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Abstract: We present a determination of the parton distribution functions (PDFs) of the proton
from HERA data using a PDF parametrization inspired by a quantum statistical model of the
proton dynamics. This parametrization is characterised by a very small number of parameters, yet
it leads to a reasonably good description of the data, comparable with other parametrizations on
the market. It may thus provide an alternative to standard parametrizations, useful for studying
parametrization bias and to possibly simplify the fit procedure thanks to the small number of pa-
rameters. Interestingly, the model reproduces key physical features, such as a d̄ distribution larger
than ū, that HERA data alone are not able to constrain when using more flexible parametrizations.
Moreover, polarized distributions are described in the model by the same parameters of the un-
polarized ones, giving us the possibility of extracting both types of distributions within the same
fit.
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1 Introduction

Parton distributions functions (PDFs) describe the longitudinal momentum fraction x distributions
of partons (quarks and gluons) inside the proton and they are a key ingredient for the theoretical
description of collisions with protons in the initial state. For this reason, in the Large Hadron
Collider (LHC) era, a huge effort from both the theory and experimental communities to improve
their determination took place. PDFs parametrize a low-scale, non-perturbative dynamics of the
proton, and cannot thus be determined using perturbation theory. Therefore, PDFs are usually
fitted from data, mostly coming from the HERA collider deep inelastic scattering (DIS) experiments,
but also with ever increasing LHC inputs.

PDF fits are performed by several groups [1–8] and differ by many aspects: from the theory
description of the data to the technicalities of the fitting procedure, from the datasets included in
the fit1 to the evaluation of uncertainties. One distinctive aspect of the various PDF fits is the
choice of the functional form used to parametrize the x dependence of PDFs at the initial scale (at
any other scale PDFs are obtained by perturbative DGLAP evolution). Some PDF fits use very
few parameters, e.g. HERAPDF depends on 14 free parameters [1], while other fits use very flexible
parametrizations, e.g. NNPDF with hundreds of parameters [5]. The use of so many parameters in
the NNPDF framework is possible thanks to the application of machine learning techniques to the

1In particular, some PDF fits are based on a global set of experimental data, including (collider and fixed-target)
DIS, (collider and fixed-target) Drell-Yan, jet production, V +jet, etc., while other fits are based on more limited
sets, e.g. HERAPDF [1] uses only HERA DIS data.
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minimisation of the χ2. However, most PDF fitting groups use more traditional techniques, which
are unable to deal with so many parameters. In these traditional fitting frameworks, having flexible
parametrizations with a small number of parameters is a value.

In this work we consider a parametrization inspired by a quantum statistical model of the
proton dynamics. This parametrization is characterised by a very small number of parameters.
We use it to fit PDFs from the combined HERA data, using next-to-next-to-leading order (NNLO)
theory without and with the inclusion of small-x resummation, and it leads to a reasonably good fit
despite its limited flexibility, somewhat comparable with other parametrizations on the market. We
believe that this parametrization can be used as a complement to more standard ones, both to study
parametrization bias and perhaps to facilitate the fit (having few parameters). For accurate PDF
determination, we also consider adding parameters to increase the flexibility of the parametrization,
especially at small x. With just two extra parameters, the quality of the fit becomes competitive
with standard parametrizations.

Interestingly, physical features such as a d̄ distribution larger than ū come out automatically
from the chosen functional form, even though the HERA data alone are not able to constrain them.
We verify that this property is stable upon inclusion of additional data. Moreover, the physical
model can also describe polarized parton distributions with the same parameters. If we trust the
model, this feature gives the possibility to fit simultaneously polarized and unpolarized distributions
without the need of introducing new degrees of freedom. We investigate this possibility finding very
promising results.

The paper is structured as follows. In section 2 we introduce the parametrization from the
statistical model. In section 3 we discuss the setup of our fit and introduce a benchmark fit with
parametrization à la HERAPDF. In section 4 we test the parametrization against HERA data and
compare with our benchmark and with other public PDFs. In section 5 we introduce a more flexible
version of the parametrization which improves the fit quality and study its model uncertainty and
its comparison with other parametrizations. In section 6 we discuss our result in view of the physical
model behind it, and consider possible implications and future directions. We conclude in section 7.

2 The PDF parametrization from the statistical model

A field-theoretical computation of PDFs requires dealing with non-perturbative dynamics, and it is
therefore very difficult to achieve. Even numerical techniques like lattice QCD are not (yet2) able
to satisfactorily determine PDFs, essentially because PDFs are defined in terms of bilocal operators
separated by a light cone distance which cannot be described on a Euclidean lattice [11].

Usually, PDFs are determined by fitting them to data using an arbitrary parametrization of
the x dependence of the PDFs at an “initial” scale µ0, typically chosen at the border between
perturbative and non-perturbative QCD (µ0 „ 1 GeV). PDFs are then evolved at different scales
solving the perturbative DGLAP equation [12–14]. The goal in choosing the parametrization is
usually to minimise the bias with sufficiently flexible functional forms while at the same time
keeping the number of parameters small enough (for better numerical performances and to avoid
overfitting). A notable exception is the parametrization used by the NNPDF collaboration, which
uses neural networks to parametrize PDFs with hundreds of parameters: this makes any bias
completely negligible, but requires the use of sophisticated machine learning techniques to perform
the fit and to determine the uncertainties [5, 15].

In Ref. [16] (see also Refs. [17–36]) a different approach has been proposed, where the functional
form of the PDFs are obtained through a statistical model of the parton dynamics in the proton. The

2Attempts to determine PDFs in lattice QCD make use of alternative definitions of PDFs, denoted quasi-PDFs [9]
and pseudo-PDFs [10], which are well defined in Euclidean space-time and are related in some limit to ordinary
light-cone PDFs.

– 2 –



model assumes that the partons could be treated as massless particles forming an ideal quantum gas
at equilibrium at the initial scale µ0 in a finite volume, characterised by an effective temperature.
Working in the infinite momentum frame (à la Feynman), the transverse degrees of freedom can be
neglected and the dynamics can be described in terms of the longitudinal momentum fraction x.
As a result, the model predicts a (very biased) functional form for the PDFs in terms of very few
parameters.

Because the model does not take into account the QCD interaction, information like the fac-
torization scheme is absent in the parametrization. This makes the model clearly incomplete. For
instance, the resulting PDFs do not contain information on the scale at which they are supposed to
be computed, as the scale dependence is a consequence of the factorization of collinear singularities
in QCD. We thus do not expect the model to give a reliable description per se, but we want to
investigate if it can provide a suitable baseline for a parametrization.

To this end, the plain model must be supplemented with “phenomenological” modifications.
Some of them were introduced already in the original publications [16–18], others have been consid-
ered later on [20–27, 29, 30, 34]. Crucially, the various incarnations of the model describe separately
the individual polarizations of quarks, thus providing in principle a description of polarized and
unpolarized PDFs in terms of the same parameters.

In this work, we will consider the simple parametrization proposed in Ref. [18]. More flexible
functional forms depending on more parameters may provide a better description of the data, but in
this analysis we want to keep the number of parameters as small as possible. Let us first introduce
the function

h˘px; b, Xq “
xb

exp
`

x´X
x̄

˘

˘ 1
, (2.1)

which descends from Fermi-Dirac (h`) and Bose-Einstein (h´) distributions, supplemented by
a phenomenological power term xb to describe the small-x asymptotic behaviour. Within the
model, all PDFs can be written as linear combination of this function with different values of the
parameters b and X, the latter representing a “chemical potential”. The parameter x̄ plays the role
of a “temperature”, and it is common to all PDFs. For this reason, we do not write it explicitly as
an argument.

Let us start with the quark PDFs. Being spin- 1
2 particles, quarks follow a Fermi-Dirac distri-

bution, and are thus described in terms of the h` function. The PDFs at the initial scale µ0 for
each polarization (indicated with an up or down arrow) are given by

xqÖpx, µ2
0q “ ACÖ

q h`px; b, XÖ
q q ` Ãh`px; b̃, 0q, (2.2a)

xq̄Öpx, µ2
0q “ ĀC̄Ö

q h`px; b̄, ´XŒ
q q ` Ãh`px; b̃, 0q, (2.2b)

where CÖ
q , C̄Ö

q and XÖ
q are parameters depending on the quark species and polarization, while b, b̄,

b̃ as well as the normalizations A, Ā and Ã are flavour-independent parameters.3 In each equation
the first term is of “valence nature”, and dominates at high x. The second term, called “diffractive”
term in the original literature, is identical for all quark flavours and helicities and represents a
contribution of “sea nature”, which thus is expected to dominate at small x. The unpolarized
quark distribution is just the sum of the distributions with opposite helicities. For example, for an
antiquark we have

xq̄px, µ2
0q ” xq̄Òpx, µ2

0q ` xq̄Ópx, µ2
0q

“ Ā
“

C̄Ò
q h`px; b̄, ´XÓ

q q ` C̄Ó
q h`px; b̄, ´XÒ

q q
‰

` 2Ãh`px; b̃, 0q, (2.3a)

3Note that as far as the parameters CÖ
q and C̄Ö

q are unconstrained, the normalizations A and Ā are redundant
as they can be reabsorbed in a redefinition of those parameters. However, we will see that simple incarnations of the
model constrain the values of CÖ

q and C̄Ö
q so that the normalizations A and Ā are no longer redundant.
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while for a valence quark distribution qv “ q ´ q̄ we have

xqvpx, µ2
0q ” xqÒpx, µ2

0q ` xqÓpx, µ2
0q ´ xq̄Òpx, µ2

0q ´ xq̄Ópx, µ2
0q (2.3b)

“ A
“

CÒ
q h`px; b, XÒ

q q ` CÓ
q h`px; b, XÓ

q q
‰

´ Ā
“

C̄Ò
q h`px; b̄, ´XÓ

q q ` C̄Ó
q h`px; b̄, ´XÒ

q q
‰

.

