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Pulsar timing array (PTA) observations hinted towards the existence of a stochastic gravitational wave
background (SGWB) in the nHz frequency band. Still, the nature of the SGWB signal cannot be
confidently inferred from current data, and the leading explanation invokes mergers of supermassive black
holes. If confirmed, such discovery would not only represent a turning point in our understanding of
astrophysics, but it may severely limit the capability of searching for additional cosmological sources in the
nHz frequency range. In this work, we build a simple framework to forecast the sensitivity of future pulsar
timing array configurations and assess the parameter estimation of SGWB, which could consist of several
contributions. We release the PYTHON code FASTPTA, implementing this framework and ready to use.
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I. INTRODUCTION

Pulsar timing array (PTA) experiments are unique probes
to study the gravitational-wave (GW) spectrum in the nano-
Hertz (nHz) frequency range. Recently, the results reported
by the NANOGrav [1,2], European Pulsar Timing Array
(EPTA) [in combination with Indian Pulsar Timing Array
(InPTA)] [3–5], Parkes Pulsar Timing Array (PPTA) [6–8],
and Chinese Pulsar Timing Array (CPTA) [9] collabora-
tions hinted towards the existence of a common spectrum
of a stochastic nature, with around ð2 ÷ 4Þσ significance for
a Hellings-Down (HD) angular correlation, consistent with
the quadrupolar nature of GWs in general relativity [10].
All collaborations reported the signal could be explained

by a stochastic GW background (SGWB) with a preference
for blue-tilted spectrum of energy density ΩGWðfÞ ∝ fnT,
with nT ≃ 2, and large uncertainties varying among differ-
ent collaborations. The astrophysical explanation of this
signal would rely on the incoherent superposition of
GW signals from a population of inspiraling supermassive
black hole binaries (SMBHBs) on circular orbits, whose
frequency spectrum is characterized by a scaling law

ΩGW ∝ f2=3 [11]. Nevertheless, orbital eccentricity and
stellar environment could affect the binary evolution that is
coupled to the statistical fluctuation in the distribution of
SMBHBs, whichmay play an important role and can lead to
modified spectra (see, e.g., [12–21]).On the other hand,with
current data, it is still impossible to rule out a cosmological
explanation for the observed signal. The most studied
scenarios capable of producing a SGWB in the nHz
frequency range would be first-order phase transitions
[22–37], cosmic strings and domain walls [38–57], sca-
lar-induced GWs generated from primordial fluctuations
[58–82], tensor perturbations generated during inflation
(see, e.g., [83,84]), and many others (see also [85–91]).
Future observations will narrow down the range of models

compatible with the data. For example, the forecasted
sensitivity of futurePTAexperimentsmay improvebyvarious
orders ofmagnitude compared to the ones achievedbycurrent
experiments. Thiswill allowus to better understand thenature
of the dominant source ofGWB in the nHzwhile constraining
signals from new physics appearing with amplitude below
current sensitivity. Crucially, the presence of the currently
observed foregroundwill greatly limit the constraining power
of future observations on subdominant SGWB. In other
words, regardless of the signal origin, currently hinted
SGWB will constitute an unavoidable source of foreground
noise when searching for subdominant contributions.
In this work, we aim to build a simplified framework

capable of reliably estimating future PTA sensitivity with-
out the need for expensive data simulation and analyses.
We will remain agnostic on the nature of the signal, which
we assume to be an isotropic, stationary SGWB charac-
terized by the maximum likelihood power-law model
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resulting from the analysis of the recent PTA datasets [4],
and we will model noises based on the currently observed
pulsars. We then forecast future PTA uncertainties and
describe how they will shrink both with a longer obser-
vation time and a larger number of pulsars. Finally, we
will forecast the sensitivity to subdominant contribution
to the SGWB, considering simple models as a proof of
concept. Detailed analysis considering motivated cosmo-
logical SGWB, coming from new physics would be
presented elsewhere.
The paper is organized as follows. In Sec. II, we

discuss how we build the PTA noise sensitivity, following
Ref. [92] and with some additional simplifying assump-
tions. In Sec. III we describe the PTA data simulations we
adopt to validate our proposed methodology against state-
of-the-art pipelines for the PTA data analysis. In Sec. IV
we report the results while presenting conclusions and
outlook in Sec. V.
At the repository linked in Ref. [93], we release the code

FASTPTA readily usable to estimate the sensitivities and the
measurement uncertainties with future PTA configuration,
with longer observation times and a simulated larger set of
pulsars, which also features the possibility of including
additional subdominant GWB contributions.

II. BUILDING THE PULSAR TIMING
ARRAY SENSITIVITY

In this section, we describe how, following
Refs. [92,94–96], we build the PTA sensitivity curves
based on a few simplifying assumptions. In the following
sections, we show that this framework reproduces meas-
urement uncertainties estimated using current data (EPTA
DR2, in particular, [3]) and forecasted from mock datasets
generated with state-of-the-art techniques.
As a starting point, we assume the combined PTA data

consists of residuals of time of arrivals (ToAs) dIðtÞ, where
the index I runs up the total number of pulsars observed
1;…; Np. Moreover, we will assume the GW signal
and noise to be stationary1 and define the Fourier domain
data as

d̃ki ¼
Z

Tobs=2

−Tobs=2
dIðtÞe−i2πfktdt: ð1Þ

Given the finite duration of the data stream, we adopt a
finite set of frequencies for the Fourier basis, fk ¼ k=Tobs,
starting from the inverse of the observation time Tobs and
going up to the Nyquist frequency. We assume that the data
contains the stochastic GW signal s̃kI and noise ñkI , as

d̃kI ¼ s̃kI þ ñkI , which we will further assume to be Gaussian
with zero mean hs̃kI i ¼ hñkI i ¼ 0.
Given the aforementioned assumptions, one can write

down the full covariance matrix, including contributions
from both intrinsic pulsar noise, measurement process, and
GWB as

CIJ ¼ Cn;IJ þ Ch;IJ: ð2Þ

In the following, wewill assume the noise contribution to the
covariant matrix to be dominated by the diagonal terms in
the pulsar indices, i.e., to be uncorrelated among different
pulsars. This allows us to approximate Cn;IJ ¼ δIJPn;I .
Additionally, the GW contribution presents the unique HD
correlation pattern to be discussed in Sec. II B.
Transmission function: The signal is extracted from

timing residuals built by subtracting the expected time of
arrival computed using the timing model. Fitting for the
parameters entering the timing model (i.e., describing each
pulsar intrinsic rotation frequency, its derivative, proper
motion, etc.) results in a polynomial suppression of sensi-
tivity at low frequencies.2 Crucially, the drastic decrease only
happens around the frequency 1=Tobs. This suppression of
signal can effectively be described by a transmission function
scaling as 1=f6 (for a quadratic spin-downmodel) below the
frequency of 1=Tobs [92]. We model this transfer function as

T ðfÞ ≃ ½1þ 1=ðfTobsÞ�−6: ð3Þ

An additional loss of the sensitivity is induced around
f ¼ 1=yr from fitting the sky position and the proper motion
and around f ¼ 2=yr due to parallax. This generates large
spikes in the sensitivity curve. Furthermore, if the pulsar is in
a binary system with a period that falls within the frequency
range, an additional dip in the transmission function will
appear due to the fitting of the orbital parameters. As these
losses typically appear at relatively high frequencies, wewill
neglect them in our estimates.

