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Abstract: We describe a novel reconstruction algorithm for time-resolved images obtained using a
streak camera. This algorithm operates by decomposing a recorded image into a set of individual
photoelectron-induced signals, thereby providing a powerful method for streak camera image
reconstruction. This deconstruction allows for a standard statistical analysis of the resulting image.
We demonstrate the effectiveness of this technique by analyzing the temporal spacing between the
emitted fs-long laser pulse and its succeeding first, second, and third reflections within a thick glass
captured by a streak image.
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1 Introduction

Streak cameras are widely used instruments in the particle accelerator community for the acquisition
of time-resolved signals [1–8]. The operational principle involves incident light signals, commonly
photons, impinging on a cathode, thereby generating photoelectrons. These photoelectrons are then
accelerated and then deflected vertically by an angle which depends on their arrival time. Deflected
photoelectrons emit a light signal upon reaching a phosphor screen. This signal, captured by a CMOS
camera, enables timing measurements of incident signals based on their vertical image position. The
typical image reconstruction process is based on the light signal’s amplitude as measured by the
CMOS camera. In this article, we describe a novel algorithm for reconstructing the photoelectron
distribution based on the recorded camera image. This is accomplished by initially identifying the
characteristics of the signals generated by individual photoelectrons, and then decomposing the
overall image in term of photoelectrons. This makes an analysis possible based on standard statistical
techniques, so that uncertainty estimation on a picture-by-picture basis is available.

We have performed our studies in the context of the AWAKE experimental setup [9–12]. The
AWAKE Collaboration pursues the demonstration of electron acceleration in a plasma wakefield
driven by protons. In the context of AWAKE, streak cameras are used for capturing time-resolved
images of the proton beam as well as the produced plasma wakefield structure. The resulting
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time-resolved images are used for studying a variety of features of the modulation of the proton
bunch in the plasma [1, 12–15]. An important component of the setup is a high-power laser [16].
This laser produces a high-intensity pulse that ionizes a 10-m-long column of Rb vapor, generating
the plasma, and a timing reference signal that is sent to the streak camera. An additional specially
prepared path for the laser is utilized for the studies described in this article.

In the following, we describe the experimental setup, with a dedicated focus on the streak
camera. The specific setup of the laser system that was employed for the analyzed data is described
in [12] and briefly reviewed. We then describe the method developed for our study and show an
example of image deconvolution. The timing reconstruction based on the deconvolved image is then
described, and results are shown on the time reconstruction and uncertainty estimate.

2 Experimental Setup

2.1 Operational Principles of Hamamatsu Streak Camera C10910

The Hamamatsu Streak Camera C10910 is the imaging instrument used to record images for the
datasets of this paper [17]. The streak camera is designed to detect photons ranging from the UV
to the near-infrared spectrum and records them as 2D images with one spatial dimension and the
temporal dimension as axes. We denote the temporal dimension as the vertical dimension on the
resulting images.

Figure 1: Illustration of the working principle of the Hamamatsu Streak Camera C10910. The
diagram shows four light pulses with varying amplitudes and separated in time passing through the
components of the streak camera before reaching the phosphor screen. This figure is taken from the
Hamamatsu Manual [17].

The operating principle of the streak camera, as illustrated in Fig. 1, involves several stages.
Initially, the light intersects with the a narrow slit whose width is set to 20 𝜇𝑚. Under the guidance
of the imaging system, this light is directed to the photocathode, which converts a fraction of the
incoming photons into photoelectrons. These photoelectrons are then accelerated towards the end
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of the streak tube and deflected in the direction perpendicular to the slit. After amplification, they
impinge on the phosphor screen, generating light pulses. The deflection process’s speed is adjustable
and was set such that the time span of an image corresponds to either 73 ps or 210 ps for the analysed
data.