Note that the valence distribution does not depend anymore on the diffractive (sea) term. Finally,
the gluon follows a Bose-Einstein distribution with vanishing potential (i.e. a Planck distribution)

xgpx, µ2
0q “ Agh´px; bg, 0q (2.3c)

depending on a new normalization Ag and an exponent bg.4
We immediately observe that the gluon distribution is very limited, as it depends only on 3

parameters (x̄, bg, Ag). Differently, quark distributions depend on many more parameters. However,
there are some relations that constrain some of them, as we shall now see.

Let us start from the asymptotic behaviours. At small x, we expect the gluon and sea quark to
behave (grow) in the same way. The gluon grows as xgpxq „ xbg´1, while the quarks are dominated
at small x by the sea term5 and thus behave as xqpxq „ xb̃. Therefore, we find the relation

bg “ b̃ ` 1 (2.4)

that allows us to remove one of the two parameters.
We now focus on the parameters CÖ

q , C̄Ö
q . In the statistical model, they are not independent

parameters, rather they are related to one another and possibly with other parameters of the
model. In Refs. [21, 23, 26, 30] the original model has been extended to describe transverse degrees
of freedom. After integrating over transverse momentum to get collinear PDFs, the coefficients
CÖ

q , C̄Ö
q are given by

CÖ
q “ log

´

1 ` eY Ö
q

¯

C̄Ö
q “ log

´

1 ` e´Y Œ
q

¯

(2.5)

in terms of the parameters Y Ö
q , denoted “transverse potentials”. Note that there are two indepen-

dent Y ’s for each quark flavour, fixing the four C’s for each quark. We observe that in previous
studies, e.g. Ref. [18], the C parameters were simply given in terms of the chemical potentials XÖ

q

through the relations
CÖ

q “ XÖ
q , C̄Ö

q “
1

XŒ
q

(2.6)

(note that in the second equation the order of the arrows changes). In this way, these four degrees
of freedom for each quark flavour are completely fixed, leaving a parametrization that is rather
constrained. The choice Eq. (2.6) of Ref. [18] was justified by the agreement with data, and later
observed [26, 30] to be in decent agreement with the parametrization Eq. (2.5), up to a rescaling
of A and Ā. In this work, we only consider the simplest model, i.e. we adopt Eq. (2.6) in order
to reduce the number of parameters to a minimum, keeping in mind that more flexibility can be
achieved by adopting Eq. (2.5) instead.

Finally, we have to take into account the sum rules. Specifically we have two quark number
sum rules and the momentum sum rule, that allow us to fix three additional parameters. We

4Note that we do not consider separate polarizations for the gluon, as suggested in the original literature for the
model [18, 19]. This is perhaps not ideal, as there is experimental evidence that gluons carry a non-zero polarization
contributing to the proton spin [37]. Phenomenological extensions of the model accounting for the gluon polarization
have been discussed in the literature [25, 27], however it is not clear whether these extension are in agreement with
the model assumptions. We will discuss gluon polarization with greater detail in section 6.4. When we consider
unpolarized PDFs only, our assumption does not represent a severe limitation.

5The “valence” terms depending on b and b̄ contribute to the valence PDFs which cannot grow at small x, so we
expect b and b̄ to be positive.

– 4 –



choose them to be the three normalizations A, Ā, Ag. We stress that, differently from standard
parametrizations, A and Ā are not directly the normalizations of u and d valence distributions.
This makes the implementation of the sum rules in the fitting code not straightforward. We give
technical details in Appendix A.

One peculiar feature of the PDF parametrization Eqs. (2.3) is that it does not vanish at x “ 1,
as all other PDF parametrizations on the market do (to our knowledge). In particular the function
h˘ in Eq. (2.1) in x “ 1 becomes

h˘p1; b, Xq “
1

exp
` 1´X

x̄

˘

˘ 1
. (2.7)

As we shall see, in the fits X ă 1 always, thus this function is exponentially suppressed. The
suppression is rather strong, thanks to the value of x̄ „ 0.1 which is common to all fits with
this parametrization, and to the fact that the largest value of X from the fit is smaller than 0.5.
So practically the resulting PDFs are indistinguishable from zero in x “ 1. Moreover, we recall
that x “ 1 corresponds to the elastic scattering limit, which is no longer described by the QCD
factorization theorem.

We conclude the section by counting the number of free parameters that we have in our fit.
As we will only perform a fit to HERA data, we do not parametrize the strange distribution
independently, as the data are not sufficiently powerful to distinguish it from the d̄ distribution.
We thus take it to be a fixed fraction of d̄ distribution,

spx, µ2
0q “ s̄px, µ2

0q “
fs

1 ´ fs
d̄px, µ2

0q, fs “ 0.4, (2.8)

which is a standard choice adopted by HERAPDF [1]. We are thus left with 5 PDFs to fit, i.e.
uv, dv, ū, d̄, g. According to the parametrizations given above, the free parameters to be fitted are

x̄, b, b̄, b̃, Ã, XÒ
u, XÓ

u, XÒ

d , XÓ

d , (2.9)

for a total of 9 parameters. For comparison, the default HERAPDF parametrization has 14 free
parameters.

3 Setup of the fit and benchmark

Having established the form of the parametrization that we want to use, we now discuss the setup
of our fit. We use the public xFitter toolkit, using a setup that is close to the one used for the
determination of HERAPDF2.0 [1], with some notable differences:

• First of all, the paper [18] where we take our PDF parametrization advocates that it should
be used at the initial scale µ0 “ 2 GeV. We therefore consider this scale as our default
parametrization scale, which is higher than the HERAPDF2.0 scale which is 1.38 GeV.

• In order to avoid backward evolution, we then keep data only above 2 GeV, namely we have
to cut out the Q2 “ 3.5 GeV2 bin of the HERA dataset.

• For the same reason, since we want to generate the charm PDF perturbatively, we have to
raise the charm matching scale µc above the parametrization scale [38]. In our work we set it
to µc “ 1.38mc “ 2.01 GeV, with mc “ 1.46 GeV.

• To implement the displaced charm threshold, we have to use the APFEL evolution code [39]
rather than the default QCDNUM code [40], as only the former implements this feature. This
implies that we have to change the variable flavour number scheme from TR [41–43] to
FONLL [44]. In practice, in our NNLO fits we use FONLL-C [44].
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Contribution to χ2 HERAPDF2.0 Our HERAPDF-like fit

subset NC e` 920 444{377 415{363
subset NC e` 820 66{70 66{68
subset NC e` 575 219{254 217{249
subset NC e` 460 217{204 213{200
subset NC e´ 219{159 214{159
subset CC e` 45{39 45{39
subset CC e´ 56{42 56{42
correlation term + log term 91 ` 5 91 ` 15
Total χ2{d.o.f . 1363{1131 1333{1106

Table 1. Total χ2 per degrees of freedom (d.o.f.) and the partial χ2 per number of data points (n.d.p.) of
each subset of the inclusive HERA dataset, for HERAPDF2.0 and a HERAPDF-like fit obtained with the
new setting introduced here.

The other settings of fit (masses, couplings, χ2 definition, minimization strategy, etc) are kept as
in HERAPDF2.0 [1].

We now present a HERAPDF-like NNLO fit with these settings, using the default HERA-
PDF2.0 parametrization, and compare it with the public HERAPDF2.0. The default HERAPDF2.0
parametrization is given by [1]

xgpx, µ2
0q “ Ag xBg p1 ´ xqCg ´ A1

g xB1
g p1 ´ xq25 (3.1a)

xuvpx, µ2
0q “ Auv xBuv p1 ´ xqCuv

”

1 ` Euv x2
ı

(3.1b)

xdvpx, µ2
0q “ Adv

xBdv p1 ´ xqCdv (3.1c)

xūpx, µ2
0q “ Aū xBū p1 ´ xqCū

”

1 ` Dūx
ı

(3.1d)

xd̄px, µ2
0q “ Aū xBū p1 ´ xqCd̄ . (3.1e)

Our HERAPDF-like fit will serve as a baseline for our next studies with the parametrization pre-
sented in Sect. 2. We choose the HERAPDF parametrization for this baseline because it is the
simplest among the mainstream PDF parametrizations, using the smallest set of parameters (14
free parameters in total). Any other mainstream parametrization on the market has more param-
eters and it is therefore expected to be more flexible and possibly lead to higher fit quality.

We start by showing in Table 1 the χ2 breakdown for the two fits. For each subset the contri-
bution to the χ2 over the number of data points is shown, as well as the contributions to the χ2

from the correlations and the logarithmic term (see Ref. [1] for the definition and meaning of these
pieces). Our fit has a total χ2 which is smaller by 30 units, which is compatible (within statistical
fluctuations) with the reduction of datapoints by 25 units. The small improvement is likely due
to the better description of the E “ 920 GeV dataset which contains the small-x data, which are
not well described by fixed-order perturbation theory [1, 45–48]. The cut bin at Q2 “ 3.5 GeV2

contains the data at smallest x, thus its absence in the new fit leads to a 29 units smaller χ2 of the
E “ 920 GeV dataset with just 14 less datapoints.

We now show the effect of the new settings to the PDFs. In Figure 1 we show a comparison
of HERAPDF2.0 and our new fit with HERAPDF parametrization at the scale Q “ 2 GeV for the
gluon, total quark singlet, ū, d̄ ` s̄, uv and dv PDFs. We observe that the valence distributions
as well as the medium-large x behaviour of all PDFs remain almost unchanged in the two fits.
Differences are instead present in the small-x region, for the sea contribution to the quarks and
more markedly to the gluon. These differences are certainly due, at least in part, by the smaller
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Figure 1. Comparison of the original HERAPDF2.0 fit (dashed blue) with the one with our modified
settings (dotted yellow) for the gluon, total singlet, ū, d̄ ` s̄, uv and dv PDFs. The uncertainty shown is
only the “experimental” one, namely the one coming from the uncertainty on the parameters determined
from the fit.

dataset, and in particular by the absence of the small-x data of the Q2 “ 3.5 GeV2 bin, which also
leads to an increased uncertainty in the gluon PDF at small x.6

4 Fit with the new parametrization

We now consider the parametrization described in section 2. We perform a fit with the same settings
described above, simply changing the PDF parametrization, that we dub QSPDF. Comparing it
with the HERAPDF-like fit just discussed in section 3 we are able to test the effect of the different
parametrization alone, disentangled from any other effect.

