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A B S T R A C T

Austenitic stainless steels are commonly used as structural materials in high-field superconducting magnet
systems because they retain high strength, ductility, and toughness at very low temperatures, and they
are paramagnetic or antiferromagnetic under the Néel temperature in their fully austenitic state. However,
they are susceptible to strain-induced martensitic transformation, especially at cryogenic temperatures, which
modifies the material properties, induces volume changes and additional strain hardening, and leads to
ferromagnetic behavior. Thus, accurate predictions of the structural performance of these materials at very low
temperatures are of great interest for the conception and design of these cryo-magnetic systems. In this paper,
we propose an adequate constitutive model for the evolving bi-phase material—austenite and martensite—
based on a Hill-type incremental formulation. Two different versions of the model are proposed based on
the linear mean-field homogenization scheme: Mori-Tanaka and Self-Consistent. Moreover, a rate-independent
nonlinear mixed kinematic-isotropic hardening law is used for each phase, and the martensitic transformation
is described by the nonlinear kinetic law proposed by Olson and Cohen (1975). The constitutive model is
implemented in ABAQUS/Standard through a UMAT user subroutine, for which a return mapping algorithm
based on the implicit backward Euler integration scheme is used and a closed-form expression of the consistent
Jacobian tensor is provided. The Mori-Tanaka and Self-Consistent approaches are evaluated in terms of their
ability to describe the mechanical behavior of the bi-phase aggregate by comparing the predictions of the
homogenization schemes with unit-cell finite element calculations with an explicit description of the martensite
inclusions and the austenite matrix. The comparison is carried out for different stress states with controlled
triaxiality and Lode parameter under monotonic and cycling loading, paying special attention to the evolution
of the mechanical fields in each phase. The unit-cell calculations are performed for both constant and evolving
martensite volume fractions. In addition, numerical simulations of tensile tests on samples subjected to different
initial temperatures are carried out for the transforming bi-phase material and the results are compared to
experimental data for AISI 304L and AISI 316LN steels.
. Introduction

Due to the high strength, ductility, and toughness that austenitic
tainless steels exhibit at low temperatures, they are the predominant
tructural material used for cryogenic applications. Since they are
aramagnetic or antiferromagnetic under the Néel temperature in their
ully austenitic state, high-field superconducting magnet systems are
ne of their main application fields of interest (Sgobba, 2006; Barabash
t al., 2007). The austenitic steel collars of the standard Dipole magnet
or the LHC at CERN, as well as those for the LHC’s more recent

∗ Corresponding author now at: Mines Paris, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Paris, France.
E-mail address: pilar.fernandez@minesparis.psl.eu (P. Fernández-Pisón).

upgrade (the High Luminosity LHC), and the jacket of the ITER Cable-
in-Conduit Conductors, are some examples of structural components
made of austenitic stainless steel (Bertinelli et al., 2006; Bordini et al.,
2019; Devred et al., 2014).

Nevertheless, austenitic stainless steels are particularly prone to
strain-induced martensitic transformation at cryogenic temperatures
(Angel, 1954). The initially undeformed 𝛾-austenite (face-centered cu-
bic) may be transformed into either 𝜖-martensite (hexagonal close-
packed) or 𝛼′-martensite (body-centered tetragonal) when submitted
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167-6636/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.mechmat.2023.104891
eceived 30 June 2023; Received in revised form 4 December 2023; Accepted 7 D
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ecember 2023

https://www.elsevier.com/locate/mecmat
https://www.elsevier.com/locate/mecmat
mailto:pilar.fernandez@minesparis.psl.eu
https://doi.org/10.1016/j.mechmat.2023.104891
https://doi.org/10.1016/j.mechmat.2023.104891
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2023.104891&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Mechanics of Materials 189 (2024) 104891P. Fernández-Pisón et al.

