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Abstract We consider subleading power corrections to
event shape variables in e+e− collisions at the first order
in the QCD coupling αS. We start from the jettiness variable
τ2 and the y23 resolution variable for the kT jet clustering
algorithm and we analytically compute the corresponding
cumulative cross section. We investigate the origin of the dif-
ferent power suppressed contributions in the two-jet limit and
trace it back to their different coverage of the phase space.
We extend our analysis to the case of thrust and of the C-
parameter, and we finally discuss a class of observables that
depend on a continuous parameter giving different weight
to central and forward emissions and we evaluate the corre-
sponding subleading power corrections.

1 Introduction

Event shapes and jet rates have been extensively studied in
e+e− collisions (see e.g. Ref. [1] and references therein).
The former measure geometrical properties of the final-state
hadronic energy flow, while the latter allow us to count the
number of jets, thereby providing access to the underlying
partonic structure of the hadronic event. Since jet rates always
depend on a resolution parameter, they can themselves be
used to define event shape variables.

The value of a given event shape encodes in a continuous
fashion, for example, the transition from pencil-like two-jet
events to planar three-jet events or to events with a spher-
ical distribution of hadron momenta. For this reason, event
shapes were already widely used in early studies of strong
interactions. Being infrared (IR) safe by construction, event
shapes and jet rates can be computed order by order in per-
turbation theory, and can in turn be used to measure the QCD
coupling αS. More generally, these observables are also rel-
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evant in studies of the interplay between perturbative and
non-perturbative QCD.

In this paper we focus on event shape variables that are
non-zero in three-jet configurations. We generically denote
an event shape variable (that we assume to be properly nor-
malised to make it dimensionless) as r , such that the two-jet
limit corresponds to r → 0. The differential cross section in
this limit receives large logarithmic contributions that need
to be resummed to all orders. Such resummation has been
extensively studied [2–15] at leading power, and observable-
independent formulations of the resummation program do
exist [16–20].

The next-to-leading power contributions in the r → 0
limit have received less attention, and only recently they have
started to be systematically investigated [21–28]. Besides
helping us to improve our understanding of perturbative
QCD, the study of power suppressed contributions is impor-
tant when the observable is used as resolution variable to set
up higher order computations with non-local subtraction or
slicing schemes [29–33].

In this paper we study subleading power corrections for
several different event shape variables. We start from the
jettiness τ2 [31] and y23 resolution variable for the kT jet
clustering algorithm [34]. We compute the necessary ingre-
dients to use them as slicing variables to evaluate generic
e+e− → 2 jet observables at next-to-leading order (NLO).
We show that while the linear power corrections for jetti-
ness are logarithmically-enhanced, those for y23 are not. We
also contrast the behavior of τ2 and y23 with that of a toy
variable kFSR

T , which can be defined at NLO as the trans-
verse momentum of the gluon with respect to the quark–
antiquark pair. Then, we analytically compute the cumulative
cross section for these observables, and discuss the origin of
the different behavior of power corrections, which is traced
back to the different way in which the phase space is cov-
ered by these variables. We then move to the thrust [35] and
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C-parameter [36–38], evaluating the corresponding power
corrections and discussing their origin. We finally consider a
variable rb depending on a continuous parameter b that gives
different weight to central and forward emissions along the
relevant collinear direction, and we compute the ensuing sub-
leading power corrections.

The paper is organised as follows. In Sect. 2 we introduce
our notation and discuss the implementation of kFSR

T , τ2 and
y23 as resolution variables. In Sect. 3 we carry out our ana-
lytical study. We first compute the cumulative cross section
for kFSR

T (Sect. 3.1), τ2 (Sect. 3.2) and y23 (Sect. 3.3) and
in Sect. 3.4 we discuss their physical differences. Then in
Sect. 3.5 we extend our discussion to the case of thrust and
the C-parameter, and we finally study in Sect. 3.6 an observ-
able that smoothly interpolates between thrust and y23, eval-
uating the corresponding power corrections. In Sect. 4 we
summarise our results. Analytical results for the NLO coef-
ficients for τ2, y23 and kFSR

T are provided in Appendix A,
while the exact expression of the three-jet rate with the kT
jet clustering algorithm is reported in Appendix B.

2 Setup and preliminary investigations

We consider the inclusive production of hadrons in e+e−
annihilation. The LO reaction at parton level is

e+(pa) + e−(pb) → γ ∗(q) → q(p1) + q(p2), (1)

where we limit ourselves to consider virtual photon exchange.
At NLO the real emission reaction is

e+(pa) + e−(pb) → γ ∗(q) → q(p1) + q(p2) + g(p3).

(2)

The NLO cross section can be written as

σNLO =
∫

dσ B +
∫

dσ R +
∫

dσ V (3)

where dσ B , dσ R and dσ V are the Born, real and virtual
contributions, respectively. At NLO a slicing method based
on a resolution variable r (that we assume to be suitably nor-
malised to make it dimensionless) can be built up by rewriting
Eq. (3) as

σNLO =
∫

dσ Rθ(r − v)

+
(∫

dσ Rθ(v − r) +
∫

dσ V +
∫

dσ B
)

. (4)

In Eq. (4) we have split the real contribution into a contri-
bution above and a contribution below a small cut v, using
a generic resolution variable r . The first term in Eq. (4) is
finite and can be evaluated in d = 4 dimensions, while the
second term can be evaluated in the small v limit through
suitable approximations of the phase space and of the real

matrix element in the IR limits. More precisely, one can start
from the evaluation of the collinear contributions, and then
proceed to add the soft contribution, after subtraction of the
soft-collinear terms (see e.g. Ref. [39]). Eventually the IR
poles from the real contribution below the cut cancel out
with those in the virtual contribution and we can write

∫
dσ Rθ(v − r) +

∫
dσ V +

∫
dσ B

=
∫

dσ B
(

1 + αS(μR)

π

(
Ar ln2 v + Br ln v

+Cr + O(v p)
))

. (5)

The explicit form of the coefficients Ar , Br and Cr depends
on the choice of the resolution variable r , and, in general,
also on the Born kinematics. The power suppressed terms
can be neglected if v is sufficiently small. Their structure
depends on the observable and we anticipate that they can be
logarithmically enhanced.

