (see also [6]). Beam from the TRIUMF
cyclotron enters through beamline 1V from the left side of the figure and proceeds to the right. The proton beam is diverted,
as required, into beamline 1U by the kicker and septum magnets. Downstream of the septum, beamline 1U contains bender
magnets, quadrupole magnets, and diagnostic elements before ending in the target. The principal elements relevant to the
kicker magnet design are discussed further in the text.

in both x and y [7]. This allows both the kicked (1U)
and unkicked (1A) beam to pass through both 1BVB2
and the 48 mm-wide septum magnet constrictions with-
out any significant losses. The septum between the 1U
and 1A beam paths would receive the most beam spill
if the kicker magnet was out of synchronization with the
notch. After 8 months of running and 1 month of cool-
down, the magnet pole material around the septum was
measured to be activated to as much as 10 mSv/h on
contact. This primarily arose from beam halo.

Several elements in the beamline provide diagnos-
tic data. HARP-style profile monitors (1UHARP0 and
1UHARP2) with 16 wires in a gas-filled chamber are in-
serted into the beam to accurately measure the beam
profile while tuning the beam optics at very low currents,
see Section VI A. A capacitive probe 1VM4.7 detects the
notches between beam pulses and provides timing in-
formation for the kicker, see Section VI B. Beam spill
monitors (BSM55 and BSM56) give a warning or shut
down the beam when they detect high radiation due to
the beam hitting the beam tube, see Section VI C. A
toroidal non-intercepting monitor (TNIM) measures the
beam current injected into beamline 1U and serves as
the main safety device limiting the beam current, see
Section VI D.

The beamline ends in a water-cooled neutron spalla-
tion target consisting of several tantalum-clad tungsten
blocks acting as a beam dump. A prototype UCN source
was installed directly above the target in 2017 and first
results from the commissioning of the UCN source were
reported in Ref. [8].

IV. DESIGN STUDIES

Table I shows the specifications for the kicker magnet
system. The magnet and power supply were specified

based on achieving a deflection angle of 15 mrad. In the
final layout of the beamline a deflection angle of 12 mrad
was required. The rise-time specified in Table I (50 µs) is
from 2% to within ±2% of the flat-top field and includes
any required settling time for ripple. The kicker system
is required to operate in a wide range of repetition rates,
from dc mode and single-shot tests during commission-
ing to up to several hundred Hertz. The initially specified
maximum repetition rate was 350 Hz. For technical rea-
sons related to synchronization with the cyclotron RF,
373 Hz operation of the kicker was needed; hence, the re-
quired maximum repetition rate was increased to 400 Hz.

TABLE I. Specifications for the UCN kicker magnet system.

Parameter Value

Proton momentum (MeV/c) 1090

Max. deflection angle (mrad) 15

Magnetic field integral (T·m) 0.0545

Aperture, vertical x horizontal (mm2) 100 x 100

Rise time, 2% to within ±2% of flat top (µs) 50

Fall time, 98% to within ±2% (µs) 50

Nominal duration of field flat-top (ms) 1

Continuous repetition rate (Hz) 0 to 400

Field homogeneity (%) ±2.0

Maximum available length in beamline (m) 2.0

A kicker system was previously designed and built for
the ultracold neutron source at Paul Scherrer Institute
(PSI), Switzerland, with relaxed specifications compared
to our system. The PSI kicker system is capable of op-
erating at a magnet current of up to 200 A, with a rise
time of 500 µs (5–95%), and with a 1% duty cycle (8 s-
duration kick every 800 s) [9]. This kicker magnet had
two coils, each with 18 turns. Because of the low rep-
etition rate, average power dissipation in the coils was
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FIG. 3. Geometry of MedAustron kicker magnet, which
served as a reference design for the TRIUMF kicker magnet.
The overall length of the MedAustron magnet, including end
plates, is ∼0.4 m.

low, and hence the coils were air-cooled. A four-quadrant
converter was used together with both a high-voltage rec-
tifier and a low-voltage rectifier: while ramping up the
current, a high voltage of 350 V was applied to the mag-
net to achieve the 500 µs rise-time. The low-voltage recti-
fier, 30 V, was used to maintain the flat-top of the current
during the 8 s-long kick.

Kicker magnets, or chopper dipoles, and power sup-
plies were also required for the hadron therapy centers
at CNAO [10], Pavia, Italy, and MedAustron [11, 12],
Wiener Neustadt, Austria, for turning the beam on and
off. The CNAO and MedAustron designs [13–15] were
chosen as the baseline for the TRIUMF kicker system
because some of their requirements were similar. For ex-
ample:

• For the CNAO chopper dipoles a current of 650 A, with
260 µs rise and fall times, and a repetition rate of 10 Hz
was required [14].

• For the MedAustron chopper dipoles a current of 630 A
was required. The specified current rise and fall time
was 250µs, however the magnet insulation was spec-
ified such that it was capable of 90µs rise and fall
time [15]. A maximum repetition rate of 20 Hz was
required. The current flat-top could be from 0 s to
dc [16], i.e. no flat-top to continuous flat-top, respec-
tively.

The CNAO and MedAustron chopper dipole systems
are used to routinely switch the beam on and off during
operation of the medical facilities [17], thus the power
supplies and magnets are designed to be reliable [18].

The CNAO chopper dipole uses a window frame con-
struction, named after the shape of its yoke, with two

water-cooled saddle coils of 8 turns each [14]. The
MedAustron chopper dipole (Fig. 3) uses a similar con-
struction, but each saddle coil has 6 turns [19]. The
MedAustron magnet is housed in a box whose sides, top
and bottom are made from aluminium. End plates, which
act as field clamps, are 12 mm thick and made out of
1 mm thick steel laminations [18, 19].

Although the CNAO and MedAustron systems served
as useful reference designs for the TRIUMF kicker sys-
tem, the rise and fall times required for the TRIUMF
kicker system are a factor of approximately five shorter
than those achieved for the CNAO and MedAustron sys-
tems. In addition, the repetition rate of the TRIUMF
kicker system is at least a factor of 20 above that of the
CNAO and MedAustron systems. These factors com-
bined introduce challenges, especially in terms of tran-
sient power dissipation in the coils and the power sup-
ply voltage required to achieve the specified 50 µs rise
and fall times: the transient power dissipation is signif-
icantly increased by skin-effect and proximity-effect in
the coils (see section V A). A key enabling technology
in the TRIUMF kicker system is the use of Insulated-
Gate Bipolar Transistors (IGBTs) in the power supply.
IGBTs are three-terminal semiconductor devices which
combine high efficiency and fast switching and are ca-
pable of blocking relatively high voltage and conducting
high current. Thanks to careful optimization of the mag-
net current, magnet inductance, and power supply volt-
age required to meet the challenging specifications for
the field rise and fall time and repetition rate, it is not
necessary to connect multiple IGBT modules in parallel
to achieve the required current, or to connect multiple
IGBTs in series to block the required high voltage.

A. Kicker Magnet

The available length in the TRIUMF beamline for the
kicker magnet is 2 m. Hence, a mechanical length of
1.5 m was assumed for the magnet yoke to ensure suf-
ficient space for magnetic shielding, electric and water
connections, etc. Figure 4 shows a plot of the required
magnet current, as a function of the total number of turns
of the kicker magnet coils, to achieve a magnetic field in-
tegral of 0.0545 T·m. Assuming that the yoke is unsatu-
rated and has a high relative permeability, the required
current (I) is calculated from [5]:

I =
Bxvap
µ0N

, (1)

where Bx is the nominal flux density (36.3 mT, for a
yoke with a length of 1.5 m parallel to the direction (z)
of propagation of the beam) in the aperture, N is the
number of turns, vap is the distance between the legs of
the yoke and µ0 is the permeability of free space.