A. Noise model

Following the discussion in Ref. [92], we isolate a few
key features of the noise budget. For each pulsar, the noise
contribution comes schematically from

Noise budget ¼ WNþ RNþ DMþ SV; ð4Þ

defined as follows:

1In reality, we only need stationarity in the frequency band
relevant to the targeted stochastic GW signal. See conclusions for
a more comprehensive discussion of this point.

2Sensitivity to the GWs with frequencies below 1=Tobs can be
retained in delays compared to higher order spin-down terms of
the pulsar timing model (see, e.g., [97,98]).
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1. White noise

The time of arrival of the signal shows an overall white
noise (WN) due to the finite signal-to-noise ratio (SNR)
of the match filtering process adopted to extract them. It
appears as a flat contribution to the power spectra of timing
residuals. We characterize the white noise contribution for
each pulsar as PWN

I , where I is the index associated with
each pulsar. This is typically controlled by the parameters
EQUAD, ECORR, and EFAC in PTA analyses [2,4]. This
can be described by a time delay power spectrum

PWN
I ¼ 2σ2Δt; ð5Þ

where Δt is the inverse of the observing cadence and σ is
the rms timing uncertainty.

2. Red noise

The stochasticity in the pulsar’s rotation causes an
“achromatic” red noise (RN), which we model with a
power-law power spectral density (PSD). This noise is
independent of the frequency of the radio observation (hence
“achromatic”) and often dominates at low frequencies:

PRN
I ¼ ARN

I

�
f
fr

�
γRNI

; ð6Þ

where fr is a reference frequency often assumed to be 1/yr,
and the amplitude ARN

I and the spectral index γRNI is intrinsic
to each pulsar I.

3. Chromatic noise components (DM, SV)

Other important noise sources are temporal variations in
dispersion measure (DM) and scattering variations (SV).
Those components are chromatic and add time delays to
the ToAs as ∝ ν−2 (DM) and ∝ ν−4 (SV), where ν is the
observed radio frequency, and both are caused by the time-
varying electron column density in the interstellar medium
along the line of sight (see [99] and references therein). The
PSD for both noises is usually described by power-law
similar to Eq. (6) but with added chromaticity.
All in all, we can approximate the noise model as a white

noise contribution with the addition of a low-frequency red
power law (see, e.g., Ref. [100]) of the form

Pn;I ¼ PWN
I þ ARN

I

�
f
fr

�
γRNI þ PDM;SV

I ; ð7Þ

where we arbitrarily fix the reference frequency at fr ¼ fyr
and γRNI < 0. PDM;SV

I in the previous equation indicate the
possible presence of DM and SV terms, modeled as power-
laws analogously to Eq. (6), only present for some of the
pulsars. In this work, we have neglected the chromaticity
and treated DM and SVon an equal footing as achromatic
noise. The main reason is that there is still a significant

coupling between chromatic and achromatic noise compo-
nents in the currently observed data. We will rediscuss this
point in the concluding section.
As we will see, the simplified modeling summarized

above provides a sufficiently accurate description of current
sensitivity, allowing the reproduction of the uncertainties
obtained in current analyses. After validating this con-
struction, we will use this framework to forecast future
detector performance. In particular, we will investigate the
limit in which the currently observed SGWB dominates
over the experimental noise, in what is referred to as the
signal-dominated regime. This further motivates the sim-
plifying assumptions we made to describe the noise model.

B. Stochastic GW background model

The spin-2 perturbations of the metric can be expressed
in terms of plane GWs with frequency f, polarizations
fþ;×g, and propagation directions k̂ as

habðt; x⃗Þ ¼
Z

d2Ωk̂

Z
∞

−∞
df½h̃þðf; k̂Þeþabðk̂Þ

þ h̃×ðf; k̂Þe×abðk̂Þ�ei2πfðt−k̂·x⃗=cÞ; ð8Þ

where we introduced the polarization tensors eþ;×
ab ðk̂Þ, with

the two polarizations denoted P ¼ fþ;×g in the following.
We assume that the SGWB is stationary, unpolarized, and
isotropic, which means

hh̃Pðf; k̂Þh̃�P0 ðf0; k̂0Þi¼ 1

16π
ShðfÞδðf−f0ÞδPP0δ2ðk̂; k̂0Þ; ð9Þ

where ShðfÞ is the (one-sided) strain power spectral density
of the GWB. We define the SGWB energy density (per
logarithmic frequency interval) as (see, e.g., [101])

ΩGWh2 ¼
h2

ρc

dρGW
d log f

≡ 2π2f3

3H2
0=h

2
Sh; ð10Þ

where ρc=h2 ¼ 3ðH0=hÞ2=ð8πGÞ is the Universe critical
energy density and H0=h ¼ 1=ð9.78 GyrÞ is the Hubble
parameter today. In the last equality, we have associated
ΩGWh2 to the strain power spectral density Sh.
The timing residual response of the signal coming from

a pulsar I to the SGWB can be expressed in Fourier space
as [92]

Δ̃tIðfÞ ¼
Z

d2Ωk̂

X
P

RP
I ðf; k̂Þh̃Pðf; k̂Þ; ð11Þ

which is integrated over all propagation directions k̂. The
response function for a pulsar located at a distance D along
the direction p̂I is

FORECASTING THE SENSITIVITY OF PULSAR TIMING … PHYS. REV. D 110, 063022 (2024)