The phosphorescent images are captured by a CMOS readout camera, which is located behind the
phosphor screen. Due to the multiplication of the photoelectrons by the multi-channel plate (MCP)
and the light production and emission process of the phosphor screen, individual photoelectons are
observed as clusters spanning multiple pixels in the CMOS readout camera. The camera has 512
pixels in the vertical (time) direction and 672 pixels in the horizontal direction. One pixel in the
vertical direction therefore corresponds to 0.143(0.410) ps for the 73(210) ps image time windows.

The streak camera is triggered by an external signal, and this is used to initiate the voltage
sweep across the sweep electrode. In previous studies, the time jitter of the triggering mechanism
has been determined to be 4.8 ps (rms) [12], implying that the resulting images jitter in the vertical
dimension (time dimension) on a picture-by-picture basis by at least this amount. The intrinsic
time resolution of the streak camera is much better than 4.8 ps so that relative time measurements
amongst components of a single image can be determined with higher precision. Our algorithm aims
to extract relative time measurements with the highest achievable precision using the streak camera.

2.2 Laser System

The data used for the development of our algorithm was generated by a TW-class Ti:Sapphire laser
system [12]. The laser system amplifies an erbium-doped fiber oscillator with frequency-doubled
780 nm output to produce pulses with an energy up to 650 mJ at 10Hz and a duration of 110 fs.
For the operation of these studies, an attenuated compressed laser pulse was used. The laser pulse
duration shown Fig. 2 was obtained by a second-harmonic auto-correlator (Bonsai from Amplitude
Company). More information on the laser system can be found in [18].

Figure 2: Temporal profile of the laser pulse obtained by a second-harmonic correlator
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2.3 Light Reflection Setup

The primary dataset used in the development of our streak camera signal reconstruction algorithm
was acquired in the test setup described in [12]. The experimental setup was a subsystem of the
AWAKE experiment.
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Figure 3: Streak camera image of the primary laser pulse and the first three reflections inside the
glass plate.

The laser light path to the streak camera included a∼ 5 mm-thick piece of glass to obtain multiple
surface reflections with fixed time intervals. In total, 1070 laser reflection images were acquired with
this setup. The sweep time used for this dataset1 was 210 ps, so that images resulting from internal
reflections in the glass are expected to be separated by ∼ 40 ps, equivalent to ∼ 100 pixels (px). Fig. 3
shows a streak camera image from this data set. We select a 200-px-wide region of interest in the
spatial direction to focus on the laser pulse and its reflections.Within the ROI, we observe the primary
laser pulse at approximately pixel coordinate 237 on the time axis, along with consecutive reflection
pulses generated from up to three round-trips through the glass at around time pixel coordinates
of 318, 400, and 480, respectively. We convert from pixel coordinate to time in picoseconds as
described below.

1We note that the sweep time reported in [12] is not correct.
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The expected delay between the reflections could not be determined precisely based on
measurements of the glass thickness and its refraction index. However, by comparing the measured
time differences between different reflections, we are able to determine the uncertainty of the time
measurements achievable by the streak camera, without knowing the exact time spacing between the
reflections.

When analysing the obtained streak camera images, we observed that the isolated signals in
the streak camera images typically appeared as either single pixels or as small pixel clusters with
pixel amplitudes near the CMOS baseline. The single pixels were interpreted as noise fluctuations,
whereas the small clusters were identified as clusters generated by single photoelectrons. The
features of the clusters are presumably affected by numerous factors such as the MCP pore size,
the amplification settings of the MCP, the image spread created in the phosphor screen, the CMOS
sensors pixel size, etc. These factors affected the achievable time resolution of the streak camera. In
order to apply the algorithm described below to data sets with different streak camera operational
settings, the photoelectron characterization steps will need to be repeated.

In our study of images taken with different sweep speeds, we observed that the streak camera
time-window size has little effect on the pixel size of clusters produced by single photoelectrons. As
a consequence, the algorithm operates at the pixel level and as the cluster size in pixels remains
unchanged across different sweep speeds.