In the following we will focus on two resolution variables,
the 2-jettiness variable τ2 [31] and the y23 resolution variable
with the kT algorithm [34]. For an event with n final-state
partons with momenta p1, p2 . . . pn the definition of τ2 is

τ2 =
n∑

k=1

min

{
2pk · q1

Q2 ,
2pk · q2

Q2

}
(6)

and depends on the choice of the jet axes q1 and q2. In this
paper q1 and q2 are defined by using the JADE clustering
algorithm1 [40,41]. Alternative definitions [21] directly iden-
tify τ2 with the thrust variable [35], that we will consider in
Sect. 3.5. The variable y23 is instead defined as follows. We
introduce the distance measure di j for the kT algorithm as

di j = 2 min{E2
i , E

2
j }(1 − cos θi j )

Q2 , (7)

where Ei and θi j are energies and angular separations defined
in the e+e− centre-of-mass frame. The pair with the small-
est di j is clustered and replaced with a pseudo-particle with
momentum pi + p j and the procedure is repeated until all
remaining di j are larger than some value ycut. The variable
y23 is defined as the maximum value of ycut for which the
event has three jets. In the NLO case in which only three
partons are present, we simply have

y23 = min{d12, d13, d23}. (8)

More generally, we are interested in observables r({pi }, k)
whose dependence on the momentum of a single soft emis-
sion of momentum k, collinear to one of the hard legs of the

1 We have verified that up to NLO the same clustering history and jet
axes are obtained adopting the kT algorithm with the distances defined
as in Eq. (7).
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Fig. 1 Comparison of power suppressed contributions for τ2, ỹ23 and
xFSR
T

Born events, can be parametrised as

r({pi }, k) =
(
k(�)
t

Q

)a

e−b�η
(�)

, (9)

where {pi } are the Born momenta and k(�)
t and η(�)(≥ 0)

denote the transverse momentum and rapidity of k with
respect to the leg �. It is easy to show that τ2 corresponds to the
case a = 1, b = 1, while y23 corresponds to a = 2, b = 0.
In order to have an homogeneous scaling in k(�)

t , in the fol-
lowing we will use ỹ23 ≡ √

y23. By limiting ourselves to
NLO we can also consider the variable

kFSR
T =

√
2(p1 · p3)(p2 · p3)

p1 · p2
(10)

which represents the transverse momentum of the parton with
momentum p3 in the frame in which p1 and p2 are back to
back.

We have evaluated the NLO coefficients Ar , Br and Cr in
Eq. (5) necessary to carry out the NLO calculation of arbitrary
2-jet observables by using Eq. (4) for the resolution variables
τ2, ỹ23 and xFSR

T ≡ kFSR
T /Q. The corresponding results are

reported in Appendix A. We can test the quality of the slicing
procedure, or, equivalently, the size of power corrections, by
plotting the relative deviation of the NLO correction 
σNLO

from its exact result (see e.g. Ref. [42]) as a function of v.
This is shown in Fig. 1.

We see that the smallest power corrections are those of the
xFSR
T variable, for which the v behavior is consistent with a

quadratic dependence. This is somewhat expected, since this
variable strongly resembles the transverse momentum of a
colourless system in hadronic collisions.2 The power correc-

2 An e+e− observable with a similar behavior [43] is Energy-Energy
correlation (EEC) [44].

tions for the variable τ2 are consistent with a logarithmically-
enhanced linear behavior. This could have been expected
from the known behaviour of the thrust observable [45],
which is equivalent to τ2 to leading power.3 On the con-
trary the ỹ23 variable, which represents an effective trans-
verse momentum in the final-state splitting, features purely
linear power corrections. These results are consistent with
what observed in Ref. [33] in the more complicated case
of hadronic collisions. In the following we will check these
results through explicit analytic computations, and we will
investigate the origin of the different behavior of power cor-
rections.

3 The calculation

We now focus on the real emission contribution dσ R . The
three-parton phase space is spanned by five independent vari-
ables that can be chosen as three Euler angles and two of the
three energy fractions

xi = 2pi · Q
Q2 , Q = pa + pb (11)

that fulfill the energy conservation constraint x1 + x2 + x3 =
2. The variables that we are going to consider are independent
of the angles, and, therefore, we can focus on the variables
x1 and x2, whose physical region correspond to the triangle
delimited by the lines x2 = 1 − x1, x1 = 1 and x2 = 1 in the
(x1, x2) plane. In terms of these variables the resolved real
contribution to the cross section, first term of Eq. (4), can be
written as

σ R
r (v) =

∫
dσ Rθ(r − v) ≡ σ0

αS

2π
CF Rr (v), (12)

where

Rr (v) =
∫ 1

0
dx1

∫ 1

1−x1

dx2 f (x1, x2)θ(r(x1, x2) − v).

