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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald The rare kaon decay 𝐾+ → 𝜋+𝓁+𝓁− offers insights into Standard Model (SM) physics and beyond. Driven by 
vector form factor in the SM, it can also probe non-standard contributions. In this letter we study the scalar 
contribution, 𝑓𝑆 . Using differential decay width and Forward-Backward Asymmetry we propose a simultaneous 
fit to vector and scalar contributions which is necessary for a consistent analysis. Novel bounds on |𝑓𝑆| are 
presented for the first time through a reinterpretation of the E865, NA48/2, and NA62 experimental results. The 
analysis results in the most precise bound 𝑓𝑆 < 7.9 × 10−6 at 90% confidence level.
1. Introduction

Kaon physics has been fundamental for our understanding of the 
structure of weak interactions: discovery of the GIM mechanism, 𝐶𝑃 vi-

olation, 𝑃 violation, etc. There are several ongoing efforts for a deeper 
understanding of rare kaon decays: They include processes like 𝐾𝐿 →
𝜋0𝜈�̄�, 𝐾+ → 𝜋+𝜈�̄� [1,2], and 𝐾+ → 𝜋+𝓁+𝓁− among others. The inter-

est in semi-leptonic 𝐾+ → 𝜋+𝓁+𝓁− decay is to extract short-distance 
information: lepton flavour universality violation test [3–8] and other 
short-distance probes like 𝑃 and 𝐶𝑃 violation [9,10]. Chiral Perturba-

tion Theory (ChPT) [10–17] is the appropriate theory framework for 
describing this decay. Within the Standard Model (SM), this decay at 
short distances is induced at the loop level and predominantly occurs 
via single virtual photon exchange. Due to its suppression in the SM it 
offers a glimpse into different types of short-distance physics.

In this letter, we study the scalar contribution to 𝐾+ → 𝜋+𝓁+𝓁−. It 
also affects processes such as 𝐾𝐿,𝑆 → 𝜇+𝜇−, 𝐾𝐿 → 𝜋0𝓁+𝓁− in addition 
to 𝐾+ → 𝜋+𝓁+𝓁−. The existing datasets from the electron and the muon 
channels [18–20] and the ongoing measurements of 𝐾+ → 𝜋+𝜇+𝜇− de-

cay at NA62 [21] make it an exciting probe to test the limits of the scalar 
operators. We address the fact that the only existing bound on scalar 
contributions from the E865 experiment from 1999 is derived from 
the branching ratio. While the Forward-Backward Asymmetry (𝐴FB) in 
these decays vanishes in the SM [13,22–24], the presence of scalar in-
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teractions introduces non-zero 𝐴FB, making it a powerful probe of New 
Physics. Typical scenarios that can give rise to such effects have been 
studied for example in [25–27]. Although 𝐴FB serves as a robust probe, 
its effectiveness can be influenced by the lepton mass, leading to sup-

pression in the electron mode, where direct measurements are currently 
lacking. Alternatively, the branching ratio (BR) offers another avenue 
for investigating scalar interactions. While slightly less sensitive than 
𝐴FB in the muon channel, the branching ratio serves as a primary probe 
in the electron channel, providing insights into the presence of scalar 
contributions [18].

We propose a more thorough investigation into the scalar contribu-

tion by conducting a simultaneous fit to both the vector and the scalar 
contributions using the differential decay width bins, both when the 𝐴FB
measurement is included or not. Specifically, when conducting a com-

bined investigation with 𝐴FB, which only exhibits non-zero values in 
the presence of scalar contribution, the inclusion of the scalar form fac-

tor in the fit is mandatory in order to have a consistent study. We obtain 
bounds on scalar contributions from the different available experimen-

tal datasets.

After discussing the framework in section 2, in section 3 through the 
examination of the 𝐴FB and branching ratio, we find an estimate of the 
sensitivity to scalar contributions. In section 4 we obtain a bound from 
our proposed fit to data where in addition to the vector contributions, 
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scalar contributions are taken into account and we summarise our re-

sults in section 5.

