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This work addresses the calculation of local form factors involved in the theoretical predictions of
semileptonic B-meson decays at low q2. We present a new approach to the method of QCD light-cone sum
rule with B-meson light-cone distribution amplitudes. In our strategy, we bypass the semiglobal quark-
hadron duality (QHD) approximationwhich usually contributes an unknown and potentially large systematic
error to the prediction of form factors. We trade this improvement for an increased reliance on higher-order
contributions in perturbation theory. Unlike the systematic error from semiglobal QHD, truncation errors are
assessable and systematically improvable, hence allowing robust predictions of form factors. For the
transitions B → π; ρ; Kð�Þ, our predictions agree with the literature for all form factors at q2 ¼ 0.
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I. INTRODUCTION

For a decade, numerous deviations from the predictions
of the Standard Model (SM) have been measured in
B-meson decays, particularly in b → slþl− transitions
(the so-called anomalies). The most precisely predicted
observables were the lepton flavor universality ratios of a B
meson decaying to Kð�Þ and a pair of muons compared to
the same decay with electrons in the final state. These ratios
were known to exhibit a ∼25% deficit compared to the SM
predictions, which are expected to be close to 1 with high
accuracy [1,2]. However, the latest measurements by LHCb
of these ratios now show good agreement with the SM
predictions [3].
Nevertheless, anomalies persist in other observables

related to B-meson decays. Branching fractions and
angular observables of B decay to final states Mμþμ−

where M ¼ Kð�Þ;ϕ, particularly at low di-lepton momenta
q2, have been extensively studied at LHCb [4–12].
Additionally, the CMS Collaboration recently measured
BRðBþ → Kþμþμ−Þ [13] and the angular distribution
of B0 → K�0μþμ− [14], the findings of LHCb. These

observables appear to be in tension with the SM predic-
tions, with a significance ranging from 2 − 4σ depending
on theoretical assumptions. It is crucial to note that the SM
predictions for these observables are very sensitive to
nonperturbative contributions, introducing a notable source
of uncertainty, which dominates the overall error of the
predictions. The latter are typically divided into two
categories, the local and the nonlocal contributions to
the matrix elements hMjJμjBi. The local contributions,
expressed in terms of form factors, can be calculated using
QCD sum rules on the light cone which we discuss in this
work, and in lattice QCD. The nonlocal contributions
present a greater challenge to quantify and have been
suggested as potential sources of the disparities between
experimental data and theoretical predictions. However,
using unitarity bounds, it was shown in [15,16] that these
contributions do not explain the B anomalies. Moreover, it
is possible to argue that the discrepancies arising from
nonlocal effects are expected to have a q2 and helicity-
dependent behavior. Looking at the q2 dependence of
putative new physics contributions to local operators in
the weak effective theory, it has been shown that exper-
imental data are consistent with purely q2-independent
local contributions (see, e.g., Refs. [17–25]). While the
significance of the anomalies depends on the employed
methods and assumptions for the nonlocal contributions
[26]; we do not delve deeper into this aspect in the present
paper. Instead, our focus in this work is on studying the
local contributions.
In semileptonic B decays the measured discrepancies

occur at low q2 where most hadronic form factors are
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difficult to compute with lattice QCD. For B to light meson
decays, the only lattice results available at q2 ¼ 0 are for
fB→K
þ;T [27]. The QCD light-cone sum rules (LCSR)

techniques are typically employed in this regime [28–45],
albeit with a systematic error stemming from the use of
both global and semiglobal quark-hadron duality (QHD)
approximation. The magnitude of this error remains
unknown.
In this paper, we propose a strategy to circumvent the

reliance on semiglobal quark-hadron duality and trade the
associated unknown systematic error for an increased yet
quantifiable and improvable error coming from the trunca-
tion of the perturbative QCD expansion and light-cone
operator-product expansion (LCOPE). This strategy relies
on the convergence of a sum rule which we derive below.
With a limited knowledge of the twist expansion of the
distribution amplitudes used in the LCSR and the radiative
corrections, convergence may not be reached. We show that
in such a case and under certain assumptions, this strategy
can be used to derive upper limits on form factors. The
knowledge of upper limits on form factors is particularly
relevant in the current context of the B anomalies since the
b → sμμ branching ratios are experimentally suppressed
with respect to current SMpredictions, and smaller SM form
factors could account for such discrepancies.
This article is structured as follows: we start by briefly

summarizing light-cone sum rules with B-meson light-cone
distribution amplitudes (LCDAs) as established in the
literature in Sec. II. Our approach to the LCSRs without
semiglobal quark-hadron duality is then introduced in
Sec. III, and the corresponding numerical results are
presented in Sec. IV. Section V provides our conclusions.

II. LIGHT-CONE SUM RULES
WITH B-MESON LCDAs

Light-cone sum rules applied to the calculation of form
factors in B decays have been pioneered in [28,29] using
light meson distribution amplitudes. Later, LCSRs using
B-meson LCDAs [46,47] were developed in [32,48].
Further progress has since then been made on B-meson
LCDAs [49–60]. In this section, we introduce our notations
and the tools needed for deriving the sum rule.

A. Establishing the sum rule

In order to compute the form factors of a given B → M
process, the fundamental object for LCSRs with B-meson
LCDAs is the B meson to vacuum correlation function
[32,33,61],

Πμνðq; kÞ ¼ i
Z

d4xeik:xh0jTfJνintðxÞJμweakð0Þg

× jB̄ðpB ¼ qþ kÞi; ð2:1Þ
where pB is the 4-momentum of the on-shell B-meson, and
q is the momentum transfer. Jμweak is a b → light transition

current, and Jνint is the interpolating current. In Table I, we
list the correspondence between these currents and the
associated hadronic processes and form factors. x is the
space-time separation between the two interaction points
associated to the two currents. From analyticity, for a
negative k2 the Bmeson to vacuum correlation function can
be written as

Πμνðq; kÞ ¼ 1

π

Z
∞

tmin

ds
ImΠμνðq; sÞ

s − k2
; ð2:2Þ

where tmin is below every hadronic threshold. The imagi-
nary part of the correlation function can be expressed using
a unitarity relation, obtained by inserting a complete set of
hadronic states between the two currents,

2ImΠμνðq2; k2Þ ¼ 2πδðk2 −m2
MÞh0jJνintjMðkÞi

× hMðkÞjJμweakjB̄ðpBÞi þ 2πρμνðq; kÞ;
ð2:3Þ

where ρμν stands for the spectral density of the excited
and continuum states, and M is the lightest meson
of the aforementioned set of hadronic states, whose con-
tribution has been singled out. This yields the following
relation:

Πμνðq; kÞ ¼ h0jJνintjMðkÞihMðkÞjJμweakjB̄ðqþ kÞi
m2

M − k2

þ
Z þ∞

scont

ds
ρμνðq; sÞ
s − k2

; ð2:4Þ

where scont is the threshold of the lowest continuum or
excited state.
The M to vacuum matrix element on the rhs can be

expressed with the light meson decay constant,

h0jq̄2γνγ5q1jPðkÞi ¼ ikνfP;

h0jq̄2γνq1jVðk; ηÞi ¼ ηνmVfV; ð2:5Þ

where q1 and q2 are the constituents of the light meson.
The B → M matrix elements are linear combinations of

the hadronic form factors we wish to compute. In
Appendix A, we introduce our definition of the form
factors, which is the same as [61]. The correlation function
(2.1) can be decomposed as a sum of scalar functions times
Lorentz structures Πμνðq2; k2Þ ¼ P

F Γ
μν
F ΠFðq2; k2Þ. By

identifying the Lorentz structures Γμν
F defined in Table I,

one can extract a scalar relation for each form factor which
takes the form
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ΠFðq2; k2Þ ¼ YF
Fðq2Þ

m2
M − k2

þ
Z

∞

scont

ρFðq2; sÞ
s − k2

; ð2:6Þ

where YF are also defined in Table I.

B. Light-cone OPE of the correlation function

The next step to establish the LCSR is to compute theB to
vacuum correlation function (2.1) in terms of B-meson
LCDAs using a light-cone operator product expansion
(OPE) [28]. To do so, we work in Heavy Quark Effective
Theory (HQET) in which the b quark and B̄ meson are
substituted by the customary fields hv and jB̄vi defined as

hvðxÞ≡ eimbðv·xÞ 1þ v
2

bðxÞ; jB̄vi≡ 1ffiffiffiffiffiffiffi
mB

p jB̄i; ð2:7Þ

where v ¼ pB=mB. We name the valence quarks of the final
mesonq1, the interpolating quark emitted by the decay of the
b quark, and q2, the spectator quark. Assuming that the
external momenta are chosen such that x2 ∼ 0 and that
the interpolating quark is highly virtual, the 2- and
3-particle contributions to the correlation function take
the form [61]

Πμνj2p ¼
Z

d4x
Z

d4p0

ð2πÞ4 e
iðk−p0Þ:x

�
Γν
2

=p0 þm1

m2
1 − p02 Γ

μ
1

�
αβ

h0jq̄2αðxÞhβvð0ÞjB̄vi; ð2:8Þ

Πμνj3p¼
Z

d4x
Z

d4p0

ð2πÞ4
Z

1

0

dueiðk−p0Þ:x
�
Γν
2

ð1−uÞð=p0 þm1Þσλρþuσλρð=p0 þm1Þ
2ðm2

1−p02Þ2 Γμ
1

�
αβ

h0jq̄2αðxÞGλρðuxÞhβvð0ÞjB̄vi; ð2:9Þ

TABLE I. Correspondence of form factors, processes, currents, Lorentz structures, and YF factors. We use the abbreviations σμfqg ≡
σμλqλ and εμνfkqg ≡ εμνρσkρqσ .