(13)

In Eq. (12) CF = (N 2
c − 1)/(2Nc) (with Nc the number of

colours), σ0 is the LO cross section

σ0 = 4πα2Nc
∑

q e
2
q

Q2 , (14)

where the sum is over the quarks q with charge eq and α is
the QED coupling. The function

f (x1, x2) = x2
1 + x2

2

(1 − x1)(1 − x2)
(15)

3 We note, however, that the subleading power corrections for τ2 and
thrust are different, see Sect. 3.5.
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Fig. 2 Regions in the x1 − x2 plane corresponding to the condition
r > v = 1/10 for the variables τ2 (left), ỹ23 (central) and xFSR

T (right)

in Eq. (13) represents, up to an overall normalisation, the
matrix element squared for the process in Eq. (2). We recall
that the collinear limit p3 ‖ p1 corresponds to x2 = 1, while
the collinear limit p3 ‖ p2 corresponds to x1 = 1. The soft
limit x3 → 0 is reached in the corner x1,2 → 1.

In the case of three partons relevant at NLO, assuming
si j < sik, s jk the jettiness τ2 variable can be simply written
as

τ2 = xk(1 − xk) (16)

where (i, j, k) is an arbitrary permutation of (1, 2, 3). We
also have

di j = min{x2
i , x

2
j }

xi x j
(1 − xk) (17)

and

xFSR
T =

√
(1 − x1)(1 − x2)

x1 + x2 − 1
. (18)

It is interesting to study the regions in the (x1, x2) plane
encompassed by the conditions r > v for the three variables,
which are shown in Fig. 2.

We see that the region τ2 > v is a triangle, which cuts
away the singular regions x1 ∼ 1 and x2 ∼ 1 but also a
stripe along the line x2 = 1 − x1. For the same value of v,
the region ỹ23 > v is larger, and in particular gets closer
both to the x1,2 = 1 singular limits as to the non singular
region around x2 = 1 − x1. The best coverage of the phase
space is obtained with the variable xFSR

T , which, in particular,
fully covers the non singular region around x2 = 1 − x1.
We can therefore interpret the results in Sect. 2 as follows.
When the variable xFSR

T becomes small, we are really close to
the singular limits of the matrix element, and the condition
xFSR
T > v really cuts only the truly singular region of the

(x1, x2) plane. We note that instead, for each values of v, a

cut on the variable ỹ23 leaves out part of a non-singular region
along the line x2 = 1 − x1, which is one of the sources of
the different scaling of the power corrections for ỹ23. A cut
on the variable τ2 removes instead a linear stripe along the
lines x2 = 1 − x1, x1 = 1, x2 = 1. This can be related to
the different dependence on the rapidity of the emission, and,
in particular, on the fact that τ2 ∼ kT /Q e−η. Therefore, a
cut τ2 > v induces not only a minimum on the transverse
momentum of the radiated parton but also a maximum on its
rapidity. We will see below that this pictorial analysis, which
provides us with a qualitative understanding of the scaling
of the power corrections, will be confirmed by our explicit
calculation.

3.1 The variable xFSR
T

For the variable xFSR
T the real contribution RxFSR

T
(v) can be

computed exactly in a straightforward way and reads

RxFSR
T

(v) = 7

2
+ v2 + (3 + 4v2 + v4) ln

v2

1 + v2

−2Li2

(
− 1

v2

)
. (19)

In the small-v limit we obtain

RxFSR
T

(v) = 4 ln2 v + 6 ln v + 7

2
+ π2

3
+4 (2 ln v − 1) v2 + O(v4). (20)

In this limit the function develops the customary double
and single logarithmic contributions. We also see that, as
expected, the power suppressed contributions are quadratic
for this variable, consistently to what we have seen in Fig. 1.

3.2 The variable τ2

We now move to the variable τ2. From now on, in order to
simplify the calculations, we will exploit the symmetry under
the exchange of the quark and antiquark momenta (corre-
sponding to x1 ↔ x2) and consider only the integral in the
region x2 > x1.

In the (x1, x2) plane, the cut τ2 > v defines a triangular
region as shown in the left panel of Fig. 3. A similar contour
is obtained for the case of the thrust event shape [35], and
also for the three-jet region defined by the JADE clustering
algorithm [40]. We can extend our calculation for this class
of observables by considering the following parametrisation
of the region

R(v) =
{

2u < x1 <
1

2
(1 + u), 1 − x1 + u < x2

< 1 − u ∨ 1

2
(1 + u) < x1, x1 < x2 < 1 − u

}
, (21)
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Fig. 3 As in Fig. 2 with the additional constraint x2 > x1 for τ2 (left)
and ỹ23 (right)

where, for example, u(v) = v for thrust and u(v) =
1
2 (1 − √

1 − 4v) = v + O(v2) for τ2. The real contribu-
tion is obtained by integrating the function f (x1, x2) in the
above region, namely

Rr (v) = 2
∫
R(v)

dx1dx2 f (x1, x2)

= 5

2
−π2

3
+2 ln2

(
1 − u

u

)
+ (6u − 3) ln

(
1 − 2u

u

)

− 6u − 9u2

2
+ 4Li2

(
u

1 − u

)
. (22)

We focus here on the case of 2-jettiness variable and postpone
the discussion on thrust to Sect. 3.5. For r = τ2 we have
u(v) = 1

2 (1 − √
1 − 4v) and

Rτ2(v) = −11

4
− π2

3
+ 2 ln2

(
2

1 − √
1 − 4v

− 1

)

− 3
√

1 − 4v ln

(
2

1 − √
1 − 4v

− 2

)

+ 9v

2
+ 21

4

√
1 − 4v

+ 4Li2

(
−2v + √

1 − 4v − 1

2v

)

= 2 ln2 v + 3 ln v + 5

2
− π2

3
+ v(7 + 2 ln v)

+ v2 (5 + 6 ln v) + O(v3). (23)

We notice that the subleading power correction is linear and
is logarithmically-enhanced, consistently to what we have
observed in Fig. 1.

