
PS/AR Note 94-20 (Min.)

SAP-12

26 July 1994

Minutes of the Forum of
Symbolic Computing for Accelerator Physics

held on Thursday 7 July 1994

Present: Y. Alexahin, B. Autin (Chairman), G. Dôme, M. Giovannozzi, A. Hilaire, J. Jowett 
(Deputy), E. Keil, M. Martini (Secretary), D. Manglunki, J. Paul, T. Pettersson, G. Sabbi, 
B. Sagnell, J.P. Thibonnier, A. Verdier, B. Zotter.

1 Longitudinal coupling impedance for disc loaded wave guides: 
G. Dôme, J. Paul

The electromagnetic field produced by a single particle travelling on the axis of a structure made 
of parallel plates with circular holes, has been calculated together with the longitudinal coupling 
impedance.

The coupling impedance is defined in the frequency domain as the ratio of the line integral of the 
electric field (i.e. the wake potential across the structure) to the beam current at a given frequency. 
This integral involves a sum of products of two Bessel functions of fractional order. The asymptotic 
expansion of this function has a limited number of terms directly related to the arguments of the 
functions. The symbolic computing is of basic interest to compute the coefficients of the product 
as soon as the arguments exceed a few units.

Furthermore, the treatment of complex arguments is treated by Mαthemαticα without having to 
resort to the real and imaginary part independently. The coupling impedance is produced in the 
form of graphs for which the computing time of one point may take up to one hour, an improvement 
of an order of magnitude over numerical techniques applied in the past. Nevertheless, efforts will 
be pursued to use the fastest existing computers (DEC ALPHA) to further reduce the computing 
time.

Details on the theory and the program are given in the attached slides.

2 Hamiltonian second order perturbation theory formulae for a 
two family sextupole arrangement: Y. Alexahin

The oscillatory motion of a particle travelling in nonlinear fields is studied using a second-order 
perturbation theory based on the Hori-Deprit algorithm. The second-order tune shift of the particles 
resulting from chromaticity sextupoles may not be acceptable and thus controlled by dedicated 
sextupolar fields.
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A compensation scheme for the second-order tune shift is proposed using two intertwined sextupole 
families per half lattice superperiod.

See the attached slides.

The next meeting will be held on:

Thursday 29 September at 16.00 hr in the PS Auditorium - Meyrin, Bldg 6, 2-024

The date will be confirmed later .

M. Martini
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Abstract
The diffraction of the electromagnetic field created by a charge travelling on the axis of 
circular apertures in a set of perfectly conducting infinite planes is described by the field 
travelling with the charge itself and by the radiation from the plates, which has also 
a travelling wave character. Accordingly we represent all the fields as a superposition 
of two parts: a part generated by the charge in free space and a part created by the 
presence of the screens, which together must satisfy the boundary conditions. These are 
generally of mixed type (on the plate and in the hole) and lead to two integral equations. 
A general procedure is shown to transform this system into only one Fredholm integral 
equation of the second kind.
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1 Introduction
Let us consider a particle of charge Q travelling at velocity v on the axis of circular holes in 
a set of parallel planes. The geometry is shown in Figure 1.

We shall use cylindrical coordinates whose z axis passes through the center of the aper­
tures and is perpendicular to the plane of the screens. We shall assume that the charge 
moves in the positive z direction.

Figure 1: Periodic array of circular apertures in infinite plane screens.

The theory of the diffraction of a plane wave by a circular aperture in an infinite screen 
can easily be found in the literature [1, 2]. The problem is usually analysed by modal 
expansion methods which give the solution as an infinite sum of eigenfunctions of the wave 
equation in a particular coordinate system. However, this solution has the shortcoming of 
being badly convergent, especially for the case of short wavelengths. It is well known that a 
point charge crossing the hole will excite a ∞ntinuous spectrum of frequencies, which extends 
to very high frequencies for ultrarelativistic charges; this general feature of the diffraction- 
radiation problem makes modal expansion really impracticable for our problem, even for an 
approximate solution.

The charge moving with uniform velocity in vacuum radiates only because of the optical 
inhomogeneities present near its path. The radiation is due to the diffraction of the field at 
the edges of the holes [3].

