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Quantum re-uploading models have been ex-
tensively investigated as a form of machine
learning within the context of variational quan-
tum algorithms. Their trainability and expres-
sivity are not yet fully understood and are crit-
ical to their performance. In this work, we
address trainability through the lens of the
magnitude of the gradients of the cost func-
tion. We prove bounds for the differences
between gradients of the better-studied data-
less parameterized quantum circuits and re-
uploading models. We coin the concept of ab-
sorption witness to quantify such difference. For
the expressivity, we prove that quantum re-
uploading models output functions with van-
ishing high-frequency components and upper-
bounded derivatives with respect to data. As
a consequence, such functions present limited
sensitivity to fine details and offer protection
against overfitting. We performed numerical
experiments extending the theoretical results
to more relaxed and realistic conditions. Over-
all, future designs of quantum re-uploading
models will benefit from the strengthened
knowledge delivered by the uncovering of ab-
sorption witnesses and vanishing high frequen-
cies.

1 Introduction
Variational Quantum Algorithms (VQAs) have
emerged as a prominent paradigm in the realm of
quantum computing as a hybrid computational model
suited for NISQ (Noisy Intermediate-Scale Quan-
tum) [1] devices in conjunction with classical opti-
mization techniques [2, 3]. These algorithms rely on
the minimization of cost functions [4, 5], which en-
code specific computational problems. VQAs have
been used to solve a variety of problems, including
approximating ground states [6, 7, 8], combinatorial
challenges [9], chemistry problems [10] and simulation
of quantum systems [11, 12, 13, 14, 15]. Furthermore,
VQAs have served as quantum computing engines for
tackling various machine learning (ML) tasks, such as
function regression [16, 17], classification [18, 19, 20]

or generative models [21, 22, 23]. We specifically make
a distinction between linear models on the one side,
introducing data either as input states or through en-
coding maps [24], and quantum re-uploading (QRU)
schemes on the other side, which introduce data it-
eratively throughout the execution of the quantum
circuit [25, 26, 27, 28].

The performance of VQAs hinges on two critical
properties: expressivity and trainability. Expressiv-
ity embodies the model’s ability to represent precise
solutions to the underlying problem, while trainability
is a measure of the difficulty in finding the parameter
set that yields the optimal attainable solution within
the model. In the case of data-independent VQAs,
expressivity can be intuitively understood as the pro-
portion of attainable output states within the Hilbert
space, quantified through closeness to t-designs [29].
In the context of data-dependent ML, expressivity
pertains to the suitability of the output function in fit-
ting the data [30, 31]. The universality of QRU mod-
els has been proven even with a single qubit [26, 32].
Trainability in VQAs, on the other hand, is closely
linked to characteristics of the cost function, such as
non-convexity [33] or vanishing gradients [34]. The
relationship between the trainability of VQAs and
QML schemes has been previously explored, in the
absence of re-uploading [35]. Importantly, trainabil-
ity and expressivity are usually mutually exclusive,
and for VQAs in particular there exists a well-studied
trade-off between these two properties [36, 37].

In this work, we specifically explore QRU models
with a focus on exploring trainability and expressiv-
ity. Our investigation into trainability focuses on the
on-average behavior of gradients, which can be related
to the flatness of the cost function. We compare the
cost functions of QRU models and base PQCs, which
are circuits with the same architecture and observable
as the QRU, but where the data gates are removed.
The difference between the flatness of both cost func-
tions is upper bounded by a quantity we refer to as
absorption witness, which quantifies the influence of
data gates on the quantum circuit when averaged over
the parameter space. Such derivation opens a path
to transfer existing knowledge about the flatness of
PQCs [34, 38, 39] to guide the design of QRU models.

The second segment of our findings is related to
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the expressivity of data-dependent output functions
generated by QRU models. It is known that any
hypothesis function output by QRU models can be
expressed as a generalized trigonometric polynomial,
with the range of available frequencies contingent on
the data encoding scheme [40, 26]. We show that, un-
der reasonable assumptions, the average magnitude
of individual frequency components in the hypothesis
function rapidly tends to a Gaussian profile, with a
variance scaling as ∼

√
L, with L being the number

of re-uploading steps, while the support in frequencies
scales as ∼ L. This property inherently biases the at-
tainable hypothesis functions as being heavily domi-
nated by lower-frequency components. This has a di-
rect consequence on the Lipschitz constants of these
output functions.
The paper is organized as follows. Section 2 in-

troduces relevant concepts and notation for the pa-
per. Section 3 delves into the expected norm of gra-
dients in QRU models. Section 4 delves into the ex-
pressive capabilities of output functions within QRU
models in terms of spectrum.Both sections are sup-
ported by numerical experiments showcasing agree-
ment with our theoretical findings. Section 5 engages
in a discussion of the implications and potential av-
enues opened up by our research. Conclusions are
summarized in Section 6.

2 Background
In this work, we refer to a PQC as a sequence of pa-
rameterized gates and fixed gates applied to an initial
state, namely

U(θ) =
M∏

j=1
Wje

iVjθi , (1)

where {Vj} are, without loss of generality, traceless
Hermitian matrices known as generators, {Wj}M

j=1 are

fixed unitary operations, and θ ∈ Θ ⊂ RM . We use
these PQCs as a baseline for QRU models [27, 32, 26].
This model consists of a PQC where data-encoding
gates have been added in the form

U(θ, x) =
M∏

j=1
eigjx Wje

iVjθi , (2)

where {gj}M
j=1 are, without loss of generality, traceless

Hermitian generators. We do not impose constraints
in {Vj} ∩ {gj}. The input x is a real number. Exten-
sions to multidimensional values of x are available by
adding extra terms to the model, although this case
will not be considered in this work. Notice that there
exists a mapping between PQCs with data as initial
state and QRU models, thus making both computa-
tions formally equivalent [41], up to overheads.
QRU models yield θ-dependent hypothesis func-

tions
hθ(x) = ⟨0|U†(θ, x)HU(θ, x) |0⟩ , (3)

when applied to an initial quantum state and mea-
sured with an observable H. Notice that hθ(x = x0)
for a fixed value x0 is the standard definition of the
cost function of a PQC. In the case x0 ̸= 0, we
can recover our formulation of PQC by adapting the
fixed gates Wj . The values of θ are trainable to
match data coming in pairs X = {(x, y(x)}, such
that hθ(x) ≈ y(x). These hypothesis functions can
be expressed as a generalized trigonometric polyno-
mial [26, 40], namely

hθ(x) =
∑
ω∈Ω

aω(θ)eiωx, (4)

where aω(θ) = a∗
−ω(θ) to ensure real valued hypothe-

sis functions, and Ω is the set of available frequencies.
The training of VQAs involves an optimization pro-

cedure where a parameter set minimizing a cost func-
tion is searched. The difficulty of this optimization
task is enclosed under the broad concept of trainabil-
ity. A paradigmatic example of optimizing a PQC
is minimizing hθ(x = 0) with respect to θ to find
an approximation to the ground state of the corre-
sponding Hamiltonian H. Trainability has been ex-
tensively studied in the context of PQCs [33, 34].
Training a QRU model involves finding the optimal
set of parameters θ for which hθ(x) approximately
matches some target function given by data. Train-
ability may depend on several features of the cost
function landscape [42], such as small gradients [43]
or non-convexity, e.g. the existence of (many) local
minima [44]. In this work, we focus on average be-
haviors of gradients of the cost function, inspired by
the well-studied phenomenon of vanishing gradients
barren plateaus (BP) [34, 3, 36].
Expressivity is another crucial aspect of parame-

terized models, capturing their ability to represent
various solutions. For PQCs, expressivity entails the
existence of parameter sets θ∗ making U(θ∗, 0) close
to some unitary operations V ∈ SU(2n), within a
specified tolerance and respect to some distance. Ex-
pressivity is often measured relative to unitary t-
designs [29]. In contrast, expressivity in the context of
ML (e.g. QRU models) is related to the output func-
tion and its capability. A model is expressive if its
output is able to match a variety of target functions
to fit some data [45].

3 Gradients in QRU models
3.1 Losses for PQC and QRU
In this section, we focus on characterizing gradients of
QRU models, as compared to those of PQCs. In the
case of PQC, the gradients of interest are typically
defined in relationship to their cost function hθ(0).
However, the optimization of QRU models involves a
cost function that depends on both the quantum cir-
cuit, expressed through hθ(x), and the available data,
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provided in pairs as (x, y(x)). Such cost function is
usually given by averaging a distance between func-
tions ∆(·, ·) as

LX(θ) = EX (∆(hθ(x), y(x))) , (5)

where EX (·) denotes expectation value over the train-
ing dataset X = {(x, y(x))}, usually composed by a
discrete set of points. Notice that LX is empirical as
the training dataset is drawn from an unknown data
distribution X ∼ D, and approximates the true un-
accessible risk averaged over D. In regression tasks,
a common choice for the distance metric ∆(·, ·) is the
mean squared error.
Our interest lies in examining the gradients of the

loss function of QRU models, expressed as

∂jL(θ) = EX

(
∂∆(hθ(x), y(x))

∂hθ(x) ∂jhθ(x)
)
. (6)

The influence imposed by the choice of distance func-
tion ∆(·, ·) can be readily bounded e. g. using its
Lipschitz constant L∆. In particular,

VarΘ (∂jL(θ)) ≤ L2
∆ VarΘ (EX (∂jhθ(x))) . (7)

Therefore, we can bound vanishing gradients by
studying only VarΘ (EX (∂jhθ(x))). It is important
to highlight that all results presented in this section
are applicable for any distribution over parameters Θ.

3.2 Gradient of the loss function
We connect now the gradients of loss functions for
QRU models and PQCs. First, the average of deriva-
tives of hypothesis functions are zero, namely [36]

EΘ (EX (∂jhθ(x))) = EX (EΘ (∂jhθ(x))) = 0, (8)

if the parameters θ are sampled uniformly from Θ.
As a consequence, due to the convexity of the square
function, we have E (x)2 ≤ E

(
x2). By combining

these two observations and the definition Var (x) =
E
(
x2)− E (x)2

, we derive

VarΘ (EX (∂jhθ(x))) ≤ EX (VarΘ (∂jhθ(x))) , (9)

which can be readily connected to VarΘ (∂jL(θ))
via Equation (7). Therefore, we can bound the vari-
ance of cost functions in QRU by the average of
variances cost functions of several PQC, defined by
different fixed x0. Bounds on VarΘ (∂jhθ(0)) have
been studied in the context of PQC. In particular,
BPs are defined for exponentially vanishing bounds
to VarΘ (∂jhθ(0)) [34].