The χ2 breakdown for this new fit is shown in Table 2, to be compared with the last column of
Table 1. We immediately observe an overall deterioration of the fit quality, with the χ2 increasing
by 51 units, from 1333 to 1384. The number of degrees of freedom also increases slightly (5 units)
due to the smaller number of parameters in the QSPDF parametrization, but this is not enough to
explain the increase in the χ2.

Looking carefully at the tables, we see that the dataset exhibiting the largest deterioration
is again the E “ 920 GeV dataset, namely the one containing the majority of small-x data. We
suspect indeed that the origin of the large χ2 comes from a bad description of the low-x data, which
is in turn due to the limited flexibility of the QSPDF parametrization at small x, in particular for
the gluon. We will come back to this point later.

6On top of this, there is a technical difference in the way uncertainties are calculated. HERAPDF2.0 uses
the Pumplin procedure [49], while we use the simpler HESSE approach of MINUIT [50] which may lead to larger
uncertainties.
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QSPDF QSPDF HERAPDF-like
Contribution to χ2 (NNLO) (NNLO+NLLx) (NNLO+NLLx)

subset NC e` 920 452{363 447{363 408{363
subset NC e` 820 71{68 66{68 63{68
subset NC e` 575 224{249 229{249 216{249
subset NC e` 460 221{200 231{200 218{200
subset NC e´ 222{159 225{159 219{159
subset CC e` 46{39 48{39 46{39
subset CC e´ 61{42 61{42 54{42
correlation term + log term 98 ´ 11 88 ´ 28 80 ` 1
Total χ2{d.o.f . 1384{1111 1369{1111 1304{1106

Table 2. Same as table 1, showing the χ2 breakdown for QSPDF at NNLO and NNLO+NLLx as well as
our HERAPDF-like fit at NNLO+NLLx.
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Figure 2. Comparison of QSPDF (dot-dashed purple) with our HERAPDF-like fit (dotted orange) for the
gluon, total singlet, ū, d̄` s̄, uv and dv PDFs, showing experimental uncertainty band.

In Figure 2 we show the comparison of our HERAPDF-like fit with the QSPDFs. There are
some marked differences between the two PDF sets. Starting with the quarks, we observe a small
distortion of the uv distribution below the peak, with QSPDFs being smaller at medium x and
larger at small x. A similar but bigger effect is present on the dv distribution as well, where also
the height of the peak is smaller in the QSPDF fit. The anti-quark PDFs behave the same at small
x, while at medium-large x the QSPDFs for the total singlet and the d̄ ` s̄ distribution are slightly
larger compared to the PDF uncertainty. Finally, a big difference is present in the gluon PDF
from medium to low x, with the QSPDF gluon rising at small x compared to the HERAPDF-like
gluon which bends down at x „ 10´4. Moreover, the PDF uncertainty of the QSPDFs is very small
everywhere, especially in the gluon where instead the HERAPDF parametrization gives a much

– 8 –



 0

 1

 2

 3

 4

 5

 6

 7

 8

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
g
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO

QSPDF NNLO

gluon

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
u
b
ar
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO

QSPDF NNLO

anti-up

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
u
v
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO
QSPDF NNLO

up valence

 0

 1

 2

 3

 4

 5

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
Σ
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO

QSPDF NNLO

singlet

 0

 0.5

 1

 1.5

 2

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
d
b
ar
(x
,Q
) 
+

 x
 s
b
ar
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO

QSPDF NNLO

anti-down + anti-strange

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

x 
d
v
(x
,Q
)

x

NNPDF 3.0 HERA-only NNLO
NNPDF 4.0 DIS-only NNLO
QSPDF NNLO

down valence

Figure 3. Comparison of QSPDF (dot-dashed purple) with NNPDF3.0 HERA-only (dot-dot-dashed yel-
low) and NNPDF4.0 DIS-only (dashed black) for the gluon, total singlet, ū, d̄ ` s̄, uv and dv PDFs. The
NNPDF uncertainty band covers various sources of uncertainty, including those coming from parametriza-
tion choice.

larger uncertainty in the small-x region.
These differences, especially in the gluon, are due to the very constrained parametrization which

limits its flexibility. However, before drawing conclusions, it is instructive to compare the QSPDFs
with other PDFs on the market. We consider the NNPDF3.0 set that has been obtained fitting only
HERA data [51], which is a dataset very similar to what we are using here, and the NNPDF4.0 set
that has been obtained fitting only DIS data [5], which contains more data but it is still closer to
our dataset than a global fit.

The plots are shown in Figure 3. We immediately notice that the NNPDF uncertainties are
larger than QSPDFs, generally due to the very flexible parametrization, with the ones of the older
NNPDF3.0 fit being larger than the newer NNPDF4.0 fit, partly due to the larger dataset and partly
to the improved fitting methodology in the latter. Within uncertainties, there is a sufficiently good
agreement between QSPDFs and the NNPDF sets for the total singlet, the d̄ ` s̄ and the valence
distributions. In particular, we notice that the uv and dv PDFs of the QSPDF set have a shape
very similar to the NNPDF ones, despite the differences with the HERAPDF-like fit. Because
of the unbiased nature of the NNPDF parametrization, we thus conclude that the uv and dv

distributions are probably better described by the QSPDF parametrization than by the HERAPDF
parametrization.7

7To confirm this, we have tried to fit directly the uv and dv distributions from the QSPDF set using the HERAPDF
parametrization Eq. (3.1), noticing that indeed the HERAPDF parametrization is not able to reproduce the shape
of the QSPDF valence distributions in the medium/small-x region. Conversely, the QSPDF parametrization is able
to reproduce the valence distributions of our HERAPDF-like fit, except for the high-x tail which is however mostly
unconstrained by data. Note that adding more polynomial contributions in the HERAPDF parametrization of the
valence PDFs, as done in many PDF studies (see e.g. [7]), will likely give enough flexibility to reproduce a QSPDF
valence shape.
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In contrast, the ū distribution in QSPDF is somewhat higher at medium-small x than both
NNPDF predictions. This behaviour is dictated by the sea term of the QSPDF parametrization,
which is in turn linked to the gluon. The gluon is very different from the NNPDF one, as the latter
tends to flatten below x „ 10´2 in both fit versions, while the QSPDF gluon keeps growing at
small x. This behaviour of the QSPDF gluon is a consequence of its very constrained functional
form, which is not able to reproduce a shape similar to the NNPDF one (and not even of the
HERAPDF-like fit).

We have thus found various hints that the gluon parametrization Eq. (2.3c) is not sufficient to
accurately describe the data at small x. For this reason, we will consider in section 5 a more flexible
parametrization for the gluon PDF. However, we must recall that the shape of the gluon PDF at
small x is strongly dependent on the perturbative order of the fit, due to the presence of enhanced
logarithmic terms in the perturbative ingredients that make their perturbative expansion unstable
at small x. This instability can be cured by resumming these logarithms to all orders [52–70], leading
to predictions that are more reliable in that region. Interestingly, adding the resummation of small-
x logarithms in PDF fits leads to a gluon PDF that rises at small x at small scales [47, 48, 71].
Therefore, it may be possible that the QSPDF is able to give a better description of the gluon PDF
when small-x resummation is turned on.

To verify this, we have performed fits to the HERA data with small-x resummation at next-to-
leading logarithmic (NLLx) accuracy (included in xFitter through APFEL interfaced to the HELL
resummation code [72–75], version 3.0) using both the QSPDF and the HERAPDF parametriza-
tions. The fit quality is reported in the last two columns of table 2. For QSPDFs we observe a
reduction of the χ2 from NNLO to NNLO+NLLx of 15 units, which is significant but not sub-
stantial. Conversely, in our HERAPDF-like fit the χ2 reduces by 29 units, which is more notable
given that it was already lower than the QSPDF one. These numbers confirm [47, 48, 71] that the
inclusion of small-x resummation is beneficial and improves the agreement with data, but they also
show that the QSPDF parametrization is not flexible enough at small x to give a good description
even when small-x resummation is included.

As far as PDFs are concerned, we plot in figure 4 both “resummed” PDF sets, using the same
structure as before. We observe that most PDFs are essentially unchanged, with small differences
visible only in the ū distribution, with the exception of the gluon PDF, that changes significantly
in the HERAPDF-like fit, getting much closer to the QSPDF gluon, which is instead basically
unchanged. This shows that indeed the QSPDF parametrization is more suitable for fitting PDFs
with all-order resummation of small-x logarithms than without.

To conclude, we also compare the QSPDF fit at NNLO+NLLx with analogous resummed fits
from Refs. [47, 48, 71] in figure 5. There are differences at medium-high x and in the valence
distributions between the sets that are due to the parametrization and the dataset which are not
very useful to compare now. Let’s focus instead on the low-x region. We see in general good
agreement in the quark sea contributions, with the uncertainty from the NNPDF3.1sx fit being
large enough to cover all other curves (except the ū distribution from the 2018 xFitter study
with resummation [48] which is slightly higher but still very close). In the gluon PDF we see a
general tendency to grow at small x, with the BG 2019 fit from Ref. [71] having a peculiar shape
that makes it different from the other sets. This shape is due to the particular parametrization
as well as the use of a newer version of the resummation code HELL with respect to the previous
two fits, differing from the previous version by subleading logarithmic contributions [74, 75], as
documented in Ref. [71] itself. This newer version of HELL is the same used here, but both QSPDF
and HERAPDF-like parametrizations are not flexible enough to produce a similar shape.