063022-3



RP
I ðf; k̂Þ≡ ϵPabðk̂Þ

i4πf
p̂I

ap̂I
b

1þ p̂I · k̂
ð1 − e−i2πfDð1þk̂·p̂IÞ=cÞ: ð12Þ

When dealing with PTA observations, it is easy to see that
the characteristic frequency f� ¼ ð2πD=cÞ−1 associated to a
distance D (which is of order kpc) turns out to be
f� ≃ 2 × 10−12 Hz. On the other hand, the minimum fre-
quency accessible in our analysis is limited by the obser-
vation time f ∼ 1=Tobs ∼ nHz. Therefore, one finds that for
PTA experiments fD ≫ 1, and the frequency-dependent
term in the response function (12) is well approximated by
RPðfÞ ∝ 1=f, while the rapidly oscillating piece is negli-
gible when averaged over the directions k̂ in (11).
It follows that the SGWB signal covariance matrix is

hΔ̃tIΔ̃t�Ji≡ 1

2
δðf − f0ÞCh;IJ ¼

1

2
δðf − f0ÞRIJShðfÞ; ð13Þ

where we introduced [92]

RIJ ¼ χIJ ·RðfÞ½T IðfÞT JðfÞTIJ=Tobs�1=2; ð14Þ

and we conveniently defined the frequency dependent,
sky-averaged, quadratic response function RðfÞ≡
1=12π2f2. The first geometrical factor is the well-known
HD correlation pattern as a function only of the angular
separation between pulsars as required by symmetries
(see, e.g., [102]), discussed below. In contrast, the time-
dependent factor is introduced to account for each pulsar
transmission function as well as the individual observation
time of each pulsar TI. This is because we can only include
off-diagonal components correlating signals between
different pulsars for an effective overlapping time defined
as TIJ ¼ min½TI; TJ�.

1. The Hellings-Downs correlation

We introduced the HD function [10] for a pair of pulsars
separated by an angle ζIJ ≡ arccosðp̂I · p̂JÞ, which takes
the analytic expression

χIJ ¼
1

2
þ 3

2
ξIJ

�
ln ξIJ −

1

6

�
þ 1

2
δIJ; ð15Þ

where ξIJ ≡ ð1 − cosðζIJÞÞ=2.
To estimate the sensitivity to the HD angular correlation

function, it is convenient to decompose it on a suitable
basis. Following Ref. [3], we adopt the following
templates:
(1) Binned HD function: we model the correlation

function as a step-wise constant over n bins in the
angular variable ξIJ. This takes the form

χIJ ¼
Xn−1
i¼0

biΘðζIJ − ζiÞΘðζiþ1 − ζIJÞ; ð16Þ

where the bins in the angular variables are equally
spaced ζi ¼ iπ=n.3 We also introduced the Heavi-
side theta function Θ. We impose Gaussian priors on
the coefficients bi with width σbi ¼ 1.

(2) HD expansion in Legendre polynomials: following
[3,103], we expand the HD function as

χIJ ¼
Xn
l¼0

alPlðcos ζIJÞ: ð17Þ

Using the standard normalization of the Legendre
polynomials, the coefficients are found by [103,104]

al ¼ 2lþ 1

2

Z
1

−1
χHDðxÞPlðxÞdx

¼ 3

2

ð2lþ 1Þ
ðlþ 2Þðlþ 1Þlðl − 1Þ : ð18Þ

for l ≥ 2, and a0 ¼ a1 ¼ 0. We will estimate the
sensitivity to the HD curve by constraining the
expansion parameters al. We impose priors on al
to be Gaussian with width σal ¼ 1.

2. Effective sensitivity

We compute the SNR by

SNR2 ≡X
fk

½C−1
IJ C

−1
KLRJKRLI�S2h; ð19Þ

where, here and throughout the work, we implicitly assume
Einstein’s summation convention on the pulsar indices
in capital letters. It is instructive to define an effective
sensitivity, as [92]

SeffðfÞ ¼ ðC−1
IJ C

−1
KLRJKRLIÞ−1=2; ð20Þ

in such a way that the SNR computation takes the familiar
form SNR2 ¼ P

kðSh=SeffÞ2 ¼ Tobs

R
dfðSh=SeffÞ2.

In the weak signal limit (which is in practice the limit in
which RSh ≪ Pn), one can expand the correlation matrix
above to find

SeffðfÞ ¼
�X

I≠J

TIJ

Tobs

T IðfÞT JðfÞχ2IJ
Pn;IðfÞPn;JðfÞ=R2ðfÞ

�−1=2
; ð21Þ

which includes contributions from the Hellings and Downs
factors χIJ and the individual pulsar strain-noise power
spectral densities. This corresponds to the result of
Ref. [92] and shown in Refs. [105,106] to report current
PTA sensitivities. As we will see, when considering future

3Notice that for a small number of pulsars, a sensible choice
would be to divide the angular range unevenly and choose bins
containing an equal number of pulsar pairs [3].
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PTA datasets (including longer observation times and a
larger number of pulsars), it is important to adopt the full
expression for the effective sensitivity to go beyond the
weak signal approximation. We report examples of future
effective sensitivity, in the presence of the currently
observed GW background in Fig. 2 in the next section.

C. Likelihood function and parameter estimation

The log-likelihood for Gaussian and zero mean data d̃k,
with k running over frequencies fk, described only by their
variance, dubbed CIJðfk; θÞ, can be written as [107,108]

− lnLðd̃jθÞ
¼ const:þ

X
k;IJ

½ln ½CIJðfk;θÞ�þ d̃kIC
−1
IJ ðfk;θÞd̃k�J =Tobs�;

ð22Þ
which is also known as Whittle likelihood. This likelihood
function for θ corresponds to the probability of the data d̃
given θ, the signal model parameters. We note the absence
of a factor of 2 from the likelihood definition coming from
our adoption of positive frequencies only.

1. Fisher information matrix estimates

Here we briefly summarize the main ingredients of
the Fisher information matrix (FIM) formalism, which is
often used in the limit of large SNR to assess parameter
uncertainties.
The FIM Fαβ is defined as

Fαβ ≡ −
∂
2 logL
∂θα∂θβ

����
θ¼θ0

¼
X
k

Tr

�
C−1 ∂C

∂θα
C−1 ∂C

∂θβ

�
θ¼θ0

;

ð23Þ

where, θ0 represents the maximum likelihood estimator of
model parameters, determined by imposing

∂ logL
∂θα

����
θ¼θ0

∝
X
k

∂C
∂θα

½C−1 − C−1d̃kd̃k�C−1=Tobs� ¼ 0;

ð24Þ
which is solved by Cðfk; θ0Þ ¼ d̃kd̃k�=Tobs. In practice, the
discrete sum over finite frequencies can be replaced with a
continuous integral over the frequency range. Keeping all
indices fully expressed, one obtains

Fαβ ≡
X
fk

C−1
IJ C

−1
KL

∂ðRJKShÞ
∂θα

∂ðRLIShÞ
∂θβ

: ð25Þ

Finally, the covariance matrix Cαβ, is obtained by inverting
the FIM, from which one can estimate uncertainties as
σα ≡

ffiffiffiffiffiffiffiffi
F−1
αα

p
.