The field created by the charge in the presence of the screen will interact with the charge 
itself so that, together with the phenomenon of radiation, we should find a decrease of the 
particle velocity [4, 5]. Such a radiation problem is very difficult to solve and therefore a
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We can now integrate Green’s function multiplied by the current  over the whole 
space Vo, even if the actual current flows on the plates only for r > a (hole radius). Eventually 
we shall impose the condition that the current vanishes in the hole, which is a condition for 
the Hankel transform of the current. We obtain

where  is given by equation (4) and dV0 = rodrodzodφo. Performing the integra­
tion over Zo and φo, we get:

(6)

The integral over r0 is simply the Hankel transform of the current :

where u is the radial wavenumber kr. The inverse transform reads

(7)

From now on we choose the transform F(u) as the unknown of the problem. Equation (6) 
becomes

(8)

The integration in square brackets over kx may be performed 2 by means of the residue 
theorem; in fact, putting , the integrand function exhibits two simple poles at 
kz = ±U. It is found that

Finally expression (8) can be rewritten as

(9)

2In the evaluation of the residues it is necessary to take into account a small imaginary part for  
where εμ is considered to be complex [23], so that Im(k) < 0. For the two poles at kz — ±U, we then have 
Im((U) < 0 or U = when  Re(k), By taking Im((U) < 0, we implicitly satisfy
the radiation condition at infinity.
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Because the fields E and H are related to the Hertz potential  by [21]

 
 

introducing the notation

(10)
 

we have the following expressions for the fields 3:

(11)(12)

(13)

(ζo = 120π Ω is the free space impedance). Let us remember that  
The series that defines the function S(u,z) can be summed in closed form [24]; we obtain

If z is not in the range |z| < L, then the function S(u, z) can be computed by means of the 
relation

S(u, z + L) = S(u, z)e-jwL/v. 

It should be noted for future use that

(14)

It is not difficult to compute the derivative along z of the function S(u,z) for |z| < L:

3Remembering that , we can write
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and its value for z = 0:

(15)

From equation (14) we see that
 

and, because Im < 0, we also have

 for any u.

Similarly, the last term of equation (15) vanishes when L → ∞. Therefore, as expected 
when L → ∞, equations (11) to (13) reduce to the formulae given in the Appendix for the 
case of a single screen.
As already mentioned, the solution can be found as a superposition of the solution of the 
inhomogeneous equations in free space and a solution of the homogeneous equations, chosen 
in such a way as to fulfill the boundary conditions on the plates. Accordingly the two 
conditions which are to be satisfied are

(16)
(17)

Therefore the two conditions that allow us to find the expression of the current transform 
F(u) can easily be obtained as a system of dual integral equations (extensively studied in 
Ref. [22]) from equations (2), (16), and (17) :

(18)

where ω > 0. In the Appendix are given the formulae for the case of a single screen.
This system of integral equations can be transformed into one equation with a singular 

kernel. In fact if we introduce the unitary step function U/(x), the previous system becomes 
formally

(20)

where C is any constant independent of u, different from 0 and ∞. Equation (20) can be 
interpreted as a Hankel transform of F(u) [22]; so, making use of the inversion formula (7) 
and of the fundamental result

7



But

therefore
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In the hole,

When r → a,

By choosing v = -½, one guarantees that each term in  has the correct 

singularity at r = a.

Indeed,

 

when v = - ½ and αu → ∞.

The singularity comes from the behaviour of the integrand as u → ∞.

Therefore v = - ½ yields the fastest convergence.
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Normalised Coupling 
Impedance Calculations

The Program
The Program consists of two packages written in 
Mathematica code to calculate the normalised 
coupling impedance as a function of frequency. Its 
principal aim is to produce output files containing 
plot points, so that a graph of impedance against a 
function of frequecy can be plotted.

The function of frequency was chosen to be kL/Pi 
where k=w/c is the wave number and L is the distance 
between the screens. This results in an oscillation 
of the coupling impedance occuring every integer 
value of kL/Pi.

The program is structured in the form of two 
packages which are found in the files, 

pkge1 
pkge2.

Description of Packages
pkge2 (MatrixElements)
Exportable Function :
Matel [ n,m,kL/Pi,L/a,Beta*Gamma,limit ]

Aim : To calculate the matrix elements a[m,n] and 
d [m, n]

Input variables : n, column index 
m, row index 
L/Pi, normalised frequency 
L/a, distance between discs to 
aperture ratio 
Beta*Gamma, relativistic factor 
imit, the limit of the finite sum

There are two routines in the package, one is for 
the case Beta*Gamma finite and the other for the 
special case Beta*Gamma infinite (which is in fact
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a simplified case). Since the matrices a[m,n] and 
d[m,n] are symmetric matrices, the elements 
a[[m,n]], d[[m,n]] for n>=0 and m>=n are calculated, 
where the case n,m=0 is treated seperately from the 
the general case.