m
t
n
a
t
t
r
t
t
t
c

l
c
m
m
t
f
e
a
t
p
t
a
b
a
t
d

d
b
e
t
i
T
s
h
i
a
h
f
p
a
1
a
s
w
w
i
t
t
a
(
t
v

a
s
s
t
(

a
b
b
b
a
l
t
l
i
T
A
i
i
s
g
c
l
C
r
o
a
a
a
a
s
p
w
v
g
s
a
r
k
c
U
o
c
p
d
a
A
e
i
s
a
(
u
o
S
p
m
t
S
m
s
p
c
a

2

t
a
T

to plastic deformation. However, since the 𝛼′-martensitic transforma-
tion is generally much more extensive than the transformation of
𝜖-martensite (Mangonon and Thomas, 1970; Seetharaman, 1984; De
et al., 2004), the partially transformed material can be reasonably
considered bi-phasic: 𝛼′-martensite sites dispersed in the 𝛾-austenite

atrix. The 𝛾-𝛼′ transformation may lead to a considerable evolu-
ion of material properties (e.g., strong hardening) and to ferromag-
etic behavior of the bi-phase material, which is problematic for the
bove-mentioned application (i.e., for superconducting magnet sys-
ems). Moreover, the transformation rate increases with decreasing
emperature, so a nearly fully or fully transformed 𝛼′-martensitic mate-
ial may be obtained at low temperatures and high levels of deforma-
ion (Fernández-Pisón et al., 2021). For these reasons, it is necessary
o formulate a specific constitutive model for cryogenic applications
hat covers the entire transformation range and resolves the inherent
omplexity of the evolving microstructure of austenitic steels.

There are only a few elastoplastic constitutive models in the open
iterature that have been expressly developed to describe the me-
hanical behavior of austenitic steels at cryogenic temperatures. The
ajority of these works simply modify the explicit functions of com-
on plasticity models so they can adequately predict macroscopically

he additional strain hardening produced by the martensitic trans-
ormation at cryogenic temperatures, as in Lee et al. (2009), Ding
t al. (2019) and Homayounfard and Ganjiani (2022). More detailed
pproaches considering the evolving microstructure using homogeniza-
ion techniques for bi-phase materials are the Mori-Tanaka-based model
roposed by Garion and Skoczeń (2002) and the Voigt-like formula-
ion used by Kothari et al. (2019). The model proposed by Garion
nd Skoczeń (2002) is widely used in the literature, as demonstrated
y Sitko et al. (2010), Ortwein et al. (2014), Kazemi et al. (2019)
nd Schmidt et al. (2022), among others (some of these works addi-
ionally include specific features to account for microdamage and/or
iscontinuous plastic flow).

The original model proposed by Garion and Skoczeń (2002) was
eveloped at CERN for the LHC thin-walled corrugated shells (called
ellows) made of AISI 316L. Since these bellows undergo cycles of
xpansion and compression at cryogenic temperatures, a distinctive fea-
ure of this constitutive framework was to include a mixed kinematic-
sotropic hardening for the bi-phase material valid at low temperatures.
he authors considered the austenite as elasto-plastic and the marten-
ite as elastic, and they accounted for two contributions to the strain
ardening of the bi-phase material: the strain hardening of the austen-
te phase and the evolution of the composite’s tangent stiffness. The
ustenite was assumed to have a linear kinematic hardening, with the
ardening coefficient increasing linearly with the martensite volume
raction. The bi-phase material’s tangent stiffness tensor was com-
uted via mean-field homogenization using a Hill-type incremental
pproach (Hill, 1965a) and the Mori-Tanaka scheme (Mori and Tanaka,
973; Benveniste, 1987). A new formulation was employed to reduce
ll anisotropic tangent stiffness operators to isotropic forms. The main
implifying assumptions of the model of Garion and Skoczeń (2002)
ere to consider that the strain increment of the bi-phase material
as the same as that of the austenite matrix and that this strain

ncrement was only due to the plastic strains. Moreover, the model in-
roduced a simplified (but non-differentiable) kinetic law of martensitic
ransformation based on a linearization of the law proposed by Olson
nd Cohen (1975). The constitutive framework of Garion and Skoczeń
2002) is attractive because of its simplicity, but convergence between
he experimental results and model predictions is limited to strain
alues not exceeding 0.2.