2. Monte Carlo Markov chain analyses

Given that the FIM is an unreliable estimator in the low
SNR limit, where the validity of the Gaussian approxima-
tion is expected to degrade, we will test the FIM results
with full-fledged Bayesian parameter estimation. For this
purpose, we simulate frequency domain data d̃k ≡ d̃ðfkÞ,
where k indexes the frequencies within the detector
sensitivity range. We generate Gaussian realizations for
the signal and all noise components, with zero mean
and variances defined by their respective power spectral
densities. The parameter estimation is then performed by
running a Monte Carlo Markov chain using EMCEE [109]
with uninformative priors on signal parameters.

III. SIMULATING FUTURE PULSAR TIMING
ARRAY NETWORKS

To test our method, we compare to currently available
datasets, while we also propose to simulate future gen-
eration datasets. In the upcoming years, the Square
Kilometer Array (SKA) will be a central protagonist among
PTA collaborations [110]. At the moment, PTA datasets are
limited by radiometer noise. The SKA will provide high-
precision pulsar timing measurement with uncertainties
below ∼100 ns [110], making it roughly 10 times better
than current generation telescopes [111]. With a reduction
of the white noise at relatively high frequencies, it also
comes with a better determination of the RN, relevant at
low frequencies. For our purposes, we will simulate two
mock datasets:
(1) An EPTA-like with 50 pulsars and 20 yr observa-

tions. We will denote this as EPTA20 in the rest of
the paper.

(2) A SKA-like with 50 pulsars and 10 yr observations.
We will denote this configuration as SKA10.

A. Fake PTA data and time-domain Bayesian analysis

1. Time domain representation

As mentioned in Sec. II, we are dealing with the timing
residuals obtained by fitting and subtracting the timing
model from observed pulses’ ToAs. The residuals from all
pulsars are concatenated in a single array forming PTA data
set d⃗ ¼ ½d1ðtÞ; d2ðtÞ;…; dNpulsars

ðtÞ�. We expect that the
residual errors in fitting the timing model parameters are
small and could be approximated by a linear model

d0I → dI −
X
k

αkM⃗Ik; ð26Þ

whereMIk is a design matrix (representing the derivative of
the timing model with respect to timing model parameters),
and αk are residual timing model errors, which we consider
as random variables. We have already used the design
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matrix in the frequency domain while building the trans-
mission function.
For the description of the noise components, we use

Gaussian process representation (see [112] for a detailed
description) with a discrete Fourier basis fi ¼ i=TI with
i ¼ ½1;…; Nf� as the eigenfunctions:

nIðtÞ ¼
X
i

Xi;I cosð2πfitÞ þ Yi;I sinð2πfitÞ; ð27Þ

where Xi;I; Yi;I ∼N ð0; SðfiÞΔfiÞ, SðfÞ the one-sided PSD
of the noise and Δfi ¼ fiþ1 − fi. The weights Xi;I; Yi;I for
the pulsar intrinsic noise components are uncorrelated
among the pulsars. For GWB signals, they are spatially
correlated between pulsars I and J and are distributed as
a Npulsars dimensional multivariate normal distribution

X⃗i; Y⃗i ∼N ð0; χIJSðfiÞΔfiÞ, where χIJ are the introduced
above HD correlation coefficients. In general, the noise
covariance matrix is given as

Cn
I ¼ hnIðtÞnIðtÞi;

¼

2
666666664

cosð2πf1 ⃗tIÞ
sinð2πf1 ⃗tIÞ

..

.

cosð2πfNf
⃗tIÞ

sinð2πfNf
⃗tIÞ

3
777777775
·

2
666666664

hX2
1;Ii

hY2
1;Ii
..
.

hX2
Nf;I

i
hY2

Nf;I
i

3
777777775
·

2
666666664

cosð2πf1 ⃗tIÞ
sinð2πf1 ⃗tIÞ

..

.

cosð2πfNf
⃗tIÞ

sinð2πfNf
⃗tIÞ

3
777777775
;

where hX2
1;Ii being the variance of the Xi;I; Yi;I as defined

by their Gaussian distribution.

2. Generating fake data

We simulate the data in the time domain.4 We start with
choosing the pulsar array and epochs of observation, which
we populate with the white noise with dispersion σ. We
simulated the red (spin) noise of each pulsar using Gaussian
process according to (27) where the weights X⃗i;I and Y⃗i;I

are drawn from their respective normal probability distri-
butions with variance defined by PSD, SðfÞ. The simulated
timing model includes only five components with the
following design matrix:
(1) Offset: M⃗0 ∝ 1⃗.
(2) Spin rate: M⃗1 ∝ ⃗tI .
(3) Quadratic spin-down rate: M⃗2 ∝ ⃗t2I .
(4) RA: M⃗3 ∝ sinð2πfyr ⃗tIÞ.
(5) DEC: M⃗4 ∝ cosð2πfyr ⃗tIÞ.

The overall offset, spin rate, and quadratic spindown rate
correspond to the inaccuracy in the pulsar rotation. The
offset in the pulsar sky position is modeled by Right

Ascension (RA) andDeclination (DEC) terms, giving annual
modulation due to the Earth’s orbital motion. During the
Bayesian PTA analysis, we marginalize over the coefficients
αk of the linear timing model, assuming noninformative
improper prior. This marginalization is responsible for the
transmission function described in (3) [92].

B. Mock datasets

We simulated two PTA mock datasets:
(1) EPTA20: built from the 25 pulsars of the EPTA

DR2new 10.4 yr dataset with the same noise proper-
ties (as in [113]) but with a doubled observation time,
to which we append 25 additional pulsars with the
same noise properties and observation time as EPTA
DR2new but randomized positions drawn uniformly
in the sky. The noises are reinjected according to their
maximum likelihood values in [113].