Process Jνint Jμweak Γμν
F YF Form factor

B̄0 → πþ d̄γνγ5u ūγμhv kμkν 2ifπ fB→πþ
ūσμfqghv qμkν ðm2

B−m
2
π−q2Þ

mBþmπ
fπ fB→π

T

B̄0 → K̄0 d̄γνγ5s s̄γμhv kμkν 2ifK fB→Kþ
s̄σμfqghv qμkν ðm2

B−m
2
K−q

2Þ
mBþmK

fK fB→K
T

B̄0 → Dþ d̄γνγ5c c̄γμhv kμkν 2ifD fB→Dþ
c̄σμfqghv qμkν ðm2

B−m
2
D−q

2Þ
mBþmD

fD fB→D
T

B̄0 → ρþ d̄γνu ūγμhv εμνfkqg 2mρfρ
mBþmρ

VB→ρ

ūγμγ5hv gμν −imρfBðmB þmρÞ AB→ρ
1

ūγμγ5hv kμqν 2imρfρ
mBþmρ

AB→ρ
2

ūσμfqghv εμνfkqg 2imρfρ TB→ρ
1

ūσμfqgγ5hv qμqν 2mρfρ TB→ρ
23B

B̄0 → K̄�0 d̄γνs s̄γμhv εμνfkqg 2mK�fK�
mBþmK�

VB→K�

s̄γμγ5hv gμν −imK�fBðmB þmK� Þ AB→K�
1

s̄γμγ5hv kμqν 2imK�fK�
mBþmK�

AB→K�
2

s̄σμfqghv εμνfkqg 2imK�fK� TB→K�
1

s̄σμfqgγ5hv qμqν 2mK�fK� TB→K�
23B

B̄0 → D�þ d̄γνc c̄γμhv εμνfkqg 2mD�fD�
mBþmD�

VB→D�

c̄γμγ5hv gμν −imD�fBðmB þmD� Þ AB→D�
1

c̄γμγ5hv kμqν 2imD�fD�
mBþmD�

AB→D�
2

c̄σμfqghv εμνfkqg 2imD�fD� TB→D�
1

c̄σμfqgγ5hv qμqν 2mD�fD� TB→D�
23B
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where GλρðuxÞ ¼ gsðλa=2ÞGa
λρðuxÞ is the gluon field

strength tensor evaluated at ux, a fraction of the distance
x. Γ1;2 are defined by Jμweak ≡ q̄1ð0ÞΓμ

1hvð0Þ and Jνint ≡
q̄2ðxÞΓν

2q1ðxÞ (see Table I), and m1 is the mass of the
interpolating quark. We refer to Appendix B for the
parametrization of the nonlocal B-to-vacuum matrix ele-
ments in Eqs. (2.8) and (2.9) in terms of B-meson light-
cone distribution amplitudes, following [46,58]. For the
2-particle contribution, we work up to order x2, corre-
sponding to twists 2–5. For the 3-particle one, we work at
leading order in the light-cone OPE, including only twists 3
and 4. In this work, we derive explicitly the full expression
for the twist-5 2-particle LCDA g− in Appendix B.
As in Eq. (2.6), by identification of Lorentz structures,

one can extract a scalar relation for each form factor,

ΠLCOPE
F ¼

Z þ∞

0

dσ
Xþ∞

n¼1

IFn ðσÞ
ðsðσÞ − k2Þn ; ð2:10Þ

where s is defined as sðσÞ ¼ σm2
B þ m2

1
−σq2

1−σ , and IFn ðσÞ ¼P
ðnpÞ I

FðnpÞ
n ðσÞ is a sum over the n-particles contributions.

The 2-particle contributions are

IFð2pÞn ðσ;q2Þ¼ fBmB

ð1−σÞn
X
ψ2p

C
F;ψ2p
n ðσ;q2Þψ2pðσmBÞ; ð2:11Þ

where the summation goes over the 2-particle LCDAs
defined in (B1), and σ ≡ ω=mB. The 3-particle contribu-
tions read

IFð3pÞn ðσ;q2Þ¼ fBmB

ð1−σÞn
ZσmB

0

dω1

Z∞
σmB−ω1

dω2

ω2

×
X
ψ3p

C
F;ψ3p
n ðσ;u;q2Þψ3pðω1;ω2Þ

���
u¼ðσmB−ω1Þ=ω2

;

ð2:12Þ

where the summation goes over the 3-particle LCDAs
defined in (B2), and σ ≡ ðω1 þ uω2Þ=mB. We find that we
are in agreement with [61] regarding the perturbative
coefficients CF;ψ

n .
We now estimate the condition on the kinematic vari-

ables of our problem such that the LCOPE is done in a
perturbative regime. The LCOPE of the nonlocal matrix
element is only valid near the light cone. Hence, the
kinematical regime has to be such that the dominant
contributions to (2.1) arise from lightlike distances, while
respecting the conditions of QCD perturbativity given in
Eqs. (2.16) and (2.17) introduced below. To determine this
regime, we note that the integral (2.1) is dominated by the
region where k · x≲Oð1Þ. We choose the frame of
reference such that

k · x ¼ k0x0 − k3x3: ð2:13Þ

For k2 < 0 we can write

k0 ¼
m2

Bþk2−q2

2mB
; k3¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20−k2

q
; x3¼

k0x0−k ·x
k3

;

ð2:14Þ

which yields

x2¼−
4mB½x20k2mB−x0ðk ·xÞðk2þm2

B−q2ÞþmBðk ·xÞ2�
k4þðm2

B−q2Þ2−2k2ðm2
Bþq2Þ :

ð2:15Þ

Using the expression of the LCDAs, we find that contri-
butions to the correlation function at large x0, typically a
few 1=ΛQCD, are suppressed. Thus, keeping in mind that
x0 ≤ Oð1=ΛQCDÞ and k · x≲Oð1Þ, the dominant contri-
butions to (2.1) arise on the light cone for any finite q2 and
a sufficiently large negative k2. It is important to stress that
this result is not practically useful for estimating the quality
of the LCOPE. In order for the LCSR to have a predictive
power, we need to suppress the contribution to the total
correlation function from the a priori unknown integral
over the spectral density [second term in Eq. (2.6)]. While
taking a large k2 improves the LCOPE, it also enhances the
relative size of this term and thus deteriorates the sum rule.
The customary solution to this issue is to differentiate the
total correlation function with respect to k2 in order to
suppress the contribution from the spectral density integral.
However, such a differentiation enhances the relative size
of the higher-order terms in the x2 expansion, which breaks
the LCOPE. Schematically, this can be seen in the relation
x2n ∝ 1=k2n valid at large k2. These two opposing effects
are well-known and lead to the necessity of a compromise
between the number of differentiation p and the value of k2.
With these considerations, we conclude that one cannot
estimate the quality of the LCOPE purely from the
kinematic variables q2 and k2. To estimate the quality of
the LCOPE, it is customary to simply make sure that the
higher-twist contributions remain small relative to the
leading twist contributions (see Sec. III B for numerical
details). Generally, both the differentiation and the increase
of −k2 are performed simultaneously in the so-called Borel
transformation, keeping −k2=p≡M2 constant and sending
−k2; p → ∞. In this limit, the compromise is in the choice
of the value of the Borel parameter M2. As we show in the
rest of this paper, applying the Borel transformation is not
necessary, and we prefer to keep k2 and p finite in order to
track the dependence of our results on these parameters.
We now turn to the conditions of perturbativity of QCD.

We assumed that the interpolating quark q1 is highly virtual
and wrote the expression at leading order in QCD. Let us
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define the momentum exchange in HQET q̃ ¼ q −mbv.
The condition for the interpolating quark to be highly
virtual is [62]

jk2j; jq̃2j ≫ Λ2
QCD: ð2:16Þ

The off-shellness of q1 is not the only condition to ensure
that the radiative corrections to ΠLCOPE

F are small. Hard
QCD effects arise from the interaction of the partons within
the B meson with themselves and with the interpolating
quark. Part of these effects is absorbed by the LCDAs,
whose scale dependence is known at next-to-leading order
(NLO) [58]. The full NLO calculation of ΠLCOPE

F would, in
principle, provide a robust quantification of the QCD
perturbativity. However, it is not yet available for B-meson
LCSRs in HQET. Hence, we impose the following con-
dition: the average virtuality in the correlator must remain
well above the QCD scale,

jhsi −m2
1j ≫ Λ2

QCD: ð2:17Þ

This is similar to the approach of [33] which uses the Borel
parameter M2 as the QCD scale, as M2 regulates the
characteristic value of s (s≲M2). We define a way to
estimate an average hsi in Sec. III B. Obviously, the
definition of an average hsi is somewhat arbitrary, and a
full NLO calculation would be needed to properly evaluate
the range of applicability of perturbative QCD for this
sum rule.

C. Quark-hadron duality

Using global quark-hadron duality, we can now equate
both scalar expressions ΠF (2.6) and ΠLCOPE

F (2.10). To
extract the hadronic form factor F, one still needs to
estimate the integral over the density of the excited and
continuum states which is achieved by using semiglobal
quark-hadron duality. The semiglobal quark-hadron duality
postulates that for a sufficiently large negative k2,

Z þ∞

scont

ds
ρFðsÞ
s − k2

≈
1

π

Z þ∞

s0

ds
ImΠLCOPE

F ðsÞ
s − k2

; ð2:18Þ

where s0, the quark-hadron duality threshold, is an effective
parameter [63]. The effective threshold is expected to be in
the vicinity of the first excited or continuum state
[30,63,64]. Its estimation usually relies on the requirement
that the value of the form factor is independent of k2 (or,
equivalently, the Borel parameter) which takes the form of a
so-called daughter sum rule (DSR) [30,31,61,64]. In this
work, we define the daughter sum rule as the relation

∂

∂k2
Fðq2Þ ∝ ∂

∂k2

�
ðm2

M − k2Þ
Z

s0

0

ds
ImΠLCOPE

F ðsÞ
s − k2

�
≡ 0;

ð2:19Þ

and equivalent relations obtained after differentiating the
sum rule or applying the Borel transformation, which we
solve to determine s0. Alternatively, one may adopt thresh-
olds from QCD sum rules [33,38,61].

D. Convergence of the LCOPE
of the correlation function

The correlation function ΠLCOPE
F (2.6) has a pole in

sðσÞ ¼ k2, which corresponds to the interpolating quark q1
going on shell. In fact, the quarks are confined in hadrons
and cannot go on shell [62]. We thus expect this to be a
mathematical artifact. However, it needs to be discussed
since we find that this pole can lead to the divergence of
ΠLCOPE

F in the scenario we detail below. For k2 < m2
1, the

pole arises at

σpole¼
m2

Bþk2−q2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2þm2

B−q2Þ2þ4m2
Bðm2

1−k2Þ
p

2m2
B

;

ð2:20Þ

which is close to unity for large −k2. The LCDAs provided
in Ref. [58] come in three different models: exponential,
local duality A, and local duality B, which are asymptoti-
cally identical in the limit σ → 0. For q2 ¼ 0, the local
duality A and B models have cutoffs such that IFn ðσ >
σ0Þ ¼ 0 with sðσ0Þ > 0 and σ0 < σpole. Hence, for k2 < 0,
the pole is not reached in the integral (2.10) and ΠLCOPE

F
converges. The exponential model on the contrary is
defined with σ ∈ ½0;þ∞½. Hence, for q2 < m2

1, sðσÞ spans
½m2

1;þ∞½ and � −∞;þ∞½. In this case ΠLCOPE
F diverges for

any k2 ∈ IR. This prevents the use of the Cauchy integral
formula on ΠLCOPE

F , which is needed to apply the QHD
approximation. In order to circumvent this issue, one can
perform a UV cutoff in the integral (2.10) at σmax < σpole.
We can test this idea numerically, choosing q2 < m2

1 so that
σpole > 1. We find that our results are independent of the
choice of the cutoff for σmax ∈ ½0.75; 1� which is due to the
fact that LCDAs are mostly supported on the interval
σ ∈ ½0; 0.4�. We also find that our numerical results employ-
ing the exponential model match the other two models
within a few percent. This validates our strategy to
regularize ΠLCOPE

F in the exponential model. q2 > m2
1 is

more problematic as sðσÞ tends to −∞ before the pole. In
this case, the Cauchy integral theorem can only be applied
for k2 > maxðsðσÞÞ which is incompatible with the sum
rule method. A UV cutoff can regularize the integral
and prevent s from being negative; however, our results
become more sensitive to said cutoff. We advocate for
using q2 < m2

1 for LCSRs with B-meson LCDAs. In the
rest of this work, we set q2 ¼ 0.
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E. Limitations of B-meson light-cone sum rules

B-meson LCSRs are a valuable tool for estimating form
factors for final mesons whose distribution amplitudes are
poorly known. They also conveniently provide correlated
SM predictions between different B-decay channels.
However, their accuracy is hindered by several factors that
are often overlooked in the literature. We detail these
factors in this section.

