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Abstract. Madgraph5_aMC@NLO is one of the most-frequently used Monte-
Carlo event generators at the LHC, and an important consumer of compute
resources. The software has been reengineered to maintain the overall look-
and-feel of the user interface while speeding up event generation on CPUs and
GPUs. The most computationally intensive part, the calculation of “matrix ele-
ments”, is offloaded to new implementations optimised for GPUs and for CPU
vector instructions, using event-level data parallelism. We present the work to
support accelerated leading-order QCD processes, and discuss how this work is
going to be released to Madgraph5_aMC@NLO’s users.

1 Introduction

As a Monte-Carlo event generator, the Madgraph5_aMC@NLO framework (MG5_aMC) [1]
stands at the beginning of the simulation chain for experiments at the Large Hadron Col-
lider (LHC) [2] or other colliders. Event generation, and the subsequent simulation of the
interaction of generated particles with the detectors account for almost half of the comput-
ing resources spent by the LHC experiments [3, 4]. With longer operation time of the LHC,
the collision data recorded by the experiments is increasing, and a corresponding increase
in simulated events is desirable to conduct high-precision analyses. At the same time, the
computing resources of the Worldwide LHC Computing Grid (WLCG) cannot be increased
at the same rate as the amount of recorded data is going to increase. A paradigm shift is
needed for event simulation. By 2030, when the High-Luminosity LHC [5] is expected to
be in operation, about 20 % of the computing resources are expected to be spent on event
generation. This emphasises the importance of projects such as madgraph4gpu [6].

With the advent of SIMD-capable CPUs1 and GPUs, event generators can be improved
by increasing data parallelism. During the madgraph4gpu project, MG5_aMC has been ex-
tended to support SIMD computations and GPUs [7–9]. Matrix-element computations as
they are executed by MG5_aMC lend themselves particularly well to data parallelism, since
the functions to evaluate matrix elements are identical for every event – they are just run for
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Figure 1: Evolution of the madevent program. (a) The classic madevent workflow ran random
numbers, phase-space generation and matrix-element computation in a loop for one event at a
time. (b) For madgraph4gpu, a testbed with a simple, multi-event random number and phase-
space generator was designed to test the parallel computation of matrix elements in C++,
CUDA, or other portability frameworks. (c) Multi-event madevent, where parallel matrix-
element computations from (b) can be used to benefit from SIMD vectorisation, multiple
cores, or GPUs.

different input data. In addition, the matrix element computations are almost branch free, so
vector computations using SIMD or GPU computations with low thread divergence can be
employed with high efficiency.

2 A GPU / SIMD backend for MG5_aMC

Madgraph5_aMC@NLO is a code generator to evaluate probability amplitudes, generate
events, and compute cross sections. For a given particle collision such as e+e−→ µ+µ− or
pp→ tt̄gg, etc, the Fortran program “madevent” is generated and compiled, which contains
a phase-space generator, a phase-space integrator, and a way to compute probability ampli-
tudes (“matrix elements”) for a given collision, see fig. 1a. The established MG5_aMC can
generate the matrix-element code in Fortran, C++, and Python. The madgraph4gpu project
is a plugin for MG5_aMC, where the C++ matrix-element code generated by the original
MG5_aMC was converted to C++ and CUDA to evaluate probability amplitudes for batches
of several thousands of events. It relies on SIMD computations on CPUs and the even higher
data parallelism on GPUs.

In addition to madevent, the plugin can generate a standalone program that only evaluates
matrix elements without the phase-space integration step of madevent (fig. 1b). It relies on
the simple phase-space generator “RAMBO”, which is insufficient for LHC simulations, but
ideal to quickly generate a batch of test events for throughput measurements. This program
was used to design, test and improve the initial madgraph4gpu plugin [7]. During a normal
collision simulation, the madevent program calls the same code as the standalone program, so
the latter can be used to measure the throughput of different approaches, or optimise the com-
putation of matrix elements for specific hardware. Using the standalone program, speedups
of about 250 x against the single-threaded Fortran amplitudes were achieved on the mod-
erately complex process gg→ tt̄gg using an NVidia Tesla V100 GPU in double precision
mode, and 4.6 x to 8.3 x using AVX2 and AVX512 vectorisation in double precision. More

EPJ Web of Conferences 295, 11013 (2024) https://doi.org/10.1051/epjconf/202429511013
CHEP 2023

2



(a) Scaling behaviour of matrix-element
throughput for multiple parallel invoca-
tions of the standalone program

(b) Throughput of the standalone program for dif-
ferent hardware

Figure 2: Throughput tests using the standalone program with a SYCL backend on the
“Sunspot” testbed for the Aurora supercomputer at the Argonne National Laboratory. The
program computes matrix elements for the process gg→ tt̄gg.

details were shown on the ACAT 2022 conference [9]. For the complex process gg→ tt̄ggg,
the speedups are 3.6 x, 6.7 x and 130 x for AVX2, AVX512, and CUDA on the V100 GPU.
This shows that a standalone computation of matrix elements can be sped up significantly
using hardware accelerators, but for full event generation, these matrix elements have to be
integrated into a larger framework. This will be analysed in section 3. In single-precision
mode, the matrix-element throughput can theoretically be doubled, but tracking the precision
of the matrix elements showed that single-precision computations are not accurate enough to
reliably integrate the phase space.