2. Framework

The amplitude of the 𝐾+ → 𝜋+𝓁+𝓁− decay, when taking into ac-

count only the vector and scalar interactions, as denoted by the form 
factors 𝑓𝑉 , and 𝑓𝑆 respectively, can be written as [18,28]

 =
𝛼𝐺𝐹

4𝜋
𝑓𝑉 (𝑧)𝑃𝜇𝓁𝛾𝜇𝓁 +𝐺𝐹𝑀𝐾𝑓𝑆𝓁𝓁 , (1)

where 𝑃 = 𝑝𝐾 +𝑝𝜋 and 𝑞 = 𝑝𝐾 −𝑝𝜋 , with 𝑝𝐾 and 𝑝𝜋 the momenta of the 
kaon and the pion, respectively and the dilepton invariant mass squared 
can be written as 𝑞2 = 𝑧𝑀2

𝐾
.

Given the above amplitude, the double-differential decay width, in 
terms of the vector and scalar form factors, is expressed as [23,24]

𝑑2Γ
𝑑𝑧𝑑cos𝜃

=
𝐺2

𝐹
𝑀5

𝐾

28𝜋3 𝛽𝓁 𝜆1∕2(𝑧) ×
{||𝑓𝑉

||2 𝛼2

16𝜋2 𝜆(𝑧)(1 − 𝛽2𝓁 cos
2 𝜃) (2)

+ ||𝑓𝑆
||2 𝑧𝛽2𝓁 +Re(𝑓 ∗

𝑉
𝑓𝑆 )

𝛼 𝑟𝓁

𝜋
𝛽𝓁𝜆

1∕2(𝑧) cos𝜃
}
,

where 𝜃 is the angle between the negatively charged lepton and the 
kaon in the dilepton rest frame, 𝑟𝓁 = 𝑚𝓁∕𝑀𝐾 , 𝑟𝜋 = 𝑚𝜋∕𝑀𝐾 , 𝛽𝓁 =√

1 − 4𝑟2𝓁∕𝑧, and 𝜆(𝑧) ≡ 𝜆(1, 𝑧, 𝑟2
𝜋
) is the Källèn function.

The familiar 𝑧-spectrum is recovered by integrating over cos 𝜃

𝑑Γ
𝑑𝑧

= 2
3
𝐺2

𝐹
𝑀5

𝐾

28𝜋3 𝛽𝓁𝜆
1∕2(𝑧)×

{||𝑓𝑉
||2 2 𝛼2

16𝜋2 𝜆(𝑧)
(
1+2

𝑟2𝓁
𝑧

) ||𝑓𝑆
||2 3𝑧𝛽2𝓁

}
,

(3)

which upon further integration with respect to 𝑧 yields the branching 
ratio.

Another interesting observable is obtained by considering the an-

gular behaviour of the decay, with the Forward-Backward Asymmetry 
defined as

𝐴FB(𝑧) =
∫ 1
0

(
𝑑Γ

𝑑𝑧𝑑cos𝜃

)
𝑑cos𝜃 − ∫ 0

−1

(
𝑑Γ

𝑑𝑧𝑑cos𝜃

)
𝑑cos𝜃

∫ 1
0

(
𝑑Γ

𝑑𝑧𝑑cos𝜃

)
𝑑cos𝜃 + ∫ 0

−1

(
𝑑Γ

𝑑𝑧𝑑cos𝜃

)
𝑑cos𝜃

. (4)

Considering Eq. (2), we have [23,24]

𝐴FB(𝑧) =
𝛼𝐺2

𝐹
𝑀5

𝐾

28𝜋4 𝑟𝓁 𝛽2𝓁(𝑧)𝜆(𝑧)Re
(
𝑓 ∗
𝑉
𝑓𝑆

)/(
𝑑Γ(𝑧)
𝑑𝑧

)
, (5)

which is non-zero only in case vector and scalar contributions are simul-

taneously present.