Equation (9) suggests that QRU models present
vanishing gradients if the base PQC presents BPs,
which means that it is recommendable to use architec-
tures that avoid vanishing gradients such as in [39, 46]
when designing QRUs. This statement is made from
a purely trainability point of view, as it has been

Re-uploading

|0⟩ U U XRz(x) · · ·

|0⟩ U XRz(x) U · · ·
...

|0⟩ U U XRz(x) · · ·

|0⟩ U XRz(x) U · · ·

Base PQC 1 Base PQC 2

|0⟩ U U · · ·

|0⟩ U U · · ·
...

|0⟩ U U · · ·

|0⟩ U U · · ·

|0⟩ U U · · ·

|0⟩ U U · · ·
...

|0⟩ U U · · ·

|0⟩ U U · · ·

Figure 1: Quantum circuits for the first experiments. The
re-uploading model is depicted on top, and compared to
the PQCs described in the bottom line. The U gates here
described correspond to arbitrary parameterized single-qubit
operations. The circuit here described corresponds to one
layer, and the depth is determined by the number of repeti-
tions.

shown that such architectures are indeed classically
simulable. We are only highlighting that given a
QRU model, if removing the reuploading gates yields
a PQC architecture known to suffer from vanishing
gradients, then vanishing gradients will also affect the
QRU architecture. In addition, Equation (9) does not
guarantee non-vanishing gradients for QRU models
derived from BP-free PQCs. As an example, consider
a re-uploading model with parameterized single-qubit
gates and data-encoding entangling gates arranged in
an alternate-layered structure, measured by a sum of
1-local observables, as illustrated in Figure 1, base
PQC 1. A compatible base PQC is composed only of
single-qubit parameterized gates. In this case, hθ(x0)
from the base PQC has large gradients [47]. The in-
clusion of data increases the accessible Hilbert space
due to the presence of entangling operations, entan-
glement, which causes BPs [36].

Consider again the previous example, this time with
a different base PQC which includes entangling gates,
see Figure 1, base PQC 2. The gates U are consid-
ered distributed according to the Haar measure for
single-qubit operations. In this new scenario, the
PQC cost function hθ(0) suffers from BPs for suffi-
cient depth [36, 47]. Notice that it is possible to de-
compose a data-dependent entangling gate as a fixed
entangling gate and tunable single-qubit [48], allowing
for introducing data through single-qubit operations.
Intuitively, the data can be re-absorbed by the param-
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eters to generate a new circuit with the same ansatz
as the base PQC. As a direct consequence, the gradi-
ents of the PQC and those of the QRU are of the same
magnitude, EX (VarΘ (∂jhθ(x))) ≈ VarΘ (∂jhθ(x0)),
for any x0. This intuition motivates the newly coined
concept of absorption witnesses in Definition 3.1 as
the capability of the circuit to absorb the data into
the parameters.

3.3 Absorption Witnesses
Before further expanding on absorption witnesses, it
is convenient to introduce some auxiliary quantities in
the context of QRU models. We take derivatives with
respect to the j-th parameter. All operations preced-
ing the j-th parameter (not included) are considered
the right part of the circuit, operationally attached to
the input state ρ0. Operations that include and follow
the j-th parameter are on the left side of the circuit,
attached to the observable. This description is given
by

ρj(θR,j , x) = UR,j(θR,j , x) ρ0 U
†
R,j(θR,j , x) (10)

Hj(θL,j , x) = U†
L,j(θL,j , x) H UL,j(θL,j , x). (11)

The left/right parameters ΘR/L,j are assumed to be
independent. For each of the right and left parts of
the circuit, we can define the difference with respect
to the reference data value x = 0 (corresponding to
the PQC) as

B
(t)
R,j(θR,j , x; ρ0) = ρ⊗t

j (θR,j , x) − ρ⊗t
j (θR,j , 0) (12)

B
(t)
L,j(θL,j , x;H) = H⊗t

j (θL,j , x) −H⊗t
j (θL,j , 0)

(13)

We define the absorption witness as follows.

Definition 3.1 (Absorption witness). Let U(θ, x) be
a re-uploading model as defined in Equation (2). Let
UR/L,j(θ, x) be the right and left parts of the circuit
with respect to the j-th gate. The right/left absorption
witnesses are

B(2)
R,j(ρ0) =EX

( ∥∥∥EΘR,j

(
B

(2)
R,j(θR,j , x; ρ0)

)∥∥∥
1

)
,

(14)

B(2)
L,j(H) =EX

( ∥∥∥EΘL,j

(
B

(2)
L,j(θL,j , x;H)

)∥∥∥
1

)
.

(15)

The absorption witness defined above captures the
effect of including data when averaging over the pa-

rameter space Θ. If B(2)
R,j(ρ0) = 0, the input x yields

an effect on ρj(θR,j , x) equivalent to some change
θR,j → θ∗

R,j . This effect is compensated when aver-
aging over Θ. The logic is analogous to the left part
of the circuit. As an illustrative example, assume a
single-layer re-uploading model composed by apply-
ing any data-encoding layer after a PQC forming a t-
design. By definition, t-designs approximate up to the

t-th statistical moment of Haar measure and are thus
insensitive (on average) to adding extra operations,
in particular any operation given by data-encoding.
However, this closeness to t-designs is no longer pos-
sible for ansatzes with (several) data-encoding gates
interspersed between parameterized layers.

The absorption witnesses from Definition 3.1 bound
the differences between variances for PQCs and QRU
models as follows.

Theorem 3.1. Let U(θ, x) be a re-uploading model
as defined in Equation (2). Then

|EX (VarΘ (∂jhθ(x))) − VarΘ (∂jhθ(0)) |

≤ 4∥Vj∥2
∞

(
∥H∥2

∞ B(2)
R,j(ρ0) + ∥ρ0∥2

∞ B(2)
L,j(H)

)
(16)

where ρ0 is the initial state, H is the observable to
measure, and B(2)

L,j(H),B(2)
R,j(ρ0) are the absorption

witnesses from Definition 3.1.

The proof can be found in Appendix A.1.

Computing the absorption witness is not easy, nor
computationally efficient. Alternatively, it can be es-
timated by comparing variances of the magnitudes of
gradients with and without data, as will be done in the
numerical calculations of Section 3.5. Nevertheless,
it provides a useful interpretation of the relationship
between vanishing gradients for data-dependent QRU
models, as compared to their base PQCs, where the
BP phenomenon has been already studied [34, 38, 39].
The absorption witnesses quantify the expressivity
difference between the PQC where the data upload-
ing gates of the QRU are removed and that of the
PQC where the data uploading gates are replaced by
parameterized gates. As an illustrative example, con-
sider an arbitrary Hamiltonian H, and a quantum
re-uploading model composed of a gate eiHθ0 immedi-
ately followed by a data uploading gate eiHx0 . These
gates can be combined as eiHθ1 , θ1 = θ0 +x. Since the
relevant quantities are variances of, any shift of this
kind does not affect the average behavior, yielding an
absorption witness of exactly 0. On the other hand, a
QRU model composed by two arbitrary Hamiltonians
eiH1θ, eiH2x does not admit a shift in θ to absorb x,
yielding an absorption witnwess depending on H1,2.
This result is formulated in the same fashion as the
ones in [36], extending their applicability to quantum
machine learning.

Finally, note that it is in principle possible to con-
struct pathological datasets such that the base PQC
suffers from BP while the QRU model does not. In
these cases, the data uploading gates need a careful
design to cancel out the structures responsible for van-
ishing gradients. It is thus reasonable to assume that
real-world datasets would not result in such behavior.
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3.4 Gradients in layered QRU models
We consider in this section layered QRU models, in
contrast to the results we presented earlier that apply
to all QRU structures. In many practical scenarios
there are several parameterized gates between each
pair of encoding gates [38, 39]. An encoding gate and
all preceding parameterized gates is referred to as a
layer as

U(θ, x) =
L∏

l=1
Vl(x)ul(θl). (17)

In this representation, the parameterized gates u(θl)
are no longer defined by a single generator, and θl is
no longer one-dimensional. We can in this case study
the absorption capability of each individual layer by
defining the corresponding absorption witnesses as
follows.

Definition 3.2 (Layerwise absorption witness). Let
u(θl) be the l-th layer of a re-uploading model
from Equation (2), and let V (x) be the data-encoding
operation applied immediately after u(θl). The ab-
sorption witness for the l-th layer is

A(t)
l = EX

(∥∥EΘl

(
Vl(x)⊗2u(θl)⊗2 − ul(θl)⊗2)∥∥

1

)
.

(18)

We provide some examples where A(t)
l = 0. First,

assume a data-encoding layer sharing the generator
with the corresponding parameterized gates. In this
case, we can read data-encoding as a simple shift
of parameters θ∗ → θ − x (recall that θ is now
multi-dimensional), and averages do not change as
long as θ is sampled uniformly. Another example is
the case where the ansatz is composed by k-local 2-
designs located in consecutively alternated qubits, as
in [47], where any k-local data-encoding gates can be
re-absorbed by definition.
The use of layered ansatzes and layerwise ab-

sorption witnesses allows for further simplifications
of Theorem 3.1 by bounding the complete absorption
witnesses.

Lemma 3.1. Consider a layered re-uploading model
as in Equation (17). Then

B(2)
R,l+1(ρ0) ≤ B(2)

R,l(ρ0) + ∥ρ0∥2
∞A(2)

l+1 (19)

B(2)
L,l(H) ≤ B(2)

L,l+1(ρ0) + ∥H∥2
∞A(2)

l . (20)

The proof can be found in Appendix A.2.
Consider now a layered circuit where ul(·) = uk(·)

for any pair (l, k). The previous result can be fur-

ther simplified since A(2)
l = A(2) for all values of l.

Therefore

Corollary 3.1. For a layered re-uploading model, the
absorption witnesses of large parts of the circuits can
be bounded by absorption witnesses of small pieces, by

B(2)
R,l(ρ0) ≤ L∥ρ0∥2

∞A(2), (21)

B(2)
L,l(ρ0) ≤ L∥H∥2

∞A(2). (22)
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√
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Qubits
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=
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Uniform data
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EXEΘ (‖∇hθ(x)‖)
EΘ (‖EX∇hθ(x)‖)

Figure 2: Results for ϵMAX
√

m ≈ EX (EΘ (∥∇hθ(x)∥))
(see Equation (24)) for QRU models with alternating layered
ansatzes. Data is introduced through controlled-rotation
gates. Parameterized gates are single-qubit arbitrary oper-
ations. Each row has an increasing depth in the circuit. The
right column includes CNOT gates for the base PQC. In the
left column, gradients follow different trends for the cases
with and without data, implying data can not be re-absorbed
into a reparametrization, in the sense of Theorem 3.1. In the
right column, similar trends indicate large absorption capa-
bilities.