2.1 Intel and AMD GPUs

Based on the CUDA backend, other backends based on portability frameworks such as
SYCL [10], Kokkos [11], and Alpaka [12] were developed to test the feasibility of porting
the matrix element code to different hardware. CUDA code can be compiled for AMD GPUs
with a small amount of changes, but Intel GPUs would be out of reach. After initial progress
with all backends, only the SYCL backend was continued due to limited resources. Figure 2
shows a scaling test and a throughput comparison on different hardware for the intermediate-
complexity process gg→ tt̄gg. When starting multiple instances of the standalone program on
multiple nodes of a high-performance computer, the throughput should scale with the number
of processes. This is confirmed in fig. 2a. Figure 2b shows that matrix-element throughputs
of 1×105 s−1 to 1×106 s−1 can be achieved with various GPUs from AMD, Intel and NVidia.
The classic Fortran matrix elements can be computed at a rate of 3× 103 s−1, so a speedup by
two orders of magnitude is achievable depending on the hardware used.

3 Analysis of the full Madevent Workflow

In parallel with the development of the GPU plugin for MG5_aMC, madevent was converted
to a multi-event interface. Instead of generating random numbers, input and output particles,
and the corresponding matrix element sequentially (event-by-event), random numbers and
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Process Matrix elm Total Momenta+ Matrix elm
unweight

e+e−→ µ+µ− Fortran 9.93 ± 0.05s 9.75 ± 0.05s 0.185 ± 0.001s
C++ AVX2 9.93 ± 0.02s 9.89 ± 0.02s 0.045 ± 0.001s

1.00 ± 0.01× 0.99 ± 0.01× 4.12 ± 0.02 ×
Cuda Tesla A100 10.33 ± 0.02s 10.32 ± 0.02s 0.008 ± 0.001s

0.96 ± 0.01× 0.94 ± 0.01× 24.3 ± 0.4 ×

gg→ tt̄gg Fortran 106.6 ± 0.2 s 4.55 ± 0.01s 102.0 ± 0.2 s
C++ AVX2 29.01 ± 0.05s 4.56 ± 0.01s 24.45 ± 0.04 s

3.67 ± 0.01× 1.00 ± 0.01× 4.17 ± 0.01 ×
Cuda Tesla A100 5.78 ± 0.01s 4.87 ± 0.01s 0.91 ± 0.02 s

18.44 ± 0.04× 0.93 ± 0.01× 112.3 ± 2.1 ×

gg→ tt̄ggg Fortran 2233.6 ± 1.9 s 8.81 ± 0.07s 2224.8 ± 1.9 s
C++ AVX2 697.2 ± 1.2 s 8.71 ± 0.01s 688.5 ± 1.2 s

3.20 ± 0.01× 1.01 ± 0.01× 3.23 ± 0.01 ×
Cuda Tesla A100 27.78 ± 0.05s 9.12 ± 0.05s 18.66 ± 0.02 s

80.40 ± 0.16× 0.97 ± 0.01× 119.23 ± 0.14 ×

Table 1: Run times and speedup for different parts of the madevent executable for different
processes. Madevent is invoked to produce 218 weighted events, which are subsequently
unweighted and written to disk. The Fortran parts of madevent such as phase-space sampling
and unweighting run on the CPU, whereas matrix elements are either run on the CPU in
Fortran, in C++ with AVX2 extensions, or on the GPU in CUDA. The speedup is measured
in comparison to the full-Fortran madevent program. CPU: AMD EPYC 7313, GPU: NVidia
Tesla A100

particles are now generated in batches of up to several thousand events. This enables of-
floading matrix-element computations to the C++ backend with SIMD acceleration, or to the
CUDA backend for computation on a GPU as shown in fig. 1a and fig. 1c in section 2. The
phase-space integration logic, as well as unweighting (that is selecting events that are written
to the output file) remain in madevent. Inevitably, this leads to serial sections in madevent, so
the total achievable speedup will according to Amdahl’s law [13] be lower than the speedup
achieved in the standalone program.