1. Quark-hadron duality

An essential step of establishing a sum rule is to
approximate the hadronic correlation function by its par-
tonic counterpart. This process, known as global quark-
hadron duality, introduces a systematic and unknown error
to the procedure. In addition to the global QHD, the
semiglobal QHD presented in Eq. (2.18) is an approxima-
tion which also introduces a theoretical uncertainty in the
prediction of the form factors. We claim that this approxi-
mation can yield particularly large errors specifically for
B-meson LCSR. The arguments for this claim are presented
in the points below. In III A, we present a method to avoid
the semiglobal QHD.

2. LCDA models

The functional dependence of the LCDAs on the internal
parton momentum fraction ω is only known asymptotically
in the limit ω → 0 [65]. Their behavior at large momenta
are phenomenologically constrained but can only be
approximated by models (see Appendix B). Using the
three models considered in Ref. [58], we find that the
prediction of form factors can be impacted by as much as
10% by the choice of the model. Recently, the authors of
Refs. [60,66] proposed a systematic parametrization of the
leading B-meson light-cone distribution amplitude to
improve on this issue. In addition, it is well-known that
the higher twist contributions in the LCOPE are plagued by
end point divergences which can break the twist hierarchy
(see discussion in [58]). Thus, our current understanding
of B-meson LCDAs at high ω is quite approximate.
Importantly, the semiglobal QHD approximation depends
on this range to estimate the truncated spectral density
integral. It is well-known that this dependence is sup-
pressed by a small Borel parameter, and the upper end of
the Borel window is chosen with this consideration in
mind. In this work, we reevaluate the suppression of the
contribution from the spectral density integral estimated
using the semiglobal QHD (2.18) in the Borel window used
in the literature and advocate for smaller values of M2 than
previously considered in the literature (see Sec. IV B).

3. LCDA parameters

The LCDAs are expressed in terms of three input
parameters: the inverse momentum λ−1B and the parameters
λ2E and λ2H, which are nonperturbative quantities estimated

using QCD sum rules. Because of our limited knowledge of
the subleading quark condensates entering the QCD sum
rule, the determination of these parameters comes with a
large uncertainty. The most critical parameter in B-LCSRs
is λ−1B . It is scale dependent, and for conciseness, all values
in this paragraph are taken at the scale μ ¼ 1 GeV.
Estimates in the literature vary. For instance, Ref. [67]
reports λ−1B ¼ 2.15� 0.5 GeV−1, similar to the λ−1B ¼
2.2� 0.6 GeV−1 used in Ref. [61]. More recent estimates
from Ref. [38] present model-dependent results, with
central values ranging from 2.57 to 3.30 GeV−1. In this
work, we use the latest estimation from [68], which
provides two estimates based on the model for quark-
antiquark vacuum fluctuations for the strange quark con-
densate in the QCD sum rule: 2.17� 0.24 and
3.05� 0.56 GeV−1. Each prediction comes with a nor-
mally distributed error. The authors combine these results
into a normally distributed λB. To maintain a normally
distributed λ−1B , we perform our own combination. Our
combination of the estimates from Ref. [68] reads

λ−1B ¼ 2.72� 0.66 GeV−1: ð2:21Þ

In Tables II and III, we replicate the calculations
from [61], comparing the predicted form factors using
λ−1B ¼ 2.2 � 0.6 GeV−1 [GKvD [61], (i)] and λ−1B ¼
2.72� 0.66 GeV−1 [(ii), (iii), and (iv)]. We observe a
significant increase in all form factors when using the
latter value, with up to a 50% rise for A2. This variation can
have substantial phenomenological implications, indicating
the need to reassess the determination of λ−1B . For example,
in the case of B → K form factors, updating λ−1B increases
the form factors by 10% and makes the predictions very
close to other values found in the literature [27].
The parameters λ2E and λ2H are also poorly known. For

definiteness, we use the estimation from [69]. However, a
more recent prediction from [70], using a different sum
rule, finds a discrepant result. Using these newer values
results in a 0%–10% variation in the prediction of the form
factors.

4. Range of the Borel parameter

In the literature, two ranges for the Borel parameter are
commonly used for B-LCSR for B decays to light mesons.
The range M2 ∈ ½0.5; 1.5� GeV2 [33,61] is taken from two-
point QCD sum rules [63,71] and LCSRs with the pion
distribution amplitude [72–74]. Alternatively, the authors
of Refs. [38,41,42] and [75,76] use M2 ∈ ½1; 1.5� GeV2,
based on several criteria: ensuring the spectral density
integral remains small, minimizing the form factors’
dependence on the Borel parameter, maintaining a thresh-
old close to the one estimated from two-point QCD sum
rules, and suppressing higher twist contributions. The
choice of the Borel window significantly influences the
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magnitude of the predicted form factor. As shown in
Table V, there is a 20% variation between the extremes
of the window ½0.5; 1.5� GeV2. While one expects the form
factors to be independent of the M2, it is clear that the
choice of the Borel window is crucial for the final result of
the sum rule.

5. Determination of the effective threshold s0
In Ref. [61], it has been found that for B → π; ρ; K the

determination of the effective threshold following a strategy
similar to the daughter sum rule method described in
Sec. II C fails. For this reason, the author relied on
threshold obtained from QCD sum rules. We are able to
reproduce this observation for B → π; K, for which the
DSR yields effective thresholds much lower than the range
expected from two-point QCD sum rules and yields very
small predictions for the form factors [see Table III (iii)].
For B → ρ, we also find a smaller effective threshold, yet
still in the ballpark of the one hinted at by QCD sum rules.
By combining the reevaluation of the effective threshold
and the updated value of λ−1B , we reproduce (coincidentally)
exactly the prediction of Ref. [61] (see Table II).
For B → K�, we find that the predictions of the form

factors are crucially dependent on the strategy adopted to
determine the effective threshold s0. As a demonstration,
we reproduce exactly the calculation of Ref. [61] and use
the same input parameters, changing only the way we

determine the effective threshold (see Table II). In our
implementation, we solve Eq. (2.19) for s0 for each set of
input parameters sampled from our prior. We find results
compatible with [61]; however, there is up to 8% of
variation in the final results using exactly the same
parameter input and calculations. More importantly, our
procedure more than doubles the size of the theoretical
error on the predicted form factors.
The list of these issues demonstrates that B-meson LCSR

needs to be improved on many aspects. In this article, we
present a method to tackle three of these issues, namely, the
determination of the effective threshold, the choice of the
Borel parameter, and the error from semiglobal QHD.
We explore the potential of LCSRs in a regime where the
semiglobal quark-hadron duality is not needed therefore
removing the associated systematic uncertainty. We show
that this approach is viable, at the price of a higher
dependence on the radiative corrections and higher twists
in the correlation function.

III. LIGHT-CONE SUM RULES WITHOUT
SEMIGLOBAL QUARK-HADRON DUALITY

A. Presentation of the method

Our objective is to remove the contribution from the
spectral density integral (2.18) in the expression of the
correlation function ΠF without employing the semiglobal
QHD approximation. Following the method of power

TABLE III. Prediction of B → π; K form factors at q2 ¼ 0 following the calculation of [61]. We include the original results from [61]
and our results obtained using λ−1B ¼ 2.72� 0.66 GeV−1 and s0 obtained from a daughter sum rule (iii) and using the same threshold s0
as in [61] (iv).

B → π B → K

Form factor GKvD [61] (iii) (iv) GKvD [61] (iii) (iv)

fþ 0.21(7) 0.023(7) 0.26þ0.08
−0.08 0.27(8) 0.24(7) 0.34þ0.09

−0.09
fT 0.19(7) 0.024(7) 0.24þ0.06

−0.06 0.25(7) 0.24(7) 0.31þ0.06
−0.08

s0 (GeV2) 0.7� 0.014 0.0393(1) 0.7� 0.014 1.05� 0.021 0.54þ0.03
−0.02 1.05� 0.021

TABLE II. Prediction of B → ρ; K� form factors at q2 ¼ 0 following the calculation of [61]. We include the original results from [61]
and our results using a different method for the determination of the effective threshold, obtained with λ−1B ¼ 2.2� 0.6 GeV−1 (i) and
λ−1B ¼ 2.72� 0.66 GeV−1 (ii).

B → K� B → ρ

Form factor GKvD [61] (i) (ii) GKvD [61] (i) (ii)

V 0.33� 0.11 0.31þ0.19
−0.15 0.48þ0.24

−0.20 0.27� 0.14 0.16þ0.12
−0.09 0.27þ0.16

−0.13
A1 0.26� 0.08 0.25þ0.14

−0.12 0.36þ0.18
−0.15 0.22� 0.10 0.14þ0.09

−0.07 0.21þ0.11
−0.10

A2 0.24� 0.09 0.22þ0.16
−0.12 0.36þ0.20

−0.17 0.19� 0.11 0.11þ0.10
−0.07 0.20þ0.14

−0.10
T1 0.29� 0.10 0.27þ0.17

−0.13 0.41þ0.20
−0.17 0.24� 0.12 0.15þ0.10

−0.08 0.24þ0.13
−0.11

T23 0.58� 0.13 0.58þ0.19
−0.20 0.73þ0.16

−0.21 0.56� 0.15 0.43þ0.16
−0.15 0.56þ0.16

−0.16

s0 (GeV2) [1.4, 1.7] 1.53þ0.35
−0.09 1.54þ0.34

−0.10 1.6� 0.032 1.03þ0.08
−0.04 1.05þ0.09

−0.04
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moments in QCD sum rules [71], we take the pth derivative
of Eq. (2.6) with respect to k2 [62],

ΠðpÞ
F ðq2; k2Þ≡

�
∂

∂k2

�
p
ΠFðq2; k2Þ

¼ p!
�
YF

Fðq2Þ
ðm2

M − k2Þpþ1
þ
Z

∞

scont

ρFðsÞ
ðs − k2Þpþ1

�
:

ð3:1Þ

The form factor Fðq2Þ can then be rewritten as

Fðq2Þ ¼ ðm2
M − k2Þpþ1

p!YF
ΠðpÞ

F ðq2; k2Þ

−
Z

∞

scont

ρFðsÞ
YF

�
m2

M − k2

s − k2

�
pþ1

: ð3:2Þ

Since m2
M < scont and k2 < 0,

Z
∞

scont

ρFðsÞ
YF

�
m2

M − k2

s − k2

�
pþ1

→
p→∞

0: ð3:3Þ

hence, the form factors can be expressed as

Fðq2Þ ¼ lim
p→∞

ðm2
M − k2Þpþ1

p!YF
ΠðpÞ

F ðq2; k2Þ: ð3:4Þ

This expression is exact and does not rely on semiglobal
QHD. A corollary expression can be derived with the same
approach. The squared mass of the final meson as a
function of the correlation function is

m2
M¼ lim

p→∞

�
p!