The design of the UCN kicker magnet is based on
those of CNAO and MedAustron (Fig. 3). It also uses
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a window frame construction with two, nominally iden-
tical, water-cooled saddle-shaped coils. In addition, each
saddle-shaped coil has a double-layer pancake arrange-
ment: hence the total number of turns is an integer mul-
tiple of four. From Fig. 4 a total of 4 turns require a
current of approximately 720 A to achieve a magnetic
field integral of 0.0545 T·m: this current is reduced to
360 A, 240 A and 180 A for a total number of turns of
8, 12 and 16, respectively. In order to determine the
voltage required to increase the current from 0 A to the
required flat-top value, or to decrease the current from
the required flat-top value to 0 A, in 50 µs, it is necessary
to estimate the inductance of the magnet.

Neglecting end effects, the inductance of the magnet is
calculated from:

L =
µ0N

2hapl

vap
(2)

where l is the length of the yoke. For a fast single-turn
kicker magnet, hap is the distance between the inside
edges of the conductors [5]. However, each saddle coil of
the UCN kicker magnet has two layers and each layer con-
ducts equal currents. Thus, the effective value h(eff)ap is
dependent upon the dimensions of the conductors and the
distance between the two layers. As a first approxima-
tion, for a 100 mm aperture and assuming 8 mm thick
conductors, an effective value, for h(eff)ap, of 120 mm

was assumed. Equation (2) shows that the magnet induc-
tance increases in proportion to the square of the number
of turns, however the current required decreases in pro-
portion to the number of turns (equation (1)). Hence,
to achieve 50 µs rise and fall times, the required mag-
net voltage increases linearly with the number of turns:
this is shown in Fig. 4. The power supply output voltage
will be higher than the magnet voltage due to induc-
tance of the cables connecting the magnet and supply.
Hence, to minimize the required power supply voltage,
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FIG. 4. Plot of the required magnet current and esti-
mated magnet voltage to achieve a magnetic field integral of
0.0545 T·m, as a function of the total number of turns of the
magnet coils with a 1.5 m long yoke. End effects are neglected
and h(eff)ap × vap = 120 mm × 100 mm is assumed.

FIG. 5. Geometry for a 3D simulation of the UCN kicker mag-
net. The overall length of the magnet, including end plates,
is ∼1.71 m.

the inductance of the supply and cables must be kept to
a reasonable minimum.

IGBTs are used for the active power semiconductor
devices in the kicker magnet power supply. To ensure
long-term reliability of the IGBTs, it is preferable that
they are used at no more than 50% of their rated voltage.
The 50% de-rating is chosen to avoid failure due to, for
example, cosmic radiation and neutrons [20]. Assuming
a single IGBT is used, Fig. 4 shows lines for 50% of the
rated voltage for 2.5 kV and 3.3 kV rated IGBTs, which
were readily available ratings at the time of the initial
system design.

It is desirable that the UCN kicker system can oper-
ate in a dc on mode. The dc resistance of the magnet
coil is proportional to the total length of the coils: to a
first approximation the length, and hence dc resistance,
is proportional to the total number of turns. The dc
conduction losses in the magnet coil are given by the dc
resistance multiplied by the square of the current. For
a representative dc resistance of 1 mΩ per turn, the dc
conduction losses for the coil would be 2090 W, 1050 W,
700 W and 520 W for 4, 8, 12 and 16 turns, respectively.
Thus, to reduce dc conduction losses, the current re-
quired is decreased by increasing the number of turns,
however a higher voltage is required to achieve the spec-
ified rise and fall times. Based on considerations of the
current required to achieve a magnetic field integral of
0.0545 T·m, the voltage needed to obtain 50µs rise and
fall times, and the dc power loss in the coil, a total of
12 turns was chosen for the UCN kicker magnet. The
inductance of the 12-turn kicker magnet, estimated from
equation (2), assuming h(eff)ap×vap = 120 mm×100 mm
and neglecting end-effects, is ∼326µH for the 1.5 m yoke
length. To obtain a deflection of 15 mrad with a 12-turn
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coil requires a current of approximately 240 A. For a mag-
net inductance of 326µH, to achieve a current rise-time
of 50µs, a magnet voltage of 1.56 kV is required.

The ferrite yoke and the saddle coils are enclosed by a
20 mm thick aluminium frame and laminated steel end
plates (Fig. 5). The aluminium and the steel are used as
eddy-current screens to limit radiation of electromagnetic
noise. The laminated steel end plates also reduce fringe
fields at both ends of the kicker magnet. Each end plate is
10 mm thick and constructed from 0.35 mm-thick lamina-
tions. The Opera [21] software has been used to carry out
detailed electromagnetic simulations of the kicker mag-
net [22]. These simulations have permitted both the sad-
dle coils and the ferrite yoke dimensions to be optimized
to achieve the required field uniformity, limit the power
dissipation in the coils, and to select the cross-section of
the ferrite yoke. The build-up of the ferrite yoke, in the
directions perpendicular to the beam direction, is 20 mm.

The 3D model was used to calculate the uniformity of
the deflection field, by integrating the predicted magnetic
field along lines parallel to the beam direction, through
the aperture of the kicker magnet [22]. The field in the
central 80 mm × 80 mm region of the aperture was stud-
ied as a function of the vertical spacing between adja-
cent conductors of the coil. The best homogeneity (±1%)
is achieved with the conductors within each saddle coil
equally distributed (Fig. 6) [22]. The spacing between
each coil allows for electrical insulation.

As mentioned above, the design of the UCN kicker
magnet is based on that of both MedAustron and CNAO
chopper dipoles: Fig. 3 shows the MedAustron chopper
dipole with a cut-out in the ferrite yoke, to allow for the
coil bending radius, to limit the overall length of the mag-
net. Hence, the initial design of the end ferrites of the
UCN kicker magnet also had a cut-out machined in the
ferrite yoke (Fig. 7) so that the saddle shaped conductors
could be bent towards the aluminium frame with the re-
quired bending radius and without extending the length
of the coils. Fig. 7 also shows contours of the predicted
flux density on the surface of the ferrite, for a coil current
of 240 A: the highest flux density is close to the edges of
the cut-out.

Machining a cut-out in the ferrite increases difficulty of
manufacture and therefore the cost of the ferrite. Hence,
Opera3D simulations were carried out to assess the in-
fluence of increasing the length of the saddle coils, for a
given yoke length, to remove the machined cut-outs from
the ends of the UCN magnet ferrite yoke—the resulting
geometry is shown in Fig. 5. The simulations show that
increasing the overall length of each saddle coil by 38 mm,
to remove the cut-outs from the ends of the ferrite yoke,
further improved the homogeneity of the integrated field
from ±1% to ±0.8% [22]. The specified integrated field
uniformity is ±2% (Table I), thus the predicted field uni-
formity meets the specifications. The effective magnetic
length is predicted to be 1.60 m. The overall mechani-
cal length of the kicker magnet, including the laminated
steel plates at each end, is ∼1.71 m.

FIG. 6. Cross-section of aperture of kicker magnet: rectangu-
lar coil conductors with 2 mm wall (red), insulation (brown),
ferrite (green) and 100 mm × 100 mm aperture (white).

FIG. 7. Initial design of end ferrites, with cut-out to bend the
saddle coils towards the aluminium frame (quarter of geom-
etry shown). The colour regions associated with the ferrite
represent surface contours of predicted flux density, for a coil
current of 240 A.