In the following, the integration of C++ or CUDA matrix elements into madevent will be
studied in more detail. The madevent executable is specific to each process being simulated,
but it is mostly the matrix-element part that changes for different processes. Before matrix el-
ements on GPUs were implemented, madevent spent most CPU cycles in the matrix-element
computation2, so this part was naturally optimised by the MG5_aMC developers. The intro-
duction of C++ and CUDA matrix elements speeds up the matrix-element step by about a
factor 4 for C++ with AVX2 extensions and > 100× with CUDA, depending on the com-
plexity of the process, so now the other parts of madevent also become relevant for the total
run time, as shown in table 1. The table shows that for very simple processes with short
matrix-element computations such as e+e−→ µ+µ−, the achievable speedup is limited. Due to
an additional latency for transferring momenta and weights to a different computation back-
end, a speedup of the matrix elements doesn’t speed up the full program, because the matrix

2except for very simple processes
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elements run for an extremely short time. For processes with intermediate complexity such
as gg→ tt̄gg, on the other hand, the speedup for matrix elements reaches 4× for C++, and
112× for CUDA. The matrix elements are a significant part of the total run time here, so the
overall speedup reaches almost 4×with C++ and 18×with CUDA matrix elements. For pro-
cesses with high complexity, the matrix elements strongly dominate the run time, so 3× and
80× total speedup are achieved for C++ and CUDA simulating the process gg→ tt̄ggg. Due
to the Fortran parts of madevent taking an almost constant time independent of the matrix-
element backend used, the total-program speedup increases with the complexity of the matrix
elements being simulated. This scaling is good for MG5_aMC ’s users, since especially the
complex processes with slow matrix elements will be of interest.

The sequential parts of madevent that limit the speedup will be analysed in the following.
Figure 3 shows where madevent for gg→ tt̄gg spends CPU cycles, depending on what type of
matrix elements are used. The Fortran version spends most of the CPU cycles in the function
matrix1_, fig. 3a, which computes the matrix elements. In fig. 3b on the other hand, the ma-
trix elements are barely visible due to the CUDA acceleration. The matrix elements are com-
puted in the deep call stack on the right of the figure, which is so narrow that function names
could not be shown. With CUDA acceleration, the bulk of the run time is spent in unweight-
ing (unwgt_), event I/O (sample_put_point_), phase-space sampling (sample_full_),
and the evaluation of the Parton Distribution Functions (PDFs, lh_polint_).

Analysing these parts further, it became evident that the madevent unweighting algorithm
limits the total speedup, since it requires writing events to temporary storage if they cannot
be discarded immediately. To sample unweighted events from a batch of weighted events,
the maximum event weight of each batch needs to be known. However, since madevent
was designed to iterate through an event sample one by one, it used to employ a running
maximum. It therefore temporarily accepted events, and wrote them to temporary storage,
but most of these were discarded later once the global maximum was known. These events
were written to a file, and had to be read again once the decision could be made to accept or
discard them (cf. write_event_ and read_event_ in fig. 3b).

Given that madevent has been converted to a multi-event interface to enable GPU and
vectorised computations, c.f. fig. 1c, the maximum weight of a set of events can be com-
puted in one go instead of using a running maximum. To do this, weights from Jacobian
terms and PDFs are transferred to the GPU, and multiplied with the matrix elements that are
already in GPU memory to compute the full event weight. The maximum of these weights
is computed in parallel, and transferred back to the host. The knowledge of this weight im-
proves the efficiency of the unweighting steps, as low-weight events can be discarded at a
higher rate, and fewer events have to be written into or retrieved from temporary storage.
For gg→ tt̄gg, for example, the default unweighting of madevent temporarily stored 89 923
out of 278 506 events, but the final sample consisted of 870 events. Using the GPU-assisted
unweighting, 1475 out of 278 506 were retained, and the final unweighted sample consisted
of 1053 unweighted events. The amount of events that were stored temporarily but ultimately
discarded was therefore reduced to 5 ‰, and the number of events produced by madevent was
increased. In table 2, the speedup by employing GPU matrix elements with batch unweight-
ing is shown. In contrast to table 1, the zero-width t-channel mode is off, so absolute run
times cannot be compared. By employing GPU-assisted unweighting, the slowdown that is
normally incurred by transferring momenta from madevent to an accelerated matrix-element
backend is compensated for, and a speedup of the momenta+unweight step is achieved.