3.3 The variable ỹ23

A similar analysis can be carried for ỹ23. The region ỹ23 > v

is given by (see right panel of Fig. 3)

R(ỹ23; v) =
{

v

2

√
8 + v2 − v2

2
< x1 <

1

2
+ v2

2
, 1 − x1

+v2 1 − x1

x1 − v2 < x2 < 1 − v2 1 − x1

x1 − v2

∨ 1

2
+ v2

2
< x1 < 1 − v

4

√
8 + v2 + v2

4
,

x1<x2<
3

2
− x1

2
−1

2

√
1 + x1(x1 − 2 + 4v2)

}
.

(24)

The integral can be computed analytically, but the final result
(which corresponds to the LO 3-jet rate with the kT algo-
rithm) is less compact than that for τ2 and is reported in
Appendix B. We find agreement with the result of Ref. [46],
provided a typo therein is corrected. By expanding in v, we
observe that the power correction is again linear in v, but
does not contain any logarithmic enhancement:

Rỹ23(v) = 4 ln2 v + 6 ln v + 5

2
− π2

6

+6 ln 2 +
(
4 ln

(
1+√

2
)
− 8

√
2
)

v

+ (5− 18ln 2 −8 ln v) v2 + O(v3). (25)

The first occurrence of a logarithmically-enhanced term
appears at O(v2).

3.4 Comparison between τ2 and ỹ23

Although we could perform the two calculations analyti-
cally, thereby obtaining the full tower of power corrections
at order αS, this analysis does not shed light on the phys-
ical origin of the power corrections nor on the observed
difference between the two cases. To gain further insight,
we compare the regions R(τ2; v) and R(ỹ23; v) associated
with the two variables for the same value of the parameter
v. The situation is illustrated in Fig. 4. We observe that the
region R(τ2; v) is included in R(ỹ23; v) and we focus on the
region D = R(ỹ23; v)\R(τ2; v). Since the variable ỹ23 does
not feature logarithmically-enhanced power corrections, the
integral of the matrix element in the region D must give rise
to the same logarithmically-enhanced power corrections of
τ2, but with an opposite sign. In order to identify the phase
space regions responsible for the presence of logarithmically-
enhanced power corrections, we further split the region D
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Fig. 4 Regions D(1,2)(v) (left) and D(1,2)(v, v̄) (right) in the x1 − x2
plane

into two subregions D(1) and D(2) by connecting the two
corners by a straight line, whose equation is simply given by
1 − x1/2 − x2 = 0, as shown in Fig. 4.

We perform the integration over the two regions. The
results expanded up to O(v) read

2
∫
D(1)

dx1dx2 f (x1, x2)

= 2 ln2 v + 3 ln v + π2

6
+ 6 ln 2

+ v
(
−7 − 8

√
2 + 8 ln

(
1 + √

2
))

+ O(v2) , (26)

and

2
∫
D(2)

dx1dx2 f (x1, x2)

= −4v ln
(

1 + √
2
)

− 2v ln v + O(v2), (27)

respectively.
The main result of the above analysis is that the logarithmi-

cally enhanced linear power correction comes entirely from
the region D(2), where, as expected, it appears with opposite
sign with respect to the one present for the τ2 variable.4 This
region corresponds to physical configurations in which the
gluon is hard and recoils against a collinear and/or soft quark–
antiquark pair. In fact, we are far from configurations in phase

4 We note that the way we separate the regions D(1) and D(2), which
naturally follows from the definitions of ỹ23 and τ2, is crucial to our
observation. A different splitting in the decomposition may shift the
logarithmically-enhanced contribution between the two.

space where the real matrix element develops IR singulari-
ties, and so the contribution stemming from the region D(2)

is a pure power correction. The fact that the logarithmically-
enhanced power corrections are entirely due to the non sin-
gular region close to the x2 = 1 − x1 line is non trivial.
As we will see in the following when considering the case
of thrust and C-parameter, the absence of logarithmically-
enhanced power corrections in the D(1) region is a peculiar
characteristic of τ2.

Having identified the phase space region responsible for
the logarithmically-enhanced power corrections, we would
like to confirm that their origin is purely kinematical. To
this end, we turn our attention to the matrix element and we
consider its approximation in the singular limits. The only
singular limit approached in the region D(2) is the collinear
limit x2 → 1, where the momentum of the gluon becomes
parallel to the one of the quark. We perform, then, the inte-
gration over D(2) of the matrix element in this limit, which
implies replacing the function f (x1, x2) in Eq. (15) with the
leading term f (0)

coll(x1, x2) of the collinear expansion of the
matrix element

f (x1, x2) = 1 + x2
1

(1 − x1)(1 − x2)
− 2

1 − x1
+ O(1 − x2)

≡ f (0)
coll(x1, x2) + f (1)

coll(x1, x2) + O(1 − x2).

(28)

The result reads

2
∫
D(2)

dx1dx2 f
(0)
coll(x1, x2)

= v
(

1 + 2 ln 2 − 4 ln
(

1 + √
2
)

− 2 ln v
)

+ O(v2).

