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We present nonperturbative results for beyond the standard model kaon mixing matrix elements in the
isospin symmetric limit (mu ¼ md) of QCD, including a complete estimate of all dominant sources of
systematic error. Our results are obtained from numerical simulations of lattice QCD with Nf ¼ 2þ 1

flavors of dynamical domain wall fermions. For the first time, these quantities are simulated directly at the
physical pion mass mπ ∼ 139 MeV for two different lattice spacings. We include data at three lattice
spacings in the range a ¼ 0.11–0.07 fm and with pion masses ranging from the physical value up to
450 MeV. Compared to our earlier work, we have added both direct calculations at physical quark masses
and a third lattice spacing making the removal of discretization effects significantly more precise and
eliminating the need for any significant mass extrapolation beyond the range of simulated data. We
renormalize the lattice operators nonperturbatively using RI-SMOM off-shell schemes. These schemes
eliminate the need to model and subtract nonperturbative pion poles that arises in the RI-MOM scheme
and, since the calculations are performed with domain wall fermions, the unphysical mixing between
chirality sectors is suppressed. Our results for the bag parameters in the MS scheme at 3 GeV are
BK ≡ B1 ¼ 0.5240ð17Þð54Þ, B2 ¼ 0.4794ð25Þð35Þ, B3 ¼ 0.746ð13Þð17Þ, B4 ¼ 0.897ð02Þð10Þ and
B5 ¼ 0.6882ð78Þð94Þ, where the first error is from lattice uncertainties and the second is the uncertainty
due to the perturbative matching to MS.

DOI: 10.1103/PhysRevD.110.034501

I. INTRODUCTION

A. Standard model kaon mixing

Neutral kaon mixing has long been an important area
of study in standard model (SM) particle physics. Most
famously, CP violation was first observed in the Nobel-
prize-winning Christenson-Cronin-Fitch-Turlay experi-
ment [1]. Interested readers are referred to Refs. [2–4]
and references therein. Kaon mixing is mediated by a flavor

changing neutral current interaction, which is absent at tree-
level, whereby the neutral kaon oscillates with its anti-
particle. The leading-order SM processes are the well-
known W exchange box diagrams shown in Fig. 1.
Typically, one separates the short and long distance

contribution to this process using the operator product
expansion (OPE). This isolates the nonperturbative matrix
element which can be computed using lattice QCD,
hK̄0jO1jK0i, of the ðvector–axialÞ × ðvector–axialÞ four-
quark left handed operator O1 from the perturbatively
computed Inami-Lim functions [5]. Conventionally, the
hadronic contribution to the matrix element is parametrized
by the kaon bag parameter and has been the subject of
many lattice calculations [6–12]. It is now known at the
percent-level and is reported in the FLAG [13] review with
consistent results from multiple collaborations.
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The SM operator matrix element is a factor in the
expression for the dominant short-distance contribution to
the indirectCP-violation parameter εK. Lattice computations
of the matrix element have reached the point where isospin
and electromagnetic effects are as large as the total error
quoted in the isospin-symmetric pure QCD theory. However,
including these effects would need to be accompanied by
reduced uncertainty in the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix element jVcbj, also appearing
in the SM short-distance contribution to εK [13,14].
For greater precision in the short-distance contribution to

be meaningful, we would in addition need to include long-
distance effects from bilocal V–A currents where two weak
Hamilton insertions are connected by quark loops. Initial
progress has been made in Refs. [15–17]. The precision on
the computation ofΔMK, including all long-distance effects,
is already at the 10% level [18]. A first full computation of
the long-distance part of εK at the level of 40% precision has
recently been reported in Ref. [19]. For recent broader
reviews of the status and prospects of kaon physics we refer
the interested reader to Refs. [20–22].

B. Beyond the standard model kaon mixing

Beyond the standard model (BSM), new mediating
particles could contribute to neutral kaon mixing. These
mediators are not restricted to the V–A Dirac structure of
the W boson and new four-quark operators would be
allowed in the effective Hamiltonian with Wilson coeffi-
cients suppressed by the new mass scale. Eight such four-
quark operators are allowed, but for computing their K0K̄0

matrix elements only five parity-even operators are needed,
shown in Eq. (2.3), which are model independent and
whose hadronic matrix elements can be calculated using
lattice QCD. Any BSM contributions to the V–A structure
would be very hard to distinguish from the SM signal in
experiments. However the new color-Dirac structure oper-
ators have no SM contribution at this order in the weak

forces and thus new physics arising from these operators
would be easier to detect in experiment. In addition, the
matrix elements of these BSM operators are enhanced in
the chiral limit compared to the SM operator, as can be seen
from their chiral expansions. Therefore our results can be
combined with the experimental value of εK to constrain
the parameter space of specific BSM theories and the scale
of new physics, see for example Ref. [23].
Lattice QCD appears as a natural candidate for comput-

ing the BSM operator matrix elements. However the
mixing pattern of these four-quark operators makes this
more challenging than the computation for BK alone. We
refer the interested reader to the pedagogical review [24].
Here we take advantage of the good chiral-flavor properties
of the domain wall fermion formulation to constrain the
mixing to be the same as in the continuum theory. In
practice, this is only true up to lattice artefacts that are
exponentially suppressed in the extent of the domain wall
fifth dimension and that we must keep under control.
Early studies of BSM kaon mixing [25–27] were

performed in the quenched approximation. They were
followed by dynamical simulations with Nf quark flavors
by several collaborations: RBC-UKQCD ðNf ¼ 2þ 1Þ
[28,29], SWME ðNf¼2þ1Þ [8,9,30], and ETM ðNf¼2Þ
[12] and ðNf ¼ 2þ 1þ 1Þ [11]. In contrast to results for
the SM operator, there are tensions between the different
collaborations’ results for some of the BSM operators,
as shown in Table I—in which we already anticipate
the results of this work—and summarized in the FLAG
report [13]. We note that a similar discrepancy is observed
in neutral BðsÞ-mixing [13,31].
In Refs. [29,33], it was proposed that the source of these

tensions was the choice of the intermediate renormalization
scheme. Specifically, it was proposed that the symmetric
momentum subtraction scheme RI-SMOM (which has
nonexceptional kinematics) advocated by RBC-UKQCD
has several beneficial features compared to the previously
used RI-MOM (which has exceptional kinematics). This is
likely due to the exceptional (divergent in the massless
limit), infrared nonperturbative “pion pole” behavior in the
RI-MOM vertex functions, which must be correctly mod-
eled and subtracted, while the mass is simultaneously taken
to zero to establish a mass independent scheme. This
behavior is absent in the RI-SMOM scheme, giving greater
theoretical control as it avoids the possibility of imperfect
modelling of the nonperturbative pole systematically affect-
ing the result. The results obtained from two RI-SMOM
schemes are in agreement with each other and with the
perturbatively renormalized results from the SWME col-
laboration [8,9,30], while the calculation with RI-MOM
agreed with previous RBC-UKQCD [28] and ETM [11,12]
results which also used RI-MOM.
This paper improves upon our most recent RBC-

UKQCD BSM kaon mixing calculation [29,33] by adding
a third lattice spacing and including two data points at the

FIG. 1. W exchange box diagrams mediating neutral kaon
mixing in the standard model.
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physical light quark mass. We present results in the isospin
symmetric limit of pure Nf ¼ 2þ 1 QCD with sufficient
precision that further work on this topic must address
the strong and electromagnetic isospin breaking effects.
The status of this work has been previously reported in
Refs. [34,35]. Finally, it is worth noting that a similar
analysis performed in the pion sector allows to extract the
matrix elements which could dominate the short-distance
contribution to neutrinoless double beta decays, see for
example Refs. [36,37]. In particular, the renormalization
factors computed here could be employed for such a study.

II. BACKGROUND

A. Effective weak Hamiltonian and BSM basis

By integrating out heavy particles such as the W boson
we can separate the long- and short-distance effects into
matrix elements, hK̄0jOijK0i, and Wilson coefficients
respectively. Beyond the standard model a generic effective
weakΔS ¼ 2Hamiltonian can be constructed, in which the
standard model operator, O1 below, and seven additional
four-quark operators appear

HΔS¼2 ¼
X5
i¼1

CiðμÞOiðμÞ þ
X3
i¼1

eCiðμÞfOiðμÞ; ð2:1Þ

where μ is a renormalisation scale. The Wilson coefficients
CiðμÞ depend on the BSM physics, but the QCD matrix
elements hK0jOijK0i do not. The operators Oi in the so-
called “SUSY basis” introduced in Ref. [38] are

O1 ¼ s̄aγμð1 − γ5Þdas̄bγμð1 − γ5Þdb;
O2 ¼ s̄að1 − γ5Þdas̄bð1 − γ5Þdb;
O3 ¼ s̄að1 − γ5Þdbs̄bð1 − γ5Þda;
O4 ¼ s̄að1 − γ5Þdas̄bð1þ γ5Þdb;
O5 ¼ s̄að1 − γ5Þdbs̄bð1þ γ5Þda; ð2:2Þ

where a, b are color indices. The Õ1;2;3 are parity partners
ofO1;2;3 obtained by swapping 1 − γ5 → 1þ γ5, whileO4;5

are parity-even. Owing to parity invariance of QCD, only
the parity even parts, denoted with a þ superscript,
contribute in the hK̄0jOijK0i matrix elements

Oþ
1 ¼ s̄aγμdas̄bγμdb þ s̄aγμγ5das̄bγμγ5db;

Oþ
2 ¼ s̄adas̄bdb þ s̄aγ5das̄bγ5db;

Oþ
3 ¼ s̄adbs̄bda þ s̄aγ5dbs̄bγ5da;

Oþ
4 ¼ s̄adas̄bdb − s̄aγ5das̄bγ5db;

Oþ
5 ¼ s̄adbs̄bda − s̄aγ5dbs̄bγ5da: ð2:3Þ

In practice we find it convenient to work in a different
basis, referred to as the “lattice” or “NPR” basis [33]. This
comprises color-unmixed operators obtained by Fierz
transforming the equivalent color-mixed operators, as
detailed in Appendix D, with Q1 ¼ O1 and

Q2 ¼ s̄aγμð1 − γ5Þdas̄bγμð1þ γ5Þdb;
Q3 ¼ s̄að1 − γ5Þdas̄bð1þ γ5Þdb;
Q4 ¼ s̄að1 − γ5Þdas̄bð1 − γ5Þdb;

Q5 ¼
1

4
s̄aσμνð1 − γ5Þdas̄bσμνð1þ γ5Þdb: ð2:4Þ

Again we need to consider only the parity-conserving parts
which read

Qþ
1 ¼ s̄aγμdas̄bγμdb þ s̄aγμγ5das̄bγμγ5db;

Qþ
2 ¼ s̄aγμdas̄bγμdb − s̄aγμγ5das̄bγμγ5db;

Qþ
3 ¼ s̄adas̄bdb − s̄aγ5das̄bγ5db;

Qþ
4 ¼ s̄adas̄bdb þ s̄aγ5das̄bγ5db;

Qþ
5 ¼

X
ν>μ

s̄aγμγνdas̄bγμγνdb: ð2:5Þ

TABLE I. Results from calculations of BSM bag parameters in MSðμ ¼ 3 GeVÞ from RBC-UKQCD, SWME and ETM show
tensions for B4 and B5. The results obtained by ETM, which were renormalized via RI-MOM, agree with RBC-UKQCD’s results
obtained via RI-MOM. The SWME results, obtained via a 1 loop intermediate scheme agree with RBC-UKQCD’s results obtained via
RI-SMOM, for both γμ and =q [32]. This suggests tensions arise from the implementation of intermediate schemes, in particular caused
by RI-MOM exhibiting exceptional infrared behavior which is absent in RI-SMOM. All results are shown in the SUSY basis.

ETM12 [12] ETM15 [11] RBC-UKQCD12 [28] SWME15 [9] RBC-UKQCD16 [29] THIS WORK

Nf 2 2þ 1þ 1 2þ 1 2þ 1 2þ 1 2þ 1 2þ 1

Scheme RI-MOM RI-MOM RI-MOM 1 loop RI-SMOM RI-MOM RI-SMOM

B2 0.47(2) 0.46(3)(1) 0.43(5) 0.525(1)(23) 0.488(7)(17) 0.417(6)(2) 0.4794(25)(35)
B3 0.78(4) 0.79(5)(1) 0.75(9) 0.773(6)(35) 0.743(14)(65) 0.655(12)(44) 0.746(13)(17)
B4 0.76(3) 0.78(4)(3) 0.69(7) 0.981(3)(62) 0.920(12)(16) 0.745(9)(28) 0.897(02)(10)
B5 0.58(3) 0.49(4)(1) 0.47(6) 0.751(7)(68) 0.707(8)(44) 0.555(6)(53) 0.6882(78)(94)
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We perform the lattice calculations and renormalization
in this basis and transform to the SUSY basis prior to
performing the required chiral and continuum limit extrap-
olations.1 Observe that under SUð3ÞL × SUð3ÞR quark

flavor symmetry, OðþÞ
1 transforms as (27, 1), OðþÞ

2;3 as ð6; 6̄Þ
andOðþÞ

4;5 as (8, 8), whileQðþÞ
1 is (27, 1),QðþÞ

2;3 are (8, 8) and

QðþÞ
4;5 are ð6; 6̄Þ.

B. Bag parameters

The conventional way to parameterise the hadronic
matrix elements of the four-quark operators is through
the so-called bag parameters, defined as the ratio of the
matrix elements over their vacuum saturation approxima-
tion (VSA) value

BiðμÞ ¼
hK̄0jOiðμÞjK0i
hK̄0jOiðμÞjK0iVSA

: ð2:6Þ

For the standard model operator, BK ≡ B1 is given by,

B1ðμÞ ¼
hK̄0jO1ðμÞjK0i

8
3
m2

Kf
2
K

; ð2:7Þ

where mK is the mass of the kaon and fK is the kaon decay
constant defined by the coupling of the kaon to the
renormalized axial-vector current AR

μ ,

h0jAR
μ ðxÞjKðpÞi ¼ ifKpμe−ip·x; ð2:8Þ

where pμ is the 4-momentum of the kaon. The BSM bag
parameters are,

BiðμÞ¼
ðmsðμÞþmdðμÞÞ2

Nim4
Kf

2
K

hK̄0jOiðμÞjK0i; i>1; ð2:9Þ

and the factors Ni in the SUSY basis are NSUSY
i>1 ¼

− 5
3
; 1
3
; 2; 2

3
. The corresponding factors in the parity-even

NPR basis are NNPR
i>1 ¼ − 4

3
; 2;− 5

3
;−1. The VSA replaces

the four-quark matrix elements with products of two-quark
matrix elements. When “chirally enhanced” matrix ele-
ments of the pseudoscalar density s̄γ5d appear, matrix
elements of axial vector and tensor currents are dropped.
This leads to the appearance of the square of the ratio
ðmsðμÞ þmdðμÞÞ=m2

KfK in the Bi for i > 1.