2.4 Additional Dataset

We have also made use of an additional dataset with 73 ps sweep speed. This allowed us to
compare images acquired with different sweep speeds, and provided separate calibration data for
our algorithms, as explained below. The laser pulse, used as a timing reference in this dataset, did
not include the glass piece and contained no reflections of the laser pulse. An artificial 0-distance
reflection was simulated in the data by dividing the recorded laser pulse image into two sets of pixels
along the spatial direction. In this case, we expect the same time to be measured in each half and a
comparison of the recorded times allows for a study of the uncertainties in the time reconstruction.
A total of 200 images were recorded in this set of conditions.

3 Photoelectron Decomposition Method

An overview of our Photoelectron Decomposition Algorithm (PDA) is given in Fig. 4. In the
following subsections, we describe the different steps in the algorithm. The performance is then
described in the following section.
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Figure 4: Overview of the Photoelectron Decomposition Algorithm. The algorithm takes as input
the recorded image and the photoelectron cluster probabilities. The algorithm then performs a
reconstruction of the photoelectron distribution for the recorded image. The symbol 𝛾𝑒 stands for
photoelectron.

3.1 Isolating Individual Photoelectrons Using Binary Filtering

In a first step, we employ a binary filter to isolate as many single-photoelecton induced clusters
as possible from the streak camera image. To achieve this, we apply a cutoff determined from the
pedestal value of the streak camera image. The individual pixel amplitude distribution for one image
in our dataset is shown in Fig. 5. A blow-up of the distribution around the pedestal value taken from
a streak camera image region outside the ROI is also shown. We chose a threshold amplitude value
of 430 counts for the binary filtering. This allows a reduction of the bulk of the pedestal fluctuations
while preserving the bulk of photoelectron generated signals.

The operation of the binary filter [19] is rather straightforward. It assigns pixel values of 1(0),
depending on whether their amplitude is above(below) a predefined threshold. We demonstrate this
filtering on the streak camera image shown in Fig. 3 as a filtered image in Fig. 6. All pixels above
the threshold are displayed against a white background. The two shadings (black and grey) are used
to distinguish clusters associated with single photoelectrons as explained below.

The next step is to apply a connected component labeling algorithm [20] to the pixels with
value 1. This algorithm identifies and groups all pixels with neighboring non-zero pixels along the
temporal and spatial axes into clusters and assigns a unique label to each cluster, effectively forming
distinct, traceable entities. The resulting cluster size distribution along the spatial and temporal axes
are shown in Fig. 7. Two clear and identifiable cluster size regions are visible. The peak at a cluster
size of one pixel in the temporal and spatial directions is from noisy pixels with amplitude above
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Figure 5: Histogram of the pixel amplitudes for one image in our dataset. The left panel shows
the full distribution in log scale, while the right panel shows a blow-up of the pedestal region using
linear scale from a regions outside the ROI. The vertical line indicates the threshold value of the
pedestal used for binary filtering.
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Figure 6: Pixels in the image shown in Fig. 3 passing the binary thresholding test are shown. The
pixels belonging to clusters identified as resulting from single photoelectron are shown in the darker
shading, while the lighter shading represents pixels from clusters that are too big or too small to be
identified as resulting from single photoelectrons.

threshold. We identify the larger island with ∼ 5 pixels along the spatial and temporal axes as arising
from single photoelectrons.

To select clusters identified as arising from single photoelectrons, we employ multiple limitations
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Figure 7: Heatmap of the cluster sizes along space and time axes of the streak image. The color
scale gives the number of clusters found with a particular size. The red box indicates the cluster size
region used to identify single photoelectrons.

on the cluster size. Firstly, we restricted the cluster size to be between 3 to 7 pixels in both the spatial
and temporal axes as shown with the red square in Fig. 7. Secondly, we discarded any cluster that
has less than 8 total pixels above the pedestal. This requirement was needed to eliminate a special
class of noise clusters appearing as a diagonal feature in the image. Lastly, we discarded the cluster
if any pixel had an amplitude more than 500 counts above the pedestal threshold, again to eliminate
clusters deemed to be caused by noise.