(29)

We observe that the collinear approximation of the matrix
element is sufficient to correctly recover the logarithmically-
enhanced linear power correction. Furthermore, we checked
that this remains true also by setting x1 = 0 in the expression
of the collinear matrix element f (0)

coll, i.e. by considering the
limit in which the quark becomes soft.

The picture that emerges is that this contribution is a con-
sequence of removing a phase space region which is non-
singular but extends itself into the collinear limits, because
of the cut on τ2. By contrast, we notice that integrating down
to the ỹ23 contour does not lead to the appearance of a sim-
ilar logarithmically-enhanced linear power correction. We
associate this result to the fact that the phase space volume
removed by imposing the cut on ỹ23 scales quadratically with
v whereas it scales linearly for the case of τ2. In turn, the
different profile of the contour is a consequence of the dif-
ferent rapidity dependence of the variable in the collinear
limit, i.e. the exponent b in Eq. (9). Before moving forward,
we complete the above discussion repeating the same exer-
cise replacing the R(ỹ23, v) region with another τ2 region
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R(τ2, v̄) with v̄ < v, as shown in the right panel of Fig. 4.
Performing the integration over the region D(2)(v, v̄), we
obtain

2
∫
D(2)(v,v̄)

dx1dx2 f (x1, x2) = 2v̄ ln v̄ − 2v ln v

+O(v2, v̄2), (30)

which is consistent with our expectation that this region is
the one responsible for the logarithmically-enhanced linear
power correction. We note that the integral in the region
D(2)(v, v̄) does not give rise to linear, non-logarithmically-
enhanced power corrections, which are thus entirely con-
tained in the region D(1)(v, v̄).

In conclusion, we have shown that, for the case of τ2, the
logarithmically-enhanced power correction is a pure phase
space effect. The simplicity of this result is observable depen-
dent, as we will discuss in the following section. In fact,
one generally expects contributions to the power correction
also stemming from the expansion of the real matrix ele-
ment beyond the leading power. Nonetheless, we anticipate
here that in the non-singular region close to the boundary
x2 = 1 − x1 the collinear approximation of the matrix ele-
ment is sufficient to capture the logarithmically-enhanced
power correction also for the variables considered in the next
section.

3.5 Thrust and C-parameter

In this section we will study the cases of thrust [35] and of
C-parameter [36–38]. We start with thrust T and consider
the observable 1 − T . By using the energy fractions we can
write

1 − T = min{1 − x1, 1 − x2, 1 − x3}. (31)

The exact result for the cumulative cross section is given by
Eq. (22) with u(v) = v, which reproduces the known result
in the literature [45]. Expanding in v we obtain

R1−T (v) = 2 ln2 v + 3 ln v + 5

2
− π2

3
+ 2v(2 − ln(v))

−v2
(

7

2
− 2 ln v

)
+ O(v3). (32)

Comparing Eq. (32) with Eq. (23) we see that the expansion
of Rτ2(v) and R1−T (v) coincides at the leading powerO(v0),
including the constant term. This is not unexpected, since
these variables behave exactly in the same way in the rele-
vant IR limits. However, the subleading power corrections
are different, as the two variables start to depart from each
other going beyond the soft and collinear approximations.
In particular, the subleading power corrections are logarith-
mically enhanced in both cases but with a different coeffi-
cient. We have repeated the analysis of Sect. 3.4 for thrust,
studying the contribution to subleading power corrections

from the regions D(1) and D(2). We find that, contrary to
what happens for τ2, the subleading-power logarithmic term
does not originate only from D(2) but there is also a con-
tribution from D(1). As anticipated, the contribution from
D(2) can be obtained through a collinear approximation of
the matrix element, extended into the non-singular region,
and is identical to that of τ2. The contribution of D(1) can be
exactly obtained from a collinear approximation of the matrix
element including both the leading and the next-to-leading
power contributions5 f (0)

coll and f (1)
coll in Eq. (28), and, com-

bined with the D(2) contribution, leads to the result reported
in Eq. (32). Our result and the associated interpretation of
the origin of the logarithmically-enhanced subleading power
correction for thrust is in perfect correspondence with the
analysis performed in Ref. [21] in the SCET framework.

We now move to the case of the C-parameter. For final-
state massless particles the C-parameter can be defined as

C = 3 − 3

2

∑
i, j

(pi · p j )
2

(pi · q)(p j · q)
. (33)

The two-jet limit corresponds to C → 0 and in this limit the
C parameter and thrust are related by

C = 6(1 − T ). (34)

This relation holds up to next-to-leading logarithmic accu-
racy [8]. In the following we will consider the variable
c = C/6 which can be written in terms of the energy fractions
as

c = (1 − x1)(1 − x2)(1 − x3)

x1x2x3
. (35)

The evaluation of the cumulative cross section Rc(v) in this
case is more complicated and involves elliptic integrals [28,
47]. In the v → 0 limit we find

Rc(v) = 2 ln2 v + 3 ln v + 5

2
− 2

3
π2

+v(7 − 4 ln v) + O(v2). (36)

We see that the logarithmic terms are the same as those in
Eqs. (32) and (23), but the constant term is different. We also
see that the subleading power correction is logarithmically-
enhanced,6 with a different coefficient with respect to that of
(1−T ) and τ2. By repeating the analysis in the corresponding
regions D(1) and D(2), we observe the same pattern as for