In this paper, we take the formulation of Garion and Skoczeń (2002)
s the starting point to develop an improved constitutive model that is
uitable for predicting the mechanical behavior of austenitic stainless
teels at large strains and cryogenic temperatures for any volume frac-
ion of transformed martensite. Unlike the model of Garion and Skoczeń
2

2002), the constitutive framework proposed in this work is based on t
pure mean-field homogenization procedure: the hardening of the
i-phase material is not directly provided, but the effective material
ehavior is entirely determined by homogenization and the constitutive
ehavior of the individual phases. Both individual phases, austenite
nd martensite, are considered elastoplastic. A rate-independent non-
inear mixed kinematic-isotropic hardening model is used for each of
he phases: the kinematic contribution follows a two-term Chaboche’s
aw (Chaboche et al., 1979; Lemaitre and Chaboche, 1994), and the
sotropic contribution uses the superposition of two exponential laws.
he model adopts a Hill-type incremental formulation (Hill, 1965a).
nisotropic algorithmic tangent operators are used everywhere except

n the Eshelby’s tensor (Eshelby, 1957), which is computed with the
sotropic form introduced by Bornert et al. (2001a,b). This specific
election of tangent stiffness operators and Eshelby’s tensor is the sug-
ested combination of Pierard and Doghri (2006) for general loading
onditions. In particular, Bornert’s isotropization method has been se-
ected over the spectral decomposition method (Ponte-Castañeda, 1996;
haboche and Kanouté, 2003) since the latter may lead to inaccurate
esults for non-proportional loadings and does not provide an isotropic
perator for a Chaboche nonlinear kinematic hardening model (Doghri
nd Ouaar, 2003). Additionally, two different versions of the model
re proposed based on the linear homogenization approach: one using
Mori-Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987) and
nother using a Self-Consistent scheme (Hill, 1965b). The Mori-Tanaka
cheme is simpler, but its validity is questioned when the matrix-
article microtopology is lost for a high volume fraction of martensite,
hereas the Self-Consistent implicit scheme has no limitation on the
olume fraction of transformed martensite (Böhm, 1998; Chatzigeor-
iou et al., 2018). Based on the linear homogenization approach, the
train and stress fields in each individual phase are provided, which
re generally different for the two phases and for the bi-phase mate-
ial. Moreover, the phase transformation is described by the nonlinear
inetic law proposed by Olson and Cohen (1975). Furthermore, the
onstitutive model is implemented in ABAQUS/Standard through a
MAT user subroutine that uses a return mapping algorithm based
n the implicit backward Euler integration scheme and provides a
losed-form expression of the consistent Jacobian tensor. The material
arameters for the description of the mechanical behavior of the in-
ividual phases and of the kinetics of the martensitic transformation
re identified using the tensile experimental data for AISI 304L and
ISI 316LN presented in Fernández-Pisón et al. (2021). Unit-cell finite
lement calculations with an explicit description of the martensite
nclusions and the austenite matrix are carried out for different stress
tates with controlled triaxiality and Lode parameter under monotonic
nd cycling loading. Note that, since the pioneering work of Needleman
1972), finite element unit-cell computations have been extensively
sed to provide fundamental understanding of the mechanical response
f composite aggregates (Christman et al., 1989; Shen et al., 1994;
ørensen et al., 1995; Needleman et al., 2010). The unit-cell simulations
resented in this paper are performed for both constant and evolving
artensite volume fractions. The comparison with the predictions of

he homogenization schemes allows us to evaluate the Mori-Tanaka and
elf-Consistent approaches with regard to their ability to describe the
echanical behavior of the bi-phase material. Additionally, numerical

imulations of tensile tests on samples subjected to different initial tem-
eratures are carried out to demonstrate the capability of the developed
onstitutive model to predict cryogenic martensitic transformation in
ustenitic stainless steels.