The proof follows by repeated application
of Lemma 3.1, together with the observation

B(2)
R,l(ρ0) = 0 if no data-encoding layer is considered

in the absorption witness. We can therefore give a
simplified bound for the results from Equation (16)
in the case of layered ansatz as

|EX (VarΘ (∂jhθ(x))) − VarΘ (∂jhθ(0)) |

≤ 8L∥Vj∥2
∞∥H∥2

∞ ∥ρ0∥2
∞A(2). (23)

The result from Equation (23) is more loose
than Theorem 3.1, but easier to compute, since it de-
pends only on the layerwise absorption witness A(2)

corresponding to shallow circuits.

3.5 Numerical results
In this section, we present our numerical results, fo-
cusing on the average gradient magnitudes of hypoth-
esis functions generated by QRU models in compar-
ison to base PQCs. This analysis serves to validate
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the findings presented in Theorem 3.1 regarding gra-
dient variances and can be considered as a proxy for
evaluating the absorption witnesses defined in Defini-
tion 3.1. We explore various ansatzes and use different
data distributions for the experiments. Our code for
these experiments is available in [49], and the data
can be provided upon request.
For the numerical results we need to compute the

magnitudes of the gradients on average. In order to
reduce the computational complexity of this task, we
will make use of the information content (IC) I(ϵ) [50].
The IC is a statistical measure of the variability of the
optimization landscape. In a nutshell, if I(ϵ) is close
to 1, then random displacements in θ in the landscape
change the value in hθ(x) in approximately ϵ, conve-
niently re-normalized by the norm of the displacement
itself. The value ϵMAX at which I(ϵ) is maximized
serves as a numerical proxy for the average norm of
the gradient, that is

EΘ (∥∇hθ(x)∥) ∼ ϵMAX
√
m, (24)

where
√
m is the number of parameters. While this

approximation is not capable of computing the exact
value of EΘ (∥∇hθ(x)∥), it is robust against statistical
fluctuations and provides reliable scalings. We refer
the interested reader to Ref. [50] for an in-detail ex-
plaination of the validity and utility of IC to estimate
gradients.
As a first example, we compare a re-uploading

ansatz, consisting of single-qubit rotations and data-
encoding entangling gates, with two different PQCs
(see Figure 1). In both cases, we construct the hy-
pothesis function measuring sums of single-qubit X
Pauli measurements. The addition of entangling gates
in PQC2 with respect to PQC1 is essential to explor-
ing entangled states, and it plays a role in address-
ing the issue of vanishing gradients [47]. The data-
encoding layer is a controlled operation C−(XRz(x)),
which can be absorbed into single-qubit and con-
trolled rotations [48].
The results are shown in Figure 2. The columns

correspond to the respective models (1-2), and the
rows correspond to different depths of the ansatz. In
the left column, corresponding to a PQC with only
single-qubit gates, we observe a qualitative difference
in the average gradients of the PQC and re-uploading
circuits. The PQC is relatively insensitive to the num-
ber of qubits, as a consequence of the redundancy of
multiple consecutive single-qubit gates. Adding data
modifies this behavior. In the case of the entangling
PQC (right column), the results without data align
with previous works [47, 50]. The addition of data
drawn from different distributions (Gaussian and uni-
form) introduces negligible differences in the results.

We turn our attention to translation-invariant
ansatzes. These circuits are not capable of freely
exploring the Hilbert space, but only its invariant
subspace. This restriction reduces the freedom in
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Figure 3: Results for ϵMAX
√

m ≈ EX (EΘ (∥∇hθ(x)∥))
(see Equation (24)) for QRU models with translation-
invariant layered ansatzes. Data is introduced through the
generators g, and data through the generators V , indicated
at the top for every column. Each row has an increasing
depth in the circuit. In the left column, gradients follow ap-
proximately the same trends with and without data, implying
high absorption capabilities in the sense of Theorem 3.1. For
the middle column, the absorption is total since it can be
done by a simple shift of parameters. The right column re-
veals different trends for the cases with and without data,
implying low absorption.

these circuits, leading to an increase in the average
gradients of the cost function for PQCs [39]. We
choose three layered models, based on the genera-
tors X =

∑
q Xq, Y =

∑
q Yq, ZZ =

∑
q ZqZq+1,

where q cyclically iterates over all qubits. In the
first model, the generator associated with param-
eters is Vi = X, and data-encoding is conducted
through g = ZZ. The second model is given by
{V } = {X,ZZ}, g = ZZ. The third model is de-
fined by {V } = {X,ZZ}, g = Y . In all cases, the ob-
servable considered is X. Among these models, only
the second one can automatically absorb data into pa-
rameters through shifts. Gaussian-distributed data is
used in all cases.

Results are detailed in Figure 3. The columns cor-
respond to the respective models, and the rows corre-
spond to different circuit depths. For each model, the
average norm of the gradient scales differently with
the number of qubits, with and without data. Mod-
els 1 and 2 present similar behavior when including
data. In particular, for model 2 results show no differ-
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ence between the re-uploading model and PQC since
the data can be perfectly re-absorbed through a sim-
ple shift. A significant difference is noticeable in the
third model. In this case, the absence of BPs in all
instances makes the QRU models trainable by con-
struction.

4 Expressivity in QRU models
The hypothesis class of QRU can always be expressed
as a generalized trigonometric polynomial [40], see
Equation (4). In QRUmodels, the set of frequencies Ω
is generated through the sequential Minkowski sum of
the spectrum of the data encoding generators {λj}j .
In the general case, {λj}j consists of incommensu-
rable real numbers, i. e. with non-rational ratios,
and each new encoding step makes Ω combinatorially
denser. In this section we first consider harmonic gen-
erators, i. e. with integer eigenvalues, and extend the
results later to generic generators. As a main obser-
vation of this work, the behavior is similar in both
cases.

4.1 Harmonic representation of quantum
states
In this section, we introduce a representation of QRU
models based on the Fourier decomposition of the hy-
pothesis function. Such representation is useful for
subsequent analytical results. Starting from Equa-
tion (2) and assuming the generators gi possess an in-
teger spectrum, we can express the state before mea-
surement as

U(θ, x) |0⟩ =
K∑

k=−K

2n∑
j=1

cj,k(θ)eiµkx |j⟩ . (25)

The coefficients cj,k form a matrix C ∈ C2n×(2K+1)

that defines uniquely (up to a global phase) the output
state of the re-uploading circuit before measurement.
The matrix C depends only on the parameters θ and
the generators of the ansatz, but not on the data x.
The value K corresponds to the largest attainable fre-
quency, namely the sum of the largest eigenvalue for
each generator used in the circuit. The recipe to con-
struct C from the description of the circuit is detailed
in Appendix A.3. Notice this approach is equivalent
to adding an extra dimension (frequency)to the stan-
dard brute-force state vector simulation, which is not
efficient from a computational point of view. This
harmonic representation of QRU models simulator is
available on [49].

4.2 Vanishing high frequencies in QRU models
We use the above representations and the intuition
that adding a data encoding layer corresponds to a

convolution operation with the data encoding gen-
erator spectrum as defined below in 4.1. For proof
purposes, we assume that Haar random matrices are
interleaved in between reuploading layers, as is com-
mon in most papers exploring barren plateaus. We
examine the statistical properties of the amplitude of
the coefficients as a function of the frequency. We
begin by defining the spectrum kernel of a harmonic
Hermitian matrix.

Definition 4.1 (Harmonic spectrum kernel). Let H
be a N×N Hermitian matrix with integer eigenvalues
{λ} with multiplicities m(λ). The spectrum kernel of
H is the vector (indexed by k)

KH(k) =
{
m(kµ)/N if kµ ∈ {λ}

0 Otherwise , (26)

where µ is the largest value in R compatible with this
description.

This function simply maps the eigenvalues of a Her-
mitian matrix into the normalized dimensionality of
the corresponding eigenspace. For readability, we will
refer to the spectrum multiplicity function simply as
the spectrum for the remainder of the paper.
In the case of layered QRU models, the spectra of

their data-encoding generators and the number of lay-
ers L directly determine the set of attainable frequen-
cies. The maximum attainable frequency is bounded
by L∥g∥2. We provide now some insight into how the
coefficients are expected to behave.

Lemma 4.1 (Harmonic convolution). Let |ψθ(x)⟩ =
U(θ, x) |ψ0⟩ be the output state of a re-uploading
model, with data-encoded through the generator set
{gj}, each with spectrum Kgj

, encoded as in Equa-
tion (25). Assuming that each parameterized step
is drawn from the Haar measure of unitaries, then∑

j |cj,k|2 is a random variable satisfying∑
j

|cj,k|2 ∼

Dir
((

Kg1 ∗ . . . ∗ Kgj
∗ . . . ∗ KgL

)
(k)
)
, (27)

where Dir(α1, α2, . . .) is the Dirichlet distribution [51]
and ∗ denotes the convolution.

The proof can be found in Appendix A.4. The
Dirichlet distribution is a family of probability dis-
tributions for multidimensional variables x ∈ [0, 1]N ,
subject to ∥x∥1 = 1. The Dirichlet distribution
over N variables is fully described by N parameters
αi ∈ R>0. Dirichlet is the multidimensional exten-
sion of the beta distribution. A detailed definition
of the Dirichlet distribution and auxiliary results are
given in Appendix A.5. For completeness, we define
convolution as

(f ∗ g)(k) =
∞∑

l=−∞

f [k]g[l − k]. (28)
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In other words, this lemma gives statistical properties
of the frequency content, expressed as the norm of the
2n quantum vector corresponding to each frequency
(seee Equation (25)) for QRU models composed of
a sequence of data uploading gates interleaved with
gates drawn from the Haar distribution. It states
that the vector of frequency content follows a mul-
tidimensional distribution whose mean is the result of
the successive convolution of the multiplicity kernels
of the data encoding gates. It follows a Dirichlet dis-
tribution because all values are positive and sum up
to one as per the normalization of a quantum state.
It is worth discussing the role of the Haar distribu-

tion in this result. First, choosing random unitaries
allows us to scramble the inner quantum state in the
QRU model at each step, thus transforming the QRU
circuit into a random walk in the space of frequen-
cies, where the parameters in Dirichlet only account
for the number of paths leading to the same outputs.
Second, random choices of unitaries is in alignment
with other works exploring trainability and expres-
sivity in VQAs [34, 47, 36], which rely on sampling
unitaries from a t-design. The difference between the
Haar distribution and a t-design is rather technical,
since t-designs are sets of unitaries with the same sta-
tistical moments as the Haar measure, up to degree
t [29]. With respect to Lemma 4.1, lowering the re-
quirements in the parameterized steps from Haar dis-
tribution to t-design would imply to substitute the
Dirichlet distribution with another probability distri-
bution with the same t-statistical moments. Tech-
nical descriptions of this transformations are left as
open questions for future research. Note that our re-
sults lose their validity if the parameterized steps are
drawn with respect to other distributions of unitaries.
The previous result immediately implies the follow-

ing.