Figure 6 shows a cross-section of the coil conductors in
the aperture of the kicker magnet. From Fig. 6, for the
optimized distribution of the conductors and allowing for
2 mm of insulation around each conductor and an extra
1 mm around each saddle coil, the effective value of hap
is the distance between the mid-point of the layers of the
saddle coils, i.e. 126 mm. Substituting h(eff)ap = 126 mm

in equation (2) gives an inductance of ∼342 µH for the
1.5 m yoke length. The corresponding inductance calcu-
lated from Opera3D dc simulations is ∼360 µH. However,
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this is considered an overestimate of the value: in the 3D
dc simulations the coil is modelled as being solid, i.e. no
water cooling channel (see below), and current is consid-
ered to be evenly distributed throughout each turn of the
coil. Hence, in the 3D dc model, field can pass through
the coils, resulting in an increase of the predicted stored
energy and inductance.

A hollow rectangular conductor with external dimen-
sions of 13 mm × 8 mm and a uniform wall thickness of
2 mm (#8905 from Luvata [23]) was chosen for the sad-
dle coils (Fig. 6): the 9 mm x 4 mm internal channel is
for water cooling. The two saddle shaped coils are elec-
trically in series but water cooled in parallel. The power
dissipation was computed with realistic trapezoidal cur-
rent waveforms, using the Opera2D transient solver. As
a result of eddy current and proximity effects the to-
tal resistance of the two series coils changes considerably
during the current pulse; the resistance of the coil re-
duces by an order of magnitude from the start of the
current flat-top to the end of a 1 ms current flat-top. In
addition, as a result of the decay of eddy currents in the
coil the field penetrates further into the coil (see Figs. 22
and 23 of [5]) and, hence, the internal inductance of the
coils increases: as a result the total inductance of the
two series coils increases by several percent during the
flat-top of the current pulse. The rms value for a trape-
zoidal current waveform with 50 µs rise and fall times and
240 A flat-top current for 1 ms is ∼147 A at a repetition
rate of 350 Hz and ∼157 A at 400 Hz. The power loss
predicted by Opera2D for 350 Hz operation, taking into
account eddy-currents, is 775 W for the 12 turns, which
corresponds to an equivalent series resistance of ∼37 mΩ,
i.e. a factor of three higher than the dc resistance. The
power loss of 775 W is 18% greater than the power loss
for 240 A dc. The two saddle coils are water cooled in
parallel. A water pressure of 4 bar gives a flow of ap-
proximately 5.5 l/min per saddle coil. The calculated
change in water temperature, with 775 W of dissipation,
is approximately 1◦C.

The kicker magnet is designed to be outside vacuum.
Hence a vacuum tube is required in the aperture of the
magnet, which must provide a good vacuum connection
to the adjacent beampipes. This vacuum tube is not
a part of the commercial order for the kicker magnet
and was added at TRIUMF. A metallic beampipe, in
the aperture of a kicker magnet, should be avoided: dur-
ing field rise/fall the changing field will result in eddy
currents which create a reaction field that opposes the
changing magnetic field. Eddy currents in the metallic
beampipe would transiently shield the beam from the
changing magnetic field of the kicker magnet, increasing
field rise and fall times. In addition, the inductance of
the magnet would transiently be reduced, increasing the
rate-of-rise of current of the power supply. Therefore,
alumina is frequently used for the tube in a kicker mag-
net [9, 24–28]. However, a thin metallic coating is fre-
quently applied to the inner surface of the alumina tube
to both screen the kicker magnet yoke from the beam [25–

FIG. 8. Simplified electrical schematic of the UCN kicker
system (described in the text).

28], and also to prevent build-up of static charge on the
tube [27].

The solution adopted at TRIUMF for the vacuum tube
was a non-conducting, uncoated, tube: this is discussed
further in Section V B.

B. Power Supply

The pulse power modulator (Fig. 8) consists of a high-
voltage (HV) stage, for generating the rising and falling
edges of the output current pulse, and a low-voltage stage
for maintaining the flat-top of the output current pulse.
The high-voltage stage uses an HV dc supply that charges
capacitor CHV. The low voltage stage uses three-phase
rectifiers supplied by the secondary windings of a dedi-
cated transformer. The kicker magnet and the parasitic
inductance of the cable is represented by inductor Lmag

together with a series resistor, Rmag. The quantity Rmag

accounts for both the parasitic resistance of the mag-
nets and the resistance of the cables (see below). There
are three power IGBTs, labelled SW1, SW2 and SW3,
for switching on and off the magnet current: SW1 and
SW2 switch high voltage (VHV). In addition, there are
three power diodes, labelled D1, D2 and D3: diodes D1
and D3 provide a free-wheeling path for magnet current,
when SW1 is turned off. IGBT SW3 switches at rela-
tively high frequency (few kHz) to regulate the flat-top of
the magnet current (see below). Hence, diode D1 blocks
high voltage, so that SW3 can be rated at relatively low
voltage.

The operation of the circuit can be divided in to the
following phases:

• The circuit is in the OFF state, all the switches are off,
and no current is flowing in the magnet.

• A control signal arrives, before a START trigger and af-
ter a previous STOP trigger, to program the magnitude
of magnet current to be used during the next cycle by
the power supply current control. The high voltage is
set in proportion to the set current magnitude. Hence,
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the current rise and fall times (see below) are almost
constant over the operating range of the system.

• When the START command is received the control cir-
cuitry turns both SW1 and SW2 on. In this way the
output voltage of the high voltage stage is applied to
the kicker magnet and a current starts to flow with
a positive sign, given the reference direction for the
magnet current (iLM). The current increases as an ex-
ponential with a time constant approximately equal
to (Lmag/(Rmag + Rs)), where Rs is the sum of the
on-state resistances of switches SW1 and SW2. How-
ever, the rising current can be considered to be a lin-
ear ramp because the steady-state value is much higher
than the required maximum current. The value of ca-
pacitor CHV is chosen to provide the charge required
for the rising current, with an acceptable reduction in
voltage (approximately 1.5%) across the high voltage
capacitors.

• After a time interval, tr, approximately equal to
((Lmag · iLM)/VHV) the required magnet current is
reached. At this point switch SW1 is turned off. The
magnet current starts to freewheel through diode D3,
diode D1 and SW2. From this instant on the flat-top
current is maintained by switching SW3 on and off.
Switch SW3 connects the output of the low-voltage
stage of the power supply to the magnet. Hysteresis
control is used for SW3: as soon as the actual value
of the magnet current is greater than a certain up-
per threshold SW3 is switched off, and then back on
when the magnet current reduces below a certain lower
threshold. This flat-top phase can last indefinitely,
however the nominal duration is approximately 0.9 ms.

• When the STOP command is received both SW2 and
SW3 (if SW3 was on) are switched off simultaneously.
The magnet current is then diverted to the capacitor
CHV through diodes D3, D1 and D2. Since the volt-
age applied to the magnet has a similar magnitude but
opposite polarity with respect to the rising ramp, the
current fall time is almost equal to the current rise time.
When the magnet current reaches 0 A the diodes natu-
rally turn off and the circuit is again in the OFF-state.