As a final observation, we note that the shape of the gluon obtained with small-x resummation
is similar to what is obtained with the recent MSHT (approximate) N3LO fit [76]. Indeed the
small-x logarithms appearing at this order behave in a way similar to their all-order resummation,
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Figure 4. Same as figure 2 but including small-x resummation at NNLO+NLLx accuracy.
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Figure 5. Same as figure 4, but comparing QSPDF with NNPDF3.1sx [47] (dot-dot-dashed salmon), the
2018 xFitter low-x study of Ref. [48] (dotted blue) and BG 2019 [71] (dashed brown).

at least in a region of intermediate x „ 10´3, thus providing a sort of approximation of the all-
order behaviour in that region. Performing a QSPDF fit at (approximate) N3LO using xFitter is
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QSPDFflex QSPDFflex
Contribution to χ2 (NNLO) (NNLO+NLLx)

subset NC e` 920 412{363 401{363
subset NC e` 820 71{68 67{68
subset NC e` 575 224{249 220{249
subset NC e` 460 220{200 223{200
subset NC e´ 226{159 228{159
subset CC e` 55{39 53{39
subset CC e´ 63{42 62{42
correlation term + log term 80 ´ 17 75 ´ 17
Total χ2{d.o.f . 1334{1109 1311{1109

Table 3. Same as table 1, showing the χ2 breakdown for QSPDFflex at NNLO and NNLO+NLLx.

however not possible at the moment due to the lack of the necessary theoretical ingredients in the
code.

5 More flexible QSPDF parametrization

In section 4 we have seen that the QSPDF parametrization is able to give a reasonable description
of the PDFs at medium-high x, but it is not sufficiently flexible at small x to describe the data well.
In particular, the gluon PDF parametrization Eq. (2.3c) is very constrained and cannot produce
the variety of shapes obtained in PDF fits using more flexible parametrizations.

In this section we thus consider a minimal modification of the QSPDF parametrization that
increases the flexibility of the gluon PDF at small x. To do so, we follow the suggestion of Ref. [71]
of using a polynomial in log x to model the shape at small x, and modify the gluon parametrization
Eq. (2.3c) as

xgpx, µ2
0q “ Agh´px; bg, 0q

“

1 ` Fg log x ` Gg log2 x
‰

. (5.1)

The polynomial contribution in log x does not modify the behaviour of the PDF at large x, where
the statistical model is meant to be physically motivated, and gives additional degrees of freedom
to model the low-x region, where instead the model behaviour xbg is just phenomenological.

In Eq. (5.1), Fg and Gg are two new parameters to be fitted.8 Moreover, we also decide to
unlink bg from b̃, considering it a free parameter. In this way we have three extra free parameters
with respect to the QSPDF parametrization of section 2. However, we have verified that with this
new choice of parametrization for the gluon it is possible to fix the value of the b̄ parameter entering
the antiquark parametrization without decreasing the fit quality. We choose as default value b̄ “ b,
and we verified that other reasonable choices (e.g. b̄ “ b{2) do not change the fit quality. According
to this procedure, we have to a total of 11 free parameters to be fitted,

x̄, b, b̃, bg, Fg, Gg, Ã, XÒ
u, XÓ

u, XÒ

d , XÓ

d , (5.2)

which is just two more parameters with respect to the default QSPDF parametrization, and three
parameters less than the HERAPDF parametrization. We dub this alternative parametrization
QSPDFflex.

We start considering the fit quality of the QSPDFflex parametrization, both at NNLO and
with small-x resummation at NNLO+NLLx. We report the χ2 breakdown in table 3. We observe
immediately that now the quality is comparable to the analogous fits obtained with the HERAPDF

8We use the same notation of Ref. [71] for a direct comparison.
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Figure 6. Comparison of QSPDF (dot-dashed purple) and QSPDFflex (solid green) at NNLO with our
HERAPDF-like fit (dotted orange), NNPDF3.0 HERA-only (dot-dot-dashed yellow), NNPDF4.0 DIS-only
(dashed black) and BG (dashed brown) for the gluon, total singlet, ū, d̄` s̄, uv and dv PDFs.

parametrization. As expected, the improvement is driven by a better description of the E “ 920 GeV
dataset containing the small-x data. More precisely, taking into account the different number
of parameters, the fit quality is basically identical for QSPDFflex and HERAPDF-like, making
each parametrization as good as the other. As such, each of them represent a measure of the
parametrization bias of the other, and could be used for constructing a parametrization uncertainty.

We now move to comparing the PDFs. In figure 6 we show the QSPDFflex set at NNLO
together with all the NNLO PDFs considered so far. In particular, we see that gluon PDF in the
new fit (solid green curve) is rather different from the previous QSPDF gluon, as now there is a
non-trivial shape that tends to reduce the size of the gluon below x „ 10´3 before rising again
at x „ 10´4. This shape is similar to the one obtained in the BG fit of Ref. [71], even though in
that case the drop and growth are stronger, and also close to the NNPDF3.0 HERA-only fit. More
in general, all PDF parametrizations except the QSPDF one predict a gluon that either flattens
or decreases before possibly growing again at small x. As far as the other PDFs are concerned,
the difference between the QSPDFflex and the QSPDF sets is very small or totally negligible, as
expected given that the biggest change is in the parametrization of the gluon.

We also consider in figure 7 the same PDFs at the electroweak scale Q “ 100 GeV, plotted as
a ratio to QSPDFs. For gluon and anti-quark PDFs we see a generally good agreement between
the various sets in the small-x region, with differences at most at the 10% level, even though not
always within the uncertainty. This shows that DGLAP evolution reduces the discrepancies between
the sets, especially in the gluon PDF. At larger x Á 0.1 the uncertainties get larger as well as the
differences between sets, due to the lack of direct experimental constraints this region, which is thus
strongly dependent on the functional forms adopted. The valence distributions are characterised by
larger relative uncertainties and differences (note also the larger range shown in the plot), especially
in the low-x region. In particular, we observe that the HERAPDF-like fit predicts a very different
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Figure 7. Same as figure 6 but for Q “ 100 GeV, showing the various curves as ratios to QSPDF.

uv distribution from all the other sets. Similarly, the dv distribution of the HERAPDF-like set
is very different from QSPDF(flex) and NNPDF, but almost identical to the BG set. The large
uncertainties and differences at large x also shows that the use of non-vanishing functions in x “ 1,
Eq. (2.7), in place of a more standard power suppression in 1 ´ x, does not represent an issue when
describing the data.

To further verify the impact of using the functional form based on Fermi-Dirac and Bose-
Einstein distributions, we plot in figure 8 a zoom of the large-x region of figure 6. We can appreciate
that gluon and anti-quark distributions are essentially indistinguishable from other sets where PDFs
vanish in x “ 1, and are compatible with them within uncertainty in the x Ñ 1 region. Quark
PDFs are instead more sensitive to the functional form. In particular, the valence distributions
of QSPDF and QSPDFflex tend to be higher than the HERAPDF-like fit for x Á 0.7, staying
visibly larger than zero at x “ 1. This difference is inherited by the total singlet PDF. We note
however that QSPDF and QSPDFflex are fully within the NNPDF3.0 uncertainty band even at
very high x, due to the large uncertainty bands of the set in turn due to the lack of data in this
region. Note that the NNPDF4.0 set has a much reduced uncertainty. This is partly due to the
larger dataset, that includes several DIS data at rather high-x (e.g. BCDMS [77] reaches x “ 0.75,
NMC [78] reaches x “ 0.68, CHORUS [79] reaches x “ 0.65), and partly also to the improved
fitting methodology [5] that favours smoother replicas allowing for smaller uncertainties in the
extrapolation region x Á 0.75. Since NNPDF4.0 explicitly assumes a power behaviour p1 ´ xqα

vanishing at large x (α ą 0), the small uncertainty in the extrapolation region x Á 0.75 is not
necessarily reliable. Therefore, the inconsistency of our quark PDFs with NNPDF4.0 in this region
is not indicative of a preference towards a stronger large-x suppression.

When including the resummation of small-x logarithms, the agreement between the various
curves improves. This is shown in figure 9, again comparing the new QSPDFflex set with all the
PDF sets with resummation considered before. Again, the gluon is the one that exhibits the biggest
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Figure 8. Same as figure 6 zoomed in at large x.
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Figure 9. Comparison of QSPDF (dot-dashed purple) and QSPDFflex (solid green) at NNLO+NLLx
with our HERAPDF-like fit (dotted orange), NNPDF3.1sx DIS-only (dot-dot-dashed salmon), xFitter 2018
(dotted blue) and BG (dashed brown) for the gluon, total singlet, ū, d̄` s̄, uv and dv PDFs.
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Figure 10. Model uncertainties at NNLO obtained by various variations as indicated in the text. The
plots are presented as ratios to the central PDF, for the gluon, total singlet, ū, d̄` s̄, uv and dv PDFs.

difference between QSPDF and QSPDFflex, but now the QSPDFflex gluon grows as the QSPDF
one, but with some oscillations that resemble those of the BG set [71]. We keep seeing that the
QSPDFflex is close to QSPDF for the other PDFs, but now there is a more marked difference in
the sea quarks and in the dv distribution at medium x.

We now discuss the uncertainties. We observe that the QSPDFflex has similar (small) uncer-
tainties to QSPDF, except for the gluon which has a larger band at small x, due to the presence
of extra parameters. For the more promising QSPDFflex parametrization we also consider model
uncertainties, in particular parametrization uncertainty. Specifically, we investigate the effect of
changing the initial scale of the parametrization, raising9 or lowering it by 0.11 GeV, and of mod-
ifying parameters or functional form: we vary b̄ up and down to b̄ “ 2b and b̄ “ b{2, and replace
the linear logarithmic gluon term Fg log x with a cubic term Hg log3 x (following an analogous vari-
ation performed in Ref. [71]). The relative effect of each individual variation is shown at NNLO
in figure 10 (the relative uncertainties at NNLO+NLLx are similar). We notice that the gluon
uncertainty is dominated at medium-small x by the effect of changing the parametrization with a
cubic logarithmic terms in place of the linear one, as expected. Its effect on other PDFs is mild,
and concentrated at high x, indirectly induced by the momentum sum rule. The b̄ variations have
larger effects on the (anti)quarks, and in particular on the valence distributions at medium-low x,
most importantly for the dv. The variation of the fit scale µ0 are mild and similar in all PDFs,
giving bigger effects at small and high x.