In the SM, the 𝐾+ → 𝜋+𝓁+𝓁− decay is completely governed by the 
vector form factor 𝑓𝑉 (𝑧) which can be described as a linear contribution 
in 𝑧 accompanied by the unitarity loop correction [10],1 expressed as

𝑓𝑉 (𝑧) = 𝑎+ + 𝑏+𝑧+ 𝑉 𝜋𝜋(𝑧). (6)

Here, 𝑉 𝜋𝜋(𝑧) accounts for the pion loop contribution calculated at (𝑝6)
in ChPT [10]. The parameters 𝑎+ and 𝑏+ are considered as phenomeno-

logical constants, typically extracted from experimental data. Neverthe-

less, recent advancements have been achieved in theoretical calculations 
concerning these parameters (e.g., see [17,32,33]). On the other hand, 
the scalar form factor is highly suppressed and negligible in the SM. 
Regarding the available data, precise measurements for the differential 
decay width distributions of 𝐾± → 𝜋±𝓁+𝓁− decay have been conducted 

1 The vector form factor has been described with several formulations, from a 
simplistic model with only a linear parameterisation, 𝑓𝑉 = 𝑓0(1 + 𝛿𝑧), to more 
complicated models [10,29–31]. In this study, for 𝑓𝑉 we consider the “Linear + 
Chiral” description from Ref. [10] as given in Eq. (6), where 𝑓𝑉 here in terms 
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nce the initial observation of 𝐾+ → 𝜋+𝑒+𝑒− [34] at CERN. In the elec-

on channel, the most events have been observed by BNL-E865 [18]

d NA48/2 [19], while for the muon channel, there are results from 
A48/2 [20] and more recently NA62 [21].

To investigate scalar contributions we consider both the branching 
tio and the Forward-Backward Asymmetry. The latter is clearly depen-

nt on scalar contributions, where a non-vanishing 𝐴FB necessitates 
n-zero scalar contributions. However, due to its proportionality to 
e lepton mass (𝑟𝓁 = 𝑚𝓁∕𝑀𝐾 ), it is highly suppressed in the electron 
annel. This suppression does not apply to the branching ratio which 
 obtained by integrating the differential decay width, Eq. (3), over 𝑧. 
ction 3 provides further elaboration on the approach.

A more concrete analysis assuming the presence of scalar contribu-

ons in addition to the vector form factors is given in section 4. This 
oice is strongly motivated by the possible non-zero value of 𝐴FB. The 
easurement of the 𝐴FB makes it mandatory to have a three param-

er fit in general. While an experimental measurement of the 𝐴FB is 
tremely difficult owing to the electron mass suppression, we can ex-

act a more consistent bound on the scalar contribution by means of a 
ree-parameter fit.

 Branching ratio vs. forward-backward asymmetry

Historically, the scalar contributions were constrained by the branch-

g ratio [18] and 𝐴FB [20]. The muon mode enjoys a model-indepen-

nt measurement of the branching ratio. In this case, we have two in-

pendent sources for estimating the sensitivity on scalar contributions: 
The measured branching ratio, 2) The measurement of 𝐴FB. On the 

her hand, there is no model-independent measurement of the branch-

g ratio for the electron mode. The existing method for measuring the 
anching ratio for the electron mode is by assuming a model-specific 
ctor form factor (see footnote 1). There is only the branching fraction 
hich allows for a measure of the sensitivity of the scalar contributions 
d there are no measurements on 𝐴FB.