Fig. 6 shows the result of this filtering on a sample image, where the black pixels are the pixels
that passed the filtering and the grey pixels are the pixels that failed the filtering. From the 1070
images in our primary dataset, we detected 23888 single photoelectron clusters. This significant
dataset allowed for a detailed study clusters identified as resulting from single photoelectrons.
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3.2 Analysis of Individual Photoelectron Clusters

To analyze the amplitude distribution caused by individual photoelectrons, all clusters from the
laser reflection images were examined. The two-dimensional clusters were transformed into one-
dimensional clusters by summing pixels along the space axis. We then categorized the clusters based
on their width along the time axis. As a result of this process we obtained five separate classes
each with different pixel widths. Additionally, for each category we assigned class probabilities
by dividing the number of observed clusters in the class by the total number of observed clusters.
Table 1 shows associated counts and probabilities for each category. 95.3 % of clusters identified as
resulting from single photoelectrons have widths along the time axis of 3 − 5 pixels.

Cluster Class 3 px 4 px 5 px 6 px 7 px
Detected Count 6099 11497 6283 881 309

Probability 0.243 0.459 0.251 0.035 0.012

Table 1: Photoelectron cluster size distribution along the time axis. ‘Detected Count’ gives the
number of clusters detected for each cluster size over 1070 images and ‘Probability’ gives the
associated probabilities for each cluster size.

For each of these classes, we calculated an average amplitude profile along the time axis and its
fluctuations. These profiles are shown in Fig. 8 for each class. The profiles were centered within
9-pixel windows to allow for a visual comparison between the different classes. The error bar is
the uncertainty on the average calculated from the RMS divided by the square root of the number
of clusters in that class. We next use these cluster profiles and their occurence probabilities to
decompose streak camera images into distributions of photoelectrons.
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Figure 8: Averaged time profiles of clusters identified as resulting from single photoelectrons,
separated into clusters with different numbers of pixels as indicated in the legends The amplitude
values are averaged and centered within 9-pixel windows. The error bars represent the RMS of the
amplitudes recorded at the different cluster pixel locations divided by the square root of the number
of clusters in that class.

– 10 –



3.3 Photoelectron decomposition algorithm (PDA)

Input :Amplitude distribution of clusters along the time axis
Output :Individual photoelectron counts

Function reconstructPhotoelectrons(amplitude_distribution):
cluster_probabilities[]← Probabilities for photoelecton clusters of different widths;
predicted_amplitude[]← Zeros with size equal to amplitude_distribution;
photoelectron_distribution[]← Zeros with size equal to amplitude_distribution;
insertion_locations[]← find_photoelecton_insertion_locations(predicted_amplitude[]);

while sum(insertion_locations) ≠ 0 do
location← pick_random_location(insertion_locations[]);
cluster[]← pick_random_cluster(cluster_probabilities[]);
next_amplitude_prediction[]← insert_cluster(predicted_amplitude[], location,
cluster[]);

if all(next_amplitude_prediction[] ≤ amplitude_distribution[]) then
photoelectron_distribution[]← increment_photoelectron(location);
predicted_amplitude[]← next_amplitude_prediction[];

end
insertion_locations[]←
find_photoelecton_insertion_locations(predicted_amplitude[]);

end
return photoelectron_distribution;

Algorithm 1: Photoelectron Decomposition Algorithm

The photoelectron decomposition algorithm is applied to clusters that are larger in size than
single photoelectrons. These clusters are first summed along the spatial direction resulting in
a one-dimensional amplitude distribution along the temporal axis. Our algorithm then builds
up a simulated amplitude distribution based on summing amplitudes distributions from single
photoelectrons placed at different locations along the temporal direction. The algorithm is designed
to have the simulated distribution reproduce the observed distribution. The end result of the process
is a distribution of photoelectrons along the temporal direction.