The safe state for the TRIUMF beam line is when zero
current is delivered to the UCN kicker magnet. Hence
precautions are taken to avoid a failure in the switch-
ing power stages of the modulator. This protection is
achieved by choosing an IGBT, the FD500R65KE3-K
from Infineon [29], rated at 6.5 kV for SW1 and SW2,
i.e. a factor of three to four above the operational voltage
of the high voltage stage. The IGBT chosen is suitable
for chopper applications and traction drives, and is rated
for 500 A continuous dc collector current, i.e. a factor
of more than two above the maximum dc current rat-
ing required for 15 mrad deflection with the 12-turn coil
(240 A). In addition, the IGBT package has an AlSiC
base plate for increased thermal cycling capability. The
FD500R65KE3-K IGBT modules contain a diode rated

at 6.5 kV and 500 A: this diode in the IGBT module for
SW2 is used for D2 and the diode in the IGBT module
for SW1 is used for D1 (Fig. 8). The IGBT module used
for SW3 is the FD1400R12IP4D from Infineon [30], rated
at 1.2 kV and 1400 A: this module, which also contains a
diode, is typically used in chopper applications. In case
of failure of an IGBT, the magnet current can be reduced
rapidly to 0 A. This is achieved by opening a contactor in
series with each of the outputs of the power supply (not
shown in Fig. 8). Metal Oxide Varistors connected to
ground, on the magnet side of each contactor, absorb the
magnet energy if the contactor opens when load current
is flowing in the magnet.

The power supply and magnet are connected by a
length of ∼17 m of cable: the power supply is on the
TRIUMF cyclotron vault roof, in a non-radiation area.
Since the UCN kicker system is required to pulse at a
frequency of up to 400 Hz, with a relatively fast current
ramp rate, generation of electromagnetic noise was a real
concern. Hence special care was taken choosing the ca-
ble. Coaxial cables were considered but were discounted
for two reasons:

• To use the coaxial cable as intended, current should
flow through the central conductor and return through
the outer conductor, i.e. the central conductor should
be connected to one end of the kicker magnet and the
outer conductor to the other end. However, during the
rising edge of the current pulse, one end of the magnet
is at high-voltage and during the falling edge the oppo-
site end of the magnet is at high voltage, i.e. the outer
conductor of the coaxial cable would be at high voltage
either during the rising or falling edge of the magnet
current. This effect could be a significant source of ra-
diated noise. An alternative would be to use two sep-
arate coaxial cables, with the central conductor of one
cable connected at one end of the magnet and the cen-
tral conductor of the other connected to the opposite
end of the magnet. Even though the outer conductors
of the cables could be connected to one another, the
go and return currents are no longer flowing coaxially,
but rather in two separate cables.

• The magnet and power supply should be able to oper-
ate in dc on mode: the resulting rms current is rela-
tively high and several parallel coaxial cables would be
required, resulting in a bulky and relatively expensive
arrangement.

Instead, a three-phase power cable (Okonite CLX 571-23-
3244 [31]) was chosen. This type of cable is frequently
used in variable speed drive applications, where there are
rapidly changing voltages present. The phase conductors
are stranded copper, and are thus ideal for an application
such as the UCN kicker system. The cable chosen was
available from the manufacturer’s stock and relatively in-
expensive. This cable is rated at 15 kV; the current rating
is 525 A at 40◦C, in a cable tray, hence there is a signif-
icant safety margin in comparison with the operational
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duty of the UCN kicker system. Two of the three-phase
conductors are used, one as a go and the other as a return
conductor. The aluminium sheath, which is continuous
and hence is a good electromagnetic shield, is connected
to ground at the power supply end and connected to the
magnet frame at the magnet end. The unused phase con-
ductor is, for safety reasons, connected to ground at the
power supply end and unconnected at the magnet end.
The measured characteristic impedance of Okonite CLX
571-23-3244, between the two phase conductors used, is
approximately 20 Ω, which corresponds to an inductance
of ∼167 nH/m and a capacitance of ∼420 pF/m; the
167 nH/m is derived from short-circuit tests carried out
during factory acceptance tests (FATs) - see below.

Following the ramp-down of the current pulse, once the
power semiconductor switches and diodes on the output
of the modulator turn-off, the cables charge to a volt-
age whose magnitude is dependent upon the off-state
impedance of the power switches and diodes. Charg-
ing of the cable excites an oscillation whose frequency
(12.6 kHz) is determined mainly by the inductance of
the kicker magnet (∼ 320 µH - see below) and the capac-
itance of the cable: this can result in an oscillatory post-
pulse current in the magnet unless adequate precautions
are taken. The oscillatory current could deflect beam
that should be undeflected; the magnitude of undesired
deflection would be dependent upon the magnitude of
the oscillatory current. To damp this oscillation, a filter,
consisting of a capacitor and series resistor, is installed
at each end of both used phase conductors of the cable.
At the power supply end of each cable the filter is con-
nected between the conductor of the cable and ground.
At the magnet end the filter is connected between the
phase conductor of the cable and the cable sheath.

V. PERFORMANCE TESTS BEFORE BEAM
DELIVERY

A. Factory Acceptance Tests

Danfysik [32] won the contracts to build both the UCN
kicker magnet and power supply. Figure 9 shows a 3D
engineering drawing of the kicker magnet. Several tests
and measurements were specified to be carried out during
the FATs of the power supply and magnet, including:

• Measurement of magnet inductance, coil resistance,
and capacitance between coil and aluminium frame.

• Field mapping, using a Hall probe, at a current of 243 A
dc.

• Measurement of current waveform.

• Power supply operation with the kicker magnet re-
placed by a short-circuit.

The measured inductance of the UCN kicker magnet
is 328.2 µH at 1 kHz and 321.8 µH at 7 kHz: the 7 kHz

FIG. 9. 3D engineering drawing of the UCN kicker mag-
net and connection box. The overall length of the magnet is
∼1.71 m.

corresponds approximately to the bandwidth of a pulse
with 50 µs rise and fall times [33]. The dc resistance
of the 12 turns is 12.1 mΩ at 21.8 ◦C. The capacitance,
measured between one terminal of the coil and the alu-
minium frame, is 795 pF.

A Hall probe was used to map the field from the lon-
gitudinal centre of the magnet to a distance of 225 mm
outside each end of the laminated steel end plates. This
was repeated such that the magnet aperture was scanned
horizontally every 10 mm and vertically every 10 mm to
obtain the field map on an area of ±40 mm by ±40 mm.
The measured magnetic field at the centre of the aper-
ture was 36.37 mT, which is very close to the expected
value of 36.30 mT. The effective magnetic length, along
the centre line of the aperture, is 1574 mm; the error
is 1.6% with respect to the 1600 mm predicted using
Opera3D. The lower effective length can be compensated
by slightly increasing the magnet current. The homo-
geneity of the integrated-field, derived from the measure-
ments, was ±1.4%, compared to ±0.8% predicted. Nev-
ertheless, the specified integrated-field uniformity is ±2%
(Table I); thus the measured field uniformity meets the
specifications.

The power supply and kicker magnet at TRIUMF are
connected by a 17 m long cable. However, at Danfysik,
30 m of cable were used for the FATs, as this length was
already available on a cable drum. The filters installed
at both the power supply and magnet end of the cable
were expected to result in relatively rapid damping of
any oscillations excited due to charging of the cable at
the bottom of the falling edge of the current pulse. How-
ever, during the FATs, it was observed that the reverse
recovery charge of diode D2 (Fig. 8), which was neglected
in simulations, results in a short period of reverse current
in the kicker magnet at the end of current ramp-down.
When this current “snaps off” it exacerbates the oscil-
latory behaviour: during the FATs the peak magnitude
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FIG. 10. Measured post-pulse current following 250 A flat-top
magnet current: without saturating inductors (blue dashed
trace) and with saturating inductors (green solid trace).

of this oscillation was measured to be 22 A (blue dashed
trace in Fig. 10) for a flat-top magnet current of 250 A,
which was unacceptably high. To reduce the peak neg-
ative current two significant changes were made during
the FATs:

• Saturating inductors were installed at the magnet end
of both used Okonite CLX phase conductors. They
provide high inductance at low current, greatly reduc-
ing the rate of change of current at low current. A re-
sistor in parallel with the saturating inductor enhances
damping. The resulting current measurement (green
solid trace in Fig. 10) shows that the saturating in-
ductors decrease the peak magnitude of the oscillation
from 22 A to 14 A. Additionally, the frequency of the
oscillation is reduced from approximately 80 kHz to
30 kHz. The saturating inductors, together with their
parallel connected resistors, result in relatively rapid
damping of the post-pulse oscillation.