ðp−lÞ!
Πðp−lÞ

F

ΠðpÞ
F

�1=l
þk2; p>1; p>l≥1:

ð3:5Þ

This latter expression originates from the same relation
between the derivative of the correlation function and the

meson mass mM used in daughter sum rules [62]. For
brevity of notation, we define

Π̃ðpÞ
F ðq2; k2Þ≡ ðm2

M − k2Þpþ1

p!YF
ΠðpÞ

F ðq2; k2Þ;

RFðp; q2; k2Þ≡
Z

∞

scont

ρFðsÞ
YF

�
m2

M − k2

s − k2

�
pþ1

; ð3:6Þ

and

m̃2
Mðp;l; k2Þ≡

�
p!

ðp − lÞ!
Πðp−lÞ

F

ΠðpÞ
F

�1=l
þ k2; ð3:7Þ

such that

Π̃ðpÞ
F ðq2; k2Þ ¼ Fðq2Þ þ RFðpÞ; ð3:8Þ

and

Π̃ðpÞ
F ðq2; k2Þ→

p→∞
Fðq2Þ; RFðp; q2; k2Þ→

p→∞
0;

m̃2
Mðp;l; k2Þ→p→∞

m2
M: ð3:9Þ

The relations we have derived thus far in this section are
exact, but of little use without the knowledge of the
correlation function ΠF to all orders in the LCOPE and
in perturbation theory. In practice, we can only approximate
the correlation function with an expression expanded on the
light cone, as detailed in Sec. II B. The difference between
the “true” and the LCOPE expressions of the correlation
function originates from the truncation of the multiple

expansions performed to obtain ΠðpÞ
F;LCOPE. This truncation

error grows as p increases because both the higher order
LCOPE and hard QCD corrections become large, as we
discuss in the next section. We plot schematically this
behavior in Fig. 1. Our strategy is the following: we
quantify the p-dependent truncation error in Sec. III B

(a) (b)

FIG. 1. Schematic illustration of the strategy. (a) with convergence and (b) without convergence, see text for more details.
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with a conservative order of magnitude estimate such that

ΠðpÞ
F ≈ ΠðpÞ

F;LCOPE within uncertainties for all p. Necessarily,
when p becomes too large, the estimated uncertainty
diverges, and the calculation loses its predictive power.
We claim that if the truncation error is not too large at large
p useful information can be extracted from LCSRs without
semiglobal QHD.
In fact, whenp increases there are two possible outcomes:
(1) The spectral density integral RF becomes negligible

compared to Fðq2Þ and to the total error on Π̃ðpÞ
F;LCOPE

before the latter diverges. We call this regime
“convergence of the sum rule” [see Fig. 1(a)]. In
this case, we obtain a prediction of the form factor
which does not require the knowledge of RF. In
order to know that we have reached this regime,
there are two criteria we can use without relying on
the semiglobal QHD approximation:
(a) If truncation errors are small enough and the

error is dominated by the LCDAs inputs, then

Π̃ðpÞ
F;LCOPE and m̃2

M become weakly dependent on
p and k2 near the convergence.

(b) In Eq. (3.5), mM is not an input of the mass sum
rule; it is a genuine prediction of the meson mass
from first principles. Usually, this relation is used
to set the effective threshold in semiglobal QHD
[62]; instead, we use it as a criterion of con-
vergence. ATaylor expansion of Eq. (3.7) yields

m̃2
M¼m2

Mþðm2
M−k2Þ

�
1

l
·
RFðp−lÞ−RFðpÞ

Fðq2Þ

þO
�
RF

F

�
2
�
: ð3:10Þ

Hence, assuming that RF does not plateau before
going to zero, the convergence of m̃2

M → m2
M is a

proxy for the quality of the convergence of the
sum rule.

In this regime, attempting to estimate a negligible RF
with semiglobal QHD might introduce a systematic
error that can be larger than the actual size ofRF. This
approach addresses some of the points raised in
Sec. II E as it does not rely on the determination of
the effective threshold. Furthermore, it yields a
reduction of the dependence on the choice of the
LCDA model in the large p limit.

(2) The error in the correlation function diverges before
reaching the regime described above [see Fig. 1(b)].
In this situation, we can use the semilocal quark-
hadron duality to determine the sign of RF for all
consideredp using daughter sum rules to estimate the
effective thresholds. From this information, we can
deduce an upper or lower limit on Fðq2Þ. In practice,
we find RF > 0 in most cases, and in the few cases

where RF < 0 the corresponding lower limits are
negative; hence, we focus on upper limits only. In
principle, these upper limits are robust results since
we rely on semiglobal QHD solely to test the sign of
RF. While not as compelling as predictions, these
upper limits on local form factors can be useful in
certain contexts. For example, smaller SM predic-
tions for fB→Kþ ðq2Þwould reduce the tension between
the experimental measurements and the SM predic-
tions of BRðBþ → KþμμÞ. The determination of
upper limits with sum rules is not a new idea. It
has already been considered in the case of QCD sum
rule, where the spectral density ρðsÞ is positive
definite. This consideration has been applied in the
prediction of LCDA parameters, as documented in
Ref. [70], as well as in the determination of decay
constants, as discussed in Refs. [77,78].

In the usual LCSR method, using the Borel transforma-
tion, the relations (3.4) and (3.5) correspond to the limit
M2 → 0. In this work, we avoid the Borel transformation for
two reasons. First, the convergence criteria we introduced in

this section include the independence of Π̃ðpÞ
F on both k2 and

p independently. This is a more stringent condition than the
independence on their ratio M2 which is used in the
traditional LCSR approach (see, e.g., [63]). The second
advantage of keeping an explicit dependence on k2 and p is
that the convergence is sometimes better at low −k2
(although marginally) than at larger −k2 where we recover
the result of the Borel transformation. This is illustrated in
Table VI for the case of the B → π form factors.
A motivation for using the Borel transformation is that it

removes subtraction terms that could be present in
dispersion relations of sum rules. We note that this property
is not exclusive to the Borel transformation since for a finite
number n of subtractions in a dispersion relation, it is
sufficient to perform n differentiations to remove the
subtraction terms [62]. The sum rule studied in this work
is not regulated by subtractions; hence, we do not need to
consider this issue.
We find numerically that the convergence of the Borel

transformation when taking the limit −k2; p → þ∞ hap-
pens for −k2 of the order of a few GeV when
−k2=p ∼ 1 GeV2. Since we set −k2 ≥ 2 GeV2 (see dis-
cussion in Sec. III B 2), the numerical analysis we perform
yields results close to what one would obtain using the
Borel transform. Thus, in the rest of this article, we
compare the ratio −k2=p and the Borel parameter M2 used
in other similar calculations.
In order for this approach to yield useful results, we need

a conservative yet accurate estimation of the truncation
error. We detail our estimation of the theoretical error
coming from the multiple truncations in the expression of

ΠðpÞ
F;LCOPE in Sec. III B and present our numerical results in

Sec. IV. In this work, we apply this method to B-meson
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LCSRs, but the same strategy can be applied to LCSRs with
light-meson LCDAs as shown in Appendix C. The advan-
tage of B-meson LCSRs over light-meson LCSRs is the
large number of form factors accessible with a single
calculation, which allows us to check our results against
numerous other works.

B. Truncation error in ΠðpÞ
F;LCOPE

In this section, we estimate the uncertainties associated
with the truncations of all expansions in the expression of

ΠðpÞ
F;LCOPE. Our strategy is to write a parametric expression

of the true correlation function in terms of ΠðpÞ
F;LCOPE and

unknown parameters whose prior we establish conserva-

tively. Schematically, we write ΠðpÞ
F ¼ ΠðpÞ

F;LCOPE þ wΔðpÞ,
where ΔðpÞ is the estimated size of the correction, and w is
a parameter of order one.

1. Fock state expansion in n-particle contributions

We perform the calculation up to 3-particle contribu-
tions. We define wn-part such that

ΠðpÞ
F ¼

Xþ∞

n¼2

ΠðpÞ
F;LCOPEjðn-partÞ

¼ ΠðpÞ
F;LCOPEjð2-partÞ þ ΠðpÞ

F;LCOPEjð3-partÞ þ δpertðpÞðpartÞ

¼ ΠðpÞ
F;LCOPEjð2-partÞ þ ΠðpÞ

F;LCOPEjð3-partÞð1þ wðpÞ
n-partÞ:

ð3:11Þ

Numerically, we check that ΠðpÞ
F;LCOPEjð3-partÞ ≪

ΠðpÞ
F;LCOPEjð2-partÞ for the values of p taken in consideration,

which is in line with the results of [61]. We choose wðpÞ
n-part to

be uniformly distributed in ½−2; 2�, which we deem
conservative since the truncated terms are suppressed in
the n-particle expansion.

2. Radiative corrections in αs

In Sec. II B, we discussed the kinematic conditions for
the interpolating quark q1 to be highly virtual and for the
radiative QCD corrections to remain small and found
jk2j; jq̃2j, hsi −m2

1 ≫ Λ2
QCD. We define the average value

of s as

hsi ¼
R σmax
0 dσjIðF;pÞtot ðσ; k2ÞjsðσÞR σmax

0 dσjIðF;pÞtot ðσ; k2Þj
; ð3:12Þ

where IðF;pÞtot ðσ; k2Þ is the integrand of the pth derivative of
the correlation function calculated with the LCOPE (2.10),

ΠðpÞ
F;LCOPEðq2; k2Þ

¼
Z

σmax

0

dσ
X∞
n¼1

ðnþ p − 1Þ!
ðn − 1Þ!