To conclude the section, we show the actual PDFs of the QSPDFflex set including the model
uncertainties in Fig. 11. We also show the QSPDF set for comparison. The lighter-green uncertainty
band represents the total (fit+model) uncertainty, obtained by summing in quadrature the fit

9When we raise the initial scale, we also have to raise the charm threshold to keep the condition µc ą µ0. The
contribution of raising µc is less important than that of raising µ0, and indeed the effect is rather symmetric to the
lower variation of µ0 where µc is kept fixed.

– 16 –



 0

 1

 2

 3

 4

 5

 6

 7

 8

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
g
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

gluon

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
u
b
ar
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

anti-up

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
u
v
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

up valence

 0

 1

 2

 3

 4

 5

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
Σ
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

singlet

 0

 0.5

 1

 1.5

 2

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
d
b
ar
(x
,Q
) 
+

 x
 s
b
ar
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

anti-down + anti-strange

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

10-4 10-3 10-2 10-1 100

Q2 = 4 GeV2

darker green band: fit uncertainty
lighter green band: fit+model uncertainties

x 
d
v
(x
,Q
)

x

QSPDF NNLO
QSPDFflex NNLO
EPJC 23 (2002) 487

down valence

Figure 11. Comparison of QSPDFflex (solid green), showing also the total (fit+model) uncertainty, with
QSPDF (dot-dashed purple) and the older determination of Ref. [18] (solid black, without uncertainties),
for the gluon, total singlet, ū, d̄` s̄, uv and dv PDFs.

uncertainty (corresponding to the darker-green band) and each individual model variation with
respect to the central PDF. We note that the gluon and dv distributions have visibly larger total
bands, while for the others the difference is less marked, but still visible in some regions (especially
low x and medium-high x).

6 Implications

Having established the possibility of fitting HERA data with reasonable/good quality with the
QSPDF and QSPDFflex parametrizations, we now want to comment on some possible physical
implications of this study.

6.1 Comparison with previous model determinations

First of all, we may consider the success in fitting the data as a success of the statistical model
behind the QSPDF parametrization. It is true that the original model of Ref. [18] leading to the
QSPDF parametrization does not allow to fit the data with high quality, but still the quality is
reasonable and moreover we have seen that most of the problems come from the limited flexibility
of the gluon at small x. Admittedly, the statistical model of Ref. [18] is designed to describe the
high-x region of the PDFs, and the ingredients needed to describe the small x region, i.e. the xb

factors and the “diffractive” (sea) quark terms, are only phenomenological. Therefore, we believe
that the QSPDFflex parametrization of section 5 is still in agreement with the original ideas of the
statistical model, as in particular it does not change the description of the large-x PDFs. In this
sense, the better description achieved with the QSPDFflex parametrization can be considered as a
success of the statistical model.
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Fitted QSPDF QSPDF QSPDFflex QSPDFflex Ref. [18]
param. NNLO NNLO+NLLx NNLO NNLO+NLLx

x̄ 0.0950 ˘ 0.0011 0.0932 ˘ 0.0012 0.0964 ˘ 0.0017 0.0971 ˘ 0.0018 0.09907
b 0.557 ˘ 0.009 0.54 ˘ 0.03 0.538 ˘ 0.012 0.545 ˘ 0.012 0.40962
b̄ 0.00016 ˘ 0.00003 0.000019 ˘ 0.000003 b b 2b
b̃ ´0.1700 ˘ 0.0018 ´0.172 ˘ 0.003 ´0.179 ˘ 0.005 ´0.169 ˘ 0.005 ´0.25347
bg b̃` 1 b̃` 1 0.440 ˘ 0.013 0.434 ˘ 0.016 b̃` 1
Fg - - 0.212 ˘ 0.004 0.207 ˘ 0.004 -
Gg - - 0.0116 ˘ 0.0004 0.0111 ˘ 0.0004 -
Ã 0.159 ˘ 0.003 0.151 ˘ 0.004 0.146 ˘ 0.006 0.156 ˘ 0.006 0.08318
XÒ

u 0.410 ˘ 0.006 0.415 ˘ 0.007 0.407 ˘ 0.008 0.404 ˘ 0.008 0.46128
XÓ

u 0.21 ˘ 0.02 0.216 ˘ 0.019 0.18 ˘ 0.03 0.18 ˘ 0.03 0.29766
XÒ

d 0.11 ˘ 0.03 0.13 ˘ 0.03 0.13 ˘ 0.02 0.12 ˘ 0.03 0.22775
XÓ

d 0.292 ˘ 0.008 0.292 ˘ 0.009 0.276 ˘ 0.008 0.278 ˘ 0.008 0.30174

A 3.4 3.2 3.6 3.6 1.74938
Ā 0.00002 0.00006 0.13 0.08 1.90801
Ag 17 18 11 11 14.27535

Table 4. Values of the fitted parameters (including uncertainties) for the QSPDF and QSPDFflex sets,
both at NNLO and NNLO+NLLx. In the last three lines we also provide the values of the additional
normalization parameters that are determines from the sum rules (indicating the central value only). In
the last column we also report the values of the parameters from the determination of Ref. [18], which were
given without uncertainty and with the same number of digits shown here.

As we mentioned before, the model is agnostic about QCD interactions and therefore it does
not know about the perturbative order and the factorization scheme and scale dependence. In this
sense, the good description of the data may seem surprising. However, we have to recall that we
are using the model as a provider for a parametrization, and it is the parametrization that works
well. We can also guess why it is so. Essentially, the model assumes the original Feynman’s parton
model, i.e. the LO approximation of the QCD factorization theorem. It is well known that LO PDFs
have shapes that are similar to MS-scheme NLO and NNLO PDFs at large x, and so it is likely
that the same parametrization, with different parameters, is able to describe also NNLO PDFs.
At small x differences are more marked between various orders, and indeed we had to modify the
parametrization of the gluon PDF in the QSPDFflex set to obtain a reasonable description.

It is interesting to compare the values of the model parameters with previous determinations.
In table 4 we list the values of the parameters for the four fits considered, namely QSPDF and
QSPDFflex, both at NNLO and NNLO+NLLx, as well as those from Ref. [18]. We immediately
notice that the values of the parameters is very similar across all our fits. The only exception is b̄,
which is fixed to be equal to b in the QSPDFflex fits, whose value is very different from the value
found in the QSPDF fits. In fact, the very small value of the b̄ parameter in the QSPDF fits, which
describes a strong small-x growth of the antiquark valence component, is compensated by a very
small value of Ā computed by the sum rules (see appendix A), making the effect of that term very
small.

Comparing our numbers with the values obtained in Ref. [18] we see that there is generally
a good agreement between the parameters. In particular, the “effective temperature” x̄, which
governs the large-x drop of all PDFs, is very stable across the various determinations. The quark
“potentials” are in good agreement, but they are all smaller in our fits, in particular XÒ

d and to a
lesser extent XÓ

u. This difference is likely due to the absence in our determination of information from
polarized distributions. The b parameter governing the small-x drop of the valence distributions
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is always slightly larger in our fits, as well as the b̃ parameter governing the small-x growth of sea
quarks, which in turn determines a larger Ã coefficient to compensate. In the last three lines of the
table the values of the parameters A, Ā, Ag, determined from the sum rules, are also shown. As the
value of Ā strongly depends on the value of b̄, it is very different in the various families of fits.

The effect of these different parameters is shown in figure 11, where the PDFs from Ref. [18]
are compared with our QSPDF(flex) NNLO sets. We see clear distortions in all distributions
between the old and new sets. At high x all distributions behave in the same way, as this region is
predominantly governed by the x̄ parameter which is almost the same for all PDFs and secondarily
by the quark potentials XÖ

q which are similar. The PDFs of Ref. [18] are all harder at small x,
including the valence distributions, and compensate this with smaller quark sea distributions at
medium x and with smaller valence peaks. These differences are certainly due to the fact that
Ref. [18] fits a bunch of DIS data from different experiments, including polarized data, all at a Q2

scale close to µ2
0 “ 4 GeV2, thus containing different information with respect to our dataset. As

a comparison, we have computed the χ2 of the PDF set of Ref. [18] with our fit setting, finding
more than 6000 units, showing that this PDF set is very far from giving an acceptable description
of HERA data.

6.2 The anti-up anti-down asymmetry in the proton

An important implication of the statistical model is that the difference d̄ ´ ū is greater than zero.
A positive value for the first Mellin moment of this difference was first determined by the NMC
experiment [80], which found a defect in the Gottfried sum rule [81]. This confirmed the conjecture
by Niegawa and Sasaki [82] and by Feynman and Field [83] that, as a consequence of Pauli principle,
in the proton there are more d̄ than ū.