C. Ratios Ri of BSM to SM matrix elements

The bag parameters are not the only way to parametrize
these four-quark operators; other quantities have been
defined, for example in Refs. [26,27,39]. Here we choose

to consider the simple ratios of the BSM to SM matrix
elements

RiðμÞ ¼
hP̄jOiðμÞjPi
hP̄jO1ðμÞjPi

; i ¼ 2;…; 5: ð2:10Þ

There are some clear advantages: there is no explicit
quark-mass dependence in the expression, so that the BSM
matrix elements can be recovered from knowledge of Ri,
the SM bag parameter B1 and the experimentally measured
kaon mass and decay constant [cf. Eq. (2.7)]. Additionally,
the similarity of the numerator and denominator leads to
partial cancellation of systematic and statistical errors.
Another approach originally proposed in Ref. [40] is to
consider quantities in which the chiral logs cancel out
(either at all orders or at NLO). This strategy has been
employed for example in Refs. [11,29,39].

III. SIMULATION DETAILS AND ENSEMBLE
PROPERTIES

A. Simulation parameters

We use RBC-UKQCD’s Nf ¼ 2þ 1 gauge ensembles
[6,7,32,41–43] generated with the Iwasaki gauge action
[44,45] and a domain wall fermion (DWF) action with
either Möbius (M) [46–48] or Shamir (S) [49] kernel. In our
work the Möbius and Shamir kernels differ only in their
approximation of the sign function, and agree in the limit
Ls → ∞, where Ls is the size of the fifth dimension [7]. We
hence assume that the Möbius and Shamir kernels lie on
the same scaling trajectory. The set of ensembles contains
three lattice spacings in the range a ¼ 0.11–0.07 fm,
labeled C(oarse), M(edium) and F(ine), and includes two
physical pion mass ensembles. The remaining ensembles
have heavier pion masses ranging up to mπ ≈ 450 MeV,
which are used to guide the small chiral extrapolation on
the finest ensemble.
On each ensemble, the light valence-quark mass (amuni

l )
was chosen identical to the light-quark mass in the sea.
The strange valence quark mass (amval

s ) was simulated
near its physical value (amphys

s ) which typically differs
from the sea quark mass (amsea

s ). The main ensemble
properties and the simulated masses are listed in Table II.
Large parts of the data were generated using the grid and
hadrons framework [50–52].
The lattice scale and the physical light and strange quark

masses were set using the physical values of mπ , mK and
mΩ [7] before the ensemble F1M was generated. This fit
was repeated including the ensemble F1M in Ref. [43]
where more details about this ensemble are described. We
also introduce two new ensembles “C1M” and “M1M,”
which are the Möbius equivalents of the C1S and M1S.
Since they share the same gauge coupling and Möbius
scale as the C0M and M0M, respectively, they have the
same lattice spacing and physical strange quark mass.

1Unless stated otherwise all results in this paper are quoted in
the SUSY basis.
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More details about these ensembles are summarized in
Appendix A.

B. Correlation functions

The quark propagators SFðy; xÞ, where we write
x ¼ ðx; txÞ, are obtained by inverting the domain wall
Dirac operators on Z2 noise wall sources ηðxÞ [53–55].
In order to improve the overlap with the ground state,
these sources are Gaussian-smeared following a Jacobi
procedure, i.e.

ηωðx; tsrcÞ ¼
X
y

ωS
srcðx; yÞηðy; tyÞδty;tsrc ; ð3:1Þ

where we omit spin-color indices for simplicity. Further
details about the smearing parameters defining ω can be
found in Ref. [43].
At the sink, we consider both the local (L) and

smeared (S) case,

SL;SF ðx; yÞ ¼
X
z

ωL;S
snkðx; zÞSðz; yÞδtx;tz ; ð3:2Þ

where ωLðx; yÞ ¼ δx;y . From these propagators, we con-
struct two-point functions which are defined by

Cs1;s2
Γ1;Γ2

ðtÞ≡X
x

hðOs2
Γ2
ðx; tÞÞðOs1

Γ1
ð0; 0ÞÞ†i

¼
X
n

ðMs2
Γ2
ÞnðMs1

Γ1
Þ�n

2En
ðe−Ent � e−EnðT−tÞÞ; ð3:3Þ

where Os
Γ is a bilinear with the flavor content of a kaon,

defined by

Os
Γðx; tÞ ¼

�
q̄2ðx; tÞ

X
y

ωsðx; yÞΓq1ðy; tÞ
�
: ð3:4Þ

The Dirac structure is represented by Γi. The hadronic
matrix elements are denoted by ðMs

ΓÞn ¼ hXnjðOs
ΓÞ†j0i

(so that ðM̄s
ΓÞn ¼ ðMs

ΓÞ�n ¼ h0jOs
ΓjXni) with the nth excited

meson states jXni with corresponding energy En. For the
bilinear, we only consider pseudoscalars (Γ ¼ γ5 ≡ P)
and the temporal component of the axial current
(Γ ¼ γ0γ5 ≡ A). The smearing operator ωs and the super-
scripts s1, s2 label the type of smearing. In our setup, we
use local (L) and smeared (S) propagators at source and
sink. At the source, all our quark fields are smeared,
s1 ¼ SS. We also require the smearing at the sink to be
the same for both the strange and the down quark,
s2 ∈ fSS; LLg. An exception to this is the ensemble
F1M, where we keep both the source and sink local,
s1 ¼ s2 ¼ LL.
For three-point correlation functions, in contrast to the

two-point functions, we consider only pseudoscalar oper-
ators P̄ (P) inducing the quantum numbers of a K̄ (K) at the
source (sink). These operators are smeared (s ¼ SS) on all
ensembles apart from the F1M, where they are local
(s ¼ LL). For notational convenience we drop the smear-
ing indices for the operators. Dropping around-the-world
effects, we obtain

Ci
3ðt;ΔTÞ
≡ hPðΔTÞQþ

i ðtÞP̄†ð0Þi

¼
X
n;n0

ðMs
PÞn

4EnEn0
hXnjQþ

i ðtÞjXn0 iðMs
PÞ�n0e−ðΔT−tÞEne−tEn0 :

ð3:5Þ

TABLE II. Summary of the main parameters of the ensembles used in this work. In the ensemble name the first letter (C, M or F) stand
for coarse, medium and fine, respectively. The last letter (M or S) stands for Möbius and Shamir kernels, respectively. The column Nconf
denotes the number of de-correlated gauge field configurations, Nsrc the number of equivalent measurements per configuration.

Name L=a T=a a−1 [GeV] mπ [MeV] Nconf × Nsrc amuni
l amsea

s amval
s amphys

s

C0M 48 96 1.7295(38) 139 90 × 48 0.00078 0.0362 0.0358 0.03580(16)
C1S 24 64 1.7848(50) 340 100 × 32 0.005 0.04 0.03224 0.03224(18)
C2S 24 64 1.7848(50) 431 99 × 32 0.01 0.04 0.03224 0.03224(18)

M0M 64 128 2.3586(70) 139 82 × 64 0.000678 0.02661 0.0254 0.02539(17)
M1S 32 64 2.3833(86) 304 83 × 32 0.004 0.03 0.02477 0.02477(18)
M2S 32 64 2.3833(86) 361 76 × 32 0.006 0.03 0.02477 0.02477(18)
M3S 32 64 2.3833(86) 411 80 × 32 0.008 0.03 0.02477 0.02477(18)

F1M 48 96 2.708(10) 232 72 × 48 0.002144 0.02144 0.02144 0.02217(16)

C1Ma 24 64 1.7295(38) 276 � � � 0.005 0.0362 � � � 0.03580(16)
M1Ma 32 64 2.3586(70) 286 � � � 0.004 0.02661 � � � 0.02539(17)

aThese ensembles only enter the analysis in order to constrain the chiral extrapolation of the renormalization constants described
in Sec. IV.
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Ci
3ðt;ΔTÞ describes a three-point correlation function

with a source at t ¼ 0, sink at t ¼ ΔT and a four-quark
operator insertion Qþ

i at t.
By placing sources on every second time plane, we

compute the above correlation functions for ðT=aÞ=2 time
translations, where T=a is the integer number of time
slices for a given ensemble. We time-translate and average
equivalent measurements on a given configuration into a
single effective measurement prior to any further analysis.
This helps to reduce the variance of the measured corre-
lation functions. The only exception is that we use all
available measurements to estimate the correlation matrix,
as outlined in Appendix B.

C. Combined fits to two-point and three-point functions

For each of the operators Qþ
i , we extract the desired

masses and matrix elements from a combined fit to several
two-point and three-point functions. In particular, we
jointly fit CSL

PP CSS
PP and CSL

PA (CLL
PP and CLL

PA on F1M)
and Ci

3ðt;ΔTÞ for multiple choices of ΔT, typically para-
metrizing the ground state and the first excited state.2

From these fits we extract the main quantities of
interest: the bare bag parameters Bbare

i ; and the ratios of

operators Rbare
i . They are determined and quoted in the NPR

basis (see Tables III and IV) but can subsequently be
translated into the SUSY basis. For completeness we also
quote the meson masses and bare decay constants at our
simulation points for the pion and the kaon in Table XII
in Appendix B.
We pursue two independent fit strategies and systemati-

cally vary the fit ranges of the two-point and three-point
functions (including the choice of which source-sink
separations enter the fit) until we see stability in all fit
parameters. Figure 2 demonstrates this stability for the
example of Qþ

2 on the C0M ensemble for the first strategy.
The superimposed dashed lines and magenta bands in
the first two panels correspond to the chosen fit if only the
two-point functions are fitted. The green bands illustrate
our preferred choice of fit. Each set of three data points
corresponds to variations in the fit range for the three-
point functions of −1; 0;þ1 compared to the chosen fit.
Finally, the different blocks correspond to our chosen fit;
the same fit but only to the middle (first, last) half of
the source-sink separations; additionally including an
excited-to-excited matrix element; the same fit but for a
varied choice of tmin for the two point functions which
enter the fit. We find that the ground state fit results are
insensitive to any of these choices. Further details are
provided in Appendix B.

D. Valence strange quark correction

As is evident from Table II, the valence strange quark
mass on the F1M ensembles is slightly mistuned from the
physical strange quark mass value. We account for this
effect by repeating the simulation at the physical strange
quark mass on an eighth of the full statistics. We then
compute the appropriate correction factors as

αRi
≡ Rphys

i

Runi
i

¼ lim
0≪t≪ΔT

Reff
i ðt;ΔTÞjmphys

s

Reff
i ðt;ΔTÞjmuni

s

;

αBi
≡ Bphys

i

Buni
i

¼ lim
0≪t≪ΔT

Beff
i ðt;ΔTÞjmphys

s

Beff
i ðt;ΔTÞjmuni

s

; ð3:6Þ

TABLE III. Bare bag parameters on all ensembles quoted in the NPR basis.

NiBbare
i jNPR i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

C0M 1.5565(17) −1.22385ð96Þ 1.8631(15) −0.96015ð86Þ −0.49446ð43Þ
C1S 1.5692(28) −1.2294ð18Þ 1.8574(27) −0.9907ð17Þ −0.51051ð86Þ
C2S 1.5949(24) −1.2366ð16Þ 1.8586(23) −1.0118ð15Þ −0.52241ð74Þ
M0M 1.4890(21) −1.2052ð11Þ 1.8461(17) −0.87841ð86Þ −0.44361ð42Þ
M1S 1.5038(35) −1.2066ð26Þ 1.8374(41) −0.9051ð23Þ −0.4577ð11Þ
M2S 1.5101(24) −1.2119ð20Þ 1.8409(31) −0.9133ð17Þ −0.46219ð80Þ
M3S 1.5223(45) −1.2129ð30Þ 1.8380(47) −0.9252ð26Þ −0.4684ð13Þ
F1M 1.4776(34) −1.1901ð20Þ 1.8218(30) −0.8691ð14Þ −0.43601ð70Þ

TABLE IV. Bare ratio parameters on all ensembles quoted in
the NPR basis.

Rbare
i jNPR i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

C0M −23.511ð30Þ 35.788(48) −18.439ð28Þ −9.494ð15Þ
C1S −20.587ð55Þ 31.098(85) −16.592ð59Þ −8.549ð31Þ
C2S −18.368ð35Þ 27.604(56) −15.001ð43Þ −7.747ð23Þ
M0M −28.144ð39Þ 43.113(60) −20.516ð29Þ −10.361ð15Þ
M1S −25.125ð72Þ 38.25(11) −18.848ð72Þ −9.531ð36Þ
M2S −23.505ð51Þ 35.704(81) −17.742ð67Þ −8.979ð33Þ
M3S −22.107ð56Þ 33.501(88) −16.866ð65Þ −8.538ð33Þ
F1M −28.621ð80Þ 43.82(13) −20.929ð70Þ −10.500ð36Þ

2Since we only consider cases where either both propagators
are smeared (local) at the operator “SS” (“LL”) we simplify the
notation and only use a single label per operator in the following.
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where

Reff
i ðt;ΔTÞ ¼ Ci

3ðt;ΔTÞ
C1
3ðt;ΔTÞ

;

Beff
i ðt;ΔTÞ ¼ Ci

3ðt;ΔTÞ
NiC2ðtÞC2ðΔT − tÞ : ð3:7Þ

We find that the effect of the ∼3% mistuning of the
strange quark valence mass leads to a ∼0.3–0.5%
correction for the bag parameters and a ∼3% correction
for the ratio of operators—see Table V. Given that the
relative uncertainty of the correction factor is more than
an order of magnitude smaller than that of the values it
is applied to, we treat this correction factor as uncorre-
lated. Figure 3 illustrates this correction factor for the
case of B5 and R5.

IV. NONPERTURBATIVE RENORMALIZATION

In order to obtain a well-defined value in the continuum
limit, it is necessary to renormalize the matrix elements
hK̄0jQþ

i jK0i. While it is possible to use the Schrödinger
functional to renormalize these operators nonperturbatively
(see for example Ref. [56]), in this work we determine the
matrix of renormalization factors Zij using the Rome-
Southampton method [57] with nonexceptional kinematics
(RI-SMOM) [58]. At some renormalization scale μ the
renormalized matrix element is then given by

hK̄0jQþ
i jK0iRIðμ; aÞ ¼ ZRI

ij ðμ; aÞhK̄0jQþ
j jK0ibareðaÞ: ð4:1Þ

Provided chiral symmetry breaking effects are negligible
the matrix ZRI

ij ðμ; aÞ has a block diagonal structure—which
is the case for the set-up at hand [33]. The scale μ should
fall within the “Rome-Southampton window”

Λ2
QCD ≪ μ2 ≪

�
π

a

�
2

; ð4:2Þ

in which the upper limit is relevant to control discretization
effects and the lower limit ensures accurate perturbative
matching to MS.
For the technical definitions, numerical values of the

renormalization constants and details of the extrapolation
of the renormalization constants to the massless limit, we
refer the interested reader to Secs. C 1–C 3 in Appendix C.
There we also discuss two choices, called γμ and =q, of the
renormalization conditions imposed to precisely define the
renormalization scheme.