Theorem 4.1 (Single-generator convolution). Let
|ψθ(x)⟩ = U(θ, x) |ψ0⟩ be the output state of a re-
uploading model, with data-encoded through the gen-
erator g, with spectrum Kg, encoded as in Equa-
tion (25). Assuming that each parameterized step is
drawn from the Haar measure of unitaries, then∑

j

|cj,k|2 = Dir
((

K∗L
g

)
(k)
)
, (29)

where (·)∗L denotes the L-fold convolution.

The proof is immediate from extending Lemma 4.1.
We provide two explicit examples to distinguish the

cases captured by Lemma 4.1 and Theorem 4.1. Con-
sider the single-qubit generator g = (Z0 + I)/2, with
spectrum Kg = (0, 1). To illustrate Lemma 4.1, we
choose the list of generators as {2lg}L

l=0, yielding a
convolution(

Kg1 ∗ . . . ∗ Kgj ∗ . . . ∗ KgL

)
(k) = 1,

∀k ∈ {0, . . . , 2L − 1}. (30)

On the other hand, illustrating Theorem 4.1 we con-
sider a repeated application of g, yielding(

K∗L
g

)
(k) =

(
k

L

)
,∀k ∈ {0, . . . , L}. (31)

The behavior in the two cases of the random variable∑
j |cj,k|2 is significantly different. In the first case,

the output is a flat distribution of exponential size.
On the contrary, the second case is a distribution of
linear size with high concentration in its mean values.
Notice that, provided that the data generator is

known, it is possible to classically store K∗L
g within

memory of size O (L∥g∥2/µ), with computational cost
O
(
(L∥g∥2/µ)3). This allows us to classically char-

acterize the frequency profile prior to executing the
QRU model in quantum hardware for harmonic gen-
erators with only polynomially many eigenvalues.
The previous theorem can be readily interpreted in

the limit of large L by virtue of the central limit the-
orem [52]. The repeated convolution of any random
variable with a variance of σ and a probability dis-
tribution in the spaces L1 and L2, tends to a normal
distribution in a weak sense. We can thus obtain the
following result.

Corollary 4.1 (Vanishing high frequencies). In the
conditions of Theorem 4.1 and for large number of
re-uploading L,

lim
L→∞

∑
j

|cj,k|2 ∼ Dir
(
N
(
0, σ2

gL
)

(k)
)
, (32)

where σg is the standard deviation of the spectrum Kg,
and N (µ, σ2) is the normal distribution.

This observation implies that tails of the distribu-
tion vanish exponentially for large frequencies and
there is a concentration in the low-frequency terms
as the magnitudes of high-frequency terms vanish.
In asymptotic scaling the available spectrum reduces
from ∥g∥2

λL to σg

√
L. For interpretability, recall the

example g = (Z0 + I)/2, yielding a binomial distri-
bution in the convolution of the subsequent spectra.
The binomial distribution rapidly tends to a gaussian
distribution.

The results from Theorem 4.1 and Corollary 4.1 can
be extended to non-harmonic generators. For read-
ability, we postpone this result until Section 4.4.

The previous discussion considers the effects of the
spectrum on the internal state of the re-uploading
model in its harmonic representation. We are how-
ever not interested in the state itself, but rather in
hθ(x) measured as an expectation value of this inter-
nal state. The Fourier components hθ(x) satisfy the
following corollary.

Corollary 4.2. Let |ψθ(x)⟩ be the output state of a
re-uploading model, with a single data-encoding gen-
erator g with spectrum Kg. Let hθ(x) be the hypoth-
esis function induced by the observable H in the re-
uploading model, as in Equation (3), and let ak(θ) be
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their corresponding Fourier coefficients as in Equa-
tion (4). In the conditions of Theorem 4.1, and for
symmetric spectra Kg(k) = Kg(−k),

∥H∥−2
λ |ak(θ)|2 ≤ pk (33)

pk ∼ Dir(K∗2L
g (k)), (34)

where pk is a multidimensional probability distribution
sampled from the Dirichlet distribution defined by the
L-fold convoluted spectrum Dir(K∗2L

g (k)) [51].

Additionally, this result extends to the Gaussian
distribution in the limit of large L as for Corollary 4.1.

The results from this section show that the fre-
quency terms of hθ(x) tend to follow a Gaussian
profile of width ∼ L, in the assumption that the
generator of data-encoding gates is repeated in the
QRU model. However, the frequency support of
these functions scales linearly in L. As an immedi-
ate consequence, only frequencies ω ∈ O(

√
L) have

practical support on average, while larger frequencies
have exponentially vanishing weight in the hypothesis
function. Note, that the Gaussian profile described
by Corollary 4.1 does not imply a dense frequency
space, which is still restricted to integer frequencies.
This result holds even in the case where the gener-
ator provides exponentially-in-qubits many frequen-
cies. It is then possible to have exponentially large fre-
quency sets even with a small number of re-uploading
steps, and the Gaussian approximation still holds with
σ ∼

√
Len.

4.3 Lipschtitz expressivity
In this section, we delve into a more practical under-
standing of the expressivity of hypothesis functions in
terms of the magnitude of their derivatives. The abil-
ity to capture fine-grained data patterns depends on
the function’s ability to access high rates of change,
i.e., the magnitude of its derivative. This concept
can be quantified through the maximum value of the
derivative, known as the optimal Lipschitz constant.
For a function f , the optimal Lipschitz constant is
defined as

L(f) = maxx |∂xf(x)| . (35)

The Lipschitz constant is closely related to Fourier
analysis, as high derivatives can only be achieved if
the Fourier spectrum includes high frequencies with
significant coefficients. Specifically,

L(f) ≤
K∑

k=−K

|k|µ|ake
ikµx|, (36)

where ak represents the Fourier coefficients of the hy-
pothesis function.

We introduce an upper bound to the Lipschitz con-
stant inspired by Equation (35), adapted for QRU

models and properly normalized with respect to the
measured observable as

Λ(hθ) =
K∑

k=−K

µ|k||ak|. (37)

It is straightforward to see that Λ(hθ) ≥ L(hθ), and
therefore we are going to use this quantity as a proxy
for it. For readability, this optimal Lipschitz constant
upper bound will be referred to LB in the subsequent
sections of this paper and be noted Λ(hθ) unless oth-
erwise specified.

Using results from previous sections we study
Λ(hθ), starting with a result giving tight bounds on
the asymptotic average of the LB over the parame-
ters Θ. The results stated in the next and subse-
quent propositions stem from the conditions discussed
in Section 4.2, namely tunable gates are drawn from
the Haar distribution.

Theorem 4.2 (Average LB). Let hθ(x) be the hypoth-
esis function of a re-uploading model for which The-
orem 4.1 applies. Let Λ(hθ) be the LB as defined
in Equation (37). Then,

∥H∥λ

√
2Lµσg ≤ lim

L→∞
EΘ (Λ(hθ)) ≤ ∥H∥λ

4√
π

√
Lµσg

(38)

The proof can be found in Appendix A.7. Notice
the tightness of the bounds above since 2

√
2/

√
π ≈

1.6.
The following subsection quantifies the likelihood

of the LB different from the average. Notice that val-
ues smaller than the average are not relevant due to
the definition of Λ(hθ). We can leverage the insights
from previous results, particularly the role of Dirichlet
distributions, to derive the following result:

Theorem 4.3 (Deviation of LB). Let hθ(x) be
the hypothesis function of a re-uploading model for
which Theorem 4.1 applies, with data-encoding gen-
erator g. Let Λ(hθ) be its LB as defined in Equa-
tion (37). Then,

lim
L→∞

Prob
(

Λ(hθ) − ∥H∥λ

√
2Lσgµ ≥ t

)
∈ O

(
exp

(
− t2

poly(Lµ)

))
. (39)

The proof can be found in Appendix A.8. Notice
this result automatically bounds the probability of the
optimal Lipschitz constant itself of being bigger than√

2Lµσg.
The previous theorem can be further refined to pro-

vide a tighter bound on the likelihood of large devia-
tions from the LB. As mentioned in the detailed proof,
when Theorem 4.1 holds the weight of each frequency
and tends to follow a Gaussian-like profile, with cen-
tral frequencies having exponentially larger probabil-
ities than the extremal ones. It is expected that the
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primary contributions to Λ(hθ) come from these cen-
tral frequencies, which also have the smallest prefac-
tors. Taking this into account, we can update the
results from Theorem 4.3 to provide a more precise
bound,

lim
L→∞

Prob
(

Λ(hθ) − ∥H∥λ

√
2Lµσg ≥ t

)
∈ O

(
exp

(
− t2

(σgµ
√
L)3

))
. (40)

The vanishing high frequencies from Section 4.2
have consequences on the properties of the attain-
able hypothesis functions. In particular, its maxi-
mal derivative with respect x, given by the Lipschitz
constant, scales in average with

√
L, and the proba-

bility of finding larger Lipschitz constants vanishes
super-exponentially fast. This imposes in practice
constraints on the capability of the hypothesis func-
tions to capture fine details in the data, effectively
restricting target functions that can be approximated
by QRU models.

4.4 Extension to generic data generators
In previous subsections, we have proven the phe-
nomenon of vanishing high frequencies and its con-
sequences on the Lipshitz constant for harmonic data
generators. In this subsection, we extend the results
from Section 4.2 and 4.3 to any data generator. We
start by defining the spectrum kernel for generic Her-
mitian matrices.