The positivity of d̄ ´ ū is a consequence of the values of the potentials XÖ

u,d that we can
understand analytically. Looking at Eq. (2.3b) we note that, for each polarization, there is one
term that dominates over the other. Using explicitly Eq. (2.6) and grouping terms with the same
potential,

xqvpx, µ2
0q “ AXÒ

q h`px; b, XÒ
q q ´

Ā

XÒ
q

h`px; b̄, ´XÒ
q q

` AXÓ
q h`px; b, XÓ

q q ´
Ā

XÓ
q

h`px; b̄, ´XÓ
q q, (6.1)

we see that, for positive potentials XÖ
q ą 0 as given by the fit, the second term proportional to Ā

in each line is exponentially suppressed with respect to each first term by a factor exp
`

´2XÖ
q {x̄

˘

at medium/large x. Therefore, the size of the valence distribution is dominated by the A terms,
and in particular by the polarization component characterised by the largest potential, which is
maxpXÒ

u, XÓ
uq “ XÒ

u for the up quark and maxpXÒ

d , XÓ

dq “ XÓ

d for the down quark10 (table 4).
Moreover, since the valence distribution of the up quark is larger (roughly by a factor of two)
than the valence distribution for the down, it follows that maxpXÒ

u, XÓ
uq ą maxpXÒ

d , XÓ

dq, namely
XÒ

u ą XÓ

d , which is indeed verified in all fits. From the fit results we also see that the potential for
the subdominant polarizations is always larger for the up quark than for the down quark, XÓ

u ą XÒ

d .
While this is not directly related to striking features of the parametrization, it is a property that
ensures that the shapes of the valence distributions are in agreement with data and with the sum

10Note that since the parametrization of quarks is simply the sum of the two independent polarization components,
differing only by the potentials, there is a symmetry in the parametrizations for the exchange XÒ

q Ø XÓ
q . Therefore,

which potential is larger is just a matter choice, i.e. the fit can equivalently find a minimum or its symmetric where
the potentials are swapped. The hierarchy shown here reproduces the hierarchy found in the original publications
where additional information from polarized data were included.
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Figure 12. The difference d̄´ ū in all the PDF sets considered so far, at NNLO (left) and NNLO+NLLx
(right). For the QSPDFflex result the total uncertainty band is also shown in lighter green with a crossed
pattern. The scale of the plot is Q2

“ 25.5 GeV2 to match that of the SeaQuest data points [84, 85] also
shown in the plot.

rules.11 This inequality immediately implies that d̄ ą ū. Indeed their difference is given by

xd̄px, µ2
0q ´ xūpx, µ2

0q “ Ā

„

1
XÒ

d

h`px; b̄, ´XÒ

dq `
1

XÓ

d

h`px; b̄, ´XÓ

dq

´
1

XÒ
u

h`px; b̄, ´XÒ
uq ´

1
XÓ

u

h`px; b̄, ´XÓ
uq

ȷ

, (6.2)

which is dominated by the smallest potentials, and it is positive if minpXÒ
u, XÓ

uq ą minpXÒ

d , XÓ

dq,
namely XÓ

u ą XÒ

d , which is exactly the condition mentioned before.12

The numerical results are reported in figure 12 for several PDF sets at fixed order (left plot)
and with small-x resummation (right plot). We notice that all PDF sets obtained using only HERA
data tend to predict a negative d̄ ´ ū difference in the valence region, with the exception of the
QSPDF and QSPDFflex sets. The inclusion of data sensitive to quark flavours, e.g. charged current
data from DIS experiments as in the NNPDF4.0 DIS-only set, twists the situation by predicting
a positive d̄ ´ ū difference in the valence region. This is further confirmed in global PDF fits (see
e.g. Ref. [7]). We thus conclude that HERA data alone not only are not able to predict the flavour
separation, but they also tend to be in better agreement with a negative d̄´ ū difference irrespective
of the parametrization used, again with the exception of QSPDFs.

Now let us focus on our QSPDF and QSPDFflex fits. We observe that the latter gives a positive
d̄ ´ ū distribution, in agreement with the discussion above about the values of the potentials.
However, the QSPDF predicts essentially the same values for d̄ and ū, giving a vanishing difference.
This effect is the result of the very small value of b̄ coming from the fit that forces Ā to be almost
zero. As the difference d̄ ´ ū is proportional to Ā, Eq. (6.2), it becomes consequently very small.

11We were not able to prove that this inequality has to be satisfied based on strict conditions. Therefore, we can
only say that it is very unlikely that a good fit can violate this hierarchy, and indeed all fits so far led to values
satisfying this hierarchy.

12This conclusion assumes that Ā ą 0. This is always the case in the fits considered here, but it may not be the
case in general. However, Ā ą 0 ensures that the anti-quark distributions are positive in the high-x region, so we
find it reasonable to assume that this will always be the case in good fits.
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We suspect that the small value of b̄ found by the fit is driven by this effect: HERA data favours
a negative d̄ ´ ū, and the fit finds the value of the parameters that makes it as close as possible
to negative, i.e. zero. Conversely, in the QSPDFflex parametrization where b̄ is fixed to b, this
flexibility is no longer present and the difference d̄ ´ ū remains significantly positive.

One may wonder why in the QSPDFflex parametrization we are allowed to fix b̄ “ b while in
the QSPDF parametrization this leads to a sizeable increase in χ2. We suspect that this is due to
the greater flexibility of the gluon parametrization, which is less linked to the diffractive (sea) term,
which is then more flexible and can thus better describe the antiquark distributions without the
need for an extra degree of freedom. We may also guess that when including data sensitive to quark
flavours leaving b̄ as a free parameter can still predict a positive d̄ ´ ū difference, this time induced
by the data and not by a parametrization bias. To see this, we also report in the figure the recent
data from the SeaQuest collaboration [84, 85]. We see that they scale in reasonable agreement with
QSPDFflex, but they are higher, in closer agreement with the NNPDF4.0 DIS-only set (despite the
fact that it does not include them). We will investigate in section 6.3 the stability of this result
upon inclusion of additional data.

6.3 Additional data

In this section we investigate the possibility of including additional data in the fit, with emphasis
on the large-x behaviour of PDFs and in particular on the d̄ ´ ū difference. Unfortunately, we are
limited by the datasets available in xFitter (implementing new dataset ourselves would require a
significant amount of work which is far beyond the scope of this article). As we are interested in
the large-x region, we identified two datasets that are relevant for us: old fixed-target Drell-Yan
from E866 [86] (39 datapoints) and Tevatron CDF and D0 Z rapidity distributions [87, 88] (56
datapoints). In particular, the former data are given as the ratio of proton-deuteron cross section
over proton-proton cross section, giving direct access to the up/down antiquark asymmetry.

We have performed fits to HERA+E866, HERA+Tevatron and HERA+E866+Tevatron, using
both QSPDFflex and HERAPDF-like parametrization. Unfortunately, the theoretical description
of these data in xFitter is limited to NLO, so the fits use inconsistently NNLO theory for DIS
and DGLAP evolution and NLO for Drell-Yan.13 We must thus expect some increase in the re-
duced χ2 that we indeed see with both parametrizations. For QSPDFflex, the χ2{d.o.f increases
from the HERA-only value of 1.20 to 1.21 for HERA+Tevatron and 1.25 for HERA+E866 and
HERA+E866+Tevatron. For HERAPDF-like parametrization, the χ2{d.o.f increases from the
HERA-only value of 1.21 to 1.26 for HERA+E866 and 1.25 for HERA+E866+Tevatron, while
it decreases slightly to 1.20 for HERA+Tevatron. The fact that these variations are very similar
among the two parametrizations shows that the QSPDFflex parametrization does a good job in
fitting these data as well as HERA data.

As far as PDFs are concerned, the effect of the new data is essentially negligible for QSPDFflex,
while there are some differences for the HERAPDF-like fits, especially at high x. In particular, we
focus on the d̄ ´ ū difference, shown in figure 13. With the QSPDFflex parametrization, the
inclusion of Tevatron data tends to lower slightly the prediction, while in contrast E866 leads to
a larger asymmetry, pushing the PDFs closer to the SeaQuest data also shown in the plot. When
both datasets are included, the prediction is larger than the HERA-only fit, but still very close to it.
Overall, the four predictions are in good agreement and we can conclude that QSPDFflex is stable
upon inclusion of different datasets, also confirming that the positive value of d̄ ´ ū is a feature of
the parametrization.

With the HERAPDF-like parametrization, the inclusion of Tevatron data brings the prediction
for d̄ ´ ū closer to zero, but still negative in similarity with the HERA-only fit and with similarly

13We note however that the lack of NNLO corrections should be less significant for E866, as the data are given as
a ratio of cross sections which is less sensitive to perturbative corrections.
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Figure 13. The difference d̄´ ū in QSPDFflex (left) and HERAPDF-like (right) fits to different datasets.
The scale of the plot is Q2

“ 25.5 GeV2 to match that of the SeaQuest data points [84, 85] also shown in
the plot.

large uncertainty. Once E866 data are included, the prediction becomes positive and with smaller
uncertainty, and it is close to the SeaQuest datapoints. Moreover, it is stable upon inclusion of
Tevatron data. This shows that the HERAPDF parametrization is more flexible at high x and it
leads to inaccurate results when data are not sufficiently constraining, while it provides a stable
result once constraining data are included. This behaviour is what is usually expected from a fit
with unbiased parametrization.

We observe that the HERAPDF-like result with E866 data is very similar to the analogous
QSPDFflex result. This means that the QSPDFflex is also accurate, with the difference that it
was so also before the inclusion of E866 data. This is the effect of the (physically motivated) bias
present in this parametrization.

6.4 Polarized PDFs

As already stressed, the parametrization of the quark PDFs is made in terms of contributions from
the individual quark polarizations. This means that the same parameters would in principle allow to
determine also polarized PDFs within the statistical model. Using Eq. (2.2), the parametrizations
for polarized quark and antiquark PDFs are given by

x∆qpx, µ2
0q ” xqÒpx, µ2

0q ´ xqÓpx, µ2
0q

“ A
“

XÒ
q h`px; b, XÒ

q q ´ XÓ
q h`px; b, XÓ

q q
‰

, (6.3a)
x∆q̄px, µ2

0q ” xq̄Òpx, µ2
0q ´ xq̄Ópx, µ2

0q

“ Ā

«

1
XÓ

q

h`px; b̄, ´XÓ
q q ´

1
XÒ

q

h`px; b̄, ´XÒ
q q

ff

, (6.3b)

while the model assumes no polarization for gluons, i.e. ∆g “ 0 (we will comment on this assumption
later in this section).

Of course, a fit of unpolarized PDFs is not able to distinguish the individual polarizations.
However, if polarized data are included in the fit, it becomes possible to simultaneously determine
polarized and unpolarized PDFs without changing the parametrization (i.e., without adding extra
parameters). The agreement (see figure 11) at x Á 0.4 with the valence distributions found in
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Figure 14. Comparison of polarized PDFs obtained from our QSPDFflex NNLO fit (with and without
imposing the triplet sum rule) and the NNPDFpol1.0 [89] and NNPDFpol1.1 [90] sets.

[18], where the information from polarized scattering was well described, lets us reasonably think
that the statistical model may be able to describe both unpolarized and polarized distributions
in a satisfactory way. Testing this in practice requires quite some work, as the current xFitter
infrastructure should be modified to introduce this possibility, and we therefore leave this task to
future work. Here we perform a simpler test.