A. Analysis of nonperturbative renormalization data

In practice, our data covers many values in the range
2 GeV≲ μ ≲ 3 GeV (see Fig. 19 in Appendix C 2 for
details). On the computationally most expensive ensembles
C0M and M0M we simulate at amsea

s =2 in the valence
sector. On all other ensembles we have additional simu-
lation points at amsea

l and 2amsea
l . We use this data

ensemble-by-ensemble to extrapolate the renormalization
constants to the massless limit in which the renormalization
constants are formally defined (see Fig. 4). The extrapo-
lation of the data on the physical pion mass ensembles is

FIG. 2. Stability of correlation function fits, illustrated on the example of the C0M ensemble forQþ
2 . All numbers are quoted in lattice

units and the NPR basis.

TABLE V. Correction factors to be applied to the bare values of Ri and Bi on the F1M ensemble in the NPR basis
in order to correct the observables to the physical strange quark mass.

αX i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

X ¼ Bi 1.004983(99) 1.004231(66) 1.003036(65) 1.003193(71) 1.003583(61)
X ¼ Ri 0.97005(18) 0.96890(18) 0.96904(17) 0.96942(17)
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performed by applying the slope of the C1M (M1M)
ensemble to the C0M (M0M) data.
In a subsequent step we extrapolate the results for each

action to zero sea light quark mass as is illustrated in Fig. 5
for the M-S ensembles at a momentum point close to
2 GeV. Since for the case of the F1M ensemble we only
have a single sea quark mass data point, in practice we first
interpolate the results on all ensembles to a common
renormalization scale and then perform the sea-light quark
mass to zero limit for each choice of distinct lattice spacing.

For the F-M ensemble this is done by applying each of the
four slopes (obtained from C-S, C-M, M-S and M-M) in
turn and assigning a systematic uncertainty of half the
spread of these results.
We list the chirally extrapolated renormalization

constants for each lattice spacing at μ ¼ 2 GeV in
Table VI (results for other values of μ can be found in
Tables XVIII–XIX in Appendix C 3). Since these numbers
contain information from multiple ensembles and the NPR
calculations are based on a subset of the configurations,
we propagate these small uncertainties in an uncorrelated
fashion. To this end we add statistical and systematic
uncertainties in quadrature and generate bootstrap samples
for each of the Zij by drawing from a Gaussian distribution
with the appropriate mean and width.
Finally, we use these values to renormalize the quantities

of interest. In particular we find

RiðμÞren ¼
Zij

Z11

Rjðμ; aÞjbare;

B1ðμÞren ¼
Z11

Z2
A
B1ðμ; aÞjbare;

NiBiðμÞren ¼
Zij

Z2
P
NjBjðμ; aÞjbare i ¼ 2;…; 5: ð4:3Þ

Here the Ni are the appropriate normalization factors
defined above and in practice we make use of the relation
ZS ≈ ZP due to chiral symmetry.

B. Step-scaling

When performing the renormalization we have the
freedom to choose the renormalization scale μ within
the Rome-Southampton window of our ensembles, which
includes 2 GeV≲ μ≲ 3 GeV. We note that higher scales
are more susceptible to discretization effects, while lower
scales face larger errors when matching perturbatively to
e.g. MS.
We can scale the value of an operator renormalized at one

scale to another with the use of a scale evolution matrix,
σðμ2; μ1Þ, in a procedure called step-scaling [59–61].
We define the continuum scale evolution matrix for the
renormalization of the four-quark operators as

σðμ2; μ1Þ ¼ lim
a2→0

Zðμ2; aÞZ−1ðμ1; aÞ; ð4:4Þ

where Zðμ; aÞ is the 5 × 5 block-diagonal matrix described
above. Therefore it is possible to scale our operators, once
renormalized and extrapolated to the continuum limit, from
μ1 to μ2. By renormalizing at μ ¼ 2 GeV, where lattice
artefacts are less significant, but step-scaling our results in
RI-SMOM to μ ¼ 3 GeV before perturbatively matching to
MS we also avoid the higher errors associated with
the truncation of the perturbative series at lower scales.

FIG. 4. Extrapolation of the renormalization constants to
massless valence-quark limit for the example of the (11), (33)
and (23) elements of the M1S ensemble close to 2 GeV. Results
are presented in the RI-SMOMðγμ;γμÞ scheme in the NPR basis.

FIG. 5. Extrapolation of the renormalization constants to the
zero light-sea quark mass limit for the example of the (11), (33)
and (23) elements of the M-S ensembles close to 2 GeV. Results
are presented in the RI-SMOMðγμ;γμÞ scheme in the NPR basis.

FIG. 3. Strange valence mistuning quark correction on the F1M
ensemble for the example of B5 (top) and R5 (bottom).
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Since we have mapped out the region 2 GeV≲ μ ≲ 3 GeV, we can further split (4.4) into multiple smaller steps
Δ ¼ ðμ2 − μ1Þ=N, i.e. we can compute the product

YN−1

k¼0

σðμ1 þ kΔþ Δ; μ1 þ kΔÞ: ð4:5Þ

Alongside directly renormalizing at 3 GeV, we can also renormalize the result at 2 GeVand step scale to 3 GeV in one step,
or in multiple steps as described above. This allows us to probe the effect the scale of the renormalization has. Details of the
computation and numerical values for the step-scaling matrices are provided in Appendix C 4. The numerical values for the
step-scaling matrices in the RI-SMOMðγμ;γμÞ-scheme and in the SUSY basis are given by

σð3 GeV; 2 GeVÞ ¼

2
6666664

0.98021ð53Þ 0.0 0.0 0.0 0.0

0.0 0.9194ð22Þ −0.0630ð16Þ 0.0 0.0

0.0 −0.00284ð35Þ 0.6846ð19Þ 0.0 0.0

0.0 0.0 0.0 0.9988ð24Þ 0.0784ð25Þ
0.0 0.0 0.0 0.00838ð59Þ 0.7542ð24Þ

3
7777775
; ð4:6Þ

σ
�
3 GeV⟵

Δ¼0.5 GeV
2 GeV

�
¼

2
6666664

0.98030ð35Þ 0.0 0.0 0.0 0.0

0.0 0.9199ð22Þ −0.0634ð15Þ 0.0 0.0

0.0 −0.00260ð31Þ 0.6863ð17Þ 0.0 0.0

0.0 0.0 0.0 0.9990ð25Þ 0.0778ð24Þ
0.0 0.0 0.0 0.00860ð44Þ 0.7552ð23Þ

3
7777775
: ð4:7Þ

V. CHIRAL CONTINUUM FITS AND FINAL RESULTS

A. Fit ansatz

To recover continuum results at physical quark masses we perform a simultaneous chiral-continuum limit fit. Our fit
ansatz is based on NLO SU(2) chiral perturbation theory (χPT), covered in more detail in Ref. [29], and includes a chiral
logarithm term. Furthermore our fit function is linear in a2 and m2

π and the mistuning of the strange quark mass δseams
. It is

given by

Yiða2; m2
π; msea

s Þ ¼ Yphys
i

�
1þ αiðaΛÞ2 þ βi

m2
π − ðmphys

π Þ2
ðmphys

π Þ2 þ γiδ
sea
ms

þ LY
i ðmπÞ − LY

i ðmphys
π Þ

�
: ð5:1Þ

TABLE VI. Elements of Zij=Z2
A=S extrapolated to the massless limit. All results are provided in RI-SMOMðγμ;γμÞ at μ ¼ 2.0 GeV in the

SUSY basis. The first parenthesis is the statistical error and the second is the systematic error. More detail is provided in Appendix C 3.

a−1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)

Z11=Z2
A 0.93258(26)(0) 0.93444(77)(1) 0.96021(51)(2) 0.9579(12)(0) 0.97120(69)(47)

Z22=Z2
S 1.0703(26)(0) 1.0788(37)(2) 1.1185(18)(0) 1.1237(64)(1) 1.1405(27)(18)

Z23=Z2
S −0.06092ð49Þð8Þ −0.0603ð10Þð0Þ −0.04045ð55Þð5Þ −0.0387ð10Þð0Þ −0.03054ð62Þð27Þ

Z32=Z2
S 0.0343(31)(3) 0.0403(74)(1) 0.1135(47)(1) 0.120(11)(0) 0.1522(57)(6)

Z33=Z2
S 1.6094(53)(13) 1.643(13)(0) 1.9107(85)(9) 1.948(21)(0) 2.064(10)(6)

Z44=Z2
S 1.0113(21)(2) 1.0161(35)(2) 1.0134(11)(0) 1.0160(51)(0) 1.0122(21)(16)

Z45=Z2
S −0.07270ð48Þð4Þ −0.07384ð98Þð6Þ −0.06217ð46Þð7Þ −0.06268ð98Þð0Þ −0.05774ð49Þð44Þ

Z54=Z2
S −0.23507ð99Þð38Þ −0.2417ð31Þð1Þ −0.2851ð20Þð2Þ −0.2940ð46Þð2Þ −0.3119ð22Þð15Þ

Z55=Z2
S 1.4762(38)(9) 1.4994(96)(6) 1.6718(64)(5) 1.699(15)(0) 1.7670(74)(55)
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where Y ∈ fB; Rg is the quantity of interest. Λ is a typical
QCD-scale and we take the isospin-averaged pion mass to
be mphys

π ¼ ð2m�
π þm0

πÞ=3 ≈ 138 MeV [62]. Yphys
i , α, β

and γ are fit parameters, δseams
¼ ðmsea

s −mphys
s Þ=mphys

s

parameterizes the mistuning of the sea strange quark mass
and the chiral logarithms are given by LY

i ðmπÞ ¼
CY
i m

2
π logðm2

π=Λ2Þ=ð16π2f2πÞ. The coefficients Ci are
known constants with numerical values CB

i ¼ −0.5 for
i ¼ 1, 2, 3 and CB

i ¼ 0.5 for i ¼ 4, 5 and we take
fπ ¼ 130.41ð23Þ MeV [62]. For the ratios R2 and R3

the chiral logarithms vanish (CR
2 ¼CR

3 ¼0) and finally
CR
4 ¼ CR

5 ¼ 1.
As stated in Sec. III the lattice spacings were determined

in Ref. [7] (and updates thereof in Refs. [32,43]) from some
of the same ensembles included in this work, hence a
correlation between the data exists. However we perform an
uncorrelated fit to decouple this work from the previous
work. We propagate the error on the lattice spacing by
generating bootstrap samples following a Gaussian distri-
bution with width equal to the error on the lattice spacing.
Given that the errors on the lattice spacings are of order
0.5% and all extrapolated quantities are dimensionless,
we believe that neglecting these correlations has a negli-
gible effect.

Our central fit results in the two intermediate schemes
are obtained from a chiral-continuum limit fit at μ ¼ 2 GeV
performed in the SUSY basis. These results are then step-
scaled to 3 GeV [e.g. using the matrix provided in Eq. (4.6)]
and perturbatively matched to MS. In the following
sections we will present the results of the chiral-continuum
limit fits and assemble the full uncertainty budget relating
to the lattice computation in the intermediate RI-SMOM
schemes at 3 GeV. Only subsequently do we match these
results perturbatively to MS. This allows us to cleanly
separate the uncertainties due to the perturbative matching
to MS from those arising in the lattice calculation.

B. Results of the chiral-continuum limit fits

In this section we present the chiral-continuum limit fits
in the RI-SMOMðγμ;γμÞ scheme at μ ¼ 2 GeV and in the
SUSY basis. We show these fits for the ratios Ri in Figs. 6
and 7 and for the bag parameters Bi in Figs. 8 and 9. Since
we find that the C2S ensemble—which is at the heaviest
pion mass and the coarsest lattice spacing—is not always
well described by the fit ansatz, we remove it from
our central fits. The data is well described by the fit
function (5.1) in all cases with acceptable p-values (> 5%)
for all fits presented.

d.o.f.

d.o.f.

FIG. 6. Chiral-continuum limit fit to BSM ratio parameters R2 (top) and R3 (bottom) in the SUSY basis, renormalized in the
RI-SMOMðγμ;γμÞ scheme.
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C. Error budget

In the following we quantify all relevant sources of
uncertainties. We consider variations to the data and the fit
ansatz; variations of the renormalization procedure; and
uncertainties stemming from the perturbative matching. We
quantify the uncertainties for the variations by considering

δvari ðμÞ ¼ jYcentral
i − Yvariation

i j
1
2
ðYcentral

i þ Yvariation
i Þ ; ð5:2Þ

where Y ∈ fB; Rg.

1. Chiral extrapolation

The two precise data points at physical pion masses
make the mass extrapolation element of the fit very benign.
We quantify the associated uncertainty by varying the pion
mass cut to the data, removing terms from our fit form and
by repeating the fits using the alternative correlator fit
results (see Appendix B 3). For each of these variations we
compute the associated δ [see Eq. (5.2)] which measures
the shift in central value and list the corresponding values in
Table VII. For all ratios and bag parameters this error is
well below 1% and typically substatistical. For each
observable we assign the maximum of those values as

the systematic uncertainty associated to the chiral extrapo-
lation listed as “chiral” in Table IX.

2. Discretization effects

The good chiral symmetry of domain wall fermions
constrains OðaÞ and Oða3Þ terms to be small. The Oða2Þ
effects are controlled and removed by our three lattice
spacings present in the fit. Power counting suggests that
Oða4Þ effects for hadronic physics scales with a 1.73 GeV
coarsest inverse lattice spacing will remain small on all data
points. However, the same is not necessarily true for hard,
off-shell vertex functions where the momenta are chosen as
the best compromise for a Rome-Southampton window.
The leading unremoved discretization effects are thus likely
to come from the nonperturbative renormalization, and may
be probed by comparing different ways of renormalizing
our data. Our central chiral-continuum limit fit is based on
data renormalized at μ ¼ 2 GeV which is then step-scaled
to 3 GeV by the step-scaling function σð3 GeV; 2 GeVÞ
presented in Eq. (4.6) for the bag parameters. We compare
the results obtained this way to using the alternative
prescription to obtain the scaling function [cf. Eq. (4.5)]
with N ¼ 2, 3 and to performing the continuum limit to
data renormalized directly at μ ¼ 3 GeV. We compute and
report the associated values for δi in Table VIII.

d.o.f.

d.o.f.

FIG. 7. Chiral-continuum limit fit to BSM ratio parameters R4 (top) and R5 (bottom) in the SUSY basis, renormalized in the
RI-SMOMðγμ;γμÞ scheme.
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For our main analysis we extract the bare matrix
elements and renormalization factors in the NPR basis,
transform them to the SUSY basis and then perform the
various analysis steps. Performing the entire analysis in the
NPR basis and converting the final values to the SUSY
basis causes a reshuffling of discretization effects. The
corresponding δi are presented in the column labeled
SUSY ← NPR in Table VIII.
We take the maximum of these variations as estimate for

the systematic uncertainties due to higher order discretiza-
tion effects, labeled “discr” in Table IX.