(2) SKA10: SKA-like PTA with 50 pulsars and 10 yr
observations. Every pulsar is simulated with a
2-week cadence of observation, σ ¼ 100 ns timing
uncertainty, and random position uniformly drawn
in the sky. Time-correlated noises with power-law
spectra are included (red noise and dispersion
measure noise) with log-amplitude log10 A and
spectral index γ drawn uniformly between log10 A ¼
½−17;−13� and γ ¼ ½1; 5�.

These properties are summarized in Table I. In both
datasets, we inject a stochastic GW signal with HD
correlations and a power-law spectrum with log10 A ¼ −14
and γ ¼ 3 to reproduce the signal observed in [1,3],
potentially originating from the population of SMBHBs
in the Universe. This signal will act as foreground, and we

TABLE I. Summary of mock datasets properties. Npulsars is the
number of pulsars, ν are the observing frequency subbands, Tobs
is the time of observation, σ is the level of white noise, Δt is the
cadence, TM is the timing model where TM5 is the five-
component model described in Sec. III A 2, log10 A and γ give
the range of the uniform distribution used to draw the red noise
parameters. The entries marked by Ref. [113] correspond to the
choice of parameters consistent with ERPTA DR2new analysis.

EPTA20 SKA10

Npulsars 25þ 25 50
ν [GHz] [113] 1.4–3
Tobs [yr] 20.8þ 10.4 10
σ [s] ∼10−6 10−7

Δt [days] ∼3 14
TM TM5þ [113] TM5

log10 ARN [113] ½−17;−13�
γRN [113] [1, 5]
log10 ADM [113] ½−17;−13�
γDM [113] [1, 5]
log10 ASV [113] –
γSV [113] –

4The time-domain simulations were made using https://github
.com/mfalxa/fakepta.
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will also inject additional stochastic GW signals into the
datasets to test our ability to detect them in the presence of a
foreground (see Sec. IV D).

C. Time-domain Bayesian analysis

The timing model marginalized Gaussian likelihood
used in time-domain PTA analysis [112] can be expressed
as [analogously to the previously defined likelihood (22)]

− lnLðdjθÞ ¼ const:þ
X
IJ

½lnðdetfCIJgÞ

þ dIðtÞC−1
IJ ðθÞdJTðtÞ�; ð28Þ

where CIJ ¼ CIδIJ þ Ch;IJ has a block structure of size
Npulsars × Npulsars in which the GW signal Ch;IJ ¼ χIJCh
(I ≠ J) appears off diagonal. The individual pulsar noise
components form the diagonal I ¼ J, where CI ¼ CTM

I þ
CRN
I þ CDM

I þ CSV
I (corresponding to the timing model, the

red noise, the dispersion measure noise, and the chromatic
noise, respectively).
We perform Bayesian analysis using the software

ENTERPRISE [114,115] and sampler PTMCMC [116].
ENTERPRISE provides computation of the likelihood and
prior based on the chosen model. All noise components are
modeled as Gaussian processes with incomplete Fourier
basis as eigenfunctions [112]. We are using PTMCMC
without a parallel tempering option, which is sufficient for
our purpose. The resulting posterior distributions for both
EPTA20 and SKA10 are shown in Fig. 1 (central and right
panels, red color).

IV. RESULTS

Throughout this section, we will assume that the SGWB
observed by the various collaborations is described by a
power-law (PL)

h2ΩPL
GWðfÞ ¼ AGWB

�
f
fyr

�
nT
; ð29Þ

with AGWB ≃ 6.3 × 10−8 and nT ≃ 2. For definiteness, these
parameters are fixed to the maximum likelihood values
obtained by the EPTA [3], which is in good agreement with
the other observations [106]. To make contact with other
quantities used in the literature, this corresponds to a
strain amplitude (hc ≡ ffiffiffiffiffiffiffiffi

fSh
p

) at f ¼ fyr of Ahc ≃ 10−14

and pulsar timing residuals spectral index γ ¼ 5 − nT ¼ 3.
When performing parameter estimation, it is convenient to
define the log of the amplitude α� ≡ log10ðAGWBÞ.
Assuming this SGWB, we obtain SNR ¼ 4.5 with the

current EPTA (DRNew) pulsar configuration, which is
compatible with the observations [3]. On the other hand,
we obtain SNR ¼ 184 for EPTA20 and SNR ¼ 292 for
SKA10.
To validate our framework based on the approximated

likelihood introduced in Sec. II C, we compare our results to
the ones obtained with state-of-the-art techniques described
in Sec. III C. In Fig. 1, we compare the uncertainties obtained
with our simplified FIM approach to actual PTA parameter
estimation. We remove the mean from the posterior distri-
bution of both amplitude and tilt showing the deviations
from the mean values. In the left panel, we compare results
for the current EPTA DR2new configuration, assuming
Tobs ¼ 10.33 yrs of data with the 25 pulsars adopted by
EPTA in their analysis [4]. In the center and right panels, we
compare our forecasted sensitivity to signal parameters with
the simulations for EPTA20 and SKA10, with Tobs ¼ 20 yrs
and Tobs ¼ 10 yrs, respectively, and Npulsars ¼ 50, built as
described in Sec. III. In all cases, we find very good
agreement between both results, showing the validity of
our assumptions in Sec. II for our purposes.

FIG. 1. Comparison between the measurement uncertainties estimated using FIM (blue) and time-domain Bayesian parameter
estimation (red, see Sec. III A for more details). For visualization purposes, the FIM result is shown by building samples drawn from a
multivariate Gaussian distribution with covariance FIM−1. For both parameters, we remove the mean observed values to compare with
the FIM which does not provide information on it. In the two-dimensional panels, we indicate 68%, 95%, and 99% C.I. Left panel:
current posterior obtained with EPTADR2new datasets (EPTA10). Center panel: forecasted EPTA 20 yr dataset. Right panel: forecasted
SKA 10 yr dataset.
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A. Future effective sensitivity