The impact on madevent is shown in fig. 3c. A large reduction of write_event_ and
read_event_ calls is observed with respect to fig. 3b, and the madevent run time without the
matrix-element part is reduced from 6.3 s to 4.7 s as shown in table 2. The number of events
in temporary storage, unweighting efficiency, and the achievable speedup with GPU-assisted

EPJ Web of Conferences 295, 11013 (2024) https://doi.org/10.1051/epjconf/202429511013
CHEP 2023

5



(a) Fortran-only execution

(b) Fortran + CUDA execution

(c) Fortran + CUDA execution with GPU-assisted unweighting

Figure 3: Flamegraph analysis [14] of CPU cycles spent in three madevent runs for the pro-
cess gg→ tt̄gg. The fortran-only version (a) spends most of the time in the matrix-element
computation (matrix1_). In (b), this function is sped up about 170 x using a GPU. Now,
phase-space sampling, unweighting, and PDF evaluation dominate the run time. In (c), the
unweighting step was improved in addition to using GPU matrix elements by employing
more efficient, GPU-assisted unweighting. This results in a speedup of 1.3 x on the host side.
The total run time is now dominated by phase-space sampling (sample_full_) and PDF
evaluation (lh_polint_).
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Process Matrix elm Total Momenta+unweight Matrix elm

gg→ tt̄gg Fortran 108.10 ± 0.27s 6.27 ± 0.41s 101.84 ± 0.14s
C++ AVX2 31.08 ± 0.01s 6.88 ± 0.01s 24.20 ± 0.02s

3.48 ± 0.01× 0.91 ± 0.06× 4.21 ± 0.01×
Cuda Tesla A100 5.32 ± 0.03s 4.67 ± 0.02s 0.66 ± 0.02s

20.32 ± 0.13× 1.34 ± 0.09× 155.4 ± 2.7 ×

Table 2: Run times and speedup for the madevent executable with batch unweighting. In
contrast to table 1, the zero-width t-channel mode is deactivated, so absolute run times cannot
be compared between the two tables. When GPU matrix elements are used, the unweighting
of each batch of 16 384 events completes faster and with higher efficiency.

unweighting depend on the process being simulated, but in all cases, the direct computation
of the maximum reduces the number of events to be stored.

Given that madevent can be used in a multi-event workflow also without GPUs, a similar
unweighting strategy could be employed if Fortran and C++ matrix elements are used. This
algorithmic improvement will be tested in madevent. It should be stressed that the main
reason for a speedup is not the usage of the GPU to compute the maximum weight, but it is
the knowledge of the maximum event weight for a larger batch of events. This leads to better
accept/reject decisions, and fewer events are written or read to/from files.

With GPU matrix elements and GPU-assisted batch unweighting, the run times to com-
pute gg→ tt̄gg are now dominated by the PDF evaluation (lh_polint_) and the phase-space
sampling (sample_full_) steps as shown in fig. 3c. These could be reduced further, by e.g.
employing accelerated PDF libraries or by reworking the phase-space algorithm of made-
vent. Currently, though, the focus of the madgraph4gpu project is on releasing the plugin for
testing by the LHC experiments.

4 Summary and Outlook: Releasing madgraph4gpu to
Madgraph5_aMC@NLO’s users

The madgraph4gpu plugin was shown to significantly speed up matrix-element computations,
especially for processes with many final-state particles. These are computationally expensive
to simulate, so this plugin should be a default choice for MG5_aMC if high statistics are
required. Even if MG5_aMC users don’t have access to GPU resources, they can use the
plugin to make use of SIMD computations, which are supported by all modern CPUs.

At the time of the conference, however, MG5_aMC users were not able to generate their
own madevent executables accelerated by the madgraph4gpu plugin. First “gridpacks” had
been produced by the madgraph4gpu developers with CUDA and vectorised C++ backends,
but this required a non-standard MG5_aMC. For a gridpack, MG5_aMC pre-samples the
phase space of a given process, and optimises the integration grid. This ensures that the sam-
pling frequency of phase-space regions matches their probability density. This pre-sampled
grid is written into files, and packed into archives together with the madevent executables for
each subprocess. These archives can be used to run larger batch jobs that generate the desired
number of collision events. For a few select processes, the ATLAS and CMS experiments
were able to confirm that the gridpacks can benefit from GPU acceleration. The gridpacks
were only tested – and equality of results against MG5_aMC verified – for a limited number
of subprocesses such as e+e−→ µ+µ− and gg→ tt̄ 0-3g.
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The madgraph4gpu plugin currently only supports leading-order QED and QCD pro-
cesses, because running couplings in weak interactions and SUSY or BSM processes will
require a more elaborate treatment in the GPU backend. These are on the plan of work. Pro-
cesses with multiple subprocesses, such as proton-proton collisions pp→ tt̄ 0-2 j, that is none
to two additional jets, are being tested currently.

Lastly, work is underway to improve the integration into Madgraph5_aMC@NLO. In the
future, MG5_aMC users will be able to check out the madgraph4gpu plugin, and run the gen-
eration of the matrix-element code using the native MG5_aMC interface. We hope that this
work reduces waiting times of MG5_aMC users, and helps to alleviate the pressure on scarce
computing resources in light of growing datasets during Run 3 and the High-Luminosity
LHC.
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