3. Residual chiral symmetry breaking

Domain wall fermions provide a good approximation to
chiral symmetry, however a small degree of residual chiral
symmetry breaking is present in the data. Chiral symmetry
restricts the allowed mixing pattern to be block-diagonal.
For our central analysis we impose this, by setting the
chirally forbidden elements of Zij to zero which we refer to
as “masking.” To test the effect residual chiral symmetry
breaking has on our results, we repeat the entire analysis
without masking. We find that the deviations are well below
the percent level, indicating that our approximation to

d.o.f.

d.o.f.

d.o.f.

FIG. 8. Chiral-continuum limit fit to the standard model bag parameter B1 (top) and BSM bag parameters B2 (middle) and B3 (bottom)
in the SUSY basis, renormalized in the RI-SMOMðγμ;γμÞ scheme.
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chiral symmetry is very well controlled. We report the
associated systematic uncertainties in Tables VIII and IX
as “rcsb.”

4. Finite volume effects

Finite volume effects (FVEs) could be neglected in our
previous studies, but at this level of precision we need to

revisit this assumption. We estimate these effects using
chiral perturbation theory and note that the finite volume
corrections appear with the same prefactors CY

i as the chiral
logarithms [40]. The FVEs are given by [63]

CY
i

m2
π

ð4πfπÞ2
12

ffiffiffiffiffiffi
2π

p
exp ð−mπLÞ

ðmπLÞ3=2
: ð5:3Þ

d.o.f.

d.o.f.

FIG. 9. Chiral-continuum limit fit to BSM bag parameters B4 and B5 in the SUSY basis, renormalized in the RI-SMOMðγμ;γμÞ scheme.

TABLE VII. Chiral-continuum limit fit systematics depending on choice of ansatz at μ ¼ 2.0 GeV in RI-SMOMðγμ;γμÞ in the SUSY
basis. The first column shows the central value with statistical uncertainty, while the remaining columns quantify variations arising from
different choices in the data that enters the fit as well as the model to which the chiral dependences is fitted. The last column illustrates
the effect of using the alternative choice of correlation function fits underlying the analysis.

Central fit No δms
(%)

No chiral
logs (%) mπ < 440 MeV (%) mπ < 370 MeV (%) mπ < 350 MeV (%)

Alternate
fit (%)

R2 −15.106ð87Þ 0.22 � � � 0.46 0.05 0.08 0.45
R3 4.643(41) 0.42 � � � 0.28 0.10 0.11 0.21
R4 29.22(19) 0.51 0.59 0.58 0.04 0.06 0.49
R5 7.965(62) 0.10 0.47 0.50 0.00 0.05 0.13

B1 0.5268(13) 0.10 0.21 0.49 0.02 0.06 0.40
B2 0.5596(23) 0.05 0.17 0.06 0.01 0.08 0.02
B3 0.856(11) 0.06 0.28 0.02 0.07 0.06 0.00
B4 0.9097(35) 0.03 0.17 0.08 0.01 0.02 0.06
B5 0.750(19) 0.02 0.24 0.18 0.02 0.03 0.13
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The leading order FVEs cancel in the ratios R2 and R3.
Numerically evaluating Eq. (5.3) for our ensembles, we
find that the largest effect is observed on the M1S
ensemble, where the estimate of finite size effects is
1.1 per-mille for the bag parameters and 2.1 per-mille

for R4 and R5. Noting that this is a sub-leading effect
(cf. Table IX) and that the FVEs on the ensembles which
are most constraining for the fit (C0M, M0M, F1M) are
more than a factor three smaller than this, we conclude that
FVEs remain negligible at our current level of precision.

TABLE VIII. Bag and ratio parameters at μ ¼ 3 GeV in RI-SMOMðγμ;γμÞ in the SUSY basis. Central value comes from performing the
chiral-continuum limit fit at μ ¼ 2 GeV and nonperturbative scaling the result to μ ¼ 3 GeV using σð3 GeV; 2 GeVÞ. We also list
variations where the continuum step-scaling is obtained in steps, or the data is renormalized directly at 3 GeV. The central value uses Z-
factors with chirally vanishing elements removed (masked) from ðPΛÞT before the inversion Z ¼ FððPΛÞTÞ−1. We list the percent shift
in the result in foregoing this step, labeled residual chiral symmetry breaking (rcsb). We also compare with performing the entire analysis
in the NPR basis and then rotating to the SUSY basis.

σð3 GeV; 2 GeVÞ σð3 GeV⟵
Δ¼0.5

2 GeVÞ (%) σð3 GeV⟵
Δ¼0.33

2 GeVÞ (%) NPR at 3 GeV (%) rcsb (%) SUSY ← NPR (%)

R2 −18.37ð10Þ 0.12 0.13 0.17 0.11 0.02
R3 5.485(36) 0.18 0.50 0.37 0.14 0.15
R4 38.60(27) 0.02 0.02 0.48 0.09 0.01
R5 10.932(47) 0.11 0.01 0.97 0.03 1.22

B1 0.5164(14) 0.00 0.01 0.01 0.04 0.01
B2 0.5150(12) 0.04 0.20 0.45 0.03 0.05
B3 0.7624(52) 0.32 0.24 1.51 0.06 0.15
B4 0.9107(19) 0.02 0.16 0.02 0.01 0.02
B5 0.7792(79) 0.11 0.24 0.38 0.00 0.26

TABLE IX. Central values and combined systematic errors for ratio and bag parameters in the SUSY basis at μ ¼ 3 GeV in the two
RI-SMOM schemes—ðγμ; γμÞ and ð=q; =qÞ—as well as in MS. For the RI-SMOM schemes we list the errors arising from statistics, chiral
extrapolation, residual chiral symmetry breaking and discretization effects and combine them into total uncertainties. For the MS values
we list the separate conversions from ðγμ; γμÞ and ð=q; =qÞ. The central values are defined as the average of those two numbers and the
perturbative truncation error as half their difference. The lattice error is taken from the ðγμ; γμÞ scheme (see Table XXI for scheme-wise
error budget).

Scheme R2 R3 R4 R5 B1 B2 B3 B4 B5

RI-SMOMðγμ;γμÞ Central −18.37 5.485 38.60 10.93 0.5164 0.5150 0.762 0.9107 0.7792

Statistical 0.59% 0.66% 0.72% 0.44% 0.28% 0.24% 0.69% 0.22% 1.02%
Chiral 0.22% 0.42% 0.59% 0.47% 0.21% 0.17% 0.28% 0.17% 0.24%
rcsb 0.11% 0.14% 0.09% 0.03% 0.04% 0.03% 0.06% 0.01% 0.00%
discr 0.17% 0.50% 0.48% 1.22% 0.01% 0.45% 1.51% 0.16% 0.38%

Total 0.66% 0.94% 1.05% 1.38% 0.35% 0.54% 1.68% 0.31% 1.11%

RI-SMOMð=q;=qÞ Central −19.53 5.818 40.99 10.49 0.5342 0.5155 0.765 0.9137 0.7078

Statistical 0.68% 0.90% 0.81% 0.83% 0.29% 0.42% 1.20% 0.36% 2.19%
Chiral 0.47% 0.77% 1.21% 1.23% 0.24% 0.27% 0.43% 0.28% 0.53%
rcsb 0.28% 0.20% 0.23% 0.13% 0.08% 0.19% 0.28% 0.03% 0.01%
discr 0.35% 0.66% 0.20% 2.25% 0.11% 0.63% 1.88% 0.19% 0.10%

Total 0.94% 1.37% 1.48% 2.69% 0.40% 0.83% 2.29% 0.49% 2.25%

MS ðγμ; γμÞ −18.73 5.781 41.45 10.80 0.5185 0.4759 0.728 0.8862 0.6977
ð=q; =qÞ −19.07 6.059 42.43 10.49 0.5295 0.4829 0.764 0.9070 0.6788
Central −18.90 5.920 41.94 10.64 0.5240 0.4794 0.746 0.8966 0.6882

Lattice 0.66% 0.96% 1.06% 1.40% 0.34% 0.52% 1.75% 0.32% 1.14%
PT 0.91% 2.35% 1.17% 1.47% 1.05% 0.74% 2.40% 1.16% 1.38%

Total 1.12% 2.54% 1.57% 2.03% 1.10% 0.90% 2.97% 1.20% 1.79%
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5. Perturbative matching

The dominant source of uncertainty arises in the con-
version of our results to MS where the matching is done in
perturbation theory to one-loop. The truncation of the
perturbative series leads to an uncertainty. We have defined
two intermediate RI-SMOM schemes, differentiated by
their projectors and use these to estimate the size of this
error. We expect results in MS to be independent of the
intermediate renormalization scheme. We take our central
value as the average between the results obtained from the
two intermediate schemes and associate a truncation
uncertainty of half their difference. For definiteness we
assign the relative error from the ðγμ; γμÞ scheme to
quantify the combined lattice uncertainty in our final
results. The estimate of the perturbative truncation uncer-
tainty is quoted as “PT” in the last column of Table IX.

D. Self-consistency check

Having determined the Ri and the Bi parameters we can
perform a self-consistency check. Recalling the definitions
in Eqs. (2.7), (2.9), and (2.10) we consider

NiBi

Ri
¼ 8

3

ðmsðμÞ þmdðμÞÞ2
m2

K
B1; i ¼ 2;…; 5: ð5:4Þ

The right hand side is independent of i and hence the ratios
from each operator should give compatible results. The
black data points in Fig. 10 display this comparison for the
results at μ ¼ 3 GeV in RI-SMOMðγμ;γμÞ (top) and MS
(bottom). The Ri and Bi have notably different—and
sometimes steep—approaches to the continuum limit.
The good agreement between the different results gives
us confidence that uncertainties in general and discretiza-
tion effects in particular have been well estimated.
We compare our MS results to the value obtained by

evaluating the right-hand side using external inputs. We use

the isospin-symmetrized kaon massmK ¼ðmK0 þmK�Þ=2¼
496.144ð9ÞMeV [62]. We take FLAG [13] values for the
Nf ¼ 2þ 1þ 1 [11,64–69] and Nf ¼ 2þ 1 [7,9,70–78]
isospin-symmetrized light quark mass and strange quark
mass in MS at μ ¼ 2 GeV, together with B̂K, the renorm-
alization group invariant (RGI) value for B1,

Nf ¼ 2þ 1þ 1∶ mud ¼ 3.410ð43Þ MeV ms ¼ 93.44ð68Þ MeV B̂K ¼ 0.717ð24Þ;
Nf ¼ 2þ 1∶ mud ¼ 3.364ð41Þ MeV ms ¼ 92.03ð88Þ MeV B̂K ¼ 0.7625ð97Þ: ð5:5Þ

and run them to μ ¼ 3 GeV, allowing us to construct the
right hand side of Eq. (5.4) [the conversion of the four-
quark operators at a given scale to RGI operators is shown
in Eq. (E21)]. This is shown as the gray band in the lower
plot in Fig. 10.
Furthermore, we can use the constant value in both the

RI-SMOM and MS schemes, combining it with our
value for B1, to predict the sum of the quark masses
(see also the discussion in Ref. [27]). From our result for
i ¼ 2 we find:

ðms þmudÞRIð3 GeVÞ ¼ 91.38ð41Þ MeV;

ðms þmudÞMSð3 GeVÞ ¼ 86.29ð79Þ MeV: ð5:6Þ

We compare this to the corresponding FLAG values

Nf¼2þ1þ1∶ ðmsþmudÞMSð3GeVÞ¼88.18ð63ÞMeV;

Nf¼2þ1∶ ðmsþmudÞMSð3GeVÞ¼86.34ð79ÞMeV:

ð5:7Þ

FIG. 10. Self-consistency check by forming the ratio Eq. (5.4)
at μ ¼ 3 GeV. The data points are from our calculations in the
RI-SMOMðγμ;γμÞ scheme (top) and in the MS scheme (bottom).
For the MS plot we show the expected value using FLAG inputs
as the gray horizontal band.
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E. Comparison to our previous work

In Figs. 11 and 12 we compare our results in the RI-
SMOM scheme at μ ¼ 3 GeV to our previous determi-
nation [29]. The addition of two physical pion mass
ensembles and a third lattice spacing helps to constrain
the chiral and continuum limit extrapolations respectively,
yielding a significantly reduced uncertainty. Given the
significantly different dataset, we find good agreement
between our previous result and this work.

F. Correlation between the different fit parameters

We provide the statistical correlation matrix between the
Bi, Ri and hKjOþ

i jK̄i as an ancillary hdf5 file and show
the resulting correlation matrix in Fig. 13. For complete-
ness we include results for RI-SMOMðγμ;γμÞð2 GeVÞ,

RI-SMOMðγμ;γμÞð3 GeVÞ, RI-SMOMð=q;=qÞð2 GeVÞ and RI-
SMOMð=q;=qÞð3 GeVÞ as well as MS ← RI-SMOMðγμ;γμÞ

ð3 GeVÞ and MS ← RI-SMOMð=q;=qÞð3 GeVÞ.

VI. CONCLUSIONS

In this paper we have performed the first calculation of
the nonstandard model neutral kaon mixing matrix ele-
ments with data directly simulated with physical quark
masses. Using an increased level of volume averaging,
with many Z2 wall sources on each configuration, we have
been able obtain much reduced statistical errors compared
to our previous publications, even with physical quark
masses.
All sources of systematic uncertainties have been esti-

mated. For each of the bag parameters and ratios of matrix
elements a simultaneous fit has been performed to the
mass and lattice spacing dependence. Direct simulation at
physical quark masses leaves the mass dependence of this
extrapolation a negligible systematic. With the inclusion of
a third lattice spacing we can test the validity of a2 scaling
and find that in the range covered by our data it works well.
We assess discretization uncertainties by considering
different renormalization points and/or different ways of
obtaining the nonperturbative scaling matrix. The self-
consistency check of comparing ratios NiBi=Ri increases
our confidence that the discretization effects have been well
estimated, since those ratios approach the continuum limit
in notably different ways.
The dominant systematic error comes from perturbative

matching from the RI-SMOM scheme to MS at the 3 GeV
renormalization point. This key error was assessed by
comparing two different intermediate RI-SMOM schemes

FIG. 11. Comparison of the Ri in RI-SMOMðγμ;γμÞ at μ ¼ 3 GeV to our previous work [29].

FIG. 12. Comparison of the Bi in RI-SMOMðγμ;γμÞ at μ ¼ 3 GeV to our previous work [29].