Internal Functions :

Bess : Bess[x_] computes the trigonometric series 
expansion for the Bessel function of the first kind 
Jn(x) of order,n = 2x -1/2

arg : arg[q_] defines the variable a*alpha_q

ChSh : ChSh[x_] is an improvised hyperbolic function 
of which the output is in vector form.
ChSh[x_] [ [1]] is the improvised hyperbolic cosine 
function,

Ch(x) = [exp(x)*E i(-x) + exp(-x)* Ei(x)]/2 
ChSh[x_][[2]] is the improvised hyperbolic sine 
function,

Sh(x) = [exp(x)*E i(-x) - exp(-x)* Ei(x)]/2

int : int[x_] is the solution of the integral equation 
I, using exponential integrals, ie. for larger 
arguements of x

hypergeo : hypergeo[x_] is the solution to the integral 
equation, I, using hyperbgeometric functions, 
ie. for smaller arguments of x

funct0(d) : funct0(d)[Q_] is a function to compute 
the approximation of the latter terms of the matrix 
element a[0,0] (d[0,0]), ie. to compute the part of 
a[0,0]d[0,0]) containing the sum from Q to infinity.

funct(d) : funct(d)[Q_] is a function to compute the 
approximation of the latter terms of the general 
matrix element a[m,n] (d[m,n]) for n>=0, m>0, ie. to 
compute the part of a[m,n] (d[m,n]) containing the 
sum from Q to infinity.

array : array[[m,n+1]] gives the value of the real



__________________________________________________________________3

argument x at which the evaluation of the integral 
equation, I, switches. If x>=array[[m,n+1]] the 
function int is used, otherwise the function 
hypergeo is employed.

arraycomp : array[[m,n+l]] gives the value of the 
imaginary argument x at which the evaluation of the 
integral equation, I, switches. If 
Im[x]>=arraycomp[[m,n+1]] the function int is used, 
otherwise the function hypergeo is employed.

first : first[x_] calculates one of the components 
of the function hypergeo.

case1 : case1[x_,y_,z_] is used for the computation 
of a[m,n]. It effectively puts the qth term of the 
finite sum equal to zero if x or y = 0 
(ie. a*alpha_q = 0 or kL/(Pi Beta) = q).
case[x_,y_] is for the case when
Beta*Gamma = infinity, it effectively puts the qth 
term of the finite sum equal to zero if x = 0, 
(ie. a*alpha_q = 0).

case2 : case2[x_,y_,z_] is used for the computation 
of d[m,n]. It effectively puts the qth term of the 
finite sum equal to zero if x =0, (ie. a*alpha_q =0) 
and correctly evaluates the term when y = 0 
(ie. kL/(Pi Beta) = q).

enum : enum[x_] gives Euler Constant.

pkge1 (Imp)
Exportable Function :
ImpPackage[L/a,Beta*Gamma,1,u,s]

Aim : To calculate and store the points for the plot 
of the normalised coupling impedance against the 
function of frequency, kL/Pi. To calculate and store 
the points for the plot of p(a) against kL/Pi. To
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store the results of the impedance against kL/Pi 
when the dimension of the matrices a[m,n] and d[m,n] 
are reduced. To store all calculated matrix elements 
a[m,n] and d[m,n] .

Input Variables :
L/a, distance between discs to aperture ratio 
Beta*Gamma, relativistic factor 
l,u and s are concerned with the values of kL/Pi 
at which the normalised coupling impedance will 
be calculated and hence plotted.
1 = lowest value of kL/Pi (>=0) 
u = highest value of kL/Pi 
s = step length

As for the previous package, the cases Beta*Gamma 
finite and Beta*Gamma infinite have to be treated 
seperately. This package calls the exportable 
function Matel in pkge1 (MatrixElements) to obtain 
the matrix elements a[m,n] and d[m,n]. Using these 
results it calculates the normalised coupling 
impedance and p(a).

Internal Functions :

Impedance : Impedance[x_,y_,z_] performs the 
calculations of the impedance and p(a) for the 
particular function of frequency, kL/Pi, given by 
the first arguement, x. The latter two arguements 
are L/a and Beta*Gamma respectively.