• Fast recovery diodes (SF5408) with very low reverse
recovery charge, in a series/parallel arrangement, were
connected in series with diode D2. For a flat-top cur-
rent of 250 A the fast recovery diodes result in a reduc-
tion of the peak magnitude of the reverse current in
the magnet to 3 A. The resistor in parallel with each
saturating inductor, together with a filter consisting of
2.2 nF in series with 47 Ω, at each end of both used
phase conductors, is very effective at damping oscilla-
tions. Figure 11 shows the resulting post pulse current.
The undershoot, 1.2%, is well within the specification
of ±2% (Table I).

Figure 12 shows measured waveforms for 250 A de-
manded flat-top current, with a 30 m long cable between
the power supply and magnet, for a flat-top duration
of just over 20µs. The magnet current rise-time, 2% to
98%, is 46µs; however, the initial rate of rise of current is
relatively low and becomes almost constant (∼ 5.7 A/µs)
after an elapsed time of 15µs. The positive-side output
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FIG. 11. Measured post-pulse current following 250 A flat-
top magnet current, without saturating inductors but with
SF5408 fast recovery diodes, in a series/parallel arrangement,
connected in series with diode D2.
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FIG. 12. Measured power-supply waveforms for 250 A de-
manded flat-top current, with 30 m of cable: Positive-side
output voltage (green solid trace); negative-side output volt-
age (red dotted trace); output current (blue dashed trace).

voltage (measured at node Pop, with respect to ground,
see Fig. 8), to achieve this rate of rise of current is ap-
proximately 1930 V, which corresponds to an inductance
of approximately 338µH: it should be noted that the volt-
age VHV across CHV will be slightly higher than this due
to resistance and inductance in the current path between
CHV and Pop. During the rising edge of the current,
the reduction in voltage across capacitor CHV is approx-
imately 30 V (1.5% of the initial voltage). Once the cur-
rent reaches the required value, SW1 (Fig. 8) is turned
off, and SW3 is turned on and off, as necessary, to main-
tain the flat-top current. To generate the falling edge
SW3 and SW2 are turned off; turning SW2 off forces
the magnet current to freewheel through D2, and hence
the negative-side output voltage (measured at node Nop,
with respect to ground, see Fig. 8) rises to approximately
1980 V: it should be noted that the voltage VHV across
CHV will be slightly lower than this due to resistance and
inductance in the current path between CHV and Nop. It
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should also be noted that the calibration of the power
supply voltage dividers, at Pop and Nop is ±1%.

Several tests were carried out during the FATs where
the magnet was replaced by a short-circuit. These tests
were to ensure that, in the case of a magnet fault,
the power supply would safely ride-through the fault.
The demanded current flat-top was gradually increased,
proportionally increasing the high-voltage output of the
power supply. Figure 13 shows the modulator output
current for a demanded flat-top current of 250 A. The
peak fault current is 1800 A: the delay for IGBT SW1 to
turn off, after the 300 A over-current interlock is reached,
is 4.5 µs. During the 4.5 µs, the average positive-side
output voltage is approximately 1670 V, and the current
increases by 1500 A: thus the inductance on the output
of the modulator is ∼5.0 µH. Assuming that this induc-
tance is predominantly due to the 30 m long cable, this
corresponds to 167 nH/m for the two phase conductors.
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FIG. 13. Measured power supply waveforms for 250 A de-
manded flat-top current, with 30 m of cable and the mag-
net replaced with a short-circuit: Positive-side output voltage
(green solid trace); negative-side output voltage (red dotted
trace); output current (blue dashed trace).

Thermal cycling tests were also performed: the mag-
net was powered to 315 A dc for 10 minutes, then current
was turned off for 10 minutes. This thermal cycle was re-
peated ten times. The voltage drop across the magnet,
with 315 A dc, was measured to be 3.8 V. This corre-
sponds to a maximum instantaneous total power dissipa-
tion of ∼1200 W and a dc resistance of 12.1 mΩ for the
two saddle coils connected electrically in series. With a
water flow rate of 7.6 l/minute per saddle coil the tem-
perature rise across 6 turns, measured at the end of the
10 minutes with 315 A dc, was 1.4 ◦C: the expected tem-
perature rise was 1.1 ◦C.

A 12 hour thermal test was carried out on the kicker
magnet and power supply with 250 A, at 354 Hz and 50%
duty cycle: this corresponds to an rms current of ∼177 A
and a predicted total power loss for the two saddle coils
of almost 1200 W. The water flow was approximately
5.5 l/minute per saddle coil; the measured change in wa-
ter temperature across a coil was 1.8◦C. The expected

increase in water temperature, for 600 W dissipation per
saddle coil, is 1.5◦C, indicating that the transient power
dissipation is slightly higher than predicted. A thermal
camera was used to measure temperatures in the power
supply: the hottest components were an HV bleed resis-
tor (45◦C), in parallel with CHV, and an LV bleed resistor
(60◦C), in parallel with CLV.

B. Tests at TRIUMF without Beam

Following installation of the power supply, magnet,
and cabling at TRIUMF, further tests were carried out to
ensure proper operation of controls, interlocks, and the
system. The length of cable installed to connect power
supply and magnet is ∼17 m. The blue dashed trace in
Fig. 14 is the power supply output current pulse at the
nominal current of 193 A. The measured rise-time, be-
tween 2% and 98%, is 47.2 µs—comfortably within the
50 µs specification. The overall delay, from the trigger
pulse to 98% of the current flat-top, is 52.0 µs. The value
of this delay is required for proper synchronization with
the beam pulse. The green solid trace in Fig. 14 is the
positive-side output voltage, which has a flat-top value
of approximately 1540 V (VHV) during the current rise-
time.
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FIG. 14. Measured rising edge of current pulse to an operat-
ing current of 193 A, subsequent to installation at TRIUMF.
Dashed blue trace: current. Solid green trace: positive-side
output voltage.

Figure 15 shows a zoom of the flat-top of the power
supply output current pulse at the nominal current of
193 A (blue dashed trace). The “saw-tooth” nature of
the flat-top is created by the operation of the low-voltage
stage of the power supply (Fig. 8). The rising edge of
the saw-tooth is created by switching on IGBT SW3:
the green solid trace corresponds to VLV, and is “high”
when SW3 is on. Once the measured value of the magnet
current is greater than a certain percentage above the
demanded current SW3 is turned off, and the magnet
current freewheels through diodes D3 and D1, and on-
state IGBT SW2; the decay is due to circuit losses. Once
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FIG. 15. Measured flat top of current pulse at an operating
current of 193 A. Blue dashed trace: current (ac-coupled mea-
surement with an offset of 193 A added to the average value).
Green solid trace: output voltage of low-voltage power supply
stage to maintain flat-top current.

the measured value of the magnet current is less than
a certain percentage below the demanded current, SW3
is turned on again. The peak-to-peak amplitude of the
saw-tooth current is 6 A, corresponding to ±1.6% of the
magnitude of the flat-top current, which is within the
specified ±2% (Table I).