. Constitutive framework

Two different mean-field homogenization schemes have been used
o model the mechanical behavior and martensitic transformation of
ustenitic stainless steels subjected to cryogenic temperatures: Mori-
anaka and Self-Consistent schemes. Section 2.1 includes the consti-

utive description of the individual phases; Section 2.2 presents the
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kinetic law used to model the martensitic transformation; and a detailed
account of the bi-phase material and the homogenization procedure can
be found in Section 2.3. The 𝛾-austenite plays the role of the matrix,

hile the 𝛼′-martensite takes the form of inclusions embedded in the
ustenite matrix. Following Stringfellow et al. (1992), Papatriantafillou
2005) and Msolli et al. (2016), among others, the martensite is repre-
ented by spherical inclusions isotropically dispersed in the material.
oreover, perfect bonding between the two constituents is assumed,

s for all mean-field approaches (Böhm, 1998).

.1. Individual phases

The constitutive description is taken to be the same for both 𝛾-
ustenite and 𝛼′-martensite (hereinafter simply referred to as austenite
nd martensite), so that the different mechanical behavior of the phases
omes from the different values of the material parameters (see Tables 1
nd 2 in Section 4).

The total rate of deformation tensor 𝒅 is decomposed into elastic 𝒅𝑒

and plastic 𝒅𝑝 components:

𝒅 = 𝒅𝑒 + 𝒅𝑝 (1)

where the elastic part of the rate of deformation tensor is related to the
rate of stress by the incremental Hooke’s law:

𝝈̇∇ = 𝑳𝑒 ∶ 𝒅𝑒 = 𝑳𝑒 ∶ (𝒅 − 𝒅𝑝) (2)

where ̇(∙)∇ denotes an objective time derivative (Zaremba–Jaumann
rate as in ABAQUS/Standard) of the Cauchy stress tensor 𝝈, and 𝑳𝑒

is the isotropic elastic stiffness tensor:

𝑳𝑒 = 3𝜅𝑰𝑣𝑜𝑙 + 2𝜇𝑰𝑑𝑒𝑣 (3)

with 𝑰𝑣𝑜𝑙 = 1
31 ⊗ 1 and 𝑰𝑑𝑒𝑣 = 𝑰 − 𝑰𝑣𝑜𝑙 being the fourth-order

olumetric and deviatoric projection tensors, respectively, where 1 is
he second-order identity tensor and 𝑰 is the fourth-order symmetric
dentity tensor. Moreover, 𝜅 = 𝐸

3(1 − 2𝜈)
and 𝜇 = 𝐸

2(1 + 𝜈)
are the elastic

bulk and shear moduli, respectively, where 𝐸 is the Young’s modulus
and 𝜈 is the Poisson’s ratio.

The plastic part of the rate of deformation tensor is given by the
associated flow rule:

𝒅𝑝 = 𝜆̇ 𝜕𝐹
𝜕𝝈

(4)

ith 𝜆̇ being the rate of the plastic multiplier, where ̇(∙) denotes differ-
ntiation with respect to time, and 𝐹 is the von Mises yield function:

(𝝈,𝑿, 𝜖𝑝) =
√

3
2
(𝒔 −𝑿) ∶ (𝒔 −𝑿) −

(

𝜎𝑦0 + 𝑅 (𝜖𝑝)
)

≤ 0 (5)

where 𝒔 = 𝝈 − 𝜎ℎ1 is the deviatoric part of the Cauchy stress tensor
and 𝜎ℎ = 1

3𝝈 ∶ 1 is the hydrostatic stress. Moreover, 𝑿 is the backstress
ensor for the kinematic hardening, 𝜎𝑦0 is the initial yield stress, 𝑅 is the

isotropic hardening function, and 𝜖𝑝 = ∫

𝑡

0
̇̄𝜖𝑝(𝜏)𝑑𝜏 is the accumulated

plastic strain, where ̇̄𝜖𝑝 =
√

2
3
𝒅𝑝 ∶ 𝒅𝑝 is the accumulated plastic strain

rate (which corresponds to the rate of the plastic multiplier for von
Mises plasticity).