5 We have also checked that a subleading soft approximation (see e.g.
Ref. [28]) is able to capture the correct coefficient of the logarithmically-
enhanced power correction in the region D(1).
6 We note that our result for the coefficients of the subleading power
correction differs from the expansions reported in Eq. (B.10) of Ref. [47]
and in Eq. (89) of Ref. [28], while it agrees with a numerical evaluation
of the full expression in terms of elliptic integrals.
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thrust. Summarising we have

2
∫
D(2)(v)

dx1dx2 f (x1, x2) ∼ 2
∫
D(2)(v)

dx1dx2 f
(0)
coll(x1, x2)

∼ −2v ln v, (37)

valid for both thrust and C-parameter and

2
∫
D(1)(v)

dx1dx2 f (x1, x2) ∼
{

+4v ln v; for 1 − T

+6v ln v; for c
.(38)

In the above formulae, with the symbol ∼ we mean that
we are restricting the result to the logarithmically-enhanced
subleading power correction. As anticipated, in the region
D(2) the latter has a common origin and the same coefficient
for all three considered variables.

3.6 The variable rb

In this section we investigate in more detail the presence of
logarithmically-enhanced power corrections for a variable of
the kind of Eq. (9) with a generic b exponent [48]. Observ-
ables of such kind have been considered in Ref. [18] and were
recently studied in order to assess the logarithmic accuracy of
Monte Carlo parton showers [49]. The motivation of intro-
ducing such family of shower ordering variables is related
to their different coverage of the Lund plane [50], which, in
combination with an appropriate treatment of the recoil of
the emission, may ultimately affect the possibility to achieve
next-to-leading logarithmic accuracy or beyond.

Based on the discussion in Sect. 3.4, and, in particular,
on our observation that τ2 corresponds to the case a = 1
and b = 1 in Eq. (9), the most natural definition of such
general observable for our NLO analysis would be obtained
through an appropriate combination of ỹ23 and τ2. However,
we have seen that τ2 is quite special, since with our definition
of the jet axes the logarithmically-enhanced power correction
originates only in the region D(2). We therefore use 1 − T

instead of τ2. We define the class of observables

rb = (1 − T )b ỹ1−b
23 , (39)

that smoothly interpolates between the two limits b = 0
(ỹ23) and b = 1 (1 − T ). These observables admit a compact
expression as a function of xi , facilitating our analysis in the
(x1, x2) plane. We note that these observables are not recur-
sive infrared collinear safe [17] being a combination of two
recursive infrared collinear safe observables but with a dif-
ferent b [18]. This, however, is not an issue in our case, since
we are looking for an observable that is sufficiently simple
to allow for the evaluation of the leading power corrections
in analytic form. We have computed the cumulative cross
section Rrb for this observable, including subleading power
corrections. We find:

Rrb (v) = 2

1 + b

(
2 ln2 v+3 ln v

)
+5

2
− (1+b)

π2

6
+6

1 − b

1 + b
ln 2+

[
2

5+b
2 b

1+b
+4B1/2

(
−1 + b

2
, 0

)
−2B1/2

(
1 − b

2
, 0

)]
v

+
[

4B1/2

(
b − 1

b + 1
, 0

)
− 4B1/2

(
2b

1 + b
, 0

)

+
�

(
b−1
b+1

) (
4

(
b4 + 3b3 + 6b2 + b + 1 + b(b3−7b2+3b+3)

b+1 B 1
2

(
b−1
b+1 , 2

b+1

))
− 4b

2+b
1+b (b + 1)2

)

(b + 1)3 �
(

2b
b+1 + 1

)

+ 5b2 + 6b − 3

(1 + b)2

(
ψ

(
b

1 + b

)
− ψ

(
1 + 3b

2(1 + b)

)) ]
v

2
1+b + O

(
v2

)
, (40)

where the incomplete Beta function is defined as

Bz(a, b) =
∫ z

0
dt ta−1(1 − t)b−1. (41)

Equation (40) shows that the structure of the power correc-
tions of the generic observable rb is richer, since it contains
an additional tower of non-rational power corrections of the

type
(
v2/(1+b)

)k
. The presence of non-rational power correc-

tions for b ∈ (0, 1) is consistent with the findings of Ref. [51]
in the context of the all-order resummation of angularities in
SCET.

We see that the subleading power correction for rb does not
display explicit logarithmic enhancements, similarly to what
happens for ỹ23. It is easy to check that in the limit b → 0
the linear term in Eq. (40) reproduces the linear term for ỹ23

in Eq. (25). On the other hand, the rather complex analytical
structure of rb leads to a log-like behaviour for values of
b � 1. In the limit b → 1 the coefficient of the linear power
correction is divergent, and combined with the b → 1 limit
of the O(v2/(1+b)) term, reproduces the subleading power
correction for the 1 − T variable in Eq. (32).
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4 Summary

In this paper we have considered subleading power correc-
tions to event shape variables in e+e− collisions. We have
started from the jettiness variable τ2 and the y23 resolution
variable for the kT jet clustering algorithm. We have com-
puted the necessary ingredients to use these variables as slic-
ing variables to evaluate generic e+e− → 2 jet observables
at NLO. Both variables are affected by linear power correc-
tions in the two-jet limit. In the case of jettiness the power
correction is logarithmically-enhanced, while for y23 this is
not the case. We have also considered a toy variable kFSR

T ,
which can be defined at NLO as the transverse momentum
of the gluon with respect to the quark–antiquark pair. This
variable resembles the transverse momentum of a colourless
system in hadron collisions and shows quadratic power cor-
rections.