The algorithm begins with an empty simulated amplitude distribution. A pixel coordinate
for insertion of a photoelectron is chosen at random, and the cluster size is then randomly chosen
according to the probabilities given in Table 1. An attempt is then made to add the average amplitude
profile to the simulated distribution. In this process, the photoelectron amplitude profile is centered
as follows: if the cluster has an odd number of pixels, the amplitude profile is centered on the chosen
pixel location, while, if the cluster has an even number of pixels, the profile is randomly centered on
one of the two central pixels with equal probability for each. If the insertion results in amplitudes
greater than the observed amplitude for any pixel, the insertion is rejected. Otherwise, the insertion

– 11 –



is accepted and the algorithm moves to the next randomly picked location. The algorithm terminates
when it cannot detect any possible location for photoelectron insertion. A pseudo-code of the
algorithm is given in algorithm 1.

3.4 Reversible decomposition

It is possible to convert the pixel amplitudes to photoelectron counts and vice versa. This provides a
valuable check for our algorithm. As an example, we show a detailed view in the 30-pixel-wide (along
the time axis) window containing a laser pulse image in Fig. 9 and proceed to analyze this image.
As described above, our algorithm works in a stochastic manner, and successive decompositions will
produce different photoelectron distributions.

200 225 250 275 300 325 350 375 400
Space [px]

230

240

250

T
im

e
[p

x
]

500

1000

1500

2000

Figure 9: Expanded view of the signal region produced by a laser pulse. The signal amplitude is
given in color scale.

The amplitude distribution for this image, integrated over the spatial direction, is shown in the
upper panel in Fig. 10. The result of the photoelectron decomposition algorithm is also shown. As
seen in the Figure, the photoelectron distribution is somewhat narrower than the observed amplitude
distribution, as the photoelectron clusters broaden the image. The decomposition process effectively
deconvoles the amplitude distribution and produces a somewhat narrower distribution.

We can perform the procedure in reverse by using the photoelectron cluster distribution, selecting
from our cluster spectra according to their probabilities, and creating an amplitude distribution. We
have repeated the process of recreating the amplitude distribution 10000 times for the image shown
in the upper panel of Fig. 10, based on one photoelectron decomposition. The results are shown in
the lower panel of the figure, where the observed amplitude distribution is given by the diamond
shaped symbols and the average reconstructed image is shown in horizontal bars. The RMS of the
amplitude distributions from the 10000 repetitions is shown as the error bar on the prediction and is
typically within the size of the symbol. As can be seen, the average agrees well with the observed
distribution, and the spread in the predicted signal shape is quite small.
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Figure 10: Upper panel: Measured time profile and extracted number of photoelectrons for the
image shown in Fig. 9. The horizontal axis shows time in pixel units, the left hand side vertical axis
gives the measured amplitudes and the right hand side vertical axis gives the extracted photoelectron
counts. Lower panel: Comparison between predicted amplitudes to the measured amplitudes using
our reversed photoelectron decomposition algorithm. The error bars show the RMS of the predicted
amplitudes.

4 Timing measurements

The primary use of the streak camera is to extract timing information. We have studied the potential
timing resolution of features within individual streak images. This has been accomplished through
the usage of the photoelectron decomposition method on two distinct datasets: the ‘reflections’
dataset, which used a 210 ps sweep time, and a dataset with 73 ps sweep time.
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4.1 Finding the location of features in time

Our algorithm provides the pixel location of photoelectrons along the time axis of the image and
thereby enables the application of standard statistical methods to estimate uncertainties for timing
feature extraction. Typical approaches for finding feature location, e.g., fitting a Gaussian function
to the amplitude profile of the feature, does not allow the calculation of the uncertainty on the time
measurement on a per image basis or a per feature basis.