FIG. 13. Heat-map of the statistical correlation matrix between
the Bi, Ri and the hKjOþ

i jK̄i in MS at 3 GeV.
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after continuum extrapolation. If the matching were
nonperturbative the intermediate scheme would be irrel-
evant, but with truncated, perturbative matching the
results differ due to the truncation error. The differences
are of the order 1%–3%.
Our final results in the MS scheme at 3 GeV, where the

first error is the RI-SMOM error and the second is the
uncertainty from the matching to MS, are

BMS
1 ¼ 0.5240ð17Þð54Þ

BMS
2 ¼ 0.4794ð25Þð35Þ

BMS
3 ¼ 0.746ð13Þð17Þ

BMS
4 ¼ 0.897ð02Þð10Þ

BMS
5 ¼ 0.6882ð78Þð94Þ

RMS
2 ¼ −18.90ð12Þð17Þ

RMS
3 ¼ 5.92ð05Þð13Þ

RMS
4 ¼ 41.94ð44Þð46Þ

RMS
5 ¼ 10.64ð14Þð15Þ: ð6:1Þ

Figure 14 shows a comparison of our BSM bag parameters
with previous lattice results.
Our value for the SM bag parameter BK ¼ B1 shows

good consistency with our collaboration’s most-recent

previous result, BMS←SMOMð=q;=qÞ
K ð3 GeVÞ ¼ 0.530ð11Þ [7].

A different fitting procedure in which the physical point
data was over-weighted was employed in Ref. [7] and,
while it also included the coarse and medium ensembles

included in this work, it included a different third lattice
spacing with a heavier pion mass. Further, it combined
additional coarser ensembles with a different gauge action
in a global fit, and reweighting factors to adjust the sea
strange mass to the physical values. In this work we instead
leave the sea-strange mass dependence as a fit parameter.
Given the differences in the underlying correlator data and
the various fitting procedures, the consistency of the results
is reassuring.
We convert our result above for BK at scale μ ¼ 3 GeV

to the RGI value B̂K ¼ 0.7436ð82Þ [the conversion factor is
the 11 element of the matrix in Eq. (E21)]. A comparison of
our B̂K with previous lattice results is shown in Fig. 15,
where good agreement is seen. Values for B̂K and the BSM
Bi estimated in a large-Nc (number of colors) expansion
may be found in Refs. [79,80].
The prospects for further improvements of this calcu-

lation are as follows: We believe that the RI-SMOM
scheme results are sufficiently precise that there is no
purpose in further reduction in the error within the isospin
symmetric pure QCD approximation. Instead, strong iso-
spin breaking and QED must be addressed if greater
accuracy is required. For our final results a significant
source of error stems from the perturbative matching toMS.
This could be addressed by raising the matching scale at
which we convert operators. The convergence is logarith-
mic in the energy scale and this will not lead to a rapid
improvement in the calculation. It would be better to
accompany this with a two-loop calculation of the scheme
change factors presented in Ref. [33]. The quadratic
suppression in αs would be more beneficial than an increase
in the renormalization scale toward the b-threshold.

FIG. 14. Comparison of our results for the BSM bag parameters in MS at 3 GeV with previous results (RBC-UKQCD16 [29],
SWME15 [9], ETM12 [12], ETM15 [11]).
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Consequently we believe our results are a robust deter-
mination that in the short term may only be further
improved with an additional loop in the perturbative
matching, or by the inclusion of isospin breaking effects.
This work is an important step toward the determination

of the same observables in the B0
ðsÞ–B̄

0
ðsÞ systems which is

also being pursued by our collaboration [81,82].
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APPENDIX A: C1M AND M1M ENSEMBLES

RBC-UKQCD 2þ 1f configurations initially used the
standard domain wall fermion action with Ls ¼ 16 [84],
but when substantially lighter quark masses at physical
values were introduced [7], it was desirable to reduce the
level of residual chiral symmetry breaking and the Möbius
domain wall fermion framework [48] was adopted with
fixed independent Möbius parameter b ¼ 1.5 and c ¼ 0.5.
We take HW ¼ γ5DW as the hermitian Wilson operator at
negative domain wall mass, and with this choice of b and c
this yields a kernel HM entering the overlap sign function
that is identical to the kernel HT of standard domain wall
fermions in the large Ls limit, with

HM ¼ 2HW

2þDW
¼ 2HT; ðA1Þ

entering the four dimensional effective overlap action via
an approximate sign function which (if exact) removes the
rescaling factor

Dov ¼
1þm
2

þ 1 −m
2

γ5ϵðHMÞ: ðA2Þ

Here the sign function approximation ϵðHMÞ is the tanh
approximation to the exact sign function,

ϵðHMÞ ¼
ð1þHMÞLs − ð1 −HMÞLs

ð1þHMÞLs þ ð1 −HMÞLs

¼ tanh ðLstanh−1HMÞ: ðA3Þ

The four dimensional effective action of two actions
coincide exactly when the extent of the fifth dimension
is infinite, and at finite Ls differ only by terms that
are exponentially suppressed in the fifth dimension extent,
a scale which can by measured by the residual
mass measured as the defect of the Möbius chiral Ward
identity [7]. Indeed on these two new ensembles, we obtain
residual masses which are very close to those of the
corresponding physical pion mass ensembles [7] as can
be seen from Table XI.
Previously RBC-UKQCD have directly combined cal-

culations on ensembles with the Shamir formulation of
domain wall fermions at heavier quark masses with
physical quark mass ensembles using the about Möbius
action. This cost saving measure is reasonable at the
percent scale level accuracy sought at the time, with
residual chiral symmetry breaking effects being of lower
magnitude and around 3 × 10−3 in the worst-case coarsest
ensemble. In these initial ensembles, since the input quark
mass that corresponds to the physical strange quark mass is
determined by simulation, the strange quark mass could

FIG. 15. Comparison of our results for the RGI SM bag
parameter B̂K with previous results.
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only be approximately tuned in advance of their gen-
eration and so differed from the physical value. However,
longer term there is great simplicity in generating new
ensembles so that comparisons can be made and extrap-
olations performed with fewer variables changing (vol-
ume, residual chiral symmetry breaking, strange quark
masses), while increased computing power made this now
relatively easily affordable.

To an extent chiral effective approaches and other
methods can both estimate finite volume effects to be
small and allow to correct for them. We therefore continue
to use smaller volumes 243 × 64 for C1M and 323 × 64 for
M1M, but took the opportunity to eliminate two of these
three confounding effects that arise when using the older
ensembles. The first is to keep the same residual chiral
symmetry breaking approximation to the overlap operator,
and the second is to retune the dynamical strange quark
mass to its physical value on each ensemble, matching that
used in the physical point ensembles C0M and M0M.
The new ensembles were generated using the GRID library

[50], with simulation parameters and intermediate two flavor
determinant Hasenbusch masses [85] that are given in
Table X. The exact one flavor algorithm [86] was used
for the strange quark using the implementation in GRID [87].
For M1M, a two level nested integrator was used in the

HMC with the force gradient integrator [88,89], all pseu-
dofermion action fragments taking ten steps with time step
δt ¼ 1

10
, and eight gauge steps for each fermion step. For

C1M, a two level nested integrator was used in the HMC
with the force gradient integrator, all pseudofermion action
fragments taking twelve steps with time step δt ¼ 1

12
, and

eight gauge steps for each fermion step.
The first 200 trajectories were discarded from a hot start

before measurements. The plaquette histories are shown in
Fig. 16, and the average values are more than adequately
consistent with those obtained more precisely in a larger
volume at physical quark mass, Table XI, given that the
quark mass and volume differ.

APPENDIX B: CORRELATION FUNCTION FITS

This section discusses the choices required in the corre-
lation function fits. We commence by illustrating the quality
of our data. In Sec. B 1 we discuss the construction of the
covariance matrix used in these fits. To mitigate any bias
stemming from fit range choices, two of the authors
independently did the analysis of the correlation function
fits. This resulted in two different fit strategies which will be
outlined in Appendixes B 2 and B 3.
Figure 17 shows the bare effective ratios Reff

i ðt;ΔTÞ
[cf. Eq. (3.7)] in the NPR basis for the C0M (left) and M0M

TABLE X. Simulation and HMC parameters for the C1M and
M1M ensembles.

Ensemble C1M M1M

Volume 243 × 64 323 × 64
β 2.13 2.25
b 1.5 1.5
c 0.5 0.5
Ls 24 12
M5 1.8 1.8
ml 0.005 0.004
ms 0.0362 0.02661
mh f0.02; 0.2; 0.6g f0.02; 0.2; 0.6g
NTraj 1990 1950
Fermion steps 12 10
Sexton-Weingarten ratio 8 8
Integrator Force gradient Force gradient
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FIG. 16. Plaquette molecular dynamics time history for the
C1M (top) and M1M (bottom) ensembles.

TABLE XI. Average plaquettes for the new M1M and C1M
ensembles are more than adequately consistent with the (more
precise) values obtained on the corresponding large volume and
physical quark mass ensembles, given the volume and mass differ.

Ensemble Plaquette Residual mass

C0M 0.5871119(25) 0.0006102(40)
C1M 0.587091(7) 0.000604(11)
M0M 0.6153342(21) 0.0003116(23)
M1M 0.615337(4) 0.0003063(53)
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(right) ensembles for various typical source-sink separa-
tions ΔT. For sufficiently large ΔT values these ratios
plateau to the same value, indicating ground-state
saturation.

1. Correlated fits to data

In all of this paper, our fits are correlated frequentist
minimizations of the χ2-function

χ2 ¼
X
i;j

ðfða; xiÞ − yiÞcovðyi; yjÞ−1ðfða; xjÞ − yjÞ; ðB1Þ

where yi are our data, fða; xiÞ is the model with parameters
a that is being fitted and covðyi; yjÞ is the covariance matrix
of the data. Resampling N statistical estimators into Nboot
bootstrap samples ỹi and denoting the mean of yi by ȳi, we
define the covariance matrix covðyi; yjÞ as

covðyi; yjÞ ¼
1

Nboot

XNboot

k¼1

ððỹiÞk − ȳiÞððỹjÞk − ȳjÞ: ðB2Þ

We relate the covariance matrix to the standard deviation σ

via σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðyi; yiÞ

p
. Furthermore we define the normal-

ized covariance matrix or correlation matrix corðyi; yjÞ as

corðyi; yjÞ ¼ diagð1=σiÞcovðyi; yjÞdiagð1=σjÞ: ðB3Þ

Since we jointly fit multiple two-point and three-point
functions, it is important to be able to accurately invert the
covariance matrix that appears in the χ2-function.
On a given ensemble, we have Nmeas ¼ Nconf × Nsrc

estimators for the yi (compare Table II). When estimating
the correlation matrix and the standard deviations, we
therefore need to choose whether we treat measurements
on different time translations on the same configuration
as independent or whether we bin them into an effective
measurement. From these two choices we obtain
ðσi; corðyi; yjÞÞunbinned and ðσi; corðyi; yjÞÞbinned based on
Nconf × Nsrc measurements and Nconf effective measure-
ments, respectively. Our reasoning is based on stochastic
locality [90], i.e. the fact that observables measured in
sufficiently distant regions of a gauge field configuration

FIG. 17. Illustration of the quality of our data for the C0M (left) and M0M (right) ensembles. We show the bare effective ratios
Reff
i ðt;ΔTÞ in the NPR basis as defined in Eq. (3.7).
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can be treated as independent. The separation that is
required for this statement to hold, strongly depends on
the observable under consideration. Since we only have
access to measurements with sources shifted in the time
direction, we are not pursuing a master field analysis [91]
but instead use binning studies to gain insight into the
level of independence of different measurements on the
same configuration. When considering the covariance
matrix that enters the χ2 function, we consider two parts:
the overall normalization, stemming from the estimate of
the variances, and the normalized correlation matrix
that measures the degree of correlations between different
time slices. This separation is motivated by the following
observation. If each measurement of a dataset with Nconf
independent measurements is duplicated and (falsely)
assumed to constitute a dataset with 2Nconf independent
measurements then the mean values and the correlation
matrix will remain unchanged, while the variance of the
mean will be underestimated by a factor 2. The variance is
hence far more sensitive to the assumption of statistical
independence which causes us to assess the properties
of the covariance of the mean and the correlation
matrix separately.
The left-hand plot of Fig. 18 shows a binning study on

the M0M ensemble. In the top panel the relative uncertainty
of the pseudoscalar-pseudoscalar kaon two-point function
is shown as a function of the inverse bin-size. The right-
most data points correspond to considering every meas-
urement as independent, whereas the left-most data point
corresponds to the “fully binned” case, i.e. where all
measurements on a given configuration are averaged into
a single effective measurement. We find that the uncertainty
only mildly depends on the bin size, but take the
conservative approach of taking the variance from the
maximally binned version of the dataset, in order to ensure
that the uncertainties are not underestimated.

We now turn our attention to the correlation matrix.
The right hand plot of Fig. 18 shows a slice of the
correlation matrix where one time index is fixed to be
t=a ¼ 12. The blue solid line shows the estimate of the
correlation matrix based on the “fully binned” case. The
green dashed line with the circles on it, shows the “fully
unbinned” estimate of the correlation matrix. The faint
red lines correspond to estimates based on a single
source plane, i.e. only include one measurement per
configuration and are therefore based on a substatistic of
1=Nsrc measurements. Comparing these Nsrc estimators
of the correlation matrix, allows us to obtain an
indication of the uncertainty of the correlation matrix
elements which is indicated by the red error bars. We
note that the “fully unbinned” estimate agrees very well
with this average.
In the bottom panel of the left-hand plot we perform

the binning study for three representative elements of
the correlation matrix and superimpose the uncertainty
obtained from the Nsrc estimates as horizontal bands. In
each case, we find that for sufficiently small number of
sources per bin the values stabilize. We therefore conclude
to use “fully unbinned” estimates for the correlation matrix,
while using the “fully binned” estimate of the variance. We
now construct the covariance matrix we use in the fit to the
correlation functions as

covðyi; yjÞ ¼ diagðσbinnedi Þcorðyi; yjÞunbinneddiagðσbinnedj Þ:
ðB4Þ

This has the benefit that it resolves the correlations
but estimates the statistical uncertainties without any
assumption of independence for measurements from differ-
ent source positions on the same configurations.

estimate from ’fully binned’ dataset

estimate from single source position

estimate from ’fully unbinned’ dataset

average of single source position estimates

FIG. 18. Investigation of binning choices for a typical Kaon two-point function on the M0M ensemble. Further details are provided in
the text.
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2. Correlation function fits—Strategy and stability

We jointly fit several two-point and three-point functions
directly to their functional forms given by Eqs. (3.3)
and (3.5). In a first step, we start by only fitting the
two-point functions. We determine fit ranges t2ptmin and t2ptmax

for the two-point functions which produce stable ground
and first excited state results for masses and overlap factors.
For each four-quark operatorQþ

i we then perform a joint fit
to the same two-point functions but also the corresponding
three-point functions Ci

3ðt;ΔTÞ for several values of ΔT.
As a first step, we keep t2ptmin, t

2pt
max from above for the two-

point functions. For the three-point functions we use
the same t3ptmin irrespective of ΔT. This is determined by
choosing an integer δ to set t3ptmin ¼ t2ptmin þ δ and
t3ptmax ¼ ΔT − t3ptmin. Typically we have δ∈ f0; 1g. We then
vary δ by �1, vary the choice of which values of ΔT enter
the fit and vary t2ptmin by�1. We adjust these choices until we
see stability in all fit parameters.
For completeness we summarize the meson masses

mP ¼ E0 and the bare decay constants fbareP for the pion
and the kaon in Table XII.