IðFÞn ðσÞ
ðsðσÞ − k2Þnþp

≡
Z

σmax

0

dσIðF;pÞtot ðσ; k2Þ: ð3:13Þ

For p ¼ 0, hsi is of the order of a few GeV2, and when
p → ∞, hsi → m2

1. To estimate the size of the radiative
correction, we define the characteristic scale,

μQCD ≡minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsi −m2

1

q
;

ffiffiffiffiffiffiffi
jk2j

q
;

ffiffiffiffiffiffiffiffi
jq̃2j

q
Þ: ð3:14Þ

For a given renormalization scheme, the correlation func-
tion expanded to all orders in perturbative QCD can be
written as

ΠðpÞ
F ¼ ΠðpÞ

F;LO

�
1þ wðpÞ

αs ðμÞ
X
n¼1

�
αsðμÞ
π

�
n
�

¼ ΠðpÞ
F;LO

�
1þ wred

αs ðpÞðμÞ
αsðμÞ=π

1 − αsðμÞ=π
�
; ð3:15Þ

where wαsðμ ∼mBÞ ∼ 1 and wαsðμ → ΛQCDÞ ¼ 0. We
choose to work in the MS renormalization scheme and
set μ ¼ μQCD. Setting wαs to be of order 1 and independent
of the scale μ gives a crude yet conservative estimation of
the QCD error when p → ∞. Radiative corrections at NLO
have been calculated for B-meson LCDAs in SCET in
Ref. [42]. In that work, the Borel parameter is set to
M2 ¼ 1.25� 0.25 GeV2, and the authors find that the
largest radiative corrections are of order 30%. Recalling
that s≲M2 and setting the scale μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.25 GeV2

p
, our

estimation of the missing radiative correction is
wαs × αsðμÞ=ðπ − αsðμÞÞ ¼ 0.25wαs . Hence, we choose
½−1.5; 1.5� as a conservative interval for wαs. Our QCD
error estimation does not account for possible large
logarithms that may appear. However they have been
included and resummed in Ref. [42] and are part of the
quoted 30% error. In the mass sum rule (3.5), we make the
conservative assumption that radiative corrections are
uncorrelated between different derivatives.

3. LCOPE truncation error

We now focus on assessing the error arising from
truncating the LCOPE. Matching the twist expansion of
the LCDAs with that of the LCOPE, in the case of
2-particle LCDAs, the leading twists (LT) 2 and 3 con-
tribute at order ðx2Þ0, while the next-to-leading twists
(NLT) 4 and 5 contribute at order ðx2Þ1 and so forth.
For n-particle contributions, the twist counting starts at n.
Schematically we have
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ΠF;LCOPEðq2; k2Þ ¼ Πtwist−2;3
2p þ Πtwist−3;4

3p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∝ðx2Þ0∶ LT

þ Πtwist−4;5
2p þ Πtwist−5;6

3p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∝x2∶ NLT

þ Πtwist−6;7
2p þ Πtwist−7;8

3p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∝x4∶ NNLT

þ � � � : ð3:16Þ

Additionally, the LCDAs are expanded within HQET. As
well known, the power expansion in HQET is mismatched
with the expansion in twists; hence, the power counting in
HQET is ill-defined at a given order in the twist expansion.
However, we know that order x2 in the LCOPE expansion
corresponds to order 1=mb þOð1=m2

bÞ in HQET, which
can be seen, e.g., from Eq. (2.15). We include 2-particle
B-meson LCDAs up to twist-5, thus encompassing the
entire Oð1=mbÞ order of HQET. For 3-particle LCDAs, we
only consider contributions up to twist-3 and twist-4, which
correspond to the leading order contribution in the LCOPE
and leading power in HQET. At the leading order in QCD,
the propagator of the interpolating quark q1 is exact at all
orders in HQET; hence, the order 1=mb is fully included at
QCD leading order in the 2-particle contributions. We do
not account for the effect of higher power corrections which
we expect to be negligible compared to the other errors we
take into account. Following the series expansion intro-
duced in Eq. (3.16), we can write the correlator as

ΠðpÞ
F ¼

X
t≥2

ΠðpÞ
twist¼t¼ΠðpÞ

LT þΠðpÞ
NLTþΠðpÞ

NNLTþ��� : ð3:17Þ

We work under the assumption that all coefficients multi-
plying powers of x2 in the light-cone OPE are of the same
order of magnitude as the leading twist contribution,

ΠðpÞ
kNLT

ΠðpÞ
LT

1

x2k
¼ Oð1Þ: ð3:18Þ

To be conservative, we assume that all the terms in the
series interfere positively such that

����X
t≥6

ΠðpÞ
twist¼t

����≈
���� Π2

NLT

ΠLT − ΠNLT

���� ≤ Π2
NLT

jΠLTj − jΠNLTj
: ð3:19Þ

Following this approximation, we estimate the contribution
of the missing twists by

ΠðpÞ
F ≡ ΠðpÞ

LT þ ΠðpÞ
NLT þ wLCOPE ×

ðΠðpÞ
NLTÞ2

jΠðpÞ
LT j − jΠðpÞ

NLTj
: ð3:20Þ

where wLCOPE is an unknown parameter of order unity. We
take it to be uniformly distributed in the range ½−2; 2�.

We also ensure that ΠðpÞ
NLT=Π

ðpÞ
LT ≤ 30%. Numerically, we

find that the size of the uncertainty coming from the
truncation of the LCOPE using this model is very small
compared to the total uncertainty, which is dominated by
parametric uncertainties and radiative corrections. This is
visible in Fig. 3 where the error coming from the above
model is called “twist” and contributes a small fraction of
the total error in fB→π;K

þ and AB→ρ
1 . Doubling the size of the

allowed interval for wLCOPE to ½−4; 4� yields an increase of
the total relative uncertainty of about 1%. At large p and

small ΠðpÞ
NLT=Π

ðpÞ
LT , one can show that wLCOPE is weakly

dependent on p. We use that approximation of p-indepen-
dent wLCOPE in the mass sum rule (3.5). From the
expression in Eq. (3.13), one can infer how the quality
of the LCOPE is regulated by k2 and p. In Eq. (3.13), the

leading twist contributes to IðFÞn¼1;2ðσÞ, and the next-to-

leading twist contributes to IðFÞn¼2;3;4ðσÞ. Hence, the ratio of
the two successive terms in (3.13) roughly corresponds to
the ratio of next-to-leading twist over leading twist con-
tributions. This ratio goes like ðnþ pÞ=n × 1=ðsðσÞ − k2Þ,
which in the limit of n ≪ p and −k2 ≫ hsi goes like
p= − k2. This qualitatively shows how p= − k2 and the
Borel parameter regulate the goodness of the LCOPE.

4. Total error model

Combining Eqs. (3.11), (3.15), and (3.20), we obtain the
following expression for the exact correlation function:

ΠðpÞ
F ¼

�
1þ wðpÞ

αs ×
αsðμQCDÞ=π

1 − αsðμQCDÞ=π
�

×

� X
twist¼LT;NLT

½ðΠ2p
LOÞðpÞ þ ðΠ3p

LOÞðpÞð1þ wðpÞ
n-partÞ�

þ wLCOPE ×
ðΠðpÞ

LO;NLTÞ2
jΠðpÞ

LO;LTj − jΠðpÞ
LO;NLTj

�
: ð3:21Þ

We treat wðpÞ
n-part; w

ðpÞ
αs ; wLCOPE as nuisance parameters in a

frequentist inference to account for the total error from the
multiple truncations. Based on the discussion above, we
assume that they are uniformly distributed in the following
ranges:

wðpÞ
n-part∈ ½−2;2�; wðpÞ

αs ∈½−1.5;1.5�; wLCOPE∈ ½−2;2�:
ð3:22Þ

In this simplified model, as p increases, the estimated

uncertainty on ΠðpÞ
F becomes out of control because of the

simultaneous decrease of μQCD toward zero and the

increase of ΠðpÞ
NLT=Π

ðpÞ
LT toward unity.
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IV. NUMERICAL RESULTS

A. Input parameters

We use the PDG values for the meson masses, while the
remaining input parameters are listed in Table IV. The
running of αsðμÞ in the MS renormalization scheme is
performed using the package RUNDEC [79]. We work in a

frequentist inference and sample our expression for ΠðpÞ
F

from Eq. (3.21) with randomly drawn input parameters
assuming that all input parameters are normally distributed
and uncorrelated, except for the theoretical error model

parameters wLCOPE; w
ðpÞ
αs ; w

ðpÞ
n-part which are uniformly

distributed.

B. Semiglobal QHD vs our approach

We begin the presentation of our numerical results by
comparing the value of Π̃ðpÞ

F ðq2 ¼ 0Þ and the prediction of
Fðq2 ¼ 0Þ obtained by applying the semiglobal QHD. The

purpose of this comparison is to verify that Π̃ðpÞ
F and RF

behave as expected in Sec. III A and to estimate numeri-
cally the value of −k2=p for which the convergence regime
starts.

For this check, we choose to study F ¼ VB→K�
, for

which we established that the DSR in Eq. (2.19) yields a
reasonable effective threshold. We set k2 ¼ −20 GeV2 and
vary p such that −k2=p spans the range [0.57, 1.53] GeV2.
Using the statistical routine described in Sec. IVA, we

obtain the central value and 68% CL interval for Π̃ðpÞ
VB→K� as

well as RF and VB→K�
estimated using semiglobal QHD.

The results are presented in Table V.
Focusing on the central values of our predictions, we first

note that—as expected—RVB→K� → 0 and Π̃ðpÞ
VB→K� → VB→K�

when −k2=p is small enough, typically around −k2=p∼
0.5 GeV2. Interestingly, this corresponds to the lower
end of the Borel window used in the literature, indicating
that our current knowledge of the LCOPE for
B-meson LCSR may allow us to circumvent the semiglobal
QHD. When approaching the convergence, the total
uncertainty grows when −k2=p decreases which is also
expected given our model for the theoretical error devised
in Sec. III B.
Before pursuing the numerical analysis of our results, we

comment on the size of RF estimated with semiglobal QHD
at high −k2=p. It is known that in this regime the spectral
density integral RF is poorly suppressed, and in the
literature, the upper end of the Borel window is chosen
to limit the impact of errors coming from the estimate
of RF. We find that for M2 ∼ −k2=p ¼ 1.53 GeV2,

RF=Π̃
ðpÞ
F ¼ 53%, which we argue is too large given our

poor knowledge of the ImΠF;LCOPEðsÞ at large s. We stress
that this result is not due to the absence of Borel trans-
formation (which could explain a poor suppression of the
spectral density integral), since the Borel transformation
converges for −k2 > 5 GeV2 at −k2=p ∼ 1.
When using the semiglobal QHD, to fulfill the criteria

RF=Π̃
ðpÞ
F < 30%, we find that one should take

−k2=p ∼M2 ≲ 1 GeV2. This restriction of the Borel win-
dow could have serious phenomenological consequences
since, as can be seen in Table V, the variation of the form
factor in the Borel window between −k2=p ¼ 1.5 GeV2

and −k2=p ¼ 1 GeV2 is of the order of 10%. This
observation is particularly relevant in the context of B
anomalies since a 10% decrease of fB→Kþ ðq2 ¼ 0Þ would
bring the SM prediction of, e.g., BRðBþ → KþμμÞ closer
to its experimental determination.