To Use the program
Load the two packages into Mathematica as follows :

<<pkge1
<<pkge2
Then call the function ImpPackage with the desired 
numerical arguments,



_________________________________________________________________ 5

ImpPackage[L/a,Beta*Gamma,l,u,s]
(NB. If Beta*Gamma = infinity is desired, type 
Infinity as the second arguement.)

Output files produced
Impedance_Pts_Real : Stores a list of vectors {x,y}, 
x being the function of frequency, kL/Pi and y the 
real component of the normalised coupling impedance.

Impedance_Pts_Imag : Stores a list of vectors {x,y}, 
x being the function of frequency, kL/Pi and y the 
imaginary component of the normalised coupling 
impedance.

p_a_real : Stores a list of vectors {x,y}, x being 
the function of frequency, kL/Pi and y the real 
component of the function p(a).

p_a_imag : Stores a list of vectors {x,y}, x being 
the function of frequency, kL/Pi and y the imaginary 
component of the function p(a).

redmat : Stores a list of elements of the following 
form, {x,{y,z}}, where x represents the function of 
frequency, kL/Pi, and y, z represent the normalised 
coupling impedance, calculated using matrices 
(namely, a[m,n] and d[m,n]) of dimension 2 and 3 
respectively.

mata_elements_save and matd_elements_save :
Produced for reference only. These files contain all 
calculated matrix elements, a[m,n] and d[m,n] 
respectively.

How to view the results
Load the third package pkge3, as follows :

<<pkge3
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To plot the graphs of the results use the following 
command,

plot[?]
where ? is one of the following options :

impedancereal - plots only the real part of the 
normalised coupling impedance against the function 
of frequency, kL/Pi.

impedanceimag - plots only the imaginary part of 
the normalised coupling impedance against the 
function of frequency, kL/Pi.

impedance - plots both the real and imaginary 
components of the normalised coupling impedance 
against the function of frequency, kL/Pi.

p (a) real - plots only the real part of p(a) against 
the function of frequency, kL/Pi.

p(a)imag - plots only the imaginary part of p(a) 
against the function of frequency, kL/Pi.

p(a) - plots both the real and imaginary components 
of p(a) against the function of frequency, kL/Pi.

redmat(2) - plots both the real and imaginary 
components of the normalised coupling impedance 
calculated with only 2*2 matrices, a[m,n] and d[m,n] 
(where 0<=m,n<=1), against the function of 
frequency, kL/Pi.

redmat(3) - plots both the real and imaginary 
components of the normalised coupling impedance 
calculated with only 3*3 matrices, a[m,n] and d[m,n] 
(where 0<=m,n<=2), against the function of 
frequency, kL/Pi.

To change the scale of the plots, you can use the 
following command,
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plot[?,x1,x2,y1,y2]
where ? is again one of the options above.
{x1,x2} is the range of the horizontal axis, ie. the 
function of frequency, kL/Pi and {y1,y2} is the 
range of the vertical axis, ie. the normalised 
coupling impedance or p(a).
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Examples of plots
For the case L/a =10, Beta*Ga=na = Infinity

Normalised Coupling Impedance 
against a function of frequency 

red - real component 
blue - imaginary component

p(a) against a function of frequency 
red - real component 

blue - imaginary component
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For the case L/a =10, Beta*Gamma = 10

Normalised Coupling Impedance 
against a function of frequency 

red - real component 
blue - imaginary component

p(a) against a function of frequency 
red - real component 

blue - imaginary component
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For the case L/a = 10, Beta*Gamma = 4

Normalised Coupling Impedance 
against a function of frequency 

red - real component 
blue - imaginary component

For the case L/a =10, Beta*Gamma = 1

Normalised Coupling Impedance 
against a function of frequency 

red - real component 
blue - imaginary component



Normalised Longitudinal Coupling 
Impedance Calculations

Background

The normalised longitudinal coupling impedance is given by the following 
formulea,

where

and

Co = 120πΩ is the characteristic impedance of free space

L is the distance between the screens

β = v/c, where v is the velocity of the charge and c is the velocity of light

k = w/c is the wave number, where w is the angular frequecy

k = |k|/(βγ)> where γ is the energy of the charge expressed in rest mass units

The Ai’s are calculated using the following equalities,

1



where

and

To obtain a good convergence of this solution, v = - ½ is chosen. To evaluate 
this solution the following approximation is used,

where

Finally we obtain for the normalised coupling impedance

where

and

2



The difficulty of this solution is evaluating the matrix elements am,n and dm,n.