A rate-independent nonlinear mixed kinematic-isotropic hardening
model is assumed. The kinematic contribution is implemented using
Chaboche’s law (Chaboche et al., 1979; Lemaitre and Chaboche, 1994),
in which the backstress tensor is defined with two separate equations
of the form proposed by Armstrong and Frederick (Armstrong et al.,
1966):

𝑿 =
2
∑

𝑗=1
𝑿𝑗 , 𝑿̇∇

𝑗 = 𝛽 2
3
ℎ𝑗𝒅𝑝 − 𝜓𝑗 ̇̄𝜖𝑝𝑿𝑗 (6)

The isotropic hardening is modeled by the superposition of equiv-
alent exponential hardening laws, so that the mixed hardening model
3

v

provides the same response for monotonic proportional loading inde-
pendently of the contributions from kinematic and isotropic hardening:

𝑅 =
2
∑

𝑗=1
𝑅𝑗 , 𝑅𝑗 = (1 − 𝛽)

ℎ𝑗
𝜓𝑗

(

1 − 𝑒−𝜓𝑗 𝜖
𝑝
)

(7)

where ℎ𝑗 and 𝜓𝑗 are the material parameters responsible for strain
hardening and dynamic recovery, respectively. The contribution of
kinematic and isotropic hardening to the mixed model is controlled
by the Bauschinger parameter 𝛽, which implies a purely kinematic

odel if 𝛽 = 1, a purely isotropic model if 𝛽 = 0, and a mixed
odel if 0 < 𝛽 < 1. Note that the hardening of each individual
hase (austenite and martensite) is assumed to solely depend on its
wn plastic strain. The consideration that the martensite phase inherits
he strain-hardened dislocation structure of its parent austenite (Kula
nd Azrin, 1978) is not made in this paper. The reader is referred to the
ork of Cherkaoui et al. (1998), which provides a multiscale approach

o account for this feature.
Moreover, following a Hill-type incremental formulation, the re-

ationship between the rate of the stress tensor and the total rate of
eformation is:

̇ ∇ = 𝑳𝑡𝑎𝑛 ∶ 𝒅 (8)

here 𝑳𝑡𝑎𝑛 is the so-called reference modulus (see Section 6.1 in Doghri
nd Ouaar (2003)). In this work, the reference modulus is taken as
he instantaneous algorithmic tangent operator (see Eq. (A.42) in Ap-
endix A.1). The reader is referred to the works of Doghri and Ouaar
2003) and Pierard and Doghri (2006) to obtain insights into the
ifferences between various reference moduli and their implications on
omogenization methods.

.2. Kinetics of martensitic transformation

The evolution of the martensite volume fraction 𝑓𝛼′ is modeled with
he sigmoidal-type kinetic relationship proposed by Olson and Cohen
1975):

𝛼′ = 1 − 𝑒
−𝜉

(

1−𝑒−𝜁𝜖
𝑝
𝛾
)4.5

(9)

here 𝜖𝑝𝛾 is the accumulated plastic strain in the austenite, and the
arameters 𝜁 and 𝜉 represent the rate of shear-band formation and the
robability that a shear-band intersection will result in the nucleation
f martensite, respectively. The austenite volume fraction is readily
omputed as 𝑓𝛾 = 1 − 𝑓𝛼′ . It is important to note that the original
inetic relation of Olson and Cohen (1975), Eq. (9), is only valid under
sothermal conditions. Moreover, it does not account for stress state
nd strain rate sensitivities of the martensitic transformation process,
or for a rate of change of the probability of martensite nucleation.
owever, especially for cryogenic temperatures, this kinetic law is
ery attractive due to the small number of parameters that need to be
dentified and to the relatively simple mechanical tests that are needed
or their identification (note that tests at cryogenic temperatures are
ighly time- and resource-consuming). Indeed, although the original
ryogenic model of Garion and Skoczeń (2002) was developed for cyclic
oading, it uses a linearization of the Olson and Cohen (1975) kinetic
elation. The simplified kinetic relation of Garion and Skoczeń (2002)
as not been used in this work because it leads to an unrealistic non-
ifferentiable stress–strain curve when the martensite content limit is
eached.