We have analytically computed the cumulative cross sec-
tion for these observables, and discussed the origin of the dif-
ferent power corrections. Our main observation is that these
variables cover the phase space in different ways, and that
the different power corrections can be attributed to how they
cut the singular region in the (x1, x2) plane. We have also
shown that, with our definition, the logarithmically-enhanced
power correction for τ2 can be obtained through a collinear
approximation of the matrix element that is extended to the
non-singular region. We have then extended our analysis to
thrust and to the C-parameter, presenting the expression of
the subleading-power correction. In this case, the logarithmic
contribution does not stem only from the collinear approxi-
mation extended to the non-singular region, but also from a
subleading power collinear expansion of the matrix element.

We finally considered a class of variables rb that depend on
a continuous parameter giving different weight to central and
forward emissions. Similar variables have been considered in
recent studies of the logarithmic accuracy of parton showers
[49]. We have defined these variables through a smooth inter-
polation between 1 − T and y23. We have shown that these
variables have a non-trivial structure of non-rational power
corrections, as observed for angularities [51], and we have
evaluated theO(v) andO (

v(2/(1+b)
)

terms in this expansion.
We have shown that no logarithmically-enhanced correction
emerges at O(v) and at order O(v(2/(1+b)) for b < 1.

Recent studies of subleading power corrections to event
shape variables concentrated on the thrust and jettiness vari-
ables and were mostly carried out within Soft Collinear Effec-
tive Theory [21–27]. Our results extend these findings to
y23, to the C-parameter and to the new class of variables rb,
offering a different perspective on the structure of power cor-
rections and can also be useful to understand and improve
the efficiency of non-local subtraction schemes. The find-
ings of this work suggest a connection between the rapidity
dependence of the observable and the scaling of the leading

power corrections. Specifically, we found that observables
which do not depend on the rapidity of the emission do not
feature linear logarithmically-enhanced power corrections at
NLO. As a consequence, for such observables, the onset of
logarithmically-enhanced linear power corrections, which is
expected on general grounds, starts from the next-to-next-to-
leading order.
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A NLO coefficients for τ2, ỹ23 and xFSRT

In this appendix, we report the explicit expressions of the
leading power coefficients Ar , Br and Cr entering Eq (5),
which we write again here for ease of the reader

∫
dσ Rθ(v − r) +

∫
dσ V +

∫
dσ B

=
∫

dσ B
(

1 + αS(μR)

π

(
Ar ln2 v + Br ln v

+ Cr + O(v p)
))

, (42)

for the three resolution variables considered in the main
text. The calculation proceeds along the line of Ref. [39],
and, explicitly, it requires the computation of the observable-
dependent NLO quark-jet and soft functions, and the
observable-independent finite remainder of the one-loop vir-
tual amplitude.
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• r = xFSR
T :

AxFSR
T

= −2CF , BxFSR
T

= −3CF ,

CxFSR
T

= CF

⎛
⎜⎜⎜⎝

π2

2
− 4

︸ ︷︷ ︸
Virtual

+ 3 − 5π2

6︸ ︷︷ ︸
2×Jetq

+ π2

6︸︷︷︸
Soft

⎞
⎟⎟⎟⎠

= −CF

(
π2

6
+ 1

)
(43)

• r = τ2:

Aτ2 = −CF , Bτ2 = −3

2
CF ,

Cτ2 = CF

⎛
⎜⎜⎜⎝

π2

2
− 4

︸ ︷︷ ︸
Virtual

+ 7

2
− π2

2︸ ︷︷ ︸
2×Jetq

+ π2

6︸︷︷︸
Soft

⎞
⎟⎟⎟⎠

= CF

(
π2

6
− 1

2

)
(44)

• r = ỹ23:

Aỹ23 = −2CF , Bỹ23 = −3CF ,

Cỹ23 = CF

⎛
⎜⎜⎜⎝

π2

2
− 4

︸ ︷︷ ︸
Virtual

+ 7

2
− π2

2
− 3 ln 2

︸ ︷︷ ︸
2×Jetq

+ π2

12︸︷︷︸
Soft

⎞
⎟⎟⎟⎠

= CF

(
π2

12
− 1

2
− 3 ln 2

)
(45)

B The variable ỹ23: exact analytic result

In this appendix we report the exact expression for the ỹ23

variable7:

Rỹ23(v) = 64 ln vv6

(
−9v − 3

√
2t + u

)2 +
64 ln

(
v + 3

√
2t − u

)
v6

(
−9v − 3

√
2t + u

)2

− 192 ln(2)v6

(
−9v − 3

√
2t + u

)2

− 32 ln vv5

9v + 3
√

2t − u
−

32 ln
(
v + 3

√
2t − u

)
v5

9v + 3
√

2t − u

− 8v5

9v + 3
√

2t − u
+ 96 ln(2)v5

9v + 3
√

2t − u

7 The formula is also given in the ancillary mathematica notebook
res_y23.nb in the arXiv submission.

− 5

2
ln(1 − v)v4 − 128 ln vv4

(
−9v − 3

√
2t + u

)2

+ 143

16
ln vv4 − 5

2
ln(v + 1)v4

−
128 ln

(
v + 3

√
2t − u

)
v4

(
−9v − 3

√
2t + u

)2

+ 49

16
ln

(
v + 3

√
2t − u

)
v4

− 7

2
ln

(
9v + 3

√
2t − u

)
v4

+ 2 ln(u − 3v)v4 − 1

8
ln(u − v)v4

+ 1

2
ln

(
−9v + 3

√
2t + u

)
v4

+ 384 ln(2)v4

(
−9v − 3

√
2t + u

)2

+ 65

16
ln(2)v4 − 33v4

8
+ 9tv3

4
√

2
+ 5uv3

8
− 21t ln vv3

16
√

2

+ 1

16
u ln vv3 + 64 ln vv3

9v + 3
√

2t − u

−
21t ln

(
v + 3

√
2t − u

)
v3

16
√

2

− 1

16
u ln

(
v + 3

√
2t − u

)
v3

+
64 ln

(
v + 3

√
2t − u

)
v3

9v + 3
√

2t − u

+ 1

8
u ln(u − v)v3 + 16v3

9v + 3
√

2t − u
+ 63t ln(2)v3

16
√

2

− 1

16
u ln(2)v3 − 192 ln(2)v3

9v + 3
√

2t − u

+ 15

2
ln(1 − v)v2 − 3tu ln vv2

16
√

2

+ 64 ln vv2

(
−9v − 3

√
2t + u

)2

− 71

4
ln vv2 + 15

2
ln(v + 1)v2

−
3tu ln

(
v + 3

√
2t − u

)
v2

16
√

2

+
64 ln

(
v + 3

√
2t − u

)
v2

(
−9v − 3

√
2t + u

)2

− 17

4
ln

(
v + 3

√
2t − u

)
v2

+ 9

2
ln

(
9v + 3

√
2t − u

)
v2 − 8 ln(u − 3v)v2
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− ln(−v + u − 2)v2 − 1

2
ln(u − v)v2

− ln(−v + u + 2)v2 + 3

2
ln

(
−9v + 3

√
2t + u

)
v2

+ 9tu ln(2)v2

16
√

2
− 192 ln(2)v2

(
−9v − 3

√
2t + u

)2

− 25

4
ln(2)v2 + 9v2 − 6tv√

2
− uv + 10 ln(1 − v)v

+ 3t ln vv√
2

+ 1

2
u ln vv

− 32 ln vv

9v + 3
√

2t − u
− 4 ln(v + 1)v − 2 ln

(
(v + 1)3) v

+
3t ln

(
v + 3

√
2t − u

)
v

√
2

− 1

2
u ln

(
v + 3

√
2t − u

)
v

−
32 ln

(
v + 3

√
2t − u

)
v

9v + 3
√

2t − u

− 2 ln(−v + u − 2)v + u ln(u − v)v

+ 2 ln(−v+u+2)v−2 ln
(
−v2+uv+3

√
2t−8

)
v

+ 2 ln
(
u2 − vu + 3

√
2t

)
v

− 8v

9v + 3
√

2t − u
− 9t ln(2)v√

2
− 1

2
u ln(2)v

+ 96 ln(2)v

9v + 3
√

2t − u

+ 4 ln2(1 − v) + 2 ln2 v + 4 ln2(v + 1)

− 2 ln2(u − v) + 2 ln2 (
v2 − uv + 2

)
+ 8 ln(2) ln(1 − v) − 3 ln(1 − v)

− 4 ln(1 − v) ln v − 16 ln(2) ln v + 6 ln v

− 8 ln(1 − v) ln(v + 1) − 4 ln v ln(v + 1)

+ 8 ln(2) ln(v + 1) − 3 ln(v + 1)

+ 4 ln v ln
(
v + 3

√
2t − u

)

− 12 ln(2) ln
(
v + 3

√
2t − u

)

+ 3 ln
(
v + 3

√
2t − u

)

+ 4 ln v ln
(
v + 3

√
2t − u + 8

)

+ 4 ln
(
v + 3

√
2t − u

)

× ln
(
v + 3

√
2t − u + 8

)

− 12 ln(2) ln
(
v + 3

√
2t − u + 8

)

− 4 ln v ln
(

9v + 3
√

2t − u
)

− 4 ln
(
v + 3

√
2t − u

)
ln

(
9v + 3

√
2t − u

)

+ 12 ln(2) ln
(

9v + 3
√

2t − u
)

− 3 ln
(

9v+3
√

2t−u
)

−4 ln(1−v) ln(−v+u−2)

+ 3 ln(−v + u − 2)

− 4 ln v ln(u − v) + 8 ln(2) ln(u − v) − 4 ln(v + 1)

× ln(−v + u + 2)

+ 3 ln(−v + u + 2) + 4 ln v ln
(
−v−3

√
2t+u+8

)

+ 4 ln
(
v + 3

√
2t − u

)
ln

(
−v − 3

√
2t + u + 8

)

− 12 ln(2) ln
(
−v − 3

√
2t + u + 8

)

− 4 ln(2) ln
(
v2 − uv + 2

) − 3 ln
(
v2 − uv + 2

)

− 4Li2

(
1

2
− v

2

)
− 2Li2

(
v2)

− 4Li2

(
v + 1

2

)
+ 4Li2

(
v(v − u + 2)

2(v − 1)

)

− 4Li2

(
−v + 3

√
2t − u

8v

)

+ 2Li2

(
1

64

(
v + 3

√
2t − u

)2
)

+ 4Li2

(
v(−v + u + 2)

2(v + 1)

)

+ 26 ln2(2) + 3 ln(2) − π2

3
+ 5

2
(46)

where u = √
8 + v2 and t = √

4 + v2 − vu. Our result
agrees with the corresponding result in Ref. [46] provided
that the last term in round bracket in the eleventh line of
Eq. (7) therein is −7y2

T /4 instead of −7yT /4.
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