Using the metrics defined in Sec. II B 2, we can forecast
the effective sensitivity achieved by current and future
experiments. In particular, we plot SeffðfÞ Fig. 2 for
different detector designs, i.e., EPTA10 and SKA10,
translated in the GW energy density using Eq. (10).
Notice we plot the effective sensitivity as a function of
frequencies also below f ∼ 1=ð10 yrsÞ for presentation
purposes. In the same plot, we show the maximum like-
lihood power-law SGWB for comparison. These results
assume the HD function to be fixed and described by
Eq. (15) (i.e., we do not infer it from the data).
In both cases, the dashed lines report the putative

sensitivity obtained without injecting an SGWB. The
effective sensitivity reaches a minimum of around
f ∼ 3 nHz, with a steep high-frequency slope mostly
induced by the large WN components. Indeed, in the
high-frequency part of the sensitivity curve, we observe
ΩGWðfÞ ∼ f5, as expected from a WN-dominated regime,
including frequency-dependent factors coming from the
definition of energy density and the response function.
Instead, at low frequencies, the sensitivity is degraded with
a tilt steeper than ∝ 1=f, expected from the behavior of
transmission functions alone, showing the relevance of the
red-noise components included in the pulsar noise budget.
SKA10 sensitivity greatly surpasses EPTA10 due to the
much smaller expected WN (with an improvement that is
more than an order of magnitude at high frequencies).
The solid lines report the effective sensitivity obtained

including the SGWB background as in Eq. (29). While
including the SGWB does not significantly affect the
sensitivity of EPTA10, showing that one still falls in the
weak signal regime, the SKA10 effective sensitivity
strongly degrades, driven by the large SGWB foreground
compared to the pulsar noises.

In practice, the take-home message is that searches for
subdominant contributions to the SGWB below the solid
lines would be inconclusive, at odds with the conclusion
drawn considering the effective sensitivity with neglected
foregrounds. This is one of the main results of this paper.
We will show examples of multi-SGWB analyses in the
following sections, corroborating the qualitative conclu-
sions shown here.

B. Scaling with time and number of pulsars

With the proposed framework, we can forecast the
evolution with time and the number of pulsars of both
the SNR and measurement precision.
In Fig. 3, we report the results of different random

realizations of 30 pulsars with variable observation time
Tobs. We indicate with the uncertainty bands the corre-
sponding spread obtained from randomly selecting pulsars
with different sky localization (assuming isotropic distri-
bution) and noises.5 The parameters determining the noise
of each pulsar are sampled from distributions built out of
the currently observed ones [4].
In these plots, we aim to test the scaling of the relevant

quantities. For this reason, we show FIM results also for
low-SNR values where FIM predictions are unreliable. It
should be kept in mind that results obtained in this regime
only serve the purpose of testing the scalings and should
not be used to deduce the detectability of the signal. Also,
in this case, these results assume the HD function to be
fixed and described by Eq. (15) (i.e., we do not infer it from
the data). We do not expect this assumption to modify the
scaling obtained.
Focusing on the evolution of SNR, we observe that at

small observation times, it grows rapidly as SNR ∼ T3
obs.

This can be explained as follows (see analytical consider-
ations reported in Ref. [117]). Assuming WN dominates at
the initially relatively high frequencies fmin ∼ 1=Tobs, and
that γ > 0, the integral for the SNR is dominated by the
contribution close to fmin. Longer observation times allow
to probe lower frequencies, enhancing the ratio Sh=Seff∼
f−γmin ∼ Tγ

obs. Including the additional prefactor and frequency
summation, this gives SNR ∝ Tγ

obs. When the effective
sensitivity falls below the GW amplitude at the minimum
frequency, one transitions to the intermediate regime, and the
above scaling is broken. Eventually, the SNR growth with
time converges to ∝

ffiffiffiffiffiffiffiffi
Tobs

p
as predicted in the strong signal

regime, which we observe on the right side of the plot.
An analogous behavior is observed in the evolution of

uncertainties on signal parameters α� and nT . By con-
struction, they are expected to scale inversely with the
SNR, in the high SNR regime. We observe that both feature
an initially steep decline that converges towards a 1=

ffiffiffiffiffiffiffiffi
Tobs

p

FIG. 2. Current sensitivity of the EPTADR2new dataset,
denoted as EPTA10, (blue lines), and forecasted future sensitivity
achieved by the SKA 10 yr (yellow lines). Both scenarios are
reported assuming the presence (absence) of an SGWB in a solid
(dashed) line. The black solid line corresponds to the maximum
likelihood power-law signal (29).

5For both Figs. 3 and 4, we generated 30 different realizations
for each value of Tobs and Npulsars, to estimate the scatter induced
by randomly choosing noise parameter for each pulsar.
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in the far future. We stress that current PTA experiments are
currently probing the intermediate regime between the two
asymptotic scalings, seen in the plot around Tobs ∼ 10 yrs
(see also [118]). Additionally, we see that the uncertainty
on the tilt reaches the scaling regime more slowly because
more frequency modes need to be observed to better pin
down the spectral tilt compared to the overall amplitude.
In Fig. 4 we show the corresponding scaling as a

function of the number of pulsars. In the left panel, we see
that the SNR grows as

ffiffiffiffi
N

p
as a function of number of

pulsars. This scaling originates from including autocor-
relation terms in our analysis (i.e., diagonal terms in the
pulsar indices of the covariant matrix). Correspondingly,
the uncertainties on SGWB spectral amplitude and tilt
decrease as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npulsars

p
. Had we only included the off-

diagonal components, featuring the HD correlation, we

would have obtained a scaling SNR ∼ ðPI≠J χ
2
IJÞ1=2,

which behaves as SNR∼ ½NpulsarsðNpulsars−1Þ�1=2∼Npulsars.

C. Sensitivity to the HD correlation pattern

In this section, we show how the formalism developed in
the current work can also forecast the sensitivity to the HD
correlation. This is a crucial observable to identify GW
signals and could be used to test modified theories of
gravity (e.g., [119]). For this purpose, we allow χIJ to vary,
and, adopting the HD curve parametrizations described in
Sec. II B 1, we assess the ability of different PTA configu-
rations to constrain the expansion coefficients.
First of all, we consider the case of the EPTA10 configu-

ration. In Fig. 5 (left panel), we report the uncertainties on
the coefficient bi of the binned parametrization (16) found

FIG. 3. Left panel: scaling of the SNR as a function of the observation time Tobs assuming a PTA network composed of 30 pulsars. The
vertical error bars indicate the standard deviation of the result obtained by varying over a random realization of the PTA array (both for
pulsar positions and noises). The black dashed lines indicate the two limiting scaling regimes expected for the SNR. The low-Tobs
regime is dictated by our choice of the spectrum with nT ¼ 2, while the high-Tobs regime is universal. Right panel: scaling of the
uncertainties on the amplitude and tilt of the SGWB as a function of observation time.