3. Alternative strategy

We define the ratios of two-point functions (3.3) and
three-point functions (3.5)

r1ðt;ΔTÞ ¼ C1
3ðt;ΔTÞ

CPAðtÞCAPðΔT − tÞ ;

riðt;ΔTÞ ¼ Ci
3ðt;ΔTÞ

CPPðtÞCPPðΔT − tÞ ; i > 1 ðB5Þ

which are constructed to asymptotically approach the bag
parameters

riðt;ΔTÞ⟶
0≪t≪ΔT≪T

NiBi: ðB6Þ

For simplicity we omit the smearing labels s1, s2, which are
chosen to ensure that only local matrix elements remain.
Expanding numerator and denominator of the first line of
Eq. (B5) using Eqs. (3.3) and (3.5) taking into account the
ground state (j0i) and first excited state (j1i) contributions
(n ¼ 0, 1) (but neglecting the excited-to-excited matrix
elements) yields

r1ðt;ΔTÞ ¼ h0jO1j0i
M2

A;0
½1þ X1ðt;ΔTÞe−ΔEΔT=2 þ Y1ðt;ΔTÞe−ΔEΔT �; ðB7Þ

where we defined

X1ðt;ΔTÞ ¼ 2
MP;1E0

MP;0E1

cosh ½ΔEðt − ΔT=2Þ�
�h0jO1j1i
h0jO1j0i

−
MA;1

MA;0

�
;

Y1ðt;ΔTÞ ¼ −4
M2

P;1E
2
0

M2
P;0E

2
1

cosh2½ΔEðt − ΔT=2Þ� h0jO1j1i
h0jO1j0i

MA;1

MA;0
; ðB8Þ

and ΔE ¼ E1 − E0. The expression for ri (i > 1) is very similar. Defining a summed version of the ratio

riðtc;ΔTÞ≡
XΔT−tc
t¼tc

riðt;ΔTÞ ðB9Þ

and using the identity

XΔT−tc
t¼tc

cosh½ΔEðt − ΔT=2Þ� ¼ sinh½ΔE=2ðΔT − 2tc þ 1Þ�
sinh½ΔE=2� ðB10Þ

TABLE XII. Masses and bare decay constants of the pion and
kaons for all of the ensembles used in this work.

Ensembles amπ afbareπ amK afbareK

C0M 0.08048(10) 0.10654(12) 0.28696(13) 0.126852(89)
C1S 0.19052(40) 0.11902(27) 0.30630(39) 0.13201(22)
C2S 0.24159(38) 0.12743(20) 0.32518(35) 0.13737(18)

M0M 0.059078(74) 0.074620(86) 0.21065(10) 0.089081(60)
M1S 0.12750(35) 0.08292(28) 0.22491(36) 0.09379(20)
M2S 0.15123(36) 0.08680(22) 0.23208(35) 0.09578(17)
M3S 0.17238(42) 0.09023(25) 0.23994(40) 0.09775(20)

F1M 0.08581(16) 0.06768(15) 0.18810(19) 0.07821(15)

C1Ma 0.15987(50) 0.11659(60) 0.30560(51) 0.13261(52)
M1Ma 0.12116(52) 0.07943(39) 0.22778(62) 0.09193(32)

aThese ensembles only enter the analysis in order to con-
strain the chiral extrapolation of the renormalization constants
described in Sec. IV.
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the summed ratio can be expressed as

r1ðtc;ΔTÞ ¼
h0jO1j0i
M2

A;0

�
t̂þ 2

MP;1E0

MP;0E1

e−ΔEΔT=2
sinh½ΔE=2t̂�
sinh½ΔE=2�

�h0jO1j1i
h0jO1j0i

−
MA;1

MA;0

��
; ðB11Þ

where t̂≡ ΔT − 2tc þ 1. For a given operator Oi and value of tc we then jointly fit the correlation functions and CSL
PPðtÞ,

CSL
PAðtÞ,CSS

PPðtÞ and ratios riðtc;ΔTÞ (and the LL equivalent for F1M). The fit ranges of t∈ ½t2ptmin; t
2pt
max� and

ΔT ∈ ½ΔT3pt
min;ΔT

3pt
max� are chosen such that all fit parameters remain stable when these ranges are varied by small amounts.

APPENDIX C: RENORMALIZATION FACTORS

1. Definitions

We closely follow Ref. [32] in which the reader will find more details. The renormalization factors are defined by
imposing the renormalization condition that the projected renormalized amputated-vertex Green’s function, in the Landau
gauge, for some chosen external momenta, is equal to its tree level value (denoted by F). Using the SMOM kinematics

ðp1 − p2Þ2 ¼ p2
1 ¼ p2

2 ¼ μ2; ðC1Þ

the Z-factors are defined in the massless limit (mq → 0) and extracted by imposing

lim
mq→0

Pk

�
ZRI-SMOM
ij ðμ; aÞ

ðZRI-SMOM
q ðμ; aÞÞ2Π

bare
j ða; p1; p2Þ

�
SMOM

¼ Pk½Πð0Þ
i �; ðC2Þ

and the tree-level value Fik ≡ Pk½Πð0Þ
i � is obtained by replacing the propagators by the identity in color-Dirac space.

Explicitly, for a given four-quark operator Qi, the vertex functions is defined as (with x̃i ¼ xi − x)

Πbare
i ða; p1; p2Þδ̄ γ̄;β̄ ᾱ ¼ hḠðp2Þ−1iδ̄δhGðp1Þ−1iγγ̄hḠðp2Þ−1iβ̄βhGðp1Þ−1iαᾱðMbare

i Þδγ;βαða; p1; p2Þ; ðC3Þ

where

ðMbare
i Þδγ;βαðq2Þ ¼

X
x;x1;…;x4

h0jsδðx4Þd̄γðx3Þ½QiðxÞ�sβðx2Þd̄αðx1Þj0ie−ip1:x̃1þip2:x̃2−ip1:x̃3þip2:x̃4 ;

¼ 2
X
x

ðh½Ḡxðp2ÞΓ1Gxðp1Þ�δγ½Ḡxðp2ÞΓ2Gxðp1Þ�βαi − h½Ḡxðp2ÞΓ1Gxðp1Þ�δα½Ḡxðp2ÞΓ2Gxðp1Þ�βγiÞ: ðC4Þ

Here GxðpÞ represents an incoming quark with momentum p and Ḡxð−pÞ an outgoing quark with momentum p. In
addition we have also introduced the inverse of the “full momentum” propagators

GðpÞ ¼
X
x

GxðpÞ and ḠðpÞ ¼
X
x

ḠxðpÞ: ðC5Þ

In Eq. (C4), the Dirac structure of the four-quark operator Qi is encoded in Γ1 × Γ2.
In this work we use two different sets of projectors, PðγμÞ and Pð=qÞ, as defined in Ref. [32]. The PðγμÞ follow the same

structure as the four-quark operators. We split them in three groups according to their chiral-flavor properties. For the
standard model, we have

½PðγμÞ
1 �ba;dcβα;δγ ¼ ½ðγμÞβαðγμÞδγ þ ðγμγ5Þβαðγμγ5Þδγ�δbaδdc: ðC6Þ

For the (8, 8) doublet we define

½PðγμÞ
2 �ba;dcβα;δγ ¼ ½ðγμÞβαðγμÞδγ − ðγμγ5Þβαðγμγ5Þδγ�δbaδdc;

½PðγμÞ
3 �ba;dcβα;δγ ¼ ½δβαδδγ − ðγ5Þβαðγ5Þδγ�δbaδdc; ðC7Þ
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and similarly for the ð6̄; 6Þ:

½PðγμÞ
4 �ba;dcβα;δγ ¼ ½δβαδδγ þ ðγ5Þβαðγ5Þδγ�δbaδdc;

½PðγμÞ
5 �ba;dcβα;δγ ¼

�X
ν>μ

ðγμγνÞβαðγμγνÞδγ
�
δbaδdc: ðC8Þ

To define the Pð=qÞ projectors we replace γμ by =q=q2 in the
previous equations [6]. When there is no explicit γμ, we
take advantage of some Fierz identities, which relate the
color-unmixed four-quark operators of certain Dirac struc-
ture to color-mixed four-quark operators of a different
Dirac structure [92]. Following Refs. [33,93] we define

½Pð=qÞ
1 �ba;dcβα;δγ ¼ 1

q2
½ð=qÞβαð=qÞδγ þ ð=qγ5Þβαð=qγ5Þδγ�δbaδdc;

½Pð=qÞ
2 �ba;dcβα;δγ ¼ 1

q2
½ð=qÞβαð=qÞδγ − ð=qγ5Þβδð=qγ5Þδγ�δbaδdc;

½Pð=qÞ
3 �ba;dcβα;δγ ¼ 1

q2
½ð=qÞβαð=qÞδγ − ð=qγ5Þβδð=qγ5Þδγ�δbcδda:

½Pð=qÞ
4 �ba;dcβα;δγ ¼ 1

p2
1p

2
2 − ðp1:p2Þ2

½ðpμ
1ðσμνPLÞpν

2Þβαðpρ
1ðσρσPLÞpσ

2Þδγ�δbcδda;

½Pð=qÞ
5 �ba;dcβα;δγ ¼ 1

p2
1p

2
2 − ðp1:p2Þ2

½ðpμ
1ðσμνPLÞpν

2Þβαðpρ
1ðσρσPLÞpσ

2Þδγ�δbaδdc; ðC9Þ

where we used the standard definition σμν ¼ 1
2
½γμ; γν�.

In order to eliminate the explicit Zq-dependence in
Eq. (C2), it is customary to divide the (amputated-
projected) vertex function of the four-quark operators by
the one of a bilinear operator. Here we choose the axial-
vector current and we denote ΠA, PA, FA the corresponding
vertex function, projector and tree level value, respectively.
Finally, the choice of projectors completes the definition of
the nonperturbative scheme. UsingA to indicate γμ or q we

define the renormalization factors ZðA;AÞ
ij =Z2

A as3

ZðA;AÞ
ij ðμ; aÞ
Z2
AðaÞ

× lim
mq→0

PðAÞ
k ½Πbare

j ða; p1; p2Þ�
ðPðAÞ

A ½Πbare
A ða; p1; p2Þ�Þ2

				
SMOM

¼ FðAÞ
ik

ðFðAÞ
A Þ2

: ðC10Þ

Our conventions are such that from Eq. (C10) we can
define ZB1

≡ ZBK
¼ Z11=Z2

A. Finally, to obtain the bag
parameters we also need to renormalize the quark mass.
Making use of Zm ¼ 1=ZS we impose

ZðAÞ
A ðμ; aÞ
ZSðμ; aÞ

× lim
mq→0

PðAÞ
A ½Πbare

A ða; p1; p2Þ�
PS½Πbare

S ða; p1; p2Þ�
				
SMOM

¼ FðAÞ
A

FS
:

ðC11Þ

The use of two schemes provides a way of estimating
systematic errors in the renormalization by examining
the spread of the results. The vertex function’s external
momenta pμ

i are chosen to ensure nonexceptional SMOM
kinematics given in Eq. (C1). Using a combination of
Fourier momenta and partially twisted boundary condi-
tions, the behavior of the renormalization factors as a
function of the momentum scale μ is mapped out in the
range μ∈ ½2–3� GeV. In the original exceptional kinematics
(used in RI-MOM), infrared effects fall only as p−2 and
pion pole subtraction is required to tame these. Using
nonexceptional kinematics (used in RI-SMOM), the infra-
red effects are far more suppressed falling with p−6 as has
been shown in Ref. [94]. Alternative renormalization
schemes such as the massive RI-SMOM [95,96] and
interpolating MOM-schemes [97] are currently being
explored by the collaboration. Their application to kaon
mixing is left for future studies.

2. Numerical results for the renormalization factors
ensemble by ensemble

On each ensemble we simulate the NPR data points at a
range of choices for the renormalization scale μ. These are
depicted in Fig. 19. We furthermore repeat the simulation at
multiple quark masses, in particular at amsea

l , 2amsea
l and

3We can also define ZðA;BÞ
ij with A ≠ B, but in this work we

consider only ðγμ; γμÞ and ð=q; =qÞ.

P. A. BOYLE et al. PHYS. REV. D 110, 034501 (2024)

034501-24



amsea
s =2with the exception of the most expensive C0M and

M0M ensembles where we only simulate at amsea
s =2.

We follow the procedure outlined in Appendix C 1 to
calculate the four-quark matrix elements’ renormalization
constants Zij=Z2

A. We then normalize these to build the
appropriate renormalization constants listed in Eq. (4.3).

In order to ensure reproducibility, we provide numerical
values of the renormalization constants at some choice of
lattice momenta on the lightest pion mass ensemble for
each distinct lattice spacing in Tables XIII–XVII.