.3. Bi-phase material (homogenization)

The constitutive equations for the bi-phase material and the ho-
ogenization procedure are presented next, using the incremental

angent linearization method (also called Hill-type incremental for-
ulation (Hill, 1965a)) adapted to the case of interest for which the
olume fraction of the individual phases evolves. In what follows,
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subscripts 𝛾 and 𝛼′ are used to refer to austenite and martensite
phases, respectively. Moreover, the subscripts 𝛾 + 𝛼′ and 𝐻𝑀 denote
he bi-phase material and the homogenized fields derived from the
omogenization average theorems, respectively.

The total rate of deformation tensor of the bi-phase material 𝒅𝛾+𝛼′
s decomposed into elastoplastic 𝒅𝐻𝑀 and transformation 𝒅𝑇𝑅 compo-
ents:

𝛾+𝛼′ = 𝒅𝐻𝑀 + 𝒅𝑇𝑅 (10)

here the elastoplastic component corresponds to the homogenized
train rate field (recall that the total rate of deformation in the in-
ividual phases is composed of the corresponding elastic and plastic
omponents, as shown in Eq. (1)). The transformation component is an
dditional inelastic term associated with the phase transformation, so
t does not directly contribute to the strain-hardening of the individual
hases (Stringfellow et al., 1992). This term is typically decomposed
nto volumetric and deviatoric parts, 𝒅𝑇𝑅(𝑣𝑜𝑙) and 𝒅𝑇𝑅(𝑑𝑒𝑣), respectively.
he volumetric term is related to the volume change and the deviatoric
erm to the shape change, both resulting from the transformation
rocess. Following Garion and Skoczeń (2002) and Homayounfard and
anjiani (2022), among others, we only consider here the volumetric
art:

𝑇𝑅 = 𝒅𝑇𝑅(𝑣𝑜𝑙) =
1
3
̇𝑓𝛼′𝛥𝑣1 (11)

where 𝛥𝑣 = 0.05 is the relative volume change during the phase
transformation (Garion et al., 2006).

The rate of the stress tensor of the bi-phase material corresponds to
the homogenized stress rate field:

𝝈̇∇
𝛾+𝛼′ = 𝝈̇∇

𝐻𝑀 (12)

The homogenized strain and stress fields are determined using the
strain and stress average theorems: 𝝐𝐻𝑀 = (1 − 𝑓𝛼′ )𝝐𝛾 + 𝑓𝛼′𝝐𝛼′ and
𝝈𝐻𝑀 = (1 − 𝑓𝛼′ )𝝈𝛾 + 𝑓𝛼′𝝈𝛼′ , respectively (see Eq. (2.5) in Böhm
(1998)). In this work, the definition of the strain tensor 𝝐 provided
by ABAQUS/Standard is adopted, 𝝐̇∇ = 𝒅, see Nguyen and Waas
(2016). The aforementioned average theorems lead to the following
homogenized strain rate and stress rate fields:

𝒅𝐻𝑀 = 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅) + 𝒅𝐻𝑀(𝑇𝑅) (13)

𝝈̇∇
𝐻𝑀 = 𝝈̇∇

𝐻𝑀(𝑛𝑜𝑇𝑅) + 𝝈̇∇
𝐻𝑀(𝑇𝑅) (14)

where the term denoted by the subscript 𝐻𝑀(𝑛𝑜𝑇𝑅) considers a
constant volume fraction of the phases and the term denoted by the
subscript 𝐻𝑀(𝑇𝑅) accounts for the rate of martensite volume fraction:

𝒅𝐻𝑀(𝑛𝑜𝑇𝑅) = (1 − 𝑓𝛼′ )𝒅𝛾 + 𝑓𝛼′𝒅𝛼′ , 𝒅𝐻𝑀(𝑇𝑅) = ̇𝑓𝛼′
(

𝝐𝛼′ − 𝝐𝛾
)