FIG. 4. Scaling of the SNR (left panel) and uncertainties (right panel) as a function of the number of pulsars, assuming
fixed Tobs ¼ 20 yrs. The error band indicates the standard deviation of both results induced by producing multiple realizations of the
pulsar sample.
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using FIM. For this analysis, we considered seven bins as
well as the signal amplitude and slope as free parameters. As
one can notice, the uncertainties are large both at narrow and
wide angular separations, where fewer pulsar pairs are
present, while reaching down to values around Δbi ∼ 0.3
at 68% CL in the central bins. These results are in good
agreement with the posterior distributions reported by the
EPTA collaboration [3], although they choose unequally
spaced bins to evenly distribute the number of pulsar pairs as
a function of angular separation.
In the right panel of Fig. 5, we show the posterior

predictive distribution of χIJ obtained using the uncertain-
ties estimated with FIM for the current EPTA10 configu-
ration. In this case, the FIM analysis adopts the coefficients
of the Legendre polynomial expansion (17) up to the sixth
order. As expected, relatively tight bounds are obtained in
the central portion of the angular separation variable (which
contains a larger number of pulsar pairs), with constraints
that degrade at the edges of the plot.
Having checked the validity of our framework to

estimate the sensitivity to HD correlations, we forecast
the corresponding uncertainties obtained with the future

SKA10 dataset. In Fig. 6, we show the corresponding
posterior on binned expansion parameters (left panel) as
well as posterior predictive distribution reconstructed
using Legendre expansion (right panel). As expected, the
improved SNR ratio in the SKA10 forecast leads to
significantly narrower uncertainties on the HD correlation
function. In the central bins, one finds uncertainties around
Δbi ∼ 0.04 at 68% CL.

1. Cosmic variance

For a Gaussian background, the multipole moments are
drawn from a Gaussian distribution with variance al
defined in Eq. (17). Even neglecting noise, and assuming
perfect measurement precision, the estimate of the variance
of the distribution is limited by the number of modes
observed for each l. As described in Refs. [120,121],
assuming single mode observation and no noise, the
uncertainty on al should plateau towards the value

Δal ¼ alffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p : ð30Þ

FIG. 5. Uncertainties on the HD curve were obtained using the Fisher matrix analysis and assuming a power-law signal. Left panel:
constraints on the coefficients of the binned HD function. We divide the angular direction into seven equally spaced bins. Uncertainties
are comparable with the one observed found in EPTADR2 analyses [3]. By construction, within the FIM formalism, the central value
corresponds to the injection. Right panel: posterior predictive distribution of the HD function obtained from the uncertainties on the
coefficients of the Legendre polynomial expansion in Eq. (17).

FIG. 6. Same as Fig. 5, but assuming the SKA10 future configuration.
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In reality, multiple frequency modes are observed by PTA,
and one expects the limit on the uncertainties due to cosmic
variance to scale as Δal ∼ ðNmodesÞ−1=2.
In Fig. 7, we show how the uncertainty on al scales as a

function of the number of pulsars. To better show the
qualitative behavior, we first compute the results assuming
no noise and 30 observed frequencies (left plot) and
Tobs ¼ 10 yr, only including terms up to l ¼ 6 in the
FIM. As one can see, the uncertainty for l ¼ 0, 1 scales as
1=Npulsars, without showing any significant departure at
high Npulsars. This is because, a0;1 ¼ 0 due to the quadruple
nature of GR, and their inference does not suffer from self-
noise. On the other hand, the uncertainty on high multiples
converges towards a plateau, which is dictated by cosmic
variance (30). The plateau is reached at an increasing
number of pulsars for higher l ≥ 2 due to the increasingly
larger Npulsars needed to cover the sky positions with
sufficient finer angular resolution to saturate the informa-
tion available.
In the right panel of Fig. 7, we show analogous results

assuming the noise to be present. In this case, we simulate
30 pulsars observed for Tobs ¼ 10 yrs. We see that uncer-
tainties on al feature a plateau at low values of Npulsars,
where their posterior distribution is dominated by the prior
(assumed to be Gaussian with σal ¼ 1). WhenNpulsars ≳ 10

(incidentally close to the currently analyzed sample of
pulsars by EPTA), uncertainties start to decrease, especially
at lower multipoles. Qualitatively, we observe the same
behavior obtained in the left panel for the idealized case of
no noise. The l ¼ 0, 1 uncertainties keep the 1=Npulsars

scaling, while starting from the lowest orders in l (espe-
cially l ¼ 2, 3) we notice a flattening of the curve already
from Npulsars ∼Oðfew × 102Þ. We do not push the compu-
tations to even larger Npulsars for two main reasons: (1) this
configuration becomes increasingly optimistic for any
future scenario and (2) to retain a reasonable computational
cost.

D. Sensitivity to subdominant SGWBs

In this section, we forecast future sensitivity to sub-
dominant contribution to the nHz SGWB. For presentation
purposes, we consider the scenario in which the additional
subdominant GWB contribution is described by a log-
normal (LN) shape

h2ΩCGWðfÞ ¼ 10αLNe½−ln2ðf=ð10γLN HzÞÞ=ð2×102βLN Þ�: ð31Þ
This should serve as a toy model we adopt to test our
framework. Typical new physics scenarios of interest for
PTA observations predict the existence of a blue tilted

FIG. 7. Uncertainties on the fifth-order expansion coefficients of the HD curve in Legendre’s polynomials al as a function of the
number of pulsars Npulsars. We adopt Nmodes ¼ 30. Left panel: zero noise limit. The zeroth and first orders are zero, and the
corresponding uncertainty scales as ∝ 1=Npulsars (indicated by the dashed black line). The higher-order pieces reach the plateau predicted
by cosmic variance in Eq. (30). See the discussion in the main text. Right panel: same as the left panel, but includes noise. The plateau at
small values of Npulsars is reached when information is small enough that our prior on σal ¼ 1 becomes dominant.