TABLE V. Central values and 68% CL intervals of Π̃ðpÞ
VB→K� (q2 ¼ 0). The corresponding RVB→K� , VB→K�

, and s0 are estimated using
DSR and semiglobal QHD.

−k2=p (GeV2) 20=13 20=16 20=20 20=25 20=30 20=35

RVB→K� 0.50þ0.15
−0.13 0.37þ0.11

−0.11 0.25þ0.08
−0.08 0.15þ0.05

−0.04 0.08þ0.03
−0.02 0.03þ0.01

−0.01
VB→K�

0.43þ0.24
−0.19 0.45þ0.25

−0.20 0.47þ0.28
−0.22 0.49þ0.30

−0.21 0.52þ0.31
−0.23 0.53þ0.35

−0.24

Π̃ðpÞ
VB→K� 0.94þ0.37

−0.33 0.84þ0.36
−0.31 0.72þ0.35

−0.30 0.64þ0.34
−0.26 0.60þ0.32

−0.25 0.55þ0.35
−0.25

s0 (GeV2) 1.43þ0.026
−0.012 1.48þ0.03

−0.01 1.56þ0.04
−0.02 1.68þ0.06

−0.03 1.87þ0.1
−0.05 2.21þ0.25

−0.10

TABLE IV. Values of input parameters.

Parameters Values Reference

Decay constants fB ¼ 190.0ð1.3Þ MeV [80]
fπ ¼ 130.2ð8Þ MeV [80]
fK ¼ 155.7ð7Þ MeV [80]
fD ¼ 212.0ð7Þ MeV [80]
fρ ¼ 213ð5Þ MeV [64]
fK� ¼ 204ð7Þ MeV [64]
fD� ¼ 242ð20Þ MeV [77]

QCD coupling αsðμ ¼ mZÞ ¼ 0.1180 [81]

Quark masses mc ¼ mcðμ ¼ 2 GeVÞ ¼ 1.10 GeV [82]
ms ¼ msðμ ¼ 1 GeVÞ ¼ 0.121 GeV [82]

mu ¼ md ¼ 0 GeV

LCDA
parameters

λ2E ¼ 0.03ð2Þ GeV2 [69]
λ2H ¼ 0.06ð3Þ GeV2 [69]

λ−1B ¼ 2.72� 0.66 GeV−1 [68]a

aOur combination (see Sec. II E).

A. CARVUNIS, F. MAHMOUDI, and Y. MONCEAUX PHYS. REV. D 110, 114008 (2024)

114008-12



C. Prediction and upper limits on local form factors

We present results for −k2 ¼ 2, 10, 20 GeV2 which we
find are representative values. We choose −k2 ¼ 2 GeV2 as
the minimal value which fulfills the QCD perturbativity
condition (2.16). For each−k2, we increase p until the error

in Π̃ðpÞ
F;LCOPE starts diverging. We then go back and sample a

large number of points for a few values of p before the
divergence. We illustrate this method in Fig. 2 for the fB→Kþ
form factor and also include the predictions from the mass

FIG. 2. Numerical results for k2 ¼ −2;−10;−20 GeV2 around the optimal value of p. First row: 95th percentile and median value of
Π̃B→K

fþ , N ¼ 6000. The orange bands represent the 1σ interval predicted by the HPQCD Collaboration [27]. Second row: blue (black)

error bars are 1σ intervals including all errors (parametric error only). Dotted line is experimental value ofm2
K . Third row: 1σ intervals of

the ratio of next-to-leading twist over leading twist contributions. Fourth row: energy scale used for the estimation of the error from
missing radiative corrections.

POTENTIAL OF LIGHT-CONE SUM RULES WITHOUT … PHYS. REV. D 110, 114008 (2024)

114008-13



sum rule and other relevant quantities. Similar figures are
given in Appendix D for other form factors (see Fig. 4–6).
At q2 ¼ 0, we restrict ourselves to a minimal basis for the

form factors: fB→Pþ , fB→P
T for pseudoscalar final mesons and

VB→V ,AB→V
1 ,AB→V

2 ,TB→V
1 andTB→V

23 for vector finalmesons
(seeAppendixA for their definitions).Wepresent our results
for upper bounds and predictions in Tables VI and VII for
B → π; ρ; Kð�Þ. The optimal values for the pair ðk2; pÞ are
chosen to obtain the most stringent upper limit at the
95% confidence level for the considered form factor. We
also present the median value and 1σ interval of the sampled

Π̃ðpÞ
F;LCOPE at the said optimal pair. For all three values of k2,

the optimalp is sought in the intervalwhere the scaleμQCD ≥
0.75 GeV and the twist ratio is below 20%.We also include
in the tables an estimation of RF using semiglobal QHD to
test its sign andmagnitude. The result onewould obtain from

the usual LCSRmethod is simply Π̃ðpÞ
F —RF. ForB → ρ; K�,

we solve the daughter sum rules Eq. (2.19) to determine the
effective thresholds, while for B → π; K, we use the same
effective thresholds as in Ref. [61].
For B → Dð�Þ, we do not obtain viable results for two

reasons. First, the NLT contribution is much larger, due to
the large mass of the charm quark, which makes the error
large before reaching the convergence. Secondly, the
daughter sum rules do not work, preventing us from
evaluating RF and checking its positivity.
The central values of Π̃ðpÞ

F can be used as indications for the
predictions of the form factors assuming the convergence of
the sum rule. We discuss convergence further in Sec. IV D.
We find that all predictions are compatible with the literature
albeit the uncertainties are rather large. The large error in our

predictions and the elevated values of the upper limits are
mainly due to the large uncertainties coming from the
estimation of the error from the truncation of perturbative
QCD corrections and to a lesser extent to the truncation of the
LCOPE. This demonstrates the necessity of a more accurate
assessment of the radiative corrections and the higher twist
contributions, which would allow us to go at a larger number
of derivation p and get closer to the convergence and/or
reduce the theoretical error.
From the three models introduced in Appendix B, the

results in Tables VI and VII were obtained with the
exponential model. It yields smaller yet compatible values
compared to the local duality models A and B, with relative
differences ranging from 0% to 10%. These models are
asymptotically identical at low momentum; hence, in the
limit p → ∞, there is no difference between them.

D. Convergence of the sum rule

The first criterion of convergence discussed in Sec. III A
is the independence of the prediction with respect to k2 and
p. At this stage, we find that it is the case within
uncertainties, but this is rather meaningless given how
large the latter are. The second criterion of convergence we
examined is the convergence of m̃2

M → m2
M. Similarly to the

convergence of the form factor, taken at face value, the total
uncertainty on mass predictions is very large, and thus,
mass predictions are not very useful at this stage to
characterize convergence. They are dominated by our
QCD error estimation, and computing the radiative cor-
rections should reduce this uncertainty by a fair amount and
allow us to check the convergence of the sum rule.

TABLE VI. Upper limits at the 95% confidence level and central value of Π̃ðpÞ
F for B → π; K. We include the corresponding values of

−k2 (in GeV2) and p as well as an estimate of RFðp; k2Þ using semiglobal quark-hadron duality with the effective thresholds s0 of [61].

Form factor −k2=p RFðp; k2Þ Upper limit @ 95% CL Π̃ðpÞ
F ð1σÞ Literature Reference

fB→πþ 2=6 0.02þ0.01
−0.01 0.38 0.17þ0.13

−0.10 0.21(7) [61]a

0.191(73) [42]
0.301(23) [40]
0.297(30) [83]

fB→π
T 2=5 0.016þ0.007

−0.006 0.32 0.17þ0.09
−0.08 0.19(7) [61]a

0.222(78) [42]
0.273(21) [40]
0.293(28) [83]

fB→Kþ 10=19 0.03þ0.01
−0.01 0.57 0.32þ0.15

−0.12 0.332(12) [27]
0.27(8) [61]a

0.325(85) [42]
0.395(33) [40]

fB→K
T 10=8 0.04þ0.02

−0.06 0.46 0.34þ0.08
−0.07 0.332(21) [27]

0.25(7) [61]a

0.381(27) [40]
0.381(97) [42]

aThe authors of [61] have recommended not to use their results, yet they are of interest since we follow a similar calculation (see text
for more details).
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So far, the behavior we have described was expected.
However, we make an interesting observation in the mass
sum rule. As shown in Fig. 2, the value of m̃2

K including
parametric errors only becomes remarkably close to the
squared meson mass m2

K as p increases, with very small
parametric uncertainties. This is also true for fB→K

T and for
all the form factors for B → ρ and B → K� transitions as
shown in Appendix D. We checked numerically that there
is no correlation between the input parameter mM and the
calculated m̃M. It is a truly surprising finding given how
large the estimated error is. At this stage, this appears to be
a numerical coincidence which has two possible
explanations. Either the actual radiative corrections and
higher twists contributions are small or, more probably,
they cancel out in the ratio (3.5). In any case, such a quick
and accurate convergence seems to be a sign that RF ≪
Fðq2Þ for a relatively large −k2=p where the radiative
corrections (although potentially large) are calculable
perturbatively for B → Kð�Þ; ρ.
The case of B → π is different. In B-meson LCSRs, the

SUð3Þf breaking effects are very small at leading order in
QCD; hence, the mass sum rule yields m̃2

K ≈ m̃2
π . We expect

that the radiative corrections break strongly SUð3Þf to

adjust the predicted mass of the pion. Notably, the
corrections should be larger for B → π since the first
resonance of the pion spectral density is lighter than the
first resonance of the kaon, sπcont < sKcont, and thus, RFB→π

converges more slowly than RFB→K .
As a check, the estimated values of RF including QCD

and LCOPE truncation error are also reported for each form
factor. Assuming semiglobal QHD, it allows us to infer
whether we can impose an upper limit by checking the
positivity of RF. It also gives an indication of how far we
are from the convergence of the sum rule since we expect
RF to go to zero in this limit. We find that for every
prediction RF is much smaller than the central value of the
form factors, suggesting that we are close to convergence.
From the Tables VI and VII, one can see that the ratios

−k2=p taken to establish the upper bounds are around or
below 0.5 GeV2, the canonical lower limit for the Borel
window. There are two reasons to explain this. First, in our
approach, we allow larger (yet conservatively estimated)
truncation errors in order to better suppress the spectral
density integral RF. Then, in our expression of the average
virtuality in the correlator (3.12), there is a disconnect
between −k2=p and hsi for small Borel parameters;

TABLE VII. Upper limits at the 95% confidence level and central value of Π̃ðpÞ
F for B → ρ; K�. We include the corresponding values of

−k2 (in GeV2) and p as well as an estimate of RFðp; k2Þ using semiglobal quark-hadron duality. The effective thresholds s0 are
determined by solving the daughter sum rule (2.19).