For the branching ratio, to constrain 𝑓𝑆 , we evaluate the permis-

ble contributions from scalar interactions at 90% confidence level 
L), considering the uncertainty in the measured branching ratio of 
+ → 𝜋+𝓁+𝓁−. Regarding 𝐴FB, we examine the experimental results 
d derive the corresponding 90% CL upper bound on 𝑓𝑆 employing 
e relation in Eq. (5). Experimental data for 𝐴FB is, however, as men-

oned before, only available for the muon channel. The bounds on 𝑓𝑆

at we derived from both the BR and the 𝐴FB measurements are pre-

nted in Table 1, considering various experimental measurements. In 
ch panel of Table 1, the second column corresponds to the experimen-

l value, while the last column denotes the upper bound on |𝑓𝑆 | that 
e obtain.

Notice that the bound from the NA62 measurement of 𝐴FB is approx-

ately seven times stronger than the one from the branching ratio as 
easured by the same experiment. However, it is important to note that 
is constraint may not apply to scenarios involving lepton flavour uni-

rsality violating scalar contributions. Regarding the electron mode, 
rrent constraints are solely derived from the BR measurements, util-

ing either the NA48/2 [19] or E865 [18] results. Our result is in 
reement with the upper bound given by the E865 experiment [18]. 
hile the NA62 collaboration has yet to measure the electron mode, 
suming a similar enhancement as observed in the muon channel com-

red to NA48/2 (a factor of 3), the upper limit for |𝑓𝑆 | in the electron 
annel could potentially decrease to ∼ 4 × 10−5.

 Bound on 𝒇𝑺 from three-parameter fit

The experimentally determined values of 𝑎+ and 𝑏+ are obtained by 
alysing 𝑑Γ∕𝑑𝑧 data, assuming only vector contributions. It is possible 
 extend this analysis to include scalar contributions and re-evaluate 
e fit for 𝑎+, 𝑏+, and 𝑓𝑆 . For the muon channel, measurements of 𝐴FB
can also be incorporated into the analysis.
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Table 1

Bound on |𝑓𝑆 | at 90% CL, from 𝐴FB and the uncertainty of the branching ratio. In each panel, 
the last column corresponds to the upper bound obtained from the experimental measurement 
of the column to its left. For the electron channel, there are no measurements available for 
the Forward-Backward Asymmetry.

(𝐾+ → 𝜋+𝜇+𝜇−) (𝐾+ → 𝜋+𝑒+𝑒−)

NA48/2 exp |𝑓𝑆 | < E865 exp |𝑓𝑆 | <
BR (9.62 ± 0.21) × 10−8 1.0 × 10−4 BR (2.988 ± 0.040) × 10−7 6.8 × 10−5
𝐴FB (−2.4 ± 1.8) × 10−2 4.2 × 10−5 𝐴FB – –

NA62 exp |𝑓𝑆 | < NA48/2 exp |𝑓𝑆 | <
BR (9.16 ± 0.06) × 10−8 5.6 × 10−5 BR (3.14 ± 0.04) × 10−7 6.8 × 10−5
𝐴FB (0.0 ± 0.7) × 10−2 7.7 × 10−6 𝐴FB – –

Fig. 1. The 90% and 95% CL upper bound on |𝑓𝑆 | obtained by our analysis of different experimental datasets. Left: bound from BR or 𝐴FB as given in Table 1. 
Right: bound from 3-dim. fit to 𝑓𝑉 and 𝑓𝑆 as given in Table 2. The vertical black line in the left plot corresponds to the only existing experimental upper bound from 
E865 [18].
Table 2

Upper bound for |𝑓𝑆 | at 90% CL, from the three 
parameter fit to 𝑎, 𝑏 and 𝑓𝑆 using various datasets. 
For the relevant inputs regarding the theoretical 
calculations we have considered PDG 2022 [42], 
and the external parameters 𝛼+, 𝛽+ are taken 
from [43], in agreement with NA62 [21].