FIG. 8. Same as Fig. 1, but injecting a SGWB from multiple
sources: (i) the dominant GW signal parametrized as a PL with
α� ¼ −7.2 and nT ¼ 2 and (ii) subdominant LN bump controlled
by αLN ¼ −7, βLN ¼ −1, and γLN ¼ −7.5.
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spectrum which reaches a peak close to the nHz fre-
quencies, also to comply with ΔNeff upper bounds on
cosmological (i.e., from the early Universe) GWs, forcing
the total primordial GW abundance ΩGWh2 < 1.6 × 10−6

ðΔNeff=0.28Þ at 95% CL [122]. Nonetheless, flatter
spectra in the nHz range are predicted by cosmic string
scenarios, as well as second order induced GWs from
enhanced and flat curvature power spectra. In-depth
analyses that assume specific spectral shapes motivated
by new physics cosmological scenarios (see, e.g.,
[5,18,86,87,123]) will be presented elsewhere [124].
Again, to validate our framework in the case of multiple

SGWB contributions, we generate a synthetic dataset as
described in Sec. III B with the SKA10 configuration (50
pulsars and Tobs ¼ 10 yrs) of observation of an SGWB that
takes contributions from two sources

h2ΩGW ¼ h2ΩPL
GW þ h2ΩLN

GW: ð32Þ

Collectively, the injected signal features five parameters,
which are fixed to fα�; nT; αLN; βLN; γLNg ¼ f−7.2; 2;−7;
−1;−7.5g. In Fig. 8, we compare the FIM estimates to the
state-of-the-art multicomponents injection and inference. As
in Fig. 1, one observes excellent agreement between both
results, validating our framework even in the presence of
multiple contributions to the SGWB.
We further explore the sensitivity to an LN subdominant

contribution to the SGWB in Fig. 9. We simulate different
scenarios in which the amplitude of the LN signal is varied,
keeping fixed remaining parameters fα�; nT; βLN; γLNg ¼
f−7.2; 2;−1;−7.5g. Uncertainties on PL parameters
remain practically constant. This is because most of the
injections feature a negligible contribution from the LN
bump. Only large values of αLN the uncertainty grow

slightly, due to the partial contamination around LN peak
frequencies. On the other hand, we observe increasing
precision on the LN parameters with larger αLN.
Interestingly, the relative uncertainty on the signal ampli-
tude falls below ∼30% around αLN ≃ −7.4, indicating
detection capability, when the LN amplitude crosses the
effective sensitivity.

V. CONCLUSIONS

PTA experiments provide an unprecedented opportunity
to search for the existence of GWs in the nHZ frequency
range. This will allow to constrain both astrophysical and
cosmological sources of such signatures, with increasing
precision. Current data report growing evidence for the
existence of a signal with an amplitude ΩGWh2 ∼ 10−9 at
the best-constrained frequencies f ∼ 1=ð10 yrsÞ. In the
future, longer observation time and the growing number
of pulsars available will drastically expand PTA sensitivity.
In this work, we have demonstrated how to achieve fast

estimation of detectability and parameter estimation for a
stochastic GW signal which one could expect for a
particular PTA. Despite the simplistic assumptions adopted,
we find that, compared to a full Bayesian analysis using the
software ENTERPRISE on the EPTA DR2new and simu-
lated data, this approach gives reliable results. Moreover,
we have demonstrated that this method recovers an
expected scaling of the PTA sensitivity with observation
time and the number of pulsars.6 We can also study the
spatial correlation in the pulsar’s pairs either using a binned
consideration or Legendre decomposition. Finally, the

FIG. 9. Left panel: injected SGWB including PL [purple, Eq. (29)] and LN [cyan, Eq. (31)]. The gray solid lines show the effective
sensitivity obtained with the future SKA10 configuration (with Npulsars ¼ 100 and Tobs ¼ 10 yrs). Different values of the amplitude are
shown, varying αLN ∈ ½−9;−7� with regular spacing. Right panel: relative uncertainties on the model parameters, injecting the same
values shown in the left panel. While uncertainties on PL parameters remain practically constant, we see improved accuracy on the LN
parameters with larger αLN.

6For previous studies forecasting the scaling of the uncertain-
ties with future PTA configurations, see [118,125].
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formalism allows us to investigate multicomponent sto-
chastic GW signals of different strengths, going beyond the
weak signal approximation so far adopted in the literature,
providing fast and reliable forecasts on the constraining
power of PTA configurations on both astrophysical and
cosmological SGWBs. We release the code FASTPTAwhich
implements this framework.
If we neglect a pulsar term, extending this work to

include the resolvable GW signals from individual sources
[e.g., continuous GW (CGW) from inspiraling SMBHBs]
would be quite simple. In this case, assuming that the
CGW candidates are identified, we can include CGW in
the transmission function, which will appear as a notch
at the CGW frequency. To demonstrate this, we can write
the CGW in the form s ¼ P

k ak; hkðt; fCGW; skyÞ (see
[126,127]) which is similar to the timing (linearized)
model and will give a contribution to the G matrix [92]
and, therefore, to the transmission T . Extension of this
approach to CGWs with pulsar terms is somewhat more
complicated and will be discussed elsewhere.
As promised,wewant to say a fewwords aboutmimicking

the chromatic noises in our approach. We can restore the
dependence on the radio frequency, as it will become
important for the simultaneous ultra-broad band observa-
tions. One possibility on how it can be done is presented in
[92] using the piecewise constant model for dispersion
measure (DMX) model. In the case of Gaussian process
representation, we need to translate it to DMX-compatible
representation. The DM variations through the DMX model
appear in the transmission function. Finally, we stress again
that in the FIM we make two assumptions that render our
approach insensitive to potential noise mismodeling. First,
we describe the pulsar noises using their best parameters
measured by the EPTA collaboration or from time-domain
inference applied tomock data simulations.Moreover, we do
not include noise parameters in the FIM and therefore do not
capture potential degeneracies between signal and noise. The
comparison in Sec. III shows that our results are sufficiently
robust despite neglecting these issues. Furthermore, these
effects become less and less relevant as observations will
enter in the signal dominated regime.
We conclude by mentioning possible further future

directions:

(1) Astrophysical models predict the SGWB comes
from the superposition of unresolved signals. In this
case, spectral fluctuations due to finite source
numbers within frequency bins may appear in the
observable band at a relatively “high” frequency. It
would be interesting to estimate the future sensitivity
as well as frequency resolutions to such spikes,
which are not expected in cosmological scenarios.

(2) Throughout our work, we have assumed the dominant
GWB to be stationary and isotropic. In particular, the
effective sensitivity reported in our work assumes this
background cannot be reduced. If the signal is of
astrophysical origin, with sufficient sensitivity one
should be able to resolve individual SMBH mergers
and remove some CGW. This could improve the
effective sensitivity to subdominant GWBs.

(3) With our code, one could also test the sensitivity
to different correlation patterns beyond HD,
e.g., motivated by modified theories of gravity
[119,128–130].

(4) It would be interesting to extend this framework to
include SGWB anisotropies (see, e.g., [131–133] for
work in this direction), going beyond the weak
signal approximation.

(5) Finally, one could include information from
astrometry [134–137], to forecast how this would
improve the constraining power of PTA observations
(see [138]).
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