The trace in Fig. 16 is the falling edge, from a flat-top
of 193 A, of the power supply output current. The mea-
sured fall-time, between 98% and 2%, is 44.0 µs - com-
fortably within the 50 µs specification. The measured
peak of the current undershoot is 1% of the magnitude
of the flat-top current, which is within the specified ±2%
for the post-pulse ripple (Table I).
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FIG. 16. Measured falling edge of current pulse from 193 A
flat-top.

Tests and measurements were also carried out at 220 A
output current at dc and pulsed at 350 Hz with a 1 ms-
duration flat-top. Figure 17 shows a measured current
pulse (blue dashed) for the latter operating condition.
The green solid trace in Fig. 17 is the positive-side output
voltage, which is off-scale during the rising edge of the
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FIG. 17. Measurement with 220 A current, pulsed at 350 Hz
with a 1 ms-long flat-top. Dashed blue trace: current. Solid
green trace: positive-side output voltage, zoomed in to show
the low voltage which maintains the flat-top of the current
pulse (described in the text).

current pulse. During the flat-top of the current pulse
the low-voltage rectifier delivers output pulses of ∼60 V
to maintain the magnitude of the flat-top of the current
pulse to within the specified ±2% (Table I).

The magnet was installed into its position in beamline
1V as shown previously in Fig. 2 with its shielding box on
a custom stand. As mentioned earlier, a non-conducting
vacuum tube must be installed in the aperture of the
magnet. A typical choice for the tube (described in Sec-
tion IV A) is an alumina tube with a thin metallic coating
to bleed off static charge deposited by beam halo.

The halo losses along this section were found to be
relatively small (∼1.5 pA/m). This was determined by
measuring the 56Co activity presumed to derive from
56Fe(p,n)56Co in a new steel beam pipe that was inserted
into the kicker section for the 2015 TRIUMF beam sched-
ule, before the kicker magnet was installed.

Based in part on this measurement, an uncoated
borosilicate glass tube was used for the first year of op-
eration (2017). After a year of use, this tube developed
a leak in the O-ring seal in the transition to the metal
beam pipe. Upon de-installation, the glass was found to
have turned brown in color. This was expected from ra-
diation effects in the glass, and generally does not affect
the structural integrity of the glass.

The borosilicate glass tube was replaced with a fiber-
glass (FR-4) tube in early 2018. The fiberglass is ex-
pected to be more robust against possible stresses and
more resistant to shatter. In order to avoid O-ring fail-
ures caused by proton beam excursions, aluminum (6061-
T6) flanges were epoxied onto the tube so that metal
seals (1100 series aluminum) could be used. The fiber-
glass tube is also uncoated and thus far we have seen no
evidence of any effects of the possible build up of static
charge.
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VI. BEAM DELIVERY AND RESULTS

A. dc operation

Low-intensity dc operation (kicker magnet supplied
with a constant current) allows us to tune the beam by
inserting HARP-style beam profile monitors and to make
the necessary corrections to the currents of various other
magnets. The flat-top current of the kicker is also ad-
justed during this process to correct the vertical position
of the beam at the septum.

The HARP monitors are designed for an average beam
current below 50 nA. Due to their long integration time
the time structure of this current is not important for
HARP function. For example, kicking one pulse out of
2400 from a 120 µA beam in beamline 1V would deliver
an adequate average current. But the high instantaneous
beam spill caused by the interaction with the HARP is
sufficient to trigger beam spill monitors in beamline 1U.
So a lower instantaneous current is required.

At TRIUMF, the smaller currents in beamline 1V can
be achieved by scraping the proton beam inside the cy-
clotron with the extraction foil, or by reducing the cur-
rent injected into the cyclotron. The former takes longer
to tune but has the advantage that beam may be deliv-
ered to the other extraction ports without interruption.

B. Kicker Controls and Diagnostics

As alluded to in relation to Fig. 1, the H− injection
system of the cyclotron utilizes a pulser with a variable
duty cycle, with a typical setting giving a notch dura-
tion of 50–100 µs. In our application, this notch is used
to switch beam pulses between beamlines 1U and 1A by
switching on or off the UCN kicker magnet current, re-
spectively. It is important that the UCN kicker control
system ensures that the kicker magnet ramping is cor-
rectly timed within the notch.

The first element of the kicker controls is the Kicker Se-
quencer Module (KSM), which is a TRIUMF-built VME
module. The KSM receives a signal from the H− pulser
indicating when the ions are injected into the cyclotron.
The KSM must add a delay to this signal (∼320 µs) to
account for the travel time of the protons through the cy-
clotron. The delay must be variable, because the travel
time varies depending on the cyclotron operating mode.
At this delayed injection time the KSM sends a signal to
the UCN kicker power supply to either ramp up or down
the kicker magnet current. The KSM also sets the frac-
tion of beam pulses delivered to beamline 1U and hence
its average beam current. The KSM and the kicker power
supply itself are controlled using EPICS [34], and a pic-
ture of the control screen is shown in Fig. 18.

In the final configuration one beam pulse out of each
three will be directed to the UCN beamline, achieving
40 µA of proton beam average current. We also plan to
implement the ability to kick more general patterns of

pulses, to adjust the average beamline 1U current more
precisely. For instance, we will eventually have the ability
to deliver 3 beam pulses out of 10 to beamline 1U, which
is not achievable with our current software.

The second element of the kicker controls is a fast diag-
nostic element to measure the beam notch. The diagnos-
tic element is a capacitive probe in beamline 1V upstream
of the septum magnet; it is designated as 1VM4.7. The
signal from the 1VM4.7 probe is shaped, digitized with a
giga-sample per second ADC, and then analyzed to cal-
culate the beam power as a function of time. Examples
of the 1VM4.7 waveforms are shown in Fig. 19. These
waveforms are used to adjust the KSM delay time so that
the kicker magnet ramping time is aligned well within the
beam notch.

The 1VM4.7 measurements can also be used to mea-
sure how clean (absence of beam current) the beam notch
is. Depending on the cyclotron tune it is possible that the
notch is correctly aligned in time, but that there is signif-
icant beam still in the notch. The 1VM4.7 measurements
allow the cyclotron operators to check for such conditions
before kicking beam.

The procedure for setting up to kick beam to the UCN
beamline involves adjusting the KSM delay time until the
magnet current ramp-up timing is well aligned with the
cyclotron notch. We have found in practice that there is
relatively little variation in the travel time through the
cyclotron for the normal cyclotron operating modes, at
least compared to the duration of the beam notch. So it
is only rarely necessary to adjust the KSM delay time.

It should also be noted that the other diagnostic de-
vices in the UCN beamline (such as the beam current,
beam position and target protection monitors) need to
have electronics that can handle the different beam duty
cycles that the kicker can provide. This is discussed fur-
ther in Section VI D.

FIG. 18. EPICS control screen for kicker magnet showing
controls for the power supply (top right), controls for the se-
quencer module (bottom right), flat-top magnet current (top
left), and timing parameters (bottom left).
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FIG. 19. Beam current in beamline 1V as measured with the
1VM4.7 capacitive probe. If the notch is correctly aligned
(green solid line) with the time when the kicker magnet is
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magnet. A misaligned notch (blue dashed line) will cause
significant beam spill.
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FIG. 20. Signal of beam spill monitor downstream of septum
magnet, as a function of the kicker delay with respect to the
cyclotron injection pulser. The beam spill signal is expressed
as a fraction of the value at which the beam spill monitor will
trip the cyclotron.