Definition 4.2 (Hermitian spectrum kernel). Let H
be a N × N Hermitian matrix with integer (posi-
tive or negative) eigenvalues {λ} with multiplicities
m(λ). We define the vector µ⃗ ∈ RD, with µi/µj ∈
R\Q ∀(i, j), such that any eigenvalue can be written
as λ = µ⃗ · k⃗, with k⃗ ∈ ZD. We refer to the number
of anharmonic dimensions as D ≤ 2n, where n is the
number of qubits. We define the spectrum kernel of H
as KH such that

KH(k⃗) =
{
m(λ)/N if k⃗ · µ⃗ ∈ {λ}

0 Otherwise (41)

Where each µj is the largest value in R compatible
with this description.

We note the covariance of this spectrum as the
D × D matrix Σg. The average of this spectrum
is 0 since we consider traceless generators. The re-
sults from Lemma 4.1 and Theorem 4.1 hold in the
non-harmonic case. In this scenario, the convolution
must be done in a D-dimensional space, leading to D-
dimensional frequency profiles. The convoluted spec-
trum, for the single-generator case, can be stored in a

memory structure of size O
(

(L∥g∥2/minjµj)D
)
. No-

tice that for each eigenvalue λ there exists only one

compatible k⃗, due to the irrational ratios between el-
ements in µ⃗.
The central limit theorem still applies in the non-

harmonic case as well, leading to the following result.

Corollary 4.3 (Vanishing high frequencies). Given
the conditions of Theorem 4.1 for non-harmonic gen-
erators and for large number of re-uploadings L,

lim
L→∞

∑
j

∣∣∣cj,⃗k

∣∣∣2 ∼ Dir
(

N (0,ΣgL)
(
k⃗
))

. (42)

Following the reasoning from the harmonic case, we
focus now on the Lipschitz constant of the hypothesis
functions. The definition from Equation (37) can be
extended to

Λ(hθ) =
∑
ω∈Ω

|ω||aω|, (43)

with ω = µ⃗ · k⃗. Since k⃗ has integer values and µ⃗ has
irrational ratios among its elements, there is at most
one solution of k⃗ for each ω. With this definition,
we can formulate results analogous to Theorem 4.2
and Theorem 4.3.

Corollary 4.4 (Lipschitz bounds for non-harmonic
generators). Let hθ(x) be the hypothesis function of a
re-uploading model for which Corollary 4.3 applies.
Let Λ(hθ) be the LB as defined in Equation (43).
Then,

lim
L→∞

EΘ (Λ(hθ)) ≤ 4√
π

∥H∥λ

√
Tr(Σ) ∥µ⃗∥2

√
L (44)

lim
L→∞

EΘ (Λ(hθ)) ≥
√

2 ∥H∥λ

√
minλ(Σ) ∥µ⃗∥2

√
L.

(45)

The proof of Corollary 4.4 can be found in Ap-
pendix A.9. In addition, following the same reasoning
leading to Theorem 4.3, we can infer exponential con-
centrations of Λ(hθ) around its average values, by

lim
L→∞

Prob
(

Λ(hθ) − ∥H∥λ

√
2L∥µ⃗∥2

√
minλ(Σ) ≥ t

)
∈ O

exp

− t2(√
maxλ(Σg)maxj(µj)

√
L
)3


 .

(46)

In light of the previous theorem, we can ob-
serve that the vanishing high frequencies phenomenon
extends to non-harmonic generators, with minor
changes with respect to the harmonic case, rooting
from norm bounds in the multi-dimensional space.
The tightness of these bounds depends on the reg-
ularity of the anharmonic spaces, which is reflected
into the values of µ⃗ and the eigenvalues of Σ.

An immediate consequence of this section is that
QRU models can have a dense frequency spectrum
without significantly modifying the envelope of the
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frequency profile. The only elements of QRU models
allowing to increase the set of available frequencies
in practice are L and the spectrum profile Σ, while
µ⃗, which can be related to ∥g∥λ have a more mod-
est effect. It is possible to reach exponentially many
different frequencies by using generators with expo-
nentially large Kg.

The number of different frequencies directly affects
the surrogability of the studied QML models In the
case the frequency space is polynomial in the num-
ber of qubits, it is possible to construct a classical
model fitting the corresponding generalized trigono-
metric polynomial [53]. On the other hand, expo-
nentially large frequency spaces do not admit arbi-
trary efficient classical representations. The findings
detailed in this work provide methods to circumvent
surrogability. This can come from generators with ex-
ponentially large spectra, or designed in such a way
that the frequency space scales exponentially with L,
for instance with convolutions of highly non-harmonic
spectra.

4.5 Numerical results
In this section, we show the results of a series of nu-
merical experiments in which such conditions are re-
laxed and show that the theoretical results still apply.
We use three models to test different situations. The
first two models are constructed with permutation-
invariant generators, which correspond to PQC that
have been proven to be trainable [46]. Those models
express only the symmetric subspace in the available
Hilbert space. In the first model (A), g = X,V = ZZ,
and the second model (B) g = X,V = {Y,X,ZZ}.
For the third model, g = X, and the parameterized
pieces are sampled from the Haar measure, that is
the set V is free. We choose these models to have
full control of the spectrum of the generator Kg=X ,
which allows us to informatively compare to the the-
orems. All experiments were conducted with systems
of 4 qubits unless explicitly stated, without affecting
the scaling of the obtained results.

The first experiment tests Theorem 4.1 and Corol-
lary 4.1, and the results can be seen in Figure 4.
In model (A), the spectrum spreads towards large
frequencies with the number of data re-uploadings.
The parameterized gates are not general enough to
support the theoretical results. For models (B) and
(C), the Gaussian limit is matched even for a moder-
ately small number of layers. This means that even
though the theorem is proven for Haar random uni-
taries, the vanishing high-frequencies behavior still
holds for model (B), even though the Haar condition
is not guaranteed. Notice the difference in spreads
for models (B) and (C). This is a consequence of the
space explored by the ansatz. Model (B) is composed
of a permutation invariant ansatz, and it is as general
as possible only in the symmetric subspace, of dimen-
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Figure 4: Evolution of frequency spectrum with the number
of layers, for models (A, B, C) detailed in the first paragraph
of the section. The Fourier content refers to (average and
standard deviation of) |ck|2. Model (A) is not general enough
to follow Theorem 4.1, but still, a spread in frequencies is
observed. Model (B) is permutation-invariant and almost
fully general in the symmetric space, and model (C) is general
with no restrictions in the Hilbert space. As L increases,
the Fourier spectrum approximates a Gaussian profile with
increasing variance according Equation (32). The values σg

for models (B) and (C) change due to the constraint in the
available space.

sion n+1. In this scenario, the spectrum of the corre-
sponding g is flat (see the results for 1 layer in figure
4), and the spread depends on the number of qubits
n as σg = O (n). For the model (C), the spectrum of
g with no restriction follows a binomial distribution,
centered in k = 0, with σg ∈ O (

√
n). A comparison

between the theoretical and observed variances can be
found in Figure 5, showing high agreement with the
theoretical results.

We numerically check Theorem 4.3 in Figure 6. We
depict in this figure the observed cumulative distribu-
tion functions (CDF) of both the numerically found
LB, and Λ(hθ) defined in Equation (35). These CDFs
are compared to the upper bound from Theorem 4.3.
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Figure 6: Inverse CDFs for the optimal Lipschitz constants
and Λ(hθ), as compared to the bounds from Theorem 4.3.
The x-axis indicate the value for each CDF, respectively
supx |∂xhθ(x)|, Λ(hθ) and t for each line.

Results show agreement with Theorem 4.3, and even
indicate the possibility of finding tighter bounds, at
least in terms of prefactors.

4.5.1 Training

All the LB results describe an average behavior for
Θ. In this subsection, we briefly explore the effect of
previous results in the training. We task model (B)
to learn functions whose Fourier coefficients follow a
step function of increasing width. This approximately
corresponds to a cardinal sinus of decreasing width.

We display results of trained QRU models in Fig-
ure 7. In the top figure, we show the Fourier com-
ponents of different functions to be fitted (in dashed
lines), and the hypothesis functions after training
(solid lines). The target function is learned by the
model for K ≤ 20 but the hypothesis function fails
to capture high frequencies from k > 25. Notice that
the obtained hypothesis functions for K = {30, 40}
seem to saturate the expressivity capabilities of the
model. The bottom figure represents the functions in
the data domain for K = {4, 40}.
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Figure 7: Time and frequency domains representations of the
functions of circuits (B) trained to match increasingly sharp
cardinal sinus that yields increasing high-frequency content.
From Fourier mode k = 20, the model is not able to match
the amplitude, exhibiting a consequence of vanishing high
frequencies.

5 Discussion

We turn our attention first to gradients. From our
results, we can infer that vanishing gradients are
avoided in QRU models if the base PQC is BP-free,
and data can be absorbed into the parameterized
gates. We can refer to existing literature on avoid-
ing BPs for PQCs by restricting the dimensionality of
the search space, by means of the dynamical Lie al-
gebra [39, 46]. In a nutshell, the Lie algebra depends
on the generators of the quantum model. Absorption
witnesses can only be maintained close to 0 if the base
PQC and the derived QRU model share a common Lie
algebra. This observation allows one to choose data-
encoding generators avoiding the emergence of BPs.

The average of Λ(hθ) is a consequence of the vanish-
ing high frequencies behavior that grows as ∼ σg

√
L,

as imposed by the central limit theorem. Deviating
from this average is exponentially unlikely, as proven
in theorem 4.3. As discussed later, it is in princi-
ple possible to amplify high-frequency components,
at the expense of losing all degrees of freedom in the
process. Therefore, for practical purposes, we need
to adjust the number of re-uploading layers according
to the scaling ∼

√
L, and not ∼ L, as suggested by

other theoretical works on expressivity via generaliza-
tion bounds [40].

In this work we derived the the scaling of the
Fourier spectrum of hypothesis functions with the
number of layers, but not with the number of qubits
n. Our numerical simulations focus on frequency
spaces increasing polynomially with n. However, it
is possible to construct data-generators with expo-
nentially many equally probable different accessible
frequencies [54]. In this scenario, Theorem 4.1 still
holds, leading to a Gaussian profile of frequencies
with variance σ ∈ Θ(2n

√
L). Note that exponen-

tially many frequencies require exponentially many
tunable parameters to match the number of degrees
of freedom. Therefore, data-encoding generators with
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∼ en different frequencies can only aim to efficiently
learn functions with sparse Fourier representations,
i.e. with only O(poly(n)) non-zero Fourier coefficients
in a O(en) frequency space.