The integral, I, below,

is solved in two ways depending on the size of the argument x.

For small arguments, x

We obtain a solution for I using hypergeometric functions.
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For large arguments, x

we obtain a solution for I using exponential integrals.

where,

The A, B, C and D coefficients are obtained from the trigonometric series expan­
sion of the Bessel function product, below

The Electric Field
In the hole, when r → α,
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p(a) is the constant of proportionality, where
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Hamiltonian Second Order Perturbation 
Theory Formulae for a Two Families 

Sextupole Arrangement
The purpose of this notebook is to provide an analytical tool for study of 
nonlinear betatron oscillations. It is based on the Hori-Deprit normalization 
procedure in the form suggested by L.Michelotti [1]. At present the 
consideration is limted to the 
second order in the sextupole strength.
The problem geometry is shown in Fig.A2. The arrangement consists of two 
interleaved sextupole families (S1 and S2) of nsl and ns2=ns1+1 sextupoles per 
half the superperiod reflected w.r.t. the symmetry point theta=Pi. It is 
assumed that the phase advances between two adjacent sextupoles belonging to 
different families are half those between sextupoles of the same family.

■ Variables and units
Number of superperiods:
nsuper=4;
Betatron tunes per a superperiod :
q:={qx,75.18}/nsuper;
Phase advances per cell [deg]&[rad] :
mudeg: = {mux,muy}; mu:=mudeg*Pi/18 0 ;
Phase advances from IP to the first S1-sextupole [rad] :
phil={2.276*2*Pi, 1.945*2*Pi;}; phi2:=phi1-.5 mu;
Betatron functions [m] at the S1 and S2 sextupoles:
bx1=169; by1=38; bx2=11; by2=167;
bxl2=Sqrt[bx1*bx2]; by12=Sqrt[by1*by2];
Integrated sextupole strength [m^-2]
k211=.2765*.4; k212=-.2585*.76;
Number of sextupoles:
ns1=31; ns2=ns1+1;
Mode numbers:
m[1]={1,0}; m[2]={1,2}; m[3]={1,-2}; m[4]={3,0}; 
pmq[i_]:=Pi m[i] .q; mm[i_] : =m[i] .mu;
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■ Detuning with amplitude
Trigonometric sums for correlation between sextupoles of the same family:
tr[i_,phi_,ns_]:=
(ns Sin[mm[i]]-Sin[ns mm[i]]+(1-Cos[ns mm[i]])*
(Cos [pmq[i] ] +Cos [pmq[i] -2m[i] .phi- (ns-1) mm[i] ] ) / 

Sin[pmq[i]])/(1-Cos[mm[i]]);
and between sextupoles of the different families:
trs[i_] : =
(-Cos[pmq[i]-(nsl+.5) mm[i]]+Cos[pmq[i]-.5 mm[i]]+
Cos[pmq[i]-2m[i].phil-(nsl-1.5) mm[i]]*

(1-Cos[nsl mm[i]]))/
Sin[pmq[i]]/(1-Cos[mm[i]])+nsl/Sin[.5 mm[i]];

Detuning coefficients:
dqldel:=
-(k211A2*bxlA3*(tr[4,phil,nsl]+3*tr[l,phil,nsl])+ 
k212A2*bx2A3*(tr[4,phi2,ns2]+3*tr[I,phi2,ns2])+ 
2*k211*k212*bxl2A3*(trs[4]+3*trs[1])
)/64/Pi*nsuper;

dqlde2:=
-(k211^2*bx1*by1*(-bx1*tr[1,phi1,ns1]+.5*byl*
(tr[2,phi1,nsl]-tr[3,phil,nsl]))+
k212^2*bx2*by2*(-bx2*tr[1,phi2,ns2]+.5*by2*
(tr[2,phi2,ns2]-tr[3,phi2,ns2]))+
k211*k212*bxl2*(-(bx1*by2+bx2*by1)*trs[1]+ 
by1*by2*(trs[2]-trs[3]))
)/16/Pi*nsuper;

dq2de2:.=
-(k211^2*bx1*by1^2*(tr[1,phi1,ns1]+
(tr[2,phi1,ns1]+tr[3,phi1,ns1])/4)+ 
k212^2*bx2*by2^2*(tr[1,phi2,ns2]+
(tr[2,phi2,ns2]+tr[3,phi2,ns2])/4)+ 
2*k211*k212*bx12*byl*by2*(trs[1]+(trs[2]+trs[3])/4)
)/16/Pi*nsuper;

N[dqldel]
mux=.