3. Extrapolation of the renormalization factors
to the massless limit

Formally the renormalization constants are defined in the
massless (zero quarkmass) limit. In order to perform this limit
lattice-spacing-by-lattice-spacing we proceed as follows. We
first extrapolate the valence quark mass to zero ensemble-by-
ensemble as described in Sec. IVA. We then interpolate the
renormalization constants on all ensembles to a fixed scale μ.
We either perform a linear fit to the two closest simulated
values of μ or a quadratic fit to the three closest points. We
then performa chiral extrapolation in ðamπÞ2 to all ensembles
that share an identical lattice spacing (C1S andC2S;C0Mand
C1M;M1S,M2S andM3S;M0M andM1M). Sincewe only
have data on a single ensemble (F1M) for the finest lattice

TABLE XIII. Values of Zij=Z2
A for chirally nonvanishing matrix elements for a subset of the simulated momenta

(in lattice units) on the C0M ensemble for amval
q ¼ 0.0181. All values are given in the RI-SMOMðγμ;γμÞ scheme and

in the SUSY basis.

aμ 1.11072 1.3884 1.66608 1.94376

Z11=Z2
A 0.93224(13) 0.923561(68) 0.915757(54) 0.907465(34)

Z22=Z2
A 0.74937(13) 0.82424(16) 0.877220(37) 0.917178(57)

Z23=Z2
A −0.041062ð66Þ −0.056518ð65Þ −0.071844ð45Þ −0.087583ð32Þ

Z32=Z2
A 0.03145(13) −0.010829ð52Þ −0.043507ð40Þ −0.071655ð36Þ

Z33=Z2
A 1.154966(63) 1.106912(37) 1.079801(38) 1.063261(10)

Z44=Z2
A 0.70331(20) 0.79997(14) 0.867628(12) 0.918149(54)

Z45=Z2
A −0.050481ð64Þ −0.060964ð52Þ −0.073113ð41Þ −0.086769ð28Þ

Z54=Z2
A −0.171645ð50Þ −0.149960ð37Þ −0.139921ð39Þ −0.137573ð37Þ

Z55=Z2
A 1.051566(66) 1.049023(33) 1.049000(28) 1.050999(11)

ZA=ZS 1.197636(71) 1.129805(84) 1.088466(26) 1.061227(33)

TABLE XIV. Same as Table XIII but for the C1S ensemble for amval
q ¼ 0.005.

aμ 1.11072 1.3884 1.66608 1.94376

Z11=Z2
A 0.93303(13) 0.924165(55) 0.916271(66) 0.907958(58)

Z22=Z2
A 0.75249(61) 0.82630(28) 0.87856(11) 0.91832(12)

Z23=Z2
A −0.04129ð15Þ −0.056775ð74Þ −0.071886ð82Þ −0.087656ð88Þ

Z32=Z2
A 0.03059(21) −0.01137ð10Þ −0.043656ð74Þ −0.071733ð95Þ

Z33=Z2
A 1.15504(28) 1.10673(11) 1.079562(84) 1.063174(48)

Z44=Z2
A 0.70746(75) 0.80253(30) 0.86921(11) 0.91939(13)

Z45=Z2
A −0.05062ð20Þ −0.06120ð10Þ −0.073071ð83Þ −0.086787ð86Þ

Z54=Z2
A −0.17065ð21Þ −0.149293ð88Þ −0.139280ð88Þ −0.137090ð68Þ

Z55=Z2
A 1.05273(21) 1.049571(82) 1.049163(54) 1.051141(43)

ZA=ZS 1.19361(86) 1.12820(21) 1.08753(10) 1.060548(76)

FIG. 19. Simulation values of the scale μ on the various
ensembles.
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spacing,we apply each of the slopeswithm2
π in turn. OnF-M,

we assign the central value to be the mean of these
four extrapolated results and take half the spread of the
results as a systematic uncertainty associated to the chiral

extrapolation. We provide numerical values of these
chirally extrapolated renormalization constants for each of
the lattice spacings at μ ¼ 2 GeV (Table VI), μ ¼ 2.5 GeV
(Table XVIII), and μ ¼ 3 GeV (Table XIX).

TABLE XV. Same as Table XIII but for the M0M ensemble for amval
q ¼ 0.0133.

aμ 0.83304 1.0413 1.24956 1.3884

Z11=Z2
A 0.958988(97) 0.948999(54) 0.941580(40) 0.937357(31)

Z22=Z2
A 0.701561(98) 0.774046(79) 0.826662(61) 0.854299(47)

Z23=Z2
A −0.023850ð59Þ −0.034541ð40Þ −0.044346ð40Þ −0.050758ð38Þ

Z32=Z2
A 0.075307(47) 0.034965(33) 0.005582(30) −0.010480ð23Þ

Z33=Z2
A 1.212886(87) 1.149630(45) 1.111072(35) 1.093473(27)

Z44=Z2
A 0.63286(11) 0.727410(91) 0.796468(58) 0.832571(45)

Z45=Z2
A −0.038240ð46Þ −0.043612ð32Þ −0.049903ð29Þ −0.054545ð30Þ

Z54=Z2
A −0.182166ð54Þ −0.154917ð30Þ −0.137278ð21Þ −0.129566ð23Þ

Z55=Z2
A 1.057128(68) 1.050256(31) 1.045950(24) 1.044326(22)

ZA=ZS 1.26232(13) 1.181992(83) 1.131563(41) 1.107811(22)

TABLE XVI. Same as Table XIII but for the M1S ensemble for amval
q ¼ 0.004.

aμ 0.83304 1.0413 1.24956 1.45782

Z11=Z2
A 0.95866(27) 0.94835(17) 0.94111(13) 0.93495(10)

Z22=Z2
A 0.70006(63) 0.77412(33) 0.82662(14) 0.86644(13)

Z23=Z2
A −0.02394ð22Þ −0.034736ð81Þ −0.044604ð78Þ −0.054232ð65Þ

Z32=Z2
A 0.07552(21) 0.03452(10) 0.005247(63) −0.018170ð55Þ

Z33=Z2
A 1.21448(44) 1.14967(17) 1.111076(76) 1.086321(33)

Z44=Z2
A 0.63178(68) 0.72810(36) 0.79677(14) 0.84859(14)

Z45=Z2
A −0.03853ð25Þ −0.043920ð89Þ −0.050118ð52Þ −0.057240ð60Þ

Z54=Z2
A −0.18333ð20Þ −0.15511ð13Þ −0.137472ð66Þ −0.126927ð60Þ

Z55=Z2
A 1.05863(24) 1.05060(10) 1.046175(54) 1.044027(36)

ZA=ZS 1.2629(14) 1.18148(46) 1.13157(10) 1.09803(10)

TABLE XVII. Same as Table XIII but for the F1M ensemble for amval
q ¼ 0.0021.

aμ 0.74048 0.87932 1.01816 1.43468

Z11=Z2
A 0.97098(29) 0.96182(11) 0.955127(87) 0.941078(33)

Z22=Z2
A 1.06173(45) 1.05453(10) 1.049270(35) 1.041636(15)

Z23=Z2
A 0.37422(52) 0.32971(35) 0.29528(14) 0.239419(67)

Z32=Z2
A 0.01748(19) 0.018812(88) 0.020455(43) 0.026601(18)

Z33=Z2
A 0.61015(69) 0.68079(75) 0.73890(33) 0.85407(11)

Z44=Z2
A 0.69653(77) 0.75380(76) 0.80124(37) 0.89759(12)

Z45=Z2
A −0.00933ð14Þ −0.01280ð13Þ −0.015992ð62Þ −0.025037ð17Þ

Z54=Z2
A −0.36177ð54Þ −0.31116ð28Þ −0.27401ð16Þ −0.215021ð71Þ

Z55=Z2
A 1.23079(76) 1.17174(16) 1.130128(97) 1.058518(33)

ZA=ZS 1.28592(66) 1.22090(96) 1.17291(37) 1.093643(58)
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4. Step-scaling matrices

We choose a lower scale μ for nonperturbative renorm-
alization to reduce cutoff effects, and a higher scale μ0 for
matching to MS. This distance is bridged using non-
perturbative running

OMS
i ðμ0Þ ¼ RMS←RI

ij ðμ0Þσjkðμ0; μÞORI
k ðμÞ; ðC12Þ

Oi being any of the quantities in Eq. (4.3). The matching
factors RMS←RI

ij are computed in next-to-leading order per-
turbation theory and presented in Ref. [33] for both schemes.
The nonperturbative scale evolution matrix is given by

σijðμ0; μÞ ¼ lim
a→0

σijðμ0; μ; aÞ
¼ lim

a→0
Zikðμ0; aÞZkjðμ; aÞ−1: ðC13Þ

TABLE XVIII. Same as Table VI but at mass scale μ ¼ 2.5 GeV.

a−1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)

Z11=Z2
A 0.92273(29)(1) 0.92491(52)(0) 0.94913(20)(0) 0.94752(86)(2) 0.95950(43)(33)

Z22=Z2
S 1.05048(77)(4) 1.0519(13)(0) 1.08128(96)(1) 1.0830(21)(0) 1.0964(11)(6)

Z23=Z2
S −0.07511ð48Þð3Þ −0.07280ð82Þð2Þ −0.04932ð29Þð0Þ −0.04900ð66Þð1Þ −0.04007ð40Þð17Þ

Z32=Z2
S −0.0228ð16Þð1Þ −0.0162ð45Þð0Þ 0.0447(28)(1) 0.0465(63)(1) 0.0746(37)(0)

Z33=Z2
S 1.3816(30)(7) 1.4014(83)(2) 1.5913(50)(6) 1.603(11)(0) 1.6981(67)(17)

Z44=Z2
S 1.02458(44)(3) 1.02303(97)(4) 1.01873(49)(7) 1.0201(14)(0) 1.01595(76)(71)

Z45=Z2
S −0.07967ð51Þð2Þ −0.07835ð69Þð1Þ −0.06134ð25Þð1Þ −0.06193ð46Þð0Þ −0.05599ð23Þð24Þ

Z54=Z2
S −0.18458ð58Þð19Þ −0.1880ð18Þð0Þ −0.2130ð11Þð1Þ −0.2162ð26Þð1Þ −0.2305ð15Þð5Þ

Z55=Z2
S 1.3170(21)(5) 1.3310(60)(1) 1.4581(36)(3) 1.4673(80)(5) 1.5267(46)(17)

TABLE XIX. Same as Table VI but at mass scale μ ¼ 3.0 GeV.

a−1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)

Z11=Z2
A 0.91427(17)(0) 0.91641(55)(0) 0.94123(17)(1) 0.94044(67)(0) 0.95157(31)(27)

Z22=Z2
S 1.03795(18)(4) 1.03874(73)(2) 1.05744(45)(5) 1.0596(10)(0) 1.06947(54)(36)

Z23=Z2
S −0.08818ð26Þð2Þ −0.08564ð98Þð0Þ −0.05786ð22Þð0Þ −0.05804ð54Þð0Þ −0.04741ð25Þð25Þ

Z32=Z2
S −0.0589ð10Þð0Þ −0.0532ð31Þð0Þ 0.0036(18)(0) 0.0052(44)(0) 0.0300(24)(1)

Z33=Z2
S 1.2568(19)(2) 1.2711(59)(2) 1.4093(34)(4) 1.4206(79)(1) 1.4919(44)(11)

Z44=Z2
S 1.03009(18)(0) 1.02856(45)(0) 1.02098(20)(0) 1.02223(60)(0) 1.01811(29)(38)

Z45=Z2
S −0.08895ð23Þð2Þ −0.08683ð80Þð0Þ −0.06453ð14Þð1Þ −0.06486ð36Þð0Þ −0.05716ð16Þð22Þ

Z54=Z2
S −0.16199ð30Þð9Þ −0.1636ð11Þð0Þ −0.17286ð72Þð9Þ −0.1757ð17Þð0Þ −0.1842ð10Þð3Þ

Z55=Z2
S 1.2268(12)(1) 1.2368(41)(1) 1.3299(24)(2) 1.3389(57)(1) 1.3852(31)(10)

TABLE XX. Chirally-allowed elements of the nonperturbative scaling matrix σð3 GeV; 2 GeVÞ using chirally
extrapolated Z-factors.

a−1 [GeV] 1.7848(50) 1.7295(38) 2.3833(86) 2.3586(70) 2.708(10)

σ22 1.1866(15) 1.18862(99) 1.2055(27) 1.1980(16) 1.2047(16)
σ23 −0.020560ð36Þ −0.02201ð14Þ −0.01408ð33Þ −0.01294ð22Þ −0.01165ð18Þ
σ32 −0.09661ð26Þ −0.09870ð19Þ −0.09318ð55Þ −0.09034ð41Þ −0.08994ð17Þ
σ33 0.94800(88) 0.95149(38) 0.92958(89) 0.93208(35) 0.92586(49)

σ44 1.2441(30) 1.2447(15) 1.2844(46) 1.2748(21) 1.2910(23)
σ45 −0.00982ð21Þ −0.01235ð22Þ −0.00146ð54Þ −0.00159ð23Þ 0.00067(30)
σ54 0.0439(12) 0.04063(45) 0.0711(17) 0.06801(83) 0.0774(10)
σ55 1.017341(75) 1.018409(16) 1.00827(44) 1.00994(39) 1.00838(48)
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FIG. 20. Comparison of the scale evolution matrix σð3 GeV; μÞ [see Eq. (4.4)] in the RI-SMOMðγμ;γμÞ scheme and NPR basis
evaluated nonperturbatively (blue circles), perturbatively at leading order (orange dashed lines) and next-to-leading order (green
solid lines).
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We perform this continuum limit including the chirally extrapolated renormalization constants (numerical values listed in
Table XX) from all lattice spacings as a fit linear in a2. In the few cases where the quality of fit does not lead to an acceptable
p-value,we rescale the uncertainty by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f:

p
In Fig. 20we compare our nonperturbative step-scaling results to leading and

next-to-leading order perturbation theory. For completeness we also provide the step-scaling matrices, σR, for the Ri

σRð3 GeV; 2 GeVÞ ¼

2
6666664

1.0 0.0 0.0 0.0 0.0

0.0 1.2153ð28Þ −0.08396ð60Þ 0.0 0.0

0.0 −0.00426ð52Þ 0.90868ð42Þ 0.0 0.0

0.0 0.0 0.0 1.3186ð42Þ 0.1018ð15Þ
0.0 0.0 0.0 0.00976ð68Þ 0.99984ð59Þ

3
7777775
; ðC14Þ

σRð3 GeV⟵
Δ¼0.5

2 GeVÞ ¼

2
6666664

1.0 0.0 0.0 0.0 0.0

0.0 1.2149ð25Þ −0.08315ð50Þ 0.0 0.0

0.0 −0.00374ð43Þ 0.90889ð40Þ 0.0 0.0

0.0 0.0 0.0 1.3190ð35Þ 0.1023ð14Þ
0.0 0.0 0.0 0.01083ð44Þ 0.99940ð59Þ

3
7777775
: ðC15Þ

APPENDIX D: RELATIONS BETWEEN BASIS CONVENTIONS

We distinguish between operators Oi in the “SUSY” basis, defined in Eq. (2.2), and operators Qi in the “NPR” or
“lattice” basis, in Eq. (2.4). The SUSY basis contains both color-unmixed and color-mixed operators, while the NPR basis
comprises only color-unmixed operators, more convenient for lattice computations. For the K0K̄0 matrix elements of these
operators we need only the parity-even parts, Oþ

i or Qþ
i , shown in Eqs. (2.3) and (2.5). Since we work with the Qþ

i on the
lattice, we quote here the matrix T which relates the Qþ

i to the Oþ
i

Oþ ¼ TQþ ¼

0
BBBBBB@

1 0 0 0 0

0 0 0 1 0

0 0 0 − 1
2

1
2

0 0 1 0 0

0 − 1
2

0 0 0

1
CCCCCCA
Qþ or

0
BBBBBB@

Oþ
1

Oþ
2

Oþ
3

Oþ
4

Oþ
5

1
CCCCCCA

¼

0
BBBBBB@

Qþ
1

Qþ
4

ðQþ
5 −Qþ

4 Þ=2
Qþ

3

−Qþ
2 =2

1
CCCCCCA
: ðD1Þ

We perform our nonperturbative calculations of the matrix elements and renormalization constants in the NPR basis and
subsequently convert to the SUSY basis. Matrix elements of the renormalizedQþ

i in some scheme X at scale μ are given by,

hKjQþ
i jK̄iXðμÞ ¼ ZX

ijðμÞhKjQþ
j;barejK̄i: ðD2Þ

When chiral symmetry is maintained, ZX
ijðμÞ is block-diagonal and the matrix elements of the renormalized operatorsOþ

i in
the SUSY basis in scheme X at scale μ are related to matrix elements of the bare operators in the NPR basis by,

0
BBBBBBB@

hKjOþ
1 jK̄i

hKjOþ
2 jK̄i

hKjOþ
3 jK̄i

hKjOþ
4 jK̄i

hKjOþ
5 jK̄i

1
CCCCCCCA

¼

0
BBBBBBBBB@

ZX
11 0 0 0 0

0 0 0 ZX
44 ZX

45

0 0 0
−ZX

44
þZX

54

2

−ZX
45
þZX

55

2

0 ZX
32 ZX

33 0 0

0 − ZX
22

2
− ZX

23

2
0 0

1
CCCCCCCCCA

0
BBBBBBB@

hKjQþ
1;barejK̄i

hKjQþ
2;barejK̄i

hKjQþ
3;barejK̄i

hKjQþ
4;barejK̄i

hKjQþ
5;barejK̄i

1
CCCCCCCA
: ðD3Þ
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The NPR-basis operators are written in color-unmixed
form. They are related by Fierz transformations to the
same operators written in color-mixed form by Qmix

i ¼
FijQunmixed

j , where

F ¼

0
BBBBBBB@

1 0 0 0 0

0 0 −2 0 0

0 − 1
2

0 0 0

0 0 0 − 1
2

1
2

0 0 0 3
2

1
2

1
CCCCCCCA
: ðD4Þ

The matrix F is used when working out the matrix T which
transforms from the NPR basis to the SUSY basis.