The expressivity results from Section 4 imply di-
rect limitations in the attainable hypothesis functions,
but also give an intuition on how to amplify high-
frequency Fourier components, or in other words how
to maximize the Lipschitz constant. The only recipe
to obtain a high-frequency Fourier profile is by re-
peatedly amplifying the eigenvectors corresponding
to extreme eigenvalues of the data-encoding gener-
ator. This yields an extremal case as far as possible
from the average case where unitaries are sampled
from the Haar distribution. Without loss of general-
ity, we may choose the ground state. The first step of
the circuit would have to transform the initial state
into the ground state of the data-encoding generator.
For k-local Hamiltonians with k ≥ 2, this problem is
QMA-complete [55], and finding the hypothesis func-
tion with maximum high-frequency content implies
repeatedly solving a QMA-complete problem. An ex-
ample is choosing the data generator to be the Hamil-
tonian of a transverse-field Ising model, constructed
on an arbitrary graph. Such PQC does not suffer
from BPs if the parameters respect the permutation
invariance of the graph [39]. Therefore, reaching the
hypothesis function with maximized high-frequency
content is in general hard. A notable exception ap-
pears in layered circuits with one g, and Wi = I,
where setting all parameters θ = 0 suffices to main-
tain the quantum state aligned with the ground state
of g. Notably, maximizing the Lipschitz constant in
the experiments from Section 4.5 is feasible.

We have seen that hypothesis functions produced
by layered QRU models have naturally vanishing
high-frequency components, therefore limiting their
Lipschitz constant. Regularization of the Lipschitz
constant yields increased generalization and robust-
ness of classical Neural Networks [56, 57]. As a conse-
quence, this could hint toward a better generalization
capacity of QRU models, in agreement with existing
literature [58].

The scope of this work is the average behavior of
QRU models. It shows concentration properties, sim-
ilar to other existing results [59, 60, 34], and provides
useful insights on the internal working principles of
the model. This interpretability will be useful to de-
velop QML models with specific properties. It will be
possible to investigate protection against dequantiza-
tion through peaked generalized trigonometric poly-
nomials, in alignment with peaked circuits [61]. Re-
strictions of generators and parameterized steps in the
circuits can be applied to constraint the behavior of
output models, allowing for systematic exploration of
ingredients in QRU.

6 Conclusions

We have explored the features of QRU models to un-
derstand the implications of injecting data into the
better-studied PQCs models. Two main features are
studied, first the magnitude of the gradients of the
loss function, and second the frequency profile of the
hypothesis function output by QRU models. Results
were proven analytically and extended to more prac-
tical scenarios numerically.

We give analytical bounds for the connection be-
tween the variance of gradients in the hypothesis func-
tions of QRU models and the cost functions on cor-
responding PQCs. Vanishing gradients of hypothe-
sis functions imply vanishing gradients for any cost
function to train ML models with, thus preventing
trainability. The difference between QRU models and
PQCs can be quantified by measuring the effect of
adding data to the circuit, averaging over the param-
eter space. This is quantified by the coined concept
of absorption witness. If data can be re-absorbed in a
shift of parameters, then the gradients for PQCs and
QRU models take similar value ranges. Results can
be further simplified for the case of layered ansatzes.
These results provide insights into the construction
of QRU models protected against the phenomenon of
BP, by using existing knowledge on PQC that do not
exhibit BPs.

We prove also that QRU models suffer from vanish-
ing high frequencies. Each additional data encoding
operation corresponds to an additional convolution of
the current spectrum with the data generator spec-
trum. As the number of layers, denoted as L, be-
comes large the span of attainable frequencies grows
as O (L). However, the central limit theorem dictates
that the frequency profile follows a Gaussian distribu-
tion, spreading out proportionally to

√
L. Therefore,

in practice, only frequencies (approximately) bounded
by

√
L are available, with the contribution of higher

frequencies exponentially vanishing. The vanishing
high frequencies have direct consequences on the class
of functions attainable by the QRU models. The av-
erage of the optimal Lipschitz constant scales with√
L, exhibiting an exponentially decaying probability

of exceeding this value. These findings offer insights
into the inherent limitations of expressivity in QRU
models and provide tools for estimating the computa-
tional resources required to represent specific datasets
effectively.

The results derived in this work broaden our
understanding of the properties of QRU models and
provide guidelines for the design of re-uploading
schemes. As an example, the concept of absorption
witness can be employed to select generators ensuring
an ansatz with the necessary characteristics to be
trainable. For expressivity, adjusting the depth of
the model can strike a balance between capturing
intricate details in the data and avoiding overfitting.
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Consequently, we anticipate that these tools and
insights will contribute to enhancing the applicability
and performance of QRU models.
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Gil-Fuster, and José I. Latorre. “Data re-
uploading for a universal quantum classifier”.
Quantum 4, 226 (2020).
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A Proofs
A.1 Proof of Theorem 3.1
We begin by explicitly writing the derivatives of the hypothesis function

∂jhθ(x) = Tr
{
UR,j(θR,j , x) ρ0U

†
R,j(θR,j , x)

[
Vj , U

†
L,j(θL,j , x)HUL,j(θL,j , x)

]}
. (47)

In this equation, the indices R,L indicate all operations before and after the j−th operation. We redefine the
quantities for readability

ρj(θR,j , x) = UR,j(θR,j , x) ρ0 U
†
R,j(θR,j , x) (48)

Hj(θL,j , x) = U†
L,j(θL,j , x) H UL,j(θL,j , x) (49)

The variance of these derivatives over Θ is given by

EX (VarΘ (∂jhθ(x))) = EΘ (VarX (∂jhθ(x))) = EΘR,j

(
EΘL,j

(
EX

(
(∂jhθ(x))2

)))
, (50)

where we assume no correlation between the parameters in the left and right parts of the circuit. By calling the
property Tr{A⊗B} = TrATrB, we can plug Equation (47) into Equation (50) to obtain

VarΘ,X (∂jhθ(x)) = EΘR,j

(
EΘL,j

(
EX

(
Tr
{
ρj(θR,j , x)⊗2 [Vj , Hj(θL,j , x)]⊗2

})))
(51)

We aim to describe this quantity in terms of the difference between the QML models, partially described by
data x, and their corresponding PQC models, where x = 0. We define the corresponding difference operators

B
(t)
R,j(θR,j , x; ρ0) = ρ⊗t

j (θR,j , x) − ρ⊗t
j (θR,j , 0) (52)

B
(t)
L,j(θL,j , x;H) = H⊗t

j (θL,j , x) −H⊗t
j (θL,j , 0). (53)

We rearrange the terms in the integrand of Equation (51) as

Tr
{
ρj(θR,j , x)⊗2 [Vj , Hj(θL,j , x)]⊗2

}
= (54)

Tr
{
ρj(θR,j , 0)⊗2[Vj , Hj(θR,j , x)]⊗2}+ Tr

{
B

(2)
R,j(θR,j , x; ρ0)[Vj , Hj(θL,j , x)]⊗2

}
= (55)

Tr
{
Hj(θR,j , x)⊗2[ρj(θR,j , 0), Vj ]⊗2}+ Tr

{
B

(2)
R,j(θR,j , x; ρ0)[Vj , Hj(θL,j , x)]⊗2

}
= (56)

Tr
{
ρj(θR,j , 0)⊗2[Vj , Hj(θR,j , 0)]⊗2}+ (57)

Tr
{
B

(2)
R,j(θR,j , x; ρ0)[Vj , Hj(θL,j , x)]⊗2

}
+ (58)

Tr
{
B

(2)
L,j(θL,j , x;H)[ρj(θR,j , 0), Vj ]⊗2

}
(59)

by recalling the identities Tr
{
A⊗2} = Tr{A}2

and Tr{A[B,C]} = Tr{B[C,A]} = Tr{C[A,B]}. The term
in Equation (57) corresponds to the standard variance in PQC. We denote it simply as VarΘ (∂jhθ(0)) .
We move our attention now Equation (58). This term measures the difference between QRU models and

PQC in the right part of the quantum circuit. Assuming that the right and left parameters are uncorrelated,
we can rewrite

EΘR,j

(
EΘL,j

(
EX

(
Tr
{
B

(2)
R,j(θR,j , x; ρ0) [Vj , H(θL,j , x)]⊗2

})))
=

Tr
{(

EX

(
EΘR,j

(
B

(2)
R,j(θR,j , x; ρ0)

))) [
Vj ,EΘL,j

(H(θL,j , x))
]⊗2
}

(60)

Using von Neumann’s trace and Hölder inequalities, with Schatten norms

| Tr{AB}| ≤ ∥A∥1∥B∥∞, (61)

in Equation (60) together with the triangular and Cauchy-Schwarz inequality we obtain∣∣∣EX

(
Tr
{
EΘR,j

(
B

(2)
R,j(θR,j , x; ρ0)

)} [
Vj ,EΘL,j

(H(θL,j , x))
]⊗2
)∣∣∣ ≤

EX

(∣∣∣Tr
{
EΘR,j

(
B

(2)
R,j(θR,j , x; ρ0)

)} [
Vj ,EΘL,j

(H(θL,j , x))
]⊗2
∣∣∣) ≤

EX

(∥∥∥EΘL,j

(
[Vj , H(θL,j , x)]⊗2

)∥∥∥
∞

∥∥EΘR,j
(BR,j(θR,j , x; ρ0))

∥∥
1

)
. (62)
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Substituting in the previous equation the property [36]∥∥∥[Vj , H(θL,j , x)]⊗2
∥∥∥

∞
≤ 4∥Vj∥2

∞∥H∥2
∞, (63)

and defining

B(2)
R,j(ρ0) = EX

(∥∥∥EΘR,j
(B)(2)

R,j (θR,j , x; ρ0)
∥∥∥

1

)
, (64)

we obtain

EΘR,j

(
EΘL,j

(
EX

(
Tr
{
B

(2)
R,j(θR,j , x; ρ0) [Vj , H(θL,j , x)]⊗2

})))
≤ 4∥Vj∥2

∞∥H∥2
∞ B(2)

R,j(ρ0). (65)

Following the same steps for Equation (59), we can bound this quantity as

EΘR,j

(
EΘL,j

(
EX

(
Tr
{
B

(2)
L,j(θL,j , x;H)[Vj , ρR(θR,j , 0)]⊗2

})))
≤ 4∥Vj∥2

∞∥ρ0∥2
∞ B(2)

L,j(H), (66)

where we defined analogously

B(2)
L,j(H) = EX

(∥∥∥EΘL,j

(
B

(2)
L,j(θL,j , x;H)