Form factor −k2=p RFðpÞ s0 (GeV2) Upper limit @ 95% CL Π̃ðpÞ
F ð1σÞ Literature Reference

VB→ρ 20=44 0.05þ0.03
−0.02 1.35þ0.06

−0.06 0.82 0.34þ0.28
−0.18 0.27(14) [61]

0.327þ0.204
−0.135 [84]

0.327(31) [64]

AB→ρ
1

20=44 0.04þ0.02
−0.02 1.36þ0.07

−0.05 0.63 0.26þ0.21
−0.13 0.22(10) [61]

0.249þ0.155
−0.103 [84]

0.262(26) [64]

AB→ρ
2

20=37 0.07þ0.05
−0.03 1.22þ0.04

−0.03 0.70 0.26þ0.25
−0.14 0.19(11) [61]

TB→ρ
1

20=37 0.08þ0.04
−0.03 1.23þ0.04

−0.04 0.72 0.33þ0.22
−0.16 0.24(12) [61]

0.272(26) [64]

TB→ρ
23

2=3a � � � � � � 0.93 0.68þ0.14
−0.12 0.56(15) [61]

0.747(76) [64]

VB→K�
20=30 0.08þ0.03

−0.02 1.87þ0.09
−0.04 1.1 0.58þ0.34

−0.25 0.33(11) [61]
0.419þ0.245

−0.157 [84]
0.341(36) [64]

AB→K�
1

10=16 0.04þ0.02
−0.01 2.05þ0.14

−0.08 0.88 0.45þ0.25
−0.19 0.26(8) [61]

0.306þ0.180
−0.115 [84]

0.269(29) [64]

AB→K�
2

20=31 0.04þ0.02
−0.02 2.03þ0.11

−0.03 0.96 0.42þ0.30
−0.21 0.24(9) [61]

TB→K�
1

10=16 0.04þ0.01
−0.01 2.05þ0.16

−0.07 1.0 0.50þ0.28
−0.22 0.29(10) [61]

0.361þ0.211
−0.135 [84]

0.282(31) [64]

TB→K�
23

20=26a � � � � � � 1.2 0.87þ0.22
−0.20 0.81(11) [61]

0.793þ0.402
−0.258 [84]

0.668(83) [64]
a−k2=p is taken from the sum rule for TB

23.
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e.g., in Fig. 2, the point k2 ¼ −2 GeV2 and p ¼ 6 corre-
sponds to hsi ≈ 0.56 GeV2, larger than the expected
−k2=p ¼ 0.33 GeV2. This reduces the estimated size of
radiative correction for small Borel parameters.

E. Correlation between form factors

Since the core result ofB-meson LCSRs relies on the same
shared LCDA parameters for all form factors, we expect this
calculation to yield strongly correlated predictions.Moreover,
for a given form factor, the correlation function is the same for
different processes up to the interpolating quark mass. We
show an example of this effect in Fig. 3. The correlation
between form factors predicted using B-meson LCSRs is
usually hampered by the determination of theBorel parameter
and effective threshold which have a relatively large uncer-
tainty and are a priori uncorrelated between different decays.
Since we avoid semiglobal QHD in our procedure, we can
recover a strong correlation between all predicted form
factors, as long as the uncertainty coming from B-meson
LCDAs dominates. A large part of the uncertainty in our
current calculation originates from perturbative QCD, which
dilutes the correlations for now.
In Fig. 3, we show the 1σ confidence levels of our

predictions in the planes Π̃B→K
fþ − Π̃B→ρ

A1
and Π̃B→K

fþ − Π̃B→π
fþ

breaking down the different sources of error.When account-
ing for the total error, there is virtually no correlation
between our predictions, which is expected because of
the large and uncorrelated QCD error. Removing the latter
yields a strong correlation between our predictions, even
when accounting for LCOPE truncation errors. Keeping
only parametric errors, we see even stronger correlations,
reaching almost 100% correlation between fB→Kþ and fB→πþ
which is expected at QCD LO for B-meson LCSR. Even

without improving our current knowledge of B-meson
distribution amplitudes, calculating the QCD radiative
corrections to the correlator would significantly increase
the statistical correlation between all predicted form factors.
While the absolute size of the error would still be compa-
rable to other calculations employingB-meson LCDAs, this
correlation can have strong phenomenological implications.

V. CONCLUSION

In this article, we propose a strategy to predict form
factors using LCSRs without the semiglobal QHD approxi-
mation and thus without relying on the determination of an
effective threshold and a window for the Borel parameter.
Our approach consists of evaluating conservatively the
truncation error in the correlator and taking −k2=p ≈M2 to
be as small as possible in order to suppress the spectral
density integral RF. We introduce two tests of the sup-
pression of RF which do not rely on semiglobal QHD,
namely, the k2 and p independences of the predicted form
factors and the convergence of the mass sum rule toward
the physical value of the squared meson mass m̃2

M → m2
M.

Our approach reduces greatly the systematic uncertainty
associated to the LCSR method. However, this improve-
ment comes at the cost of a larger dependence on higher-
order perturbative corrections and higher twists in the
LCOPE. This trade-off is advantageous, since these cor-
rections are calculable. The other notable advantage of this
method is that in B-meson LCSRs it predicts strongly
correlated form factors between different processes.
Using a conservative model of the error in Π̃ðpÞ

F , we find
that −k2=p can be taken slightly below the Borel window
½0.5; 1.5� GeV2 used in the literature [33,61], thanks to the
fact that a direct assessment of the average virtuality hsi

FIG. 3. Correlated predictions of Π̃B→K
fþ − Π̃B→ρ

A1
and Π̃B→K

fþ − Π̃B→π
fþ at the 1σ confidence level. See Tables VI and VII for the values of

−k2=p. The solid contour only includes parametric errors (dominated by the LCDA) and the error from truncating the n-particle
expansion of the correlator. The dashed contour includes the aforementioned errors as well as the error from the truncation of the twist
expansion of the correlator. The dotted contour includes all previous errors as well as the error coming from the unaccounted radiative
corrections from QCD.
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yields higher values than the approximation −k2=p ≈ hsi
and thus hints at smaller expected radiative corrections. At
this stage, an assessment of the convergence of the sum rule
in this regime is hampered by the relatively large truncation

error which affects both Π̃ðpÞ
F and m̃2

M. However, we find
that without the modeled truncation error, m̃2

M converges
remarkably fast and accurately to the physical values ofm2

M

for M ¼ Kð�Þ; ρ. Our understanding of this observation is
that RF converges quickly to zero, and the error due to the
truncated contributions in pQCD and LCOPE cancels out
in the ratio in the mass sum rule provided in Eq. (3.5). In
this case, computing the NLO QCD correction could
allow us to demonstrate the convergence in the region
−k2=p ≈ 0.5–0.3 GeV2. In addition, the knowledge of
these radiative corrections would lead to highly correlated
predictions of the form factors.
Interestingly, the same method can be applied to LCSRs

with light-meson LCDAs and should prove to perform
better. Indeed, the light-meson LCDAs are generally better
known, with smaller parametric uncertainties [34]. They do
not exhibit UV divergences similar to the one mentioned in
Sec. II D. Furthermore, for the B → π and B → K tran-
sitions, the contributions from the highest known twists
have been shown to be negligible [39,40], hence indicating
that the LCOPE should be under control at small −k2=p in

our approach. For each form factor considered in this work,
the NLO QCD corrections have already been calculated in
LCSRs with light-meson LCDAs [31,34,45,64], at least for
the leading twist contributions. It would be interesting to
compare the results of this method applied with light-
meson LCDAs to the ones already obtained with the usual
procedure. Light-meson LCDAs also present the advantage
of enabling exploration of higher values of q2, surpassing
the restriction q2 < m2

1.
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APPENDIX A: DEFINITION OF LOCAL
HADRONIC FORM FACTORS

The relevant form factors for the B → P transitions, with
P ¼ π; K;D are fB→P

0 , fB→Pþ and fB→P
T . We define

hPðkÞjq̄1γμbjBðpBÞi ¼
�
ðpB þ kÞμ −m2

B −m2
P

q2
qμ
�
fB→Pþ þm2

B −m2
P

q2
qμfB→P

0 ;

hPðkÞjq̄1σμνqνbjBðpBÞi ¼
ifB→P

T

mB þmP
½q2ðpB þ kÞμ − ðm2

B −m2
PÞqμ�: ðA1Þ

For B → V transitions, with V ¼ ρ; K�; D̄�, we consider VB→V, AB→V
0 , AB→V

1 , AB→V
2 , TB→V

1 , TB→V
2 , and TB→V

3 , which can be
defined with

hVðk;ηÞjq̄1γμbjBðpBÞi¼ ϵμνρση�νpBρkσ
2VB→V

mBþmV
;

hVðk;ηÞjq̄1γμγ5bjBðpBÞi¼ iη�ν

�
qμqν

2mV

q2
AB→V
0 þ

�
gμν−

qμqν

q2

�
ðmBþmVÞAB→V

1

−
�ðpBþkÞμqν

mBþmV
−
qμqν

q2
ðmB−mVÞ

�
AB→V
2

�
;

hVðk;ηÞjq̄1iσμνqνbjBðpBÞi¼−ϵμνρση�νpBρkσ2TB→V
1 ;

hVðk;ηÞjq̄1iσμνqνγ5bjBðpBÞi¼ iη�ν

�
ðgμνðm2

B−m2
VÞ−ðpBþkÞμqνÞTB→V

2 þqν
�
qμ−

q2

m2
B−m2

V
ðpBþkÞμ

�
TB→V
3

�
; ðA2Þ

where pB denotes the momentum of the Bmeson, k that of the light meson, and q the momentum transfer, while η stands for
the polarization of the vector meson. Wework in the ϵ0123 ¼ þ1 convention. We also introduce the form factor combination
TB→V
23B as in [61], motivated by its easy extraction directly from a sum rule. It is defined as

TB→V
23B ¼ TB→V

2

2
þ 1

2

�
q2

m2
B −m2

V
− 1

�
TB→V
3 : ðA3Þ

We work at q2 ¼ 0, at which there are extra relations between the different form factors,
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fB→Pþ ðq2 ¼ 0Þ ¼ fB→P
0 ðq2 ¼ 0Þ;