We calculate a feature time using a weighted average of the photoelectron pixel locations, where
the weights are the photoelectron counts. The weighted average is given by

𝑡 𝑝𝑥 =

∑𝑛
𝑖=1 𝑤𝑖𝑡𝑖∑𝑛
𝑖=1 𝑤𝑖

, (4.1)

where 𝑡𝑖 is the pixel number of the 𝑖-th pixel along the time axis in the image and 𝑤𝑖 is corresponding
photoelectron count. The averaged pixel value is then converted to time using the conversion based
on the sweep time window. The uncertainty on this time estimate is expected to scale inversely with
the square root of the total number of photoelectrons.

We use this scheme to analyze the data from our two datasets. As a first step, we need to locate a
ROI within the image to be analyzed. We do this by fitting Gaussian functions to temporal amplitude
profiles summed among the space axis and choosing a suitably broad region around the peak pixel.
The ROI shown in Fig. 9 was chosen by adding ±15 px to the center pixel from the Gaussian fit. We
have repeated this process for the ROIs found in each image of our datasets and applied our time
reconstruction algorithm to these ROIs.

In the upper panel of Fig. 11 we show the reconstructed times as a function of image number
for all 1070 images in our glass pane reflection dataset. The top row of times are for the laser pulse,
while the three rows below are from (1-3) sets of consequtive reflections in the glass. The variation
of the recorded times of each pulse are due the trigger jitter of the streak camera. This is shown by
the fact that the fluctuations of each pulse are correlated with all of its reflections.

We use the notation Δ𝑡1 to represent the time difference between the laser pulse and Reflection
1. Similarly, Δ𝑡2,Δ𝑡3 give the time differences between the reflections with 1 and 2 round trips, and
the reflections with 2 and 3 round trips in the glass, respectively. The mean values are

Δ𝑡1 = 80.72𝑝𝑥(33.11𝑝𝑠) 𝑅𝑀𝑆 = 0.53𝑝𝑥(0.22𝑝𝑠)
Δ𝑡2 = 80.69𝑝𝑥(33.10𝑝𝑠) 𝑅𝑀𝑆 = 0.77𝑝𝑥(0.31𝑝𝑠)
Δ𝑡3 = 80.67𝑝𝑥(33.09𝑝𝑠) 𝑅𝑀𝑆 = 1.31𝑝𝑥(0.54𝑝𝑠) ,

in excellent agreement with each other.
We observed that the time differences between the laser pulse and its reflections are measured

with much higher precision than the absolute times of the features with respect to the streak camera
trigger, which is in agreement with the ∼ 4.8 ps (rms) jitter found in [12].

4.2 Time resolution

We used the following simple parametrization for evaluating the uncertainty on the time measured
for a given image feature:
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Figure 11: Top panel: Reconstructed timings for the laser pulse and its three reflections (1-3) from
multiple round trips through the glass slab, displaying all images from the reflection dataset. Bottom
panel: Time differences between the measured arrival times of the laser pulse and its subsequent
three reflections.

𝜎𝑡 =
𝜎eff√
𝑛𝛾

(4.2)

where 𝜎eff is an effective resolution per photoelectron and 𝑛𝛾 =
∑𝑛

𝑖=1 𝑤𝑖 is the number of photoelec-
trons found in the feature for which we are extracting a time measurement. The parametrization
presented in this work is applicable when 𝑛𝛾 is neither too small nor too large. We have tested
its effectiveness for 400 ≲ 𝑛𝛾 ≲ 3000. In our experimental setup, the average number of photo-
electrons reconstructed for the laser pulse was approximately 2800, which decreased by a factor of
approximately 0.55 for each round-trip through the glass. The value for 𝜎eff was determined from
the primary laser pulse by splitting the image into two parts along the space axis and analyzing the
resulting reconstructed time distribution. This procedure yielded 𝜎eff = 18.28 px. Although this is
an effective per photoelectron resolution, it only applies when the number of photoelectrons is large
enough as the smallest number of 𝑛𝛾 used in our tests was approximately 400.