𝑑Γ∕𝑑𝑧 𝑑Γ∕𝑑𝑧+𝐴FB

𝐾 → 𝜋𝑒𝑒 |𝑓𝑆 | < |𝑓𝑆 | <
E865 8.0 × 10−5 –

NA48/2 4.0 × 10−5 –

𝐾 → 𝜋𝜇𝜇 |𝑓𝑆 | < |𝑓𝑆 | <
NA48/2 10.0 × 10−5 4.1 × 10−5
NA62 9.0 × 10−5 7.9 × 10−6

In the previous section, it is practically assumed that the size of |𝑓𝑆 | is small compared to the vector form factor. In this section with a 
three-parameter fit, we abandon this assumption to obtain a more solid 
evaluation of the scalar contributions.

In Table 2 we give the 90% CL upper bound on |𝑓𝑆 |, obtained from 
the three-parameter fit to 𝑎+, 𝑏+, and 𝑓𝑆 with the different datasets [35–

38]. The 𝑑Γ∕𝑑𝑧 data of the NA48/2 and NA62 measurements are avail-

able on the HEPData repository [39–41]. The second (third) column 
corresponds to the fit considering 𝑑Γ∕𝑑𝑧 bins, while excluding (includ-

ing) 𝐴FB. When 𝐴FB is not included, the results are similar to what one 
gets from the branching ratio in the previous section. This is expected as 
BR effectively encapsulates the information from the differential decay 
width bins. Nonetheless, it would be interesting to see experiments also 
explore a three-parameter model, including 𝑓𝑆 in addition to 𝑎+ and 𝑏+
when analysing the data. On the other hand, the bound from the fit in-
3

cluding both the 𝑑Γ∕𝑑𝑧 and 𝐴FB (last column in Table 2) is very similar 
to the bound obtained from only 𝐴FB (as given in Table 1). This is due 
to the fact that the bound from 𝐴FB is far stronger than the decay width 
and adding the latter does not offer much further information. The con-

sistency between the fit and the constraints from the preceding section 
on 𝑓𝑆 is reassuring and justifies the assumption of the dominance of the 
vector form factor made in the previous section.

5. Summary

In this letter, we analysed the data on the 𝐾+ → 𝜋+𝓁+𝓁− decay and 
constrained scalar contributions, 𝑓𝑆 . Using BR or 𝐴FB we obtain 90% 
upper bounds on 𝑓𝑆 as given in Table 1. The shortcoming of this simple 
approach is the assumption of the relative smallness of 𝑓𝑆 compared 
to 𝑓𝑉 . For a concrete and precise bound on 𝑓𝑆 , we proposed a new 
approach to analyse the experimental data via a 3-dimensional simul-

taneous fit to 𝑓𝑉 and 𝑓𝑆 (Table 2). This method is necessary to have a 
consistent analysis of the data, especially given the direct measurement 
of 𝐴FB. It is particularly crucial if a non-zero 𝐴FB is measured, as is the 
case for the NA48/2 measurement of the muon mode.

A comparison between the two methods of sections 3 and 4 is de-

picted in the left and right plots of Fig. 1, respectively. The only upper 
bound available in the literature, which is obtained using the method of 
section 3 via BR, is indicated by the vertical black line in the left plot 
as given by [18]. All the bounds represented by the colored bars are de-

rived in this paper through the analysis of various experimental datasets. 
The slight difference of our upper bound obtained via the BR result of 
the E865 [18] experiment compared to the value given in Ref. [18] is 
expected due to updated input parameters.

The most precise limit on 𝑓𝑆 that we obtain is 7.9 × 10−6 at 90% CL 
which is about one order of magnitude stronger than the bound given 
in Ref. [18] by the E865 experiment. Our upper bound arises from the 
3-dimensional fit to NA62 data when 𝐴FB is included, highlighting the 

potential of the latter to probe scalar interactions. It would be interesting 
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to analyse 𝐴FB in smaller bins, as it could enhance our ability to further 
scrutinise scalar contributions. As the NA62 collaboration is planning 
to have an analysis of the full dataset of the 𝐾+ → 𝜋+𝓁+𝓁− decay, this 
consideration will be particularly pertinent to further constrain the size 
of the scalar contributions.
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