TB→V
1 ðq2 ¼ 0Þ ¼ TB→V

2 ðq2 ¼ 0Þ;
AB→V
0 ðq2 ¼ 0Þ ¼ mB þmV

2mV
AB→V
1 ðq2 ¼ 0Þ

−
mB −mV

2mV
AB→V
2 ðq2 ¼ 0Þ: ðA4Þ

We also define TB→V
23 as

TB→V
23 ≡ ðm2

B −m2
VÞðm2

B þ 3m2
V − q2ÞTB→V

2 − λðq2ÞTB→V
3

8mBm2
VðmB −mVÞ

;

ðA5Þ

where λ≡ ½ðmB þmVÞ2 − q2�½ðmB −mVÞ2 − q2� is the
Källén function. At q2 ¼ 0, this reduces to

TB→V
23 ðq2 ¼ 0Þ ¼ ðmB þmVÞ

4mBm2
V

ð2m2
VT

B→V
2 ðq2 ¼ 0Þ

þ ðm2
B −m2

VÞTB→V
23B ðq2 ¼ 0ÞÞ: ðA6Þ

APPENDIX B: B-MESON DISTRIBUTION
AMPLITUDES

The nonlocal matrix elements in Eqs. (2.8) and (2.9) are
parametrized with B-meson LCDAs [46,58] as

h0jq̄2αðxÞ½x; 0�hβvð0ÞjB̄ðvÞi ¼ −
ifBmB

4

Z þ∞

0

dωe−iωv:x
	
ð1þ =vÞ

�
½ϕþðωÞ þ x2gþðωÞ�

−
=x
2

1

vx
½ðϕþ − ϕ−ÞðωÞ þ x2ðgþ − g−ÞðωÞ�

�
γ5



βα

; ðB1Þ

h0jq̄2αðxÞ½x; ux�GλρðuxÞ½ux; 0�hβvð0ÞjB̄ðvÞi

¼ fBmB

4

Z þ∞

0

dω1

Z þ∞

0

dω2e−iðω1þuω2Þv:x
	
ð1þ =vÞ

�
ðvλγρ − vργλÞðψA − ψVÞ − iσλρψV

−
1

v:x
ðxλvρ − xρvλÞXA þ 1

v:x
ðxλγρ − xργλÞðW þ YAÞ −

i
v:x

ϵλρμνxμvνγ5X̃A

þ i
v:x

ϵλρμνxμγνγ5ỸA −
1

ðv:xÞ2 ðxλvρ − xρvλÞ=xW þ 1

ðv:xÞ2 ðxλγρ − xργλÞ=xZ
�
γ5



βα

ðω1;ω2Þ: ðB2Þ

The brackets ½x; 0� and such denote Wilson lines that
render the LCDAs gauge invariant. We work in the Fock-
Schwinger gauge xμAaμðxÞλa=2 ¼ 0 where the Wilson
lines are 1 and adopt again the convention ϵ0123 ¼ þ1.
While the 3-particle B-LCDAs basis in (B2) has the

advantage of having simple Lorentz structures, for LCSRs,
it is more convenient to work in a basis of LCDAs with
definite collinear twists,

ϕ3 ¼ ψA − ψV;

ϕ4 ¼ ψA þ ψV;

ψ4 ¼ ψA þ XA;

ψ̃4 ¼ ψV − X̃A;

ϕ̃5 ¼ ψA þ ψV þ 2YA − 2ỸA þ 2W;

ψ5 ¼ −ψA þ XA − 2YA;

ψ̃5 ¼ −ψV − X̃A þ 2ỸA;

ϕ6 ¼ ψA − ψV þ 2YA þ 2ỸA þ 2W − 4Z: ðB3Þ
For both 2-particle and 3-particle LCDAs, we consider

all three models given in [58], namely, the exponential and

the two local-duality models: local duality A and local
duality B. Only the Wandzura-Wilczek approximation was
given for g− in [61], as the full LCDA depends on ψ5,
which also lacked a specified model. More recently,
models for the exponential model and the local-duality
B one were given for ψ5 in [84]. A general ansatz was later
derived in [42] that we use to obtain an expression for all
three models. We check that we are in agreement with [84].
For the complete expression of g−ðωÞ, following [58],

we start from the equation

2z2G−ðzÞ ¼ −
�
z
d
dz

−
1

2
þ izΛ̄

�
Φ−ðzÞ −

1

2
ΦþðzÞ

− z2
Z

1

0

ð1 − uÞduΨ5ðz; uzÞ; ðB4Þ

where

G−ðzÞ ¼
Z þ∞

0

dωe−iwzg−ðωÞ; ðB5Þ
and

Λ̄ ¼ mB −mb: ðB6Þ
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This yields

g−ðωÞ¼
1

4

Z þ∞

0

dρðΛ̄−ρÞSignðω−ρÞϕ−ðρÞ−
1

8

Z þ∞

0

dρðρ−ωÞSignðω−ρÞ½ϕþðρÞ−ϕ−ðρÞ�

−
1

2

Z
ω

0

dω1

Z
1

0

du
1−u
u

ψ5

�
ω1;

ω−ω1

u

�
: ðB7Þ

1. Exponential model

ψ5ðω1;ω2Þ ¼ −
λ2E
3ω3

0

ω2e−ðω1þω2Þ=ω0 ; ðB8Þ

g−ðωÞ ¼
1

36ω4
0

	
e−ω=ω0 ½27ωω4

0 þ ðλ2E − λ2HÞð−ω3 þ 3ω2ω0 − 3ωω2
0Þ�

þ 6λ2E

�
e−ω=ω0ω3

0

�
γE þ ln

ω

ω0

�
− ω2

0

	
ðω0 − ωÞEi

�
−

ω

ω0

�
�

: ðB9Þ

This result is obtained with the following Grozin-Neubert constraints [46]:

ω0 ¼ λB ¼ 2

3
Λ̄; 2Λ̄2 ¼ 2λ2E þ λ2H: ðB10Þ

2. Local duality A

ψ5ðω1;ω2Þ ¼ −
15λ2E
6ω5

0

ω2

�
ω0 −

ðω1 þ ω2Þ
2

�
2

Θð2ω0 − ω1 − ω2Þ; ðB11Þ

g−ðωÞ ¼ −
1

384ω5
0

Θð2ω0 − ωÞ
	
ωððω − 2ω0Þð27ðω − 2ω0Þ2ω2

0 þ 10λ2Hð7ω2 − 12ωω0 þ 6ω2
0ÞÞÞ

þ 10λ2E

�
ðω − 2ω0Þ4ln

�
1 −

ω

2ω0

�
− ω2ðω2 − 8ωω0 þ 24ω2

0Þ ln
�
ω

ω0

�

þ ω

�
−12ω3

0 þ
ω3

2
ð−15þ lnð4ÞÞ − 4ω2ω0ð−7þ lnð4ÞÞ þ 4ωω2

0ð−5þ lnð64ÞÞ
��


: ðB12Þ

This result is obtained with the following Grozin-Neubert constraints [46]:

ω0 ¼
3

2
λB ¼ 4

3
Λ̄; 9ω2

0 ¼ 40ð2λ2E þ λ2HÞ: ðB13Þ

3. Local duality B

ψ5ðω1;ω2Þ ¼ −
35λ2E
64ω7

0

ω2ð2ω0 − ω1 − ω2Þ4Θð2ω0 − ω1 − ω2Þ; ðB14Þ

g−ðωÞ ¼
1

9126ω7
0

Θð2ω0 − ωÞ
	
ω½7λ2Eðω − 2ω0Þð343ω4 − 1798ω3ω0 þ 3268ω2ω2

0 − 2328ωω3
0 − 480ω4

0Þ

− 30ðω − 2ω0Þ3ð6ðω − 2ω0Þ2ω2
0 þ 7λ2Hð11ω2 − 12ωω0 þ 4ω2

0ÞÞ�

þ 84λ2E

�
ω2ðω4 − 12ω3ω0 þ 60ω2ω2

0 − 160ωω3
0 þ 240ω4

0Þ ln
�

ω

2ω0 − ω

�
þ 64ω5

0ð−3ωþ ω0Þ ln
�

2ω0

2ω0 − ω

��

:

ðB15Þ
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This result is obtained with the following Grozin-Neubert
constraints [46]:

ω0 ¼
5

2
λB ¼ 2Λ̄; 3ω2

0 ¼ 14ð2λ2E þ λ2HÞ: ðB16Þ

APPENDIX C: LIGHT-MESON LCDAS

For LCSRs with light-meson LCDAs, the starting point
is a vacuum to light-meson correlation function [30,31],

Πμðq; pBÞ ¼ i
Z

d4xeiq:xhMðkÞjTJweakμ ðxÞj†Bð0Þj0i; ðC1Þ

where Jweakμ is the relevant weak current, and jB is the
interpolating field for the B meson. This time, the B meson
of momentum pB is of -shell while the light-mesonM is on
shell. Once again, the correlation function can be rewritten
using analyticity and the unitary relation and then further
expressed as a sum of scalar functions times a Lorentz
structure. Scalar relations are extracted in the form

ΠFðq2; p2
BÞ ¼ YF

Fðq2Þ
m2

B − p2
B
þ
Z

∞

scont

ρFðsÞ
s − p2

B
: ðC2Þ

On the LCOPE side, it takes the expression

ΠLCOPE
F ðq2; p2

BÞ ¼
1

π

Z
∞

m2
b

ds
ImΠLCOPE

F ðsÞ
s − p2

B
: ðC3Þ

The method presented in this article is applicable to the
correlation function with light-meson LCDAs, and since
similarly m2

B < scont and p2
B < 0, we derive the analogous

relations

Fðq2Þ ¼ lim
p→∞

ðm2
B − p2

BÞpþ1

p!YF
ΠðpÞ

F ðq2; p2
BÞ: ðC4Þ

The corollary is

m2
B¼ lim

p→∞

�
p!

ðp−lÞ!
Πðp−lÞ

F

ΠðpÞ
F

�1=l
þp2

B; p>1; p>l≥1:

ðC5Þ

APPENDIX D: ADDITIONAL FIGURES FOR

Π̃ðpÞ
F;LCOPE AND m̃2

M

In this section, we plot our numerical results for

Π̃ðpÞ
F;LCOPE and m̃2

M near the breakdown of the LCOPE for

fB→πþ , fB→K;π
T , VB→ρ;K�

; AB→ρ;K�
1 ; TB→ρ;K�

1 .

FIG. 4. Results for fB→K
T ; fB→πþ ; fB→π

T and the corresponding meson mass predictions at k2 ¼ −20 GeV2. For comparison, we also
show the 1σ interval predicted in [27,83].
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