First of all, we consider the QSPDFflex set fitted from unpolarized data and plot polarized PDFs
Eq. (6.3) obtained with those parameters out of the box. As stressed, we do not expect to find
agreement with direct determinations from polarized data [37, 89–97], but we want to understand
how far we are. Therefore, in figure 14 we show the polarized PDFs constructed using Eqs. (6.3)
from our QSPDFflex NNLO unpolarized fit, compared with NNPDFpol1.1 [90] and JAM22 [95].14

Specifically, we plot ∆u, ∆ū, ∆d, ∆d̄ and also the triplet combination

∆T3 “ ∆u ` ∆ū ´ ∆d ´ ∆d̄ (6.4)

at the fit scale Q2 “ 4GeV2. We also show the gluon ∆g for completeness.
We observe that the QSPDFflex anti-quark polarized PDFs are perfectly compatible with

NNPDFpol1.1 within the (large) uncertainty of the latter. They are also close to the JAM22
determination, except in the region 0.1 À x À 0.4 where JAM22 is slightly larger (in absolute
value). The quark polarized PDFs instead are not in agreement, as ∆u, ∆d and ∆T3 are all larger
(in absolute value) than their NNPDFpol1.1 and JAM22 counterparts. Nevertheless, the shapes are
very similar. Finally, we notice that the NNPDFpol1.1 and JAM22 find a polarized gluon which

14We have considered the latest version of these two families of polarized PDF fits. To our knowledge, the DSSV
polarized PDFs [37, 91, 93] are not publicly available in LHAPDF format. In any case, the PDFs shown are good
representative of polarized PDFs, as for instance the most recent DSSV determination is in good agreement [93] with
NNPDFpol1.1. Note also that for JAM22 we have considered only the positive gluon solution, as the negative one
strongly violates the positivity bound |∆g| ď g, see the discussion in Ref. [98].
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is significantly larger than zero at medium/large x, as confirmed also by the DSSV analysis [37],
while in our parametrization ∆g is assumed to be zero at the fit scale Q2 “ 4GeV2.

All in all, the agreement found is rather remarkable, given that our set is constructed without
any information from polarized data. While as already mentioned performing a simultaneous fit of
unpolarized and polarized data requires a significant amount of work, we can try to include some
information on polarized PDFs in our fit with a little effort. Specifically, isospin symmetry (which
is expected to hold to high accuracy) implies the so-called triplet sum rule

ż 1

0
dx ∆T3px, µ2q “

∣∣∣∣ gA

gV

∣∣∣∣ “ 1.2754 ˘ 0.0013 (6.5)

where gA and gV are the axial and vector electroweak couplings which can be derived from neutron
decay. The reported experimental value is taken from the latest PDG average [99]. Notably, the
first moment on the left-hand side is scale independent, and so the sum rule is valid at any scale.

We have thus performed an additional NNLO fit to HERA data with the QSPDFflex parametriza-
tion in which we impose the triplet sum rule. Practically, we do so as if it were a datapoint, to
account for the experimental uncertainty. The result of the fit has a slightly worse χ2{d.o.f.: from
1334/1109 without the sum rule to 1342/1110 with the sum rule. This deterioration is driven by the
charged-current positron subset, whose partial χ2 increases from 55 to 62, over 39 datapoints, while
all other subset are essentially unchanged. Interestingly, the partial χ2 from the triplet sum rule is
extremely small (close to zero), despite the very small (permille) uncertainty on the experimental
value, showing that the QSPDFflex parametrization is able to easily accommodate such a physical
constraint.

The resulting polarized PDFs are shown in the same figure 14, in red. The simple imposition
of the sum rule improves the agreement with NNPDFpol1.1 and JAM22 significantly. Among the
quarks, only the shape of ∆u, which in turn affects ∆T3, is not compatible with NNPDFpol1.1,
although it is very close. We are thus tempted to hope that if a single constraint was able to
achieve such a good agreement, the inclusion of polarized data in the fit could further improve
the agreement without a significant deterioration of the fit quality. We must also note that the
polarized PDF determinations of NNPDFpol1.1, JAM22 and DSSV have been obtained using NLO
theory, while our fit is NNLO accurate: this difference may also contribute to the disagreement.
We also stress that the unpolarized PDFs of our new fit are essentially unchanged with respect to
the QSPDFflex set without the triplet sum rule.

The difference on the polarized gluon PDF deserves a separate discussion. The assumption of
a zero gluon polarization at the fit scale µ0 descends from the equilibrium condition which is at
the core of the statistical model, which in turn implies a vanishing potential for the gluon PDF
leading to the Plank distribution Eq. (2.3c). However, DGLAP evolution brings partons away
from equilibrium, as it only describes splittings and not recombination. Indeed, recombination is
supposed to be a necessary ingredient only in a strongly interacting regime, which may happen
either at very high density (i.e. at very small x, leading to saturation) or in the non-perturbative
region at low Q2. Therefore, the QSPDF(flex) parametrization is best suited to describe PDFs
at the border between non-perturbative and perturbative regimes, namely at the border between
strong dynamics and DGLAP realm. The choice µ0 “ 2 GeV for this border may not be optimal
— indeed, admittedly 2 GeV is a scale which is certainly in the perturbative regime. This choice
was used in the original literature [18, 30] and justified a posteriori by the ability to obtain a good
description of the data. However, meanwhile data have improved, leading in particular to the
striking evidence of a polarized gluon at 2 GeV from RICH data, which may be due to DGLAP
evolution from a lower equilibrium scale.

To understand if this may be the case, we have tried to evolve the PDFs to a higher scale,
specifically to Q “ 100 GeV. For our set (we now consider only the one obtained with the triplet sum
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Figure 15. Same as figure 14, but at Q “ 100 GeV and showing only the QSPDFflex NNLO result with
the triplet sum rule compared with the other public sets.

rule) we used APFEL++ [39, 100] to perform the polarized evolution (at NLO). The resulting PDFs
are shown in figure 15. We notice that the QSPDFflex polarized gluon, thanks to the evolution, is
no longer vanishing, and in particular it is positive as the NNPDFpol1.1 and JAM22 ones. It is still
smaller than those and not compatible with them at medium x, as a consequence of the differences
at the starting scale. We also observe that the agreement of quark PDFs improves after evolution.

We thus conclude that it is very likely that the optimal scale for the QSPDF(flex) parametriza-
tion is a smaller one. This has been explored in the literature on the statistical parametrization.
For example, Refs. [25, 27] use µ0 “ 1 GeV. Nevertheless, they find that even starting from such
a low scale data are better described if a non-zero gluon polarization is assumed at the fit scale.
Moreover, DGLAP evolution from 1 GeV to 2 GeV at fixed order, be it NLO or NNLO or even
higher, is likely inaccurate due to the large value of αs in this region that makes missing higher
order contributions very sizable. Choosing a starting scale below 1 GeV would make this issue even
worse and must thus be avoided. We conclude that further studies are needed to understand what
the best strategy could be. Perhaps allowing a non-zero gluon polarization is the simplest solution,
but a functional form compatible with the model assumptions must be worked out.

6.5 Future directions

The results presented so far show that the QSPDF(flex) parametrization has a number of virtues,
due to the possibility of producing unpolarized and polarized PDFs with sensible physical behaviour
with a very small number of parameters. For this reason, on top of being a useful complement to
standard parametrizations, it is worth considering it for further studies. In this respect, it would
be interesting to perform a global fit, including unpolarized data from other DIS experiment as well
as collider data from Tevatron and LHC, and eventually also polarized data.

As we already mentioned, for the moment this task cannot be performed straight away in
xFitter due to the limited amount of available datasets and the lack of theoretical predictions for
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polarized observables. In any case, it is easy to foresee that the simple parametrizations that we
have considered so far will not be suitable to describe a large variety of data. For such a study,
the statistical model parametrization must be made more flexible. We can increase the flexibility
of the parametrization in three ways:

• adopting Eq. (2.5) rather than Eq. (2.6) for defining the coefficients CÖ, C̄Ö, which introduces
two extra parameters for each quark flavour to be fitted and thus gives more flexibility to model
the medium/high-x region of quark PDFs;15

• modifying the low-x behaviour of quark PDFs in the same way we did for the gluon, Eq. (5.1),
namely multiplying each term in the parametrization by a polynomial in log x, which gives
much more flexibility at small x without altering the large-x region where the model is phys-
ically motivated;

• providing an independent parametrization for the strange quark PDF, needed for fitting data
beyond HERA, using e.g. the parametrization proposed in Ref. [101] in the context of the
statistical model;

• changing (lowering) the fit scale µ0 at which PDFs are parametrize to find an optimal
value where the assumptions of the model are reasonably satisfied, and possibly introduce
a parametrization for polarized gluons (see discussion at the end of section 6.4).

All these modifications are perfectly consistent with the model hypotheses, and can thus be viewed
as a natural extension of the study in this work. As a result of this extension, the parametriza-
tion would depend on many more parameters, reducing some of the advantages of the statistical
parametrization, but keeping the important physical properties, e.g. the possibility of determining
unpolarized and polarized PDFs with the same parameters. Note also that some of the new param-
eters (in particular those modelling the small-x behaviour) may be redundant and could possibly
be eliminated, but this can only be decided after performing the fit.

The extended parametrization proposed above would be much more flexible, making it compa-
rable with other fixed-form flexible parametrizations on the market. Despite the flexibility, such an
improved QSPDF parametrization would still differ from other parametrizations in one key aspect:
the x Ñ 1 behaviour. Indeed, the statistical model is characterized by a non-vanishing limit in
x “ 1, Eq. (2.7), while all other parametrizations, including the very flexible NNPDF one, assume
a vanishing power-like behaviour of the form p1´xqα with α ą 0. We have already seen in section 5
that differences are significant for x Á 0.7: the inclusion of data sensitive to such high values of x,
such as LHC jet data or future EIC data, would thus allow us to test which functional form is more
suitable for their description. On top of looking at the fit quality, it could be possible to perform
a simple test to verify whether the data prefer vanishing or non-vanishing PDFs in x “ 1: after
having fitted high-x data with the extended QSPDF parametrization, one could multiply each PDF
parametrization by a p1 ´ xqα factor, with the same value of α for all PDFs,16 and fit data again.
If the fit selects a (positive) value of α significantly different from zero and the χ2 reduces by more
than one unity (corresponding to the extra fitted parameter), then one must conclude that data
prefer vanishing PDFs in x “ 1. Conversely, if at least one of the conditions above are not satisfied,
the non-vanishing behaviour predicted by the statistical model has to be considered as compatible
with the data.