C. Results of Kicker Operation with Proton Beam

In summer 2017 the kicker magnet system was oper-
ated in a kicking mode with beams simultaneously deliv-
ered to beamlines 1U and 1A for the first time. One of
the first experiments carried out was to investigate the
effect of poorly aligning the magnet ramp with the beam
notch. Fig. 19 shows examples from correctly aligned and
poorly aligned magnet ramp signals. Kicking one out of
four 1 µA beam pulses in beamline 1V, we measured the
signal from a beam spill monitor located downstream of
the UCN septum magnet while changing the time delay.
The results of the test are shown in Fig. 20, which con-
firms the expected behaviour; more beam is spilled as
the magnet ramp signal becomes more misaligned with
the beam notch. The results show that the 1VM4.7 mea-

surement can be used to accurately set the kicker ramp
time and that poor alignment of the magnet ramp and
the beam notch are correctly detected by the beam spill
monitors (note that there is a fixed time delay for the dig-
itizer measurement in Fig. 19, which is why the timescale
is different from Fig. 20).

Once the magnet ramp was properly aligned with the
notch no beam spill was measurable, confirming that the
magnet can ramp within the notch and the measured
maximum ripple amplitude of 1.6% is acceptable. How-
ever, to compensate slight variations in the arrival time
of the notch we had to increase the minimum width of the
notch to about 60µs. This slightly limits the duty cycle
of the injection pulser to below 93% and the cyclotron’s
ability to adjust the beam power. Generally this poses
no operational concern for the other cyclotron users.

D. Implementation and Experiences

As of this writing, beamline 1U has been operated
in kicking mode up to 10µA. Kick fractions between
1/10,000 and 1/4, corresponding to kicker frequencies of
0.1 Hz to 282 Hz, have been realized without any magnet
or power supply issues.

A prototype UCN source, originally developed in
Japan [35], was installed above the spallation target in
2017. Two month-long experimental campaigns were
performed with the UCN source in Fall 2017 and 2018.
The source was previously operated with a nominal beam
current of 1 µA. Hence, we typically kicked every hun-
dredth pulse from a 100 µA beam in beamline 1V, into
1U, to achieve this current. The relatively sparse puls-
ing of the beam posed a challenge to the toroidal non-
intercepting monitor (TNIM) which measures beam cur-
rent. The electronics for the TNIM relied on the 1 kHz
structure of the beam to make a precise measurement
of the current. The TNIM required a new readout,
and this was based on digital filters implemented on an
FPGA [36]. With this new readout, we were able to cal-
ibrate the TNIM and use it to confirm that the beam
current in beamline 1U was proportional to the fraction
of pulses kicked out of beamline 1V multiplied with the
beam current in beamline 1V, as expected (Fig. 21).

During the Fall 2017 campaign [8], we also confirmed
that the number of UCN extracted from the UCN source
is proportional to the calculated beam current (Fig. 21).
In these measurements, the target was normally irradi-
ated for 60 s using the kicker magnet. During the beam-
on period, UCN were produced and stored in the source.
When the irradiation was complete, a valve was opened
and UCN were transported to a detector. The detected
number of UCN was found to be proportional up to beam
currents of 1 µA, as shown in Fig. 21. Measurements
up to 10 µA of average proton current are reported in
Ref. [8]; the number of detected UCN falls below lin-
ear extrapolation, which is an indication that the cooling
power of the prototype UCN source is insufficient. The
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FIG. 21. The current measured by the TNIM (circles) and
the number of UCN extracted from the UCN source (boxes)
increase linearly with the beam current calculated from the
kicker parameters and the current in beamline 1V.

UCN source will be upgraded to make use of the full
40 µA design current provided by the kicker magnet.

During the beam periods mentioned above, beamline
1U was normally retuned after an interruption of beam
for more than a few hours. Since the tuning requires low-
current injection into the cyclotron, this caused downtime
for other beamlines on other extraction ports, disrupt-
ing beam delivery to other experiments at TRIUMF. In
2018 the stability of the beamline was demonstrated to
be sufficient to avoid retuning, even after interruptions of
12 hours or longer. Procedures were then changed for the
month-long Fall 2018 UCN experiment campaign. In the
new procedures, magnet power supplies for the beamline
1U optics elements were kept at current and kicking was
restored on demand for the UCN experiments. This form
of operation was successful for the duration of the exper-
iments, with no excessive beam spill being observed.

VII. CONCLUSION

A 12-turn kicker magnet has been designed and oper-
ated at TRIUMF, providing proton beam to a new UCN
source facility. The 12 turns are a compromise between
requiring low current, to achieve the required deflection
of the beam with low power loss in the coil, and the
need to supply high voltage for relatively fast field rise

and fall times. In addition, a power supply based on
IGBTs has been designed and operated together with
the kicker magnet. The design of the power supply and
rating of components are conservative to ensure high re-
liability. The power supply consists of two stages, one
high-voltage part to achieve the fast rise and fall times,
and a low-voltage part to enable a selectable output pulse
flat-top duration from 0 s to dc. Factory acceptance tests
and tests at TRIUMF demonstrate that the required rise
and fall times are achieved, as are the flat-top ripple of
≤ ±2%, field homogeneity ≤ ±2%, and a continuous rep-
etition rate selectable from dc to 400 Hz.

In 2017 and 2018 the kicker magnet system was oper-
ated reliably over two month-long periods while UCN
production experiments were being carried out. The
magnet delivered up to 10 µA of instantaneous current
and a total 110 µA·h of integrated current to the spal-
lation target. The sensed beam current in the TNIM
was found to be linear with the fraction of beam pulses
delivered to beamline 1U. The UCN production results
were also found to be linear with the beam current, up to
the heat load acceptable for good UCN source operation.
Tests where the timing of the ramping of the kicker mag-
net was purposely misaligned generated beam spills as
expected. During normal operation no excessive beam
spill was detected, confirming that the requirements of
the kicker system were properly specified and met. The
timing with the beam notch could be easily adjusted and
monitored with a capacitive probe. In implementing the
system, we found several challenges, particularly with re-
spect to diagnostic tools which were designed for a more
continuous current. We expect that the kicker system
will fully serve the needs of the future UCN source facil-
ity which, once upgraded, will require regular delivery of
up to 40 µA time-averaged proton current.

ACKNOWLEDGMENTS

The authors thank C. Marshall, C.A. Miller, J. Pon,
D. Preddy, and C.A. Remon for their important contri-
butions to this work. This work was undertaken, in part,
thanks to funding from the Natural Sciences and Engi-
neering Research Council Canada, the Canada Research
Chairs program, and the Canada Foundation for Innova-
tion.

[1] R. Golub and J. Pendlebury, Phys. Lett. A 53, 133
(1975).

[2] P. Schmidt-Wellenburg, J. Bossy, E. Farhi, M. Fertl,
K. K. H. Leung, A. Rahli, T. Soldner, and O. Zimmer,
Phys. Rev. C 92, 024004 (2015).

[3] E. Korobkina et al., Phys. Lett. A 301, 462 (2002).
[4] J. Dilling, R. Krücken, and L. Merminga, eds., ISAC

and ARIEL: The TRIUMF Radioactive Beam Facilities

and the Scientific Program (Springer Netherlands, 2014).
[5] M. J. Barnes, in Proceedings of the CAS-CERN Accel-

erator School: Beam Injection, Extraction and Trans-
fer (http://dx.doi.org/10.23730/CYRSP-2018-005.229,
2018) pp. 229–283.