2



_________________________________________________________ __ _________ Secord 
gr=Plot3D[ dqldel/1000, {mux,124,141},{qx,124.3,125.3}, 
BoxRatios->{1,1,1}, PlotPoints->30];

mux=135; qx=125.23;
dtn=dq1de1//N
-136358.
workingPoint=Point[{135, 125.23, dtn/1000+3}];
reference=Point[{140,125.3,0}] ;
wp=Graphics3D[ {Pointsize[.04], workingpoint}];
rf=Graphics3D[ {Pointsize[.01], reference}];
Show[gr, wp,ViewPoint->{-l,-2.4,2},
LightSources->{{{-1,.0,1},
RGBColor[1,0,0]},{{-1,.0,1},RGBColor[0,1, 0]},{{-1,.0,1}, 
RGBColor[0,0,1]}},AxesLabel->{nmux[deg]","",""}];
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dqlde2//N
-5238.64
dq2de2//N
23564.7
,AxesLabel->{"mux[deg] ", "Qx", "dQx/dEx"}
mux=.

4
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■ Resonance excitation
The term in the Hamiltonian, exciting the (i-j)*qx+(k-l)*qy=nθ resonance, 
may be represented as a product of numerical coefficient rijkl and 
Cos[m.delta-n0*theta-Pi/2*Apply[Plus,m]]*Ix^((i+j)/2)*Iy^((k+1)/2), 
where m={i-j,k-1}, delta is a list of angle variables (see Ref.[1]), 
Ix and Iy are the action variables.
For performing Fourier analysis some geometry parameters are needed: 
superperiod and cell lengths [m]: 
lsuper=6664.72; lcell=79.;
General : :spelll:

Possible spelling error: new symbol name "lsuper" 
is similar to existing symbol "nsuper".

distance from the IP to the first sextupoles in the families [m]:
181=482.46; ls2=lsl-lcell/2;
Corresponding angular values:
thell=2*Pi*lcell/lsuper; thet1=2*Pi*lsl/lsuper; 
thet2=2*Pi*ls2/lsuper;
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□ First order (in the sextupole strength) resonance driving terms.
alf [i_] : =mm[i] + (nθ-m[i] .q)*thell;
cont[i_,phi_,thet_,ns_]:=
Sin[alf[i]/2*ns]/Sin[alf[i]/2] *
Cos[m[i].phi+(nθ-m[i].q)*thet+(ns-1)*alf[i]/2]/4*
Sqrt[2]/Pi*nsuper;

cs[2]=-l/2.; cs[3]=-l/2.; cs[4]≡l/6.;
bxls≡Sqrt[bxl]; bx2s≡Sqrt[bx2];
r3000:=cs[4]*(k211*bxls^3*cont[4,phil,thetl,nsl]+ 

k212*bx2s^3*cont[4,phi2,thet2,ns2]);
rl020:=cs[2]*(k211*bxls*byl*cont[2,phil,thetl,nsl]+ 

k212*bx2s*by2*cont[2,phi2,thet2,ns2]);
rl002:=cs[3]*(k211*bxls*byl*cont[3,phil,thet1,nsl]+ 

k212*bx2s*by2*cont[3,phi2,thet2,ns2]);
r2100:=cs[4]*(k211*bxlsA3*cont[l,phil,thetl,nsl]+ 

k212*bx2sA3*cont[l,phi2,thet2,ns2])*3;
r10ll:=cs[3]*(k211*bxls*by1*cont[1,phil,thet1,ns1]+ 

k212*bx2s*by2*cont[1,phi2,thet2,ns2])*2;
Plot[{dqldel/1000,r3000},{mux,125,140},
Plotstyle->{Thickness[.003],Dashing[{.05,.025}]}];

6

Plot[{dqldel/1000,r3000},{mux,100,115}, 
Plotstyle->{Thickness[.003],Dashing[{.05,.025}]}];

n0=Round[m[4].q]; r3000//N 
2.41624
n0=Round[m[2].q]; rl020//N 
10.1342
n0=Round[m[3].q]; rl002//N 
-76.7943