15In fact, Eq. (2.6) is an approximation of Eq. (2.5), so the use of the latter is the most consistent way of using
the model to parametrize quark PDFs.

16Using different values of α for each PDFs may lead to overfitting, as the extended QSPDF parametrization is
already rather flexible at high x. Moreover here the goal is to understand whether data prefer vanishing or a non-
vanishing PDFs in x “ 1, and this is better tested by the simplest modification of the parametrization that adds the
least flexibility.
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On top of this high-x test, another powerful validation of the model consists in the ability of
fitting in a satisfactory way both unpolarized and polarized data. The results of section 6.4 are
very encouraging, but the actual test can only come once polarized and more unpolarized data are
included in the fit. As discussed in section 6.4, a key issue to be faced is the polarized gluon PDF:
while at equilibrium it makes sense to assume zero polarization, it is not obvious that it is possible
to really start the fit at the equilibrium scale, thus requiring the introduction of a parametrization
for the polarized gluon PDF. Finding such a parametrization in a way that is compatible with the
statistical model requires a theory study that is left to a future work.

7 Conclusions

In this work we have considered a PDF parametrization inspired by a statistical model of the proton
dynamics and tested it in fits to HERA data through the public xFitter code. The idea behind
the use of such parametrization is the opposite of the standard practice: while usually one tries to
consider very flexible functional forms to reduce the parametrization bias, here we consider very
biased functional forms to reduce the number of fitting parameters. The hope is that the bias
introduced in the parametrization be justified by the physical model which the functional form
is derived from, thus leading to a reasonably good fit with all the advantages of a small set of
parameters. To our knowledge, this is the first PDF fit based on the statistical model performed at
NNLO and NNLO+NLLx accuracy (previous ones were only NLO accurate).

We have considered two versions of the parametrization. One is the simplest original version
coming from the model [18], denoted QSPDF, which has 9 free parameters. The other one is
a variant in which we add more flexibility to the gluon at small x, denoted QSPDFflex, which
depends on 11 free parameters. The QSPDF parametrization allows to reasonably describe HERA
data, but the quality of the fit is not particularly high, due to an extremely limited functional form of
the gluon PDF which does not allow to describe low-x data well. The QSPDFflex parametrization,
instead, leads to a good description of the data comparable with other PDF parametrizations
which depend on more parameters. For instance, the χ2 obtained with QSPDFflex is essentially
the same as that obtained with a HERAPDF-like parametrization. We can thus conclude that the
QSPDFflex parametrization is working well and it can provide a useful complement to standard
parametrization, e.g. to study parametrization bias (or equivalently to estimate a parametrization
uncertainty) or as a new starting point for constructing more flexible parametrizations.

In terms of PDF comparison, we have noticed that the shapes predicted by QSPDF and QSPDF-
flex differ in several respects from the ones of a HERAPDF-like parametrization. The valence dis-
tributions differ noticeably, and the QSPDF(flex) results are in better agreement with other PDF
sets (NNPDF, BG) based on more flexible parametrizations. Conversely, at small x the QSPDF
shapes, in particular for the gluon, are very constrained and thus differ from all other PDF sets
on the market. The QSPDFflex set cures this problem, allowing the gluon to behave in better
agreement with other public sets. It has to be noticed however that the shape of the gluon at small
x is very sensitive also to the dataset and the theory ingredients, and so different sets may differ
visibly.

Related to this last observation, we have also considered fits in which theoretical predictions
are supplemented by small-x resummation. In these fits we expected the gluon to be more in
agreement among different sets, because the inclusion of the resummation stabilises the fit in the
small-x region and predicts a gluon that tends to rise more steeply. We have indeed found a good
agreement between various resummed fits on the market and our QSPDF(flex) fit, as well as a
HERAPDF-like fit. The inclusion of small-x resummation also produces a reduction of the χ2, in
agreement with previous studies [47, 48, 71].
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Finally, we have made some considerations on how our results impact the statistical model
itself. The success of the QSPDF(flex) parametrization in describing HERA data can be seen as a
sort of validation of the model. Also the fact that QSPDFflex predicts a positive d̄ ´ ū distribution
even if the HERA data do not contain enough information to separate these flavours can be seen
as an indication that the model is reliable. We have verified that this prediction is stable upon
inclusion of additional data at high x. Moreover, if we were to trust the model, then it would allow
to describe with the very same parameters polarized PDFs as well. We have verified that our fit to
unpolarized data produces polarized PDFs that are remarkably similar to those fitted from data,
and the simple inclusion of the triplet sum rule in the fit further improves the agreement. This
shows that it is probably possible to simultaneously fit with the same parameters both unpolarized
and polarized data, and we leave this investigation to future work.

The QSPDF and QSPDFflex sets at NNLO and NNLO plus small-x resummation can be
downloaded at the address l.infn.it/qspdf. These sets should not be regarded as general-purpose
PDFs, because they have been obtained using a reduced dataset and the parametrization adopted
is very minimal. When trying to fit more data, including other DIS experiments and collider (LHC)
measurements, it is very likely that the very simple parametrizations proposed, even the QSPDFflex
one, will not be able to achieve a satisfactory fit quality. To get a competitive fit, it is possible to
improve the parametrization in three respects. First, it is possible to parametrize the strange PDF
independently, using e.g. the formulation of Ref. [101]. Second, we can give more flexibility to the
high-x region by using less constrained values for the CÖ

q parameters, e.g. introducing the so-called
“transverse potentials”, Eq. (2.5). Third, we can further model the small-x region by introducing
polynomials in log x [71] as we did for the gluon, Eq. (5.1), also for the quark PDFs. Including also
polarized data in the fit, such as those from RHIC, further requires an extension of the model to
introduce a polarized gluon PDF. We leave the study of these extensions to future work.
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A Implementation of the sum rules

The parameters of the fit are constrained by the quark number and momentum sum rules:

2 “

ż 1

0
dx uvpx, µ2

0q, (A.1)

1 “

ż 1

0
dx dvpx, µ2

0q, (A.2)

1 “

ż 1

0
dx xrgpx, µ2

0q ` upx, µ2
0q ` ūpx, µ2

0q ` dpx, µ2
0q ` d̄px, µ2

0q ` spx, µ2
0q ` s̄px, µ2

0qs. (A.3)

Usually, they are used to fix the normalization of uv, dv and the gluon respectively. However, the
parametrization Eq. (2.3) does not have an overall normalization factor for valence distributions,
making the implementation of the quark number sum rules non trivial.

The parametrization Eq. (2.3) for valence quarks has the form of the sum of two contributions,
one proportional to the parameter A and the other to Ā. Crucially, these two parameters are the
same for the up and the down quarks. Therefore, it is still possible to use the quark number sum
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rules Eqs. (A.1) and (A.2) to determine A and Ā, but in order to do so we have to solve the algebraic
system

ˆ

2
1

˙

“

ˆ

Ku K̄u

Kd K̄d

˙ˆ

A

Ā

˙

” K
ˆ

A

Ā

˙

(A.4)

with

Kq “

ż 1

0

dx

x

“

CÒ
q h`px; b, XÒ

q q ` CÓ
q h`px; b, XÓ

q q
‰

, (A.5)

K̄q “ ´

ż 1

0

dx

x

“

C̄Ò
q h`px; b̄, ´XÓ

q q ` C̄Ó
q h`px; b̄, ´XÒ

q q
‰

. (A.6)

The solution is given by

A “
1

detpKq
det

ˆ

2 K̄u

1 K̄d

˙

Ā “
1

detpKq
det

ˆ

Ku 2
Kd 1

˙

. (A.7)

In order to implement this procedure in xFitter, we have introduced a new PDF decomposition in
which the valence parts of quarks and antiquarks (those proportional to A and Ā respectively) are
considered as independent PDFs, as well as the diffractive (sea) term. After the determination of A

and Ā according to Eq. (A.7), they are combined together to form the parametrization for valence
quarks and antiquarks as in Eq. (2.3).

The sum rules integrals are computed numerically in xFitter. In particular, the integral is
divided into two regions, one in 0.1 ă x ă 1 which is sampled linearly, and one in 10´6 ă x ă 0.1
which is sampled logarithmically. Therefore, the generic sum rule integrals are approximated as

ż 1

0
dx xN fpx, µ2

0q »

ż 1

x0

dx xN fpx, µ2
0q pN “ 0, 1q (A.8)

with x0 “ 10´6. The neglected region below this value is usually harmless. However, if the integrand
is divergent and not integrable in x “ 0, the approximation still gives a finite value thanks to the
cutoff x0. This may be problematic, as the non-integrability is a manifestation of bad values of the
parameters of the PDFs, which must be avoided in the fit. The divergence of the integral is thus a
way to put barriers to some parameters.

To this end, it is important to improve the approximation Eq. (A.8) by adding the contribution
below x0. We assume that all PDFs at small x have a power like behaviour

fpx, µ2
0q

xÑ0
„ α xβ , (A.9)

which is the case for most parametrizations, including the ones we use in this work. The integral
from 0 to x0 “ 10´6 can then be approximated by

ż x0

0
dx xN fpx, µ2

0q » α
xβ`N`1

0
β ` N ` 1 .

We have implemented this additional contribution in xFitter, with a numerical extrapolation of
β and α. In this way, values of β ď ´1 ´ N become also practically forbidden, thus providing the
aforementioned barriers to the proper parameters. Effectively, for the parametrization of Sect. 2,
this constraint forces the following conditions on the b parameters: b, b̄, bg ą 0 and b̃ ą ´1.
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