[6] S. Ahmed et al., Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 927, 101 (2019).

http://dx.doi.org/10.1016/0375-9601(75)90500-9
http://dx.doi.org/10.1016/0375-9601(75)90500-9
http://dx.doi.org/10.1103/PhysRevC.92.024004
http://dx.doi.org/10.1016/S0375-9601(02)01052-6
http://dx.doi.org/10.1007/978-94-007-7963-1
http://dx.doi.org/10.1007/978-94-007-7963-1
http://dx.doi.org/10.1007/978-94-007-7963-1
http://dx.doi.org/ http://dx.doi.org/10.23730/CYRSP-2018-005.229
http://dx.doi.org/ http://dx.doi.org/10.23730/CYRSP-2018-005.229
http://dx.doi.org/ http://dx.doi.org/10.23730/CYRSP-2018-005.229
http://dx.doi.org/ https://doi.org/10.1016/j.nima.2019.01.074
http://dx.doi.org/ https://doi.org/10.1016/j.nima.2019.01.074
http://dx.doi.org/ https://doi.org/10.1016/j.nima.2019.01.074


16

[7] R. Wang, Hons. thesis, The University of British
Columbia (2019).

[8] S. Ahmed et al. (TUCAN Collaboration), Phys. Rev. C
99, 025503 (2019).

[9] D. Anicic et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 541, 598 609 (2005).

[10] M. Pullia, IEEE Transactions on Applied Superconduc-
tivity 16, 1708 (2006).

[11] M. Benedikt, Nucl. Instrum. Methods Phys. Res., Sect.
A 539, 25 (2005).

[12] M. Benedikt, J. Gutleber, M. Palm, W. Pirkl, U. Dorda,
and A. Fabich, in IPAC’10 (Kyoto, Japan, 2010) pp. 109–
111.

[13] L. Sermeus, J. Borburgh, A. Fowler, M. Hourican, K. D.
Metzmacher, and M. Crescenti, in EPAC’04 (Lucerne,
Switzerland, 2004) pp. 1639–1641.

[14] E. Dallago et al., in 2006 37th IEEE Power Electronics
Specialists Conference (Jeju, South Korea, 2006).

[15] J. Borburgh et al., in IPAC’10 (Kyoto, Japan, 2010) pp.
3954–3956.

[16] T. Stadlbauer et al., in IPAC’15 (Richmond, USA, 2015)
pp. 2741–2743.

[17] P. J. Bryant et al. (Accelerator Complex Study Group)
(2000).

[18] T. Kramer, T. Stadlbauer, M. J. Barnes, M. Benedikt,
and T. Fowler, in IPAC’11 (San Sebastian, Spain, 2011)
pp. 3380–3390.

[19] M. Atanasov, Design Optimization of the Fast Switched
Chopper Dipole Magnet for the MedAustron Project, Mas-
ter’s thesis, Technical University of Sofia, Plovdiv Branch
(2014).

[20] T. Shoji et al., in The 2010 International Power Elec-
tronics Conference (Sapporo, Japan, 2010) pp. 142–148.

[21] Dassault Systems, Opera Simulation Software, Kidling-
ton, Oxfordshire, UK, https://operafea.com (2019).

[22] M. Hahn, Bachelor’s thesis, Coburg University of Applied

Sciences and Arts (2011).
[23] Luvata, FI-28330 Pori, Finland, http://www.luvata.

com/Products/Hollow-Conductors (2013).
[24] M. J. Barnes, F. Caspers, L. Ducimetière, N. Garrel,

and T. Kroyer, in PAC’07 (Albuquerque, USA, 2007)
pp. 1574–1576.

[25] P. He, H. Hseuh, and R. Todd, Thin Solid Films 420-
421, 38 (2002).

[26] M. Pont, R. Nunez, and E. Huttel, in IPAC’11 (San
Sebastian, Spain, 2011) pp. 2421–2423.

[27] A. D. Ghodke, D. Angal-Kalinin, and G. Singh, in
APAC’01 (Beijing, China, 2001) pp. 363–365.

[28] M. J. Barnes, T. Fowler, M. G. Atanasov, T. Kramer,
and T. Stadlbauer, in IPAC’12 (New Orleans, USA,
2012) pp. 3686–3688.

[29] Infineon Technologies AG, Neubiberg, Germany, https:
//www.infineon.com/cms/en/product/power/igbt/

igbt-modules/igbt-modules-up-to-4500v-6500v/

fd500r65ke3-k/ (2018).
[30] Infineon Technologies AG, Neubiberg, Germany,

https://www.infineon.com/cms/en/product/power/

igbt/igbt-modules/igbt-modules-up-to-1200v/

fd1400r12ip4d/ (2013).
[31] The Okonite Company, 102 Hilltop Road Ramsey, New

Jersey, USA, www.okonite.com/ (2013).
[32] Danfysik A/S, Gregersensvej 8, DK-2630 Taastrup, Den-

mark, www.danfysik.com/ (2013).
[33] Tektronix, Beaverton, Oregon, United States,

https://www.tek.com/document/primer/

xyzs-oscilloscopes-primer-1 (2014).
[34] EPICS – Experimental Physics and Industrial Control

System, epics-controls.org, accessed: 2019-05-19.
[35] Y. Masuda, K. Hatanaka, S.-C. Jeong, S. Kawasaki,

R. Matsumiya, K. Matsuta, M. Mihara, and Y. Watan-
abe, Phys. Rev. Lett. 108, 134801 (2012).

[36] W. R. Rawnsley, “Ucn toroid processor development,”
TRIUMF Internal Note (2017).

http://dx.doi.org/10.1103/PhysRevC.99.025503
http://dx.doi.org/10.1103/PhysRevC.99.025503
http://dx.doi.org/doi:10.1016/j.nima.2004.12.032
http://dx.doi.org/doi:10.1016/j.nima.2004.12.032
http://dx.doi.org/10.1109/TASC.2005.869681
http://dx.doi.org/10.1109/TASC.2005.869681
http://dx.doi.org/10.1016/j.nima.2004.09.038
http://dx.doi.org/10.1016/j.nima.2004.09.038
http://dx.doi.org/10.1109/IPEC.2010.5543845
http://dx.doi.org/10.1109/IPEC.2010.5543845
https://operafea.com
http://www.luvata.com/Products/Hollow-Conductors
http://www.luvata.com/Products/Hollow-Conductors
http://dx.doi.org/ 10.1016/S0040-6090(02)00661-2
http://dx.doi.org/ 10.1016/S0040-6090(02)00661-2
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-4500v-6500v/fd500r65ke3-k/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-4500v-6500v/fd500r65ke3-k/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-4500v-6500v/fd500r65ke3-k/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-4500v-6500v/fd500r65ke3-k/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-1200v/fd1400r12ip4d/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-1200v/fd1400r12ip4d/
https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/igbt-modules-up-to-1200v/fd1400r12ip4d/
www.okonite.com/
www.danfysik.com/
https://www.tek.com/document/primer/xyzs-oscilloscopes-primer-1
https://www.tek.com/document/primer/xyzs-oscilloscopes-primer-1
epics-controls.org
http://dx.doi.org/ 10.1103/PhysRevLett.108.134801

	A fast-switching magnet serving a spallation-driven ultracold neutron source
	Abstract
	I Background motivation
	II Beam structure
	III Beamline layout
	IV Design Studies
	A Kicker Magnet
	B Power Supply

	V Performance Tests Before Beam Delivery
	A Factory Acceptance Tests
	B Tests at TRIUMF without Beam

	VI Beam Delivery and Results
	A dc operation
	B Kicker Controls and Diagnostics
	C Results of Kicker Operation with Proton Beam
	D Implementation and Experiences

	VII Conclusion
	 Acknowledgments
	 References