)∥∥∥
1

)
. (67)

Notice that we could interchange the x-dependency in Equation (59) and Equation (58) with no effect in the
final bounds. The reason is that Equation (63) eliminates the x-dependency in the term where it is applied.
We can compact the results from Equations (65) and (66) using the triangular inequality in

|VarΘ (∂jhθ(0)) − VarΘ (EX (∂jhθ(x)))| ≤ 4∥Vj∥2
∞

(
∥H∥2

∞ B(2)
R,j(ρ0) + ∥ρ0∥2

∞ B(2)
L,j(h)

)
(68)

A.2 Proof of Lemma 3.1
We start by bounding the right absorption witness of the (l + 1)-th layer with the triangular and Hölder’s
inequality as

B(2)
R,l+1(ρ0) = EX

(∥∥EΘl+1

(
u(θl+1)⊗2V (x)⊗2 EΘR,l

(ρl(θR,l, x))V †(x)⊗2u†(θl+1)⊗2)∥∥
2

)
≤

EX

(∥∥∥EΘl+1

(
u(θl+1)⊗2V (x)⊗2 EΘR,l

(
B

(2)
R,l(θR,l, x; ρ0)

)
V †(x)⊗2u†(θl+1)⊗2

)∥∥∥
1

)
+

EX

(∥∥EΘl+1

(
u(θl+1)⊗2V (x)⊗2 − u(θl+1)⊗2)∥∥

1

∥∥EΘR,l
(ρl(θR,l, 0))

∥∥
∞

)
(69)

The second term can be identified as the layerwise absorption witness from Definition 3.2. The first term of
the equation above can be bounded as

EX

(∥∥∥EΘl+1

(
u(θl+1)⊗2V (x)⊗2 EΘR,l

(
B

(2)
R,l(θR,l, x; ρ0)

)
V †(x)⊗2u†(θl+1)⊗2

)∥∥∥
1

)
≤

EX

(
EΘl+1

(∥∥∥u(θl+1)⊗2V (x)⊗2 EΘR,l

(
B

(2)
R,l(θR,l, x; ρ0)

)
V †(x)⊗2u†(θl+1)⊗2

∥∥∥
1

))
= B(2)

R,l(ρ0). (70)

Arranging both results together we can find

B(2)
R,l+1(ρ0) ≤ B(2)

R,l(ρ0) + ∥ρ0∥2
∞A(2)

l+1. (71)

Equivalently for the left part of the circuit, and counting layers backward we find

B(2)
L,l(H) ≤ B(2)

L,l+1(ρ0) + ∥H∥2
∞A(2)

l . (72)
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A.3 Details on harmonic representation of QRU models
As stated in Equation (25), the wavefunction after a re-uploading circuit and before measurement can be
expressed as

|ψ(x)⟩ =
2n∑

j=1

K∑
k=−K

ck,je
ikx |j⟩ . (73)

The coefficients ck,j form the matrix C ∈ C2n×(2K+1). Each column (indexed with k) represents the corre-
sponding term eikx. The states |j⟩ are elements of any basis of choice. Each row (indexed with j) corresponds
to the x-dependent amplitude attached |j⟩. The quantity pj(x) = ⟨j|ψ(x)⟩ is a trigonometric polynomial,

pj(x) =
∑K

k=−K ck,je
ikx. Such polynomial can be represented as a vector pj = {ck,j}−K≤k≤+K . In this vector

representation, the multiplication of polynomials corresponds to convolution as

p(x)q(x) =
Kp∑

k=−Kp

pke
ikx

Kq∑
k=−Kq

qke
ikx = (p ∗ q)(x), (74)

We consider the three operations that can be applied to the harmonic representation.

Parametrized gates Applying a parameterized gate on the quantum state maps into applying the unitary
representation of that gate to each column individually, the same way it would be done in state vector simulation
for each (fixed) k.

Data-encoding gates Adding a data-encoding gate involves convolution, when C is expressed in the eigen-
basis of the data generator. Each row j corresponds to the j-th (integer) eigenvalue λj from the spectrum of
the data-encoding generator, Kg. The vector representation of polynomials pj is convoluted with the vector
eλj

= [δk=λj
]−K≤k≤+K .

Measurement For the measurement, we express C the basis of the observable. Secondly the representation
the transpose conjugate of the wavefunction is computed from C, by taking its conjugate and reverting the
rows indexing cj,k = cj,−k. Finally the hypothesis function hθ(x) can be obtained as a linear combination of the
rows of the result of the convolution weighted by the corresponding eigenvalue of the measurement operator.

A.4 Proof of Theorem 4.1
We assume now that the parameterized gates between two consecutive encoding steps are random unitaries
sampled from the Haar measure of the group SU(N). Notice that data-independent operations leave the norm
of coefficients associated with the same frequency invariant. Random unitaries output random states for any
input. Random states give rise to a probability distribution sampled from a uniform Dirichlet [51], also known
as Porter-Thomas [62] distribution. Under this assumption, no basis has any preference over any other, and the
application of the data encoding layer transports as many coefficients as dictated by the spectrum Kgj to the
corresponding new frequencies. Notice that it is irrelevant which coefficients are transported, and also they are
randomly chosen. The weights for the elements of each frequency are then described by a Dirichlet distribution
with parameters given by the convoluted spectrum. Formally,∑

j

|ck,j |2 ∼ Dir
((

Kg1 ∗ . . . ∗ Kgj ∗ . . . ∗ KgL

)
(k)
)
, (75)

where ∗ denotes the convolution operator. Notice that the index k runs over all non-zero entries of the convoluted
spectra.

A.5 Dirichlet distribution

Definition A.1 (Dirichlet distribution [51]). The Dirichlet distribution x ∼ Dir (α) parameterized by α ∈ RN
>0

is supported on the (N−1)-standard simplex, i.e., x = (x1, x2, . . . , xN ), ∥x∥1 = 1. It has the following probability
density function with respect to the Lebesgue measure on RN−1:

fDir(x,α) = Γ(∥α∥1)∏N
i=1 Γ(αi)

N∏
i=1

xαi−1
i . (76)
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In this definition, Γ(·) is defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt, (77)

being the complex extension of the factorial for positive integers

Γ(n) = (n− 1)!. (78)

The Dirichlet distribution admits straightforward analytical calculations for the statistical moments of arbi-
trary order k = (k1, k2, . . . , kN ),

Ex∼Dir(α)

(
N∏

i=1
xki

i

)
= Γ(∥α∥1)

Γ(∥α∥1 + ∥k∥1)

N∏
i=1

Γ(αi + ki)
Γ(αi)

. (79)

In particular

Ex∼Dir(α) (xi) = αi

∥α∥1
(80)

Varx∼Dir(α) (xi) =
αi

(
1 − αi

∥α∥1

)
∥α∥1(∥α∥1 + 1) (81)

Covx∼Dir(α) (xi, xj) = −αiαj

∥α∥2
1(∥α∥1 + 1) (82)

A.6 Proof of Corollary 4.2
Let us express the wavefunction as the C matrix, such that the wavefunction is reconstructed from its elements
as

|ψ(x)⟩ =
2n∑

j=1

K∑
k=−K

ck,je
ikµx |j⟩ , (83)

where |j⟩ is expressed in this case the eigenbasis of the observable of interest H. We are interested in the
function

h(x) = ⟨ψ(x)|H |ψ(x)⟩ , (84)

which in the eigenbasis of H is

h(x) =
∑

j

∑
k

∑
l

λjck,jc
∗
l,je

iµ(k−l) x. (85)

We give a bound now on the terms sharing the same frequencies∣∣∣∣∣∣
∑

j

∑
k−l=ω

λjck,jc
∗
l,j

∣∣∣∣∣∣
2

≤ ∥H∥2
λ

∣∣∣∣∣∣
∑

j

∑
k−l=ω

ck,jc
∗
l,j

∣∣∣∣∣∣
2

≤ ∥H∥2
λ

∑
k−l=ω

∑
j

|ck,j |2
∑

j

|cl,j |2
 , (86)

where we used the triangular inequality and the Cauchy-Schwarz inequality. The last term is related to Theo-
rem 4.1. Each of these elements is drawn from the Dirichlet distribution imposed by the spectrum K∗L

g . The
aggregation property of Dirichlet distributions allows us to directly work with the spectrums. The spectrum of
interest is a modified convolution of K∗L

g with itself under an inversion of the variable, namely∑
k−l=ω

K∗L
g (k)K∗L

g (l) =
∑

k

K∗L
g (k)K∗L

g (k − ω) =
∑

k

K∗L
g (k)K∗L

g (−(k − ω)) =
(
K∗L

g ∗ K′ ∗L
g

)
(ω), (87)

with K∗L
g (x) = K′ ∗L

g (−x). In the case of symmetric spectra, both functions are equivalent. Recalling the
properties of Dirichlet distributions, we can bound

∥H∥−2
λ |aω(θ)|2 ≤ pω ∼ Dir(K∗2L

g (ω)), (88)

with
aω(θ) =

∑
j

∑
k−l=ω

λjck,jc
∗
l,j (89)
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A.7 Proof of Theorem 4.2
We use tools from statistics to compute upper and lower bounds to the Lipschitz constant of a hypothesis
function Λ(hθ). We first recall the definition

Λ(hθ) :=
K∑

k=−K

µ|k||ak|, (90)

and we recall the result from Corollary 4.2 in the limit of many re-uploadings. We know that

EΘ (Λ(hθ)) =
K∑

k=−K

µ|k|EΘ (|ak|) . (91)

We can use the known bound for the probability distribution underlying |ak|, |ak|2 ≤ pk ∼ Dir(K∗L
g ). In par-

ticular, the marginals of the Dirichlet distribution are beta distributions [63]. The beta probability distribution
with parameters α and β is defined as

Betaα,β(x) = Γ(α+ β)
Γ(α)Γ(β)x

(α−1)(1 − x)(β−1). (92)

In our case, see Equation (34), α is given by the Gaussian spectrum and β = 1. The expectation value of each
element is given by

EΘ (|ak|) ≤
∫ 1

0
dx

Γ(αk + 1)
Γ(αk) x(αk−1/2) = αk

αk + 1/2 ≤ 2αk, (93)

using the property of the gamma function Γ(1 +x) = xΓ(x). The last inequality allows us to compute an upper
bound in the limit of many re-uploadings by just computing

K∑
k=−K

µkEΘ (|ak|) ≤ 2∥H∥λ

K∑
k=−K

µkK∗2L
g (k) ≈ 4∥H∥λ

∫ ∞

0

µk√
4πLσg

exp
(

− k2

4σ2
gL

)
= ∥H∥λ

4√
π
σgµ

√
L, (94)

leading to the first result of the theorem.
The lower bound is easy to obtain by recalling the property ∥a∥1 ≥ ∥a∥2. In our context, and in the limit of

Gaussian processes

EΘ (Λ(hθ))2 ≥ ∥H∥2
λ

K∑
k=−K

µ2k2EΘ

(
|ak|2

)
≈ ∥H∥2

λ2Lµ2σ2
g , (95)

leading to the second result of the theorem: EΘ (Λ(hθ)) ≥ ∥H∥λσgµ
√

2L.