APPENDIX E: PERTURBATIVE SCALING

We compare our nonperturbative scaling results with
perturbation theory in Fig. 20 and hence include here our
notation and definitions for the perturbative computations
to next-to-leading order. Full details are provided in a
Mathematica [98] notebook as Supplemental Material .
This is well-covered ground [99–102], but by explicitly
including both g2 and g2 logðgÞ terms at NLO we are able to
avoid having to take a limit to compute the scaling matrix
at NLO.
The (matrix) operator renormalization constants and

scaling matrix are related by

Zðμ0Þ ¼ σðμ0; μÞZðμÞ: ðE1Þ

The anomalous dimension matrix, γ is defined by

μ
dZ
dμ

¼ −γZ: ðE2Þ

Using μdg=dμ ¼ βðgÞ, we have

σðμ0; μÞ ¼ Tg exp

�Z
gðμ0Þ

gðμÞ
dg0

−γðgÞ
βðgÞ

�
; ðE3Þ

where Tg denotes g-ordering. We let

ā ¼ α

4π
¼ g2

16π2
ðE4Þ

and expand

βðgÞ ¼ −β0gā − β1gā2 þ � � �
γðgÞ ¼ γ0āþ γ1ā2 þ � � � ðE5Þ

so that

Z
gðμ0Þ

gðμÞ
dg0

−γðg0Þ
βðg0Þ ¼

Z
āðμ0Þ

āðμÞ

dā0

ā0
ðγ0 þ γ1ā0 þ � � �Þ
2ðβ0 þ β1ā0 þ � � �Þ : ðE6Þ

With our conventions, β0 ¼ 11 − 2Nf=3 forNf flavors. We
work with the operators Qþ

i defined in Eq. (2.5). They are
related to the positive parity parts of the basis QBMU ¼
fQVLL

1 ; QLR
1 ; QLR

2 ; QSLL
1 ; QSLL

2 g used in Ref. [100] by
Qþ ¼ R ·Qþ

BMU with R ¼ diagð4; 4; 4; 4; 1Þ. This changes
the off-diagonal elements of the anomalous dimension
matrices in the bottom-right 2 × 2 block. In Ref. [102],
the anomalous dimension is defined with the opposite
sign and expanded as γPPP ¼ −g2ðγ0;PPP þ γ1;PPPg2 þ � � �Þ,
which means that γ0;PPP ¼ γ0=ð16π2Þ.

1. LO scaling

If we diagonalize γ0,

V−1γ0V ¼ γ0D; ðE7Þ

where γ0D is the diagonal matrix of eigenvalues, then the
scaling matrix at leading order is

σ0ðμ0; μÞ ¼ V

�
aðμ0Þ
aðμÞ

�
γ0D=2β

0

V−1: ðE8Þ

To match notation from Ref. [100], we write

ðV−1γ0VÞij ¼ 2β0aiδij where a ¼ γ0D
2β0

: ðE9Þ

Under SUð3ÞL × SUð3ÞR flavor, Qþ
1 is (27, 1) and renorm-

alizes multiplicatively, Qþ
2;3 are (8, 8) and mix, and Qþ

4;5 are
ð6; 6̄Þ and also mix. When we diagonalize γ0 we permute
the eigenvalues and eigenvectors to preserve the block-
diagonal structure of the 5 × 5 anomalous dimension
matrix. Our choice leads to

γ0D¼diag

�
4;2;−16;

2

3
ð1þ

ffiffiffiffiffiffiffiffi
241

p
Þ;2
3
ð1−

ffiffiffiffiffiffiffiffi
241

p
Þ
�
: ðE10Þ

2. NLO scaling

Beyond leading order we write

σðμ0; μÞ≡ Kðμ0Þσ0ðμ0; μÞK−1ðμÞ: ðE11Þ

The equation satisfied by K is

∂K
∂g

−
1

g

�
γ0

β0
; K

�
¼ −

�
γðgÞ
βðgÞ þ

γ0

β0g

�
K; ðE12Þ
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where K ¼ KðμÞ and g ¼ gðμÞ. Expanding to NLO in the
coupling and writing

K ¼ 1þ g2

16π2
J þ g2

16π2
logðgÞL; ðE13Þ

we find that J and L satisfy

L ¼
�
γ0

2β0
; L

�

J þ 1

2
L ¼

�
γ0

2β0
; J

�
þ 1

2β0
γ1 −

β1

2ðβ0Þ2 γ
0: ðE14Þ

Using the matrix V from Eq. (E7) which diagonalizes γ0,
we define

G ¼ V−1γ1V

S ¼ V−1JV

T ¼ V−1LV ðE15Þ

and recalling the ai from Eq. (E9), we find

Tij ¼ ðai − ajÞTij: ðE16Þ

This shows that Tij vanishes, except when ai − aj ¼ 1. We
also have

Sij þ
1

2
Tij − ðai − ajÞSij ¼

1

2β0
Gij −

β1

β0
aiδij: ðE17Þ

If ai − aj ¼ 1 then Sij drops out of this equation and its
value is arbitrary (we choose to make it zero), but then Tij is
nonzero from the previous equation and its value is
determined by this equation. If ai − aj ≠ 1, then Tij ¼ 0

and the equation determines Sij. Once we know S and T we
can find J and L and hence determine the K matrix and the
NLO expression for the scaling matrix σ.
The leading order anomalous dimension matrix for the

4-quark operators has a2 − a3 ¼ 1 when the number of
flavors is Nf ¼ 3. This means that T23 ≠ 0 and there is a
g2 log g term in K23. Including the g2 log g term allows us to
avoid expanding the solution for the scaling matrix around
Nf ¼ 3. We checked that either method gives the same
result for σ. For our check we shifted a2 → a2 þ δ,
computed the scaling matrix σ and took the limit δ → 0.
As an additional check we also did the limiting procedure
by shifting β0 → 11 − 2ð3þ δÞ=3 when constructing
a ¼ γ0D=2β

0 in Eq. (E9) and again found the same result.
We also learn and checked that we can add an arbitrary shift
to S23 or J23 without changing the result for σ.
From Eq. (E14) we know that the only nonzero element

of T in any scheme is T23 ¼ G23=β0 and hence in any
scheme,

L23 ¼
ðV−1γ1VÞ23
β0ðV−1Þ22V33

¼ −
40

27
¼ −1.48148: ðE18Þ

We checked this for MS, RI-MOM, RI-SMOMðγμ;γμÞ

and RI-SMOMð=q;=qÞ.
For γ1 in MS we used Ref. [100] and for RI-MOM we

used Ref. [102] (that paper does not give the 11 element; for
this we used the value in Ref. [6]). For the RI-SMOM

schemes we used γMS;1 together with the conversion factors
Δr from RI-SMOM to MS in Ref. [33] and applied
Eq. (E27) below.
To evaluate the perturbative scaling numerically, we used

the 5-loop expression for the running strong coupling to
evolve its value from the Z-mass to the charm mass, with
quark-flavor thresholds at m̄bðm̄bÞ and m̄cðm̄cÞ, the MS
bottom and charm masses evaluated at their own scales
[103–114]. We then evaluated αsðμÞ for 2 GeV ≤ μ ≤
3 GeV for three flavors, corresponding to our 2þ 1 flavor
simulations. Our inputs were [62]

αsðMZÞ ¼ 0.1180;

MZ ¼ 91.1876 GeV;

m̄bðm̄bÞ ¼ 4.18 GeV;

m̄cðm̄cÞ ¼ 1.28 GeV; ðE19Þ

and we determine

αsð2GeVÞ¼0.293347; αsð3GeVÞ¼0.243580: ðE20Þ

Changing from operators QþðμÞ renormalized in some
scheme at scale μ to RGI operators Q̂þ, is done by [102]:

Q̂þ ¼ ½αðμÞ�−γ0=2β0K−1ðμÞQþðμÞ: ðE21Þ

The 11 element of this relation converts the kaon bag
parameter BKðμÞ to the RGI B̂K (see for example the
discussion in the 2019 FLAG review [115]). To compute
RGI B̂i’s for the BSM operators, we would in addition
have to take into account the quark-mass combination
msðμÞ þmdðμÞ appearing in the BiðμÞ’s definition.

3. Logarithmic term in NLO scaling expression

Here we will let g0 ¼ gðμ0Þ, α0 ¼ αðμ0Þ and g ¼ gðμÞ,
α ¼ αðμÞ. From Eqs. (E11) and (E13), the logðgÞ terms in
σðμ0; μÞ at NLO are

1

4π
ðα0 logg0Lσ0ðμ0;μÞ−α loggσ0ðμ0;μÞLÞ

¼ 1

4π
V

�
α0 logg0T

�
α0

α

�
a
−α logg

�
α0

α

�
a
T

�
V−1: ðE22Þ
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From above, the only nonzero element of T is T23, so the
term in parentheses becomes

T23

�
α0 log g0

�
α0

α

�
a3
− α log g

�
α0

α

�
a2
�

¼ T23

�
α0

α

�
1=9

α log

�
g0

g

�
ðE23Þ

where we have used a2 ¼ 1=9 and a3 ¼ −8=9. Switching
back to L and expressing everything in terms of α0 and α
we find

NLO logs inσðμ0;μÞ¼−
5

ð27πÞ
�
α0

α

�
1=9

α log

�
α0

α

�
: ðE24Þ

We checked explicitly for MS, RI-MOM, RI-SMOMðγμ;γμÞ

and RI-SMOMð=q;=qÞ that the same term arises when we
calculate the NLO scaling by the δ-shift and limit
procedure.

4. Scheme conversion

Following Ref. [33] we define the matrix R to convert
from renormalization scheme A to scheme B by

ZB ¼ RB←AZA ¼ ð1 − āΔrB←AÞZA; ðE25Þ

where ā ¼ g2=16π2. From βðgÞdZB=dg ¼ −γBðgÞZB we
find

γA ¼ ðRB←AÞ−1γBRB←A þ βðRB←AÞ−1 dR
B←A

dg
: ðE26Þ

Expanding to Oðā2Þ and noting that γ0 is universal, we can
relate the NLO anomalous dimensions in schemes A and B
using the 1-loop conversion factor ΔrB←A,

γA;1 ¼ γB;1 − ½γ0;ΔrB←A� þ 2β0ΔrB←A: ðE27Þ

In particular we can determine the NLO anomalous dimen-
sions where A is RI-SMOMðγμ;γμÞ or RI-SMOMð=q;=qÞ respec-
tively, from the MS NLO anomalous dimension and

ΔrMS←A

γA;1 ¼ γMS;1 − ½γ0;ΔrMS←A� þ 2β0ΔrMS←A: ðE28Þ

By combining the scheme conversion equation (E27) with
Eq. (E14) for J and L, we can show that

JA − JMS ¼ ΔrMS←A except for the 23 element ðE29Þ

and that LA ¼ LMS. We checked Eq. (E29) when A is RI-
MOM, RI-SMOMðγμ;γμÞ or RI-SMOMð=q;=qÞ.

APPENDIX F: FURTHER DETAILED
NUMERICAL FIT RESULTS

Our central value for the Bi and Ri in MS at μ ¼ 3 GeV
is taken as the mean of the conversion from
RI-SMOMðγμ;γμÞ and RI-SMOMð=q;=qÞ to MS. For complete-
ness we also separately list these conversions with their full
uncertainty budget in Table XXI.

TABLE XXI. Central values and combined systematic errors for ratio and bag parameters at μ ¼ 3 GeV in MS after converting from
the two RI-SMOM schemes—ðγμ; γμÞ and ð=q; =qÞ, in the SUSY basis. We list the errors arising from statistics, chiral extrapolation,
residual chiral symmetry breaking, and discretization and combine it into total uncertainties.

Scheme R2 R3 R4 R5 B1 B2 B3 B4 B5

MS ← RI-SMOMðγμ;γμÞ Central −18.73 5.781 41.45 10.80 0.5185 0.4759 0.728 0.8862 0.6977

Statistical 0.60% 0.69% 0.72% 0.43% 0.28% 0.24% 0.72% 0.21% 1.02%
Chiral 0.21% 0.42% 0.61% 0.46% 0.20% 0.17% 0.29% 0.17% 0.25%
rcsb 0.10% 0.15% 0.09% 0.03% 0.04% 0.03% 0.06% 0.01% 0.00%
discr 0.16% 0.53% 0.49% 1.23% 0.01% 0.44% 1.61% 0.16% 0.38%

Total 0.66% 0.98% 1.07% 1.38% 0.35% 0.53% 1.79% 0.32% 1.12%

MS ← RI-SMOMð=q;=qÞ Central −19.07 6.059 42.43 10.49 0.5295 0.4829 0.764 0.9070 0.6788

Statistical 0.68% 0.92% 0.81% 0.83% 0.29% 0.43% 1.24% 0.36% 2.21%
Chiral 0.48% 0.78% 1.25% 1.26% 0.24% 0.27% 0.44% 0.29% 0.51%
rcsb 0.29% 0.21% 0.23% 0.13% 0.08% 0.19% 0.29% 0.03% 0.01%
discr 0.34% 0.65% 0.20% 2.30% 0.10% 0.64% 1.92% 0.19% 0.10%

Total 0.95% 1.39% 1.52% 2.75% 0.40% 0.83% 2.34% 0.50% 2.27%
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