As a test of our parametrization for the resolution, we calculated the residual distributions for
the different Δ𝑡. The residual for Δ𝑡1 for image 𝑖 is defined as

𝑟1,𝑖 =
Δ𝑡1,𝑖 − Δ𝑡1√︃

𝜎2
𝑡 ,𝑖,LaserPulse + 𝜎

2
𝑡 ,𝑖,Reflection1

(4.3)

where the index 𝑖 gives the image number. Δ𝑡1 is the mean of the Δ𝑡1,𝑖 and was reported above. The
corresponding residuals were calculated for Δ𝑡2 and Δ𝑡3. Fig. 12 shows the residual distributions of
all three Δ𝑡.
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Figure 12: Residual distribution using the uncertainty parametrization Eq. 4.2.

As can be seen in the figure, the residual distribution is centered on 0 by construction, and has a
width close to 1, indicating that the uncertainty on the time measurement is well estimated. Given
that these results were extracted using a dataset with a 210 ps sweep time window, we can report the
timing resolution for this sweep window as

𝜎𝑡 =
7.50
√
𝑛𝛾

𝑝𝑠 .

for 400 ≤ 𝑛𝛾 ≤ 3000. I.e., a timing resolution of 140 fs is reached for 𝑛𝛾 = 3000 and this sweep
window.

As discussed above, the resolution of the streak camera is due primarily to the single photoelectron
cluster size in pixels, so that we expect a scaling of the resolution approximately with the length of
the sweep time window. Using a 73 ps time window, our parametrization then gives a time resolution
of

𝜎𝑡 =
2.61
√
𝑛𝛾

𝑝𝑠 .

We have tested this prediction by analyzing an AWAKE proton bunch modulation dataset with
the streak camera window sweep time set to 73 ps. The full photoelectron cluster characterization
was carried out for the streak camera settings used in this dataset. The photoelectron decomposition
was then applied to the reference laser pulse in the acquired images. We used the technique of
splitting the laser pulse image spatially in two parts and measuring the time difference found
between the two halves of the pulse. The dataset consisted of 200 images and the typical number of
photoelectrons reconstructed from the laser pulse was 800, with each half having approximately
400 photoelectrons. This yielded a predicted resolution for each slice of the laser pulse of 130 fs.
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Given that the uncertainties on the slices are expected to be uncorrelated, the uncertainty on the time
difference between the two slices is expected to be

√
2 times larger than the uncertainty on each slice,

which is approximately 180 fs. We measured the RMS of the time difference between the slices
of the laser pulse as 200 fs, which agrees well with the predicted value, so that we are confident
our parametrization of the time resolution in terms of pixel quantities can be transformed to a time
resolution using the sweep time window.

5 Conclusions

We have introduced a novel algorithm that decomposes streak camera images into distributions of
photoelectrons. This algorithm relies on an image deconvolution technique that uses premeasured
photoelectron profiles to create deconvolution kernels. The image clusters formed by single
photoelectrons are characterized in terms of widths in pixels and amplitude. The cluster widths are
found to be largely independent of the sweep speed of the streak camera. Performing the image
decomposition into a distribution of photoelectrons in space and time enables the application of
traditional statistical analyses, including counting statistics, on the resultant image features and to
report individual uncertainty measurement for each feature in the image.

We tested our algorithm and its uncertainty prediction for timing measurements using a dataset
where laser pulses, separated by a fixed time interval, were available as well as with AWAKE data
sets. The dataset with multiple laser pulse features was produced by introducing a glass pane in
the path of a laser pulse, generating several image features due to reflections in the glass. The time
differences between the different reflections were then analyzed. For the AWAKE data set, the image
from a single laser pulse was spatially split and the timing measurements of the two parts compared.
The time resolution was found to be 𝜎𝑡 = 7.50/√𝑛𝛾 ps, for 210 ps sweep time and 𝜎𝑡 = 2.61/√𝑛𝛾 ps,
for 73 ps sweep time. This simple formula was verified for 400 ≤ 𝑛𝛾 ≤ 3000.
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