A.8 Proof of Theorem 4.3
We are interested in knowing the probability of Λ(hθ) to be larger than a certain reference value by some
distance. We take this reference value to be the average EΘ (Λ(hθ)), as in many statistics results. Consider
now the lower-bound on the expectation value from Theorem 4.2. Since

Λ(hθ) − EΘ (Λ(hθ)) ≥ t =⇒ Λ(hθ) − ∥H∥λµ
√

2Lσg ≥ t, (96)

but not in the opposite direction, then

ProbΘ (Λ(hθ) − EΘ (Λ(hθ)) ≥ t) ≤ ProbΘ

(
Λ(hθ) − ∥H∥λµ

√
2Lσg ≥ t

)
. (97)

We can bound the right hand by considering Hoeffding’s inequality [64]. Let Xi be a set of independent random
variables, and let Xi ∈ [ai, bi] almost surely, then

Prob
(∑

i

Xi − E

(∑
i

Xi

)
≥ t

)
≤ 1

2 exp
(

−t2∑
i(ai − bi)2

)
. (98)

Hoeffding’s inequality cannot be directly applied to a Dirichlet distribution since the variables are not inde-
pendent. However, this problem can be overcome for this particular case by recalling the following property. If
Xi ∼ Dir(αi), then

Xi ∼ Yi

V
, (99)
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with

Yi ∼ Gamma(αi, θ) (100)

V =
∑

i

Yi ∼ Gamma
(∑

i

αi, θ

)
(101)

By changing the description of the Dirichlet distribution to the quotient of gamma distributions we can now
apply Hoeffding’s inequality. Without loss of generality, we can assume that all probabilities are bounded
between 0 and 1, thus we can find a first bound by recalling∑

n

n2 ∈ O((∥g∥λL)3), (102)

and thus

ProbΘ (Λ(hθ) − EΘ (Λ(hθ)) ≥ t) ≤ ProbΘ

(
Λ(hθ) − ∥H∥λ

√
2Lµσg ≥ t

)
∈ O

(
exp

(
−t2

(∥g∥λL)3

))
(103)

A.8.1 A tighter numerical bound

This bound can be however easily improved by recalling subgaussianity properties of the Gamma distribution.
A random variable X is subgaussian if its cumulative distribution function decays faster than exponentially

Prob (|X| ≥ t) ∈ O
(
exp

(
−t2

))
, (104)

for some positive constant K. We can compute this cumulative probability for the quotient of Gamma distri-
butions as

Prob
(
Yi

V
≥ t

)
=
∫ ∞

0
dx

∫ x/t

x

dy
xα−1e−xe−y

Γ(α) = 1
2α

− 1
(1 + t−1)α

∈ O
(
exp

(
−t2

))
. (105)

These functions take the value 1 for t = 0 and decay until vanishing for t = 1. The decay is faster as α → 0,
as it can be seen in Figure 8(a). We can thus recover Hoeffding’s inequality with the observation that each Xi

is bounded by the function in Equation (105). In particular, the variable Xi is, with probability 1 − ϵ, smaller
than

x
(αi)
M (ϵ) =

((
1

2αi
− ϵ

)−1/αi

− 1
)−1

. (106)

10−10 10−8 10−6 10−4 10−2 100

t

10−4

10−3

10−2

10−1

100
Prob(Yi/V > t)

− log2 α = 1

− log2 α = 2

− log2 α = 3

− log2 α = 4

− log2 α = 5

− log2 α = 6

− log2 α = 7

− log2 α = 8

(a) Numerical calculations for Equation (105) for decreasing
values of α. The values of the random variable concentrate
in small values for t as α decays.

100 101 102 103

σg
√
L

102

104

106

108

1010

1012

∑
n n

2x
(K∗2L(n))
M (ε)

Numerical approximation

∼ (σg
√
L)3

∼ (σg
√
L)2

(b) Numerical approximation to Equation (107) for increas-
ing σg

√
L. The value ϵ is set in this calculations to 10−10

Figure 8: Numerical auxiliary calculations for Equation (105) and Equation (107). These results substitute the non-accessible
analytical treatment of the probability distributions of interest to obtain the bound given in Equation (40)
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For a sufficiently small ϵ, the denominator of the exponent of Hoeffding’s inequality becomes

∑
n

(an − bn)2 = 2
∥g∥2L∑
n=1

n2x
(K∗2L

g (n))
M (ϵ), (107)

with K∗2L
g a Gaussian spectrum in the limit of large R. The Gaussian limit forces the intuition that only a small

number of elements will contribute effectively, while for large values of n the corresponding Dirichlet variable is
always so small that it has negligible influence in the Lipschitz constant. The description of the variable bounds
in Equation (106) and the sum in Equation (107) prevent a straightforward analysis in terms of the relevant
quantity σg

√
R. We can however make a numerical analysis, depicted in Figure 8(b). This calculation shows

that the sum in Equation (107) follows a polynomial trend in σg

√
R, which is the variance of the resulting

Gaussian spectrum. Therefore, we can update our previous version of Hoeffding’s inequality to

ProbΘ

(
Λ(hθ) − ∥H∥λ

√
2Lσg ≥ t

)
∈ O

(
exp

(
−t2

(σg

√
L)3

))
. (108)

A.9 Extension to non-harmonic spectrum
The non-harmonic extension leads to an average of the elements in the trigonometric polynomial given by

EΘ

(
|ak⃗|2

)
= 1√

(4πL)D|Σ|
exp

(
− k⃗T Σ−1k⃗

4L

)
, (109)

where |Σ| is the determinant of Σ. We compute now Λ(hθ) following the steps from Appendix A.7, given by

EΘ (Λ(hθ)) =
∑

k⃗

|µ⃗ · k⃗|EΘ

(
|ak⃗|
)

≤ 2√
(4πL)D|Σ|

∫
RD

dk⃗|µ⃗ · k⃗| exp
(

− k⃗T Σ−1k⃗

4L

)
. (110)

Notice that dk⃗ integrates over D-dimensional space. We perform now a change the variables to diagonalize
Σ = U†SU , and consequently choose l⃗ = Uk⃗. The diagonal elements of S are denoted {s2

j}j The quantity of

interest is now µ⃗ · (U† l⃗) = (Uµ⃗) · l⃗. Since U is unitary d⃗l = dk⃗

EΘ (Λ(hθ)) ≤ 2√
(4πL)D|Σ|

∫
RD

d⃗l|(Uµ⃗) · l⃗| exp
(

− l⃗TS−1 l⃗

4L

)
≤ (111)

2√
(4πL)D|Σ|

D∑
j=1

|(Uµ⃗)j |
∫
RD

d⃗l|lj | exp
(

− l⃗TS−1 l⃗

4L

)
(112)

We focus now on the integral.∫
RD

d⃗l|lj | exp
(

− l⃗TS−1 l⃗

4L

)
=
∫
R
dlj |lj | exp

(
−

l⃗2j
4Ls2

j

)∏
i̸=j

∫
R
dli exp

(
− l⃗2i

4Ls2
i

)
(113)

= 4Ls2
j

∏
i ̸=j

√
4πLs2

i = 1
π

√
(4πL)D+1

√
|Σ|sj (114)

Plugging this result into Equation (112) we obtain

EΘ (Λ(hθ)) ≤ (2
√
Lπ)D+1

π

√
|Σ||µ⃗U†| ·

√
S⃗√

(4πL)D|Σ|
= 4

√
L√
π

D∑
j=1

|Uµ⃗|jsj (115)

By means of Cauchy-Schwarz inequality, we can give a looser yet more comprehensive bound as

EΘ (Λ(hθ)) ≤ 4√
π

∥µ⃗∥2
√

Tr(Σ)
√
L. (116)

For the lower bound we follow Appendix A.7 to obtain

EΘ (Λ(hθ))2 ≥ ∥H∥2
λ

K∑
k=−K

(µ⃗ · k⃗)2EΘ

(
|ak|2

)
. (117)
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We recall the property [65, 66]∫
dDk⃗f(k⃗) exp

(
− k⃗T Σ−1k

2

)
=
√

(2π)D|Σ| exp
(

∇⃗T Σ−1∇⃗
2

)
f(k⃗)

∣∣∣∣∣
k⃗=0

, (118)

where ∇⃗j = ∂/∂k⃗j . Since f(k⃗) = (µ⃗ · k⃗)2, we can reduce

exp
(

∇⃗T Σ−1∇⃗
2

)
f(k⃗)

∣∣∣∣∣
k⃗=0

= µ⃗T Σµ⃗ ≥ ∥µ⃗∥2
2minΛ(Σ), (119)

yielding a result
Λ2(hθ) ≥ ∥H∥2

λ2L∥µ∥2
2minλ(Σ). (120)

A.9.1 A simple example

We illustrate the spectral convolution with an example. Consider a data generator whose spectrum and multi-
plicities are

λ = {−
√

2 − 1,−
√

2,−1, 0,+1,+
√

2,+
√

2 + 1} (121)
m(λ) = {1, 1, 1, 2, 1, 1, 1} (122)

Any frequency resulting from the L-fold application of such data generator can be written as λk,l = k
√

2 + l
where −L ≤ k, l ≤ L are integers. The corresponding frequency content can therefore be represented as a
two-dimensional tensor A. The elements of A follow a 2-dimensional Dirichlet distribution, in the sense of
Theorem 4.1, given by the convoluted kernel

K∗L
g = 1

8

1 1 0
1 2 1
0 1 1

∗L

(123)

In the limit of large L, the central limit theorem applies exactly in the same way as in the harmonic case, and
the L-fold convolution tends towards a multivariate Gaussian kernel with [0, 0] mean and covariance matrix

Σ = L

2

(
1 0.5

0.5 1

)
. (124)
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