(15)

𝝈̇∇
𝐻𝑀(𝑛𝑜𝑇𝑅) = (1 − 𝑓𝛼′ )𝝈̇∇

𝛾 + 𝑓𝛼′ 𝝈̇∇
𝛼′ , 𝝈̇∇

𝐻𝑀(𝑇𝑅) = ̇𝑓𝛼′
(

𝝈𝛼′ − 𝝈𝛾
)

(16)

The deformation rate in each individual phase (see Section 2.1) is
related to the total deformation rate in the bi-phase material as follows:

𝒅𝑝 = 𝑨𝑡𝑎𝑛
𝑝 ∶ 𝒅𝛾+𝛼′ (17)

where the subscript 𝑝 refers to either the austenite or the martensite
phase (𝑝 = 𝛾 or 𝑝 = 𝛼′, respectively), and 𝑨𝑡𝑎𝑛

𝑝 is the instantaneous
strain concentration tensor. This fourth-order tensor is given by:

𝑨𝑡𝑎𝑛
𝑝 = 𝑨𝑡𝑎𝑛

𝑝(𝑛𝑜𝑇𝑅) ∶
(

𝑰 +
(

(

𝝐𝛼′ − 𝝐𝛾
)

+ 1
3
𝛥𝑣1

)

⊗ 𝝓
)−1

(18)

ith 𝑨𝑡𝑎𝑛
𝑝(𝑛𝑜𝑇𝑅) being the instantaneous strain concentration tensor for

he auxiliary problem that considers a constant volume fraction of the
hases:

𝑝 = 𝑨𝑡𝑎𝑛
𝑝(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅) (19)

here the explicit form of 𝑨𝑡𝑎𝑛
𝑝(𝑛𝑜𝑇𝑅) depends on the selected homog-

enization scheme (the expressions corresponding to the Mori-Tanaka
4

and Self-Consistent approaches are provided later). The second factor
in Eq. (18) results from the relationship between the total deformation
rate in the bi-phase material 𝒅𝛾+𝛼′ and the term of the homogenized
strain rate field that considers a constant volume fraction of the phases
𝒅𝐻𝑀(𝑛𝑜𝑇𝑅) (see Eqs. (A.78) in Appendix A), where the second-order
tensor 𝝓 is defined such that ̇𝑓𝛼′ = 𝝓 ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅).

Mean-field homogenization schemes differ from each other by the
selection of the concentration tensors. Namely, Mori-Tanaka and Self-
Consistent schemes’ strain concentration tensors rely on the dilute
concentration tensor, which is the practical outcome of Eshelby’s equiv-
alent inclusion theory (Eshelby, 1957). This fourth-order tensor pro-
vides a relationship between the homogeneous uniform strain in an
inclusion and the far-field strain in the parent medium in which the
inclusion is embedded. Following the incremental tangent linearization
method, the instantaneous dilute concentration tensor is given by:

𝒅𝑖 = 𝑨𝑡𝑎𝑛
𝑑𝑖𝑙(𝑖,0) ∶ 𝒅0, 𝑨𝑡𝑎𝑛

𝑑𝑖𝑙(𝑖,0) =
(

𝑰 + 𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜
0,𝑠𝑝ℎ𝑒𝑟 ∶

(

𝑳𝑡𝑎𝑛
0
)−1 ∶

(

𝑳𝑡𝑎𝑛
𝑖 −𝑳𝑡𝑎𝑛

0
)

)−1

(20)

where the subscripts 𝑖 and 0 refer to the inclusion and the parent
medium, respectively, and 𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜0,𝑠𝑝ℎ𝑒𝑟 is the fourth-order instantaneous
Eshelby’s tensor, which depends on the material properties of the
parent medium and on the shape and orientation of the inclusion. The
general expression of the Eshelby’s tensor is rather complex (see, for
example, equation (2.22) in Böhm (1998)), so in this paper we use the
closed-form expression for spherical inclusions in an isotropic parent
medium:

𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜0,𝑠𝑝ℎ𝑒𝑟 =
1
3
1 + 𝜈𝑡𝑎𝑛0

1 − 𝜈𝑡𝑎𝑛0
𝑰𝑣𝑜𝑙 +

2
15

4 − 5𝜈𝑡𝑎𝑛0

1 − 𝜈𝑡𝑎𝑛0
𝑰𝑑𝑒𝑣 (21)

where 𝜈𝑡𝑎𝑛0 =
3𝜅𝑡𝑎𝑛0 −2𝜇𝑡𝑎𝑛0

2
(

3𝜅𝑡𝑎𝑛0 +𝜇𝑡𝑎𝑛0

) is the tangent Poisson’s ratio and 𝜅𝑡𝑎𝑛0 and

𝜇𝑡𝑎𝑛0 are the tangent bulk and tangent shear moduli of the isotropic
parent medium, respectively. Because the algorithmic tangent operator
of the parent medium (austenite or homogenized material depending
on the homogenization scheme) is anisotropic in general, the isotropic
estimate proposed by Bornert et al. (2001a,b) is used (as denoted by the
superscript 𝑡𝑎𝑛-𝑖𝑠𝑜 in Eshelby’s tensor), resulting in 𝜅𝑡𝑎𝑛0 = 1

3𝑰𝑣𝑜𝑙 ∶∶ 𝑳𝑡𝑎𝑛0
nd 𝜇𝑡𝑎𝑛0 = 1

10𝑰𝑑𝑒𝑣 ∶∶ 𝑳𝑡𝑎𝑛0 . Recall that the isotropic estimates are only
used to compute the Eshelby’s tensor, while anisotropic algorithmic
tangent operators are used everywhere else.

The instantaneous strain concentration tensors of the Mori-Tanaka
and Self-Consistent schemes are presented next, using the incremental
tangent linearization method for the auxiliary problem that considers
a constant volume fraction of the phases:

• Mori-Tanaka scheme. This explicit approach assumes the matrix-
type phase (austenite) as the parent medium in which the particle-
type phase (martensite) is embedded. According to Eshelby’s
theory, the two phases are related by: 𝒅𝛼′ = 𝑨𝑡𝑎𝑛

𝑑𝑖𝑙(𝛼′ ,𝛾) ∶ 𝒅𝛾 (see
the equivalence with Eq. (20)1). Using the previous equation and
the rate form of the strain average theorem given by Eq. (15)1,
the instantaneous strain concentration tensor for each phase,
austenite and martensite, is given by:

𝒅𝛾 = 𝑨𝑡𝑎𝑛
𝛾(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅),

𝑨𝑡𝑎𝑛
𝛾(𝑛𝑜𝑇𝑅) =

(

(

1 − 𝑓𝛼′
)

𝑰 + 𝑓𝛼′𝑨𝑡𝑎𝑛
𝑑𝑖𝑙(𝛼′ ,𝛾)

)−1 (22)

𝒅𝛼′ = 𝑨𝑡𝑎𝑛
𝛼′(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅),

𝑨𝑡𝑎𝑛
𝛼′(𝑛𝑜𝑇𝑅) = 𝑨𝑡𝑎𝑛

𝑑𝑖𝑙(𝛼′ ,𝛾) ∶
(

(

1 − 𝑓𝛼′
)

𝑰 + 𝑓𝛼′𝑨𝑡𝑎𝑛
𝑑𝑖𝑙(𝛼′ ,𝛾)

)−1 (23)

• Self-Consistent scheme. This implicit approach assumes the ho-
mogenized material as the parent medium in which each indi-
vidual phase is treated as embedded. According to Eshelby’s the-

ory, for each phase (austenite and martensite), the instantaneous
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strain concentration tensor corresponds to the instantaneous di-
lute concentration tensor (see the equivalence with Eq. (20)1):

𝒅𝛾 = 𝑨𝑡𝑎𝑛
𝛾(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅), 𝑨𝑡𝑎𝑛

𝛾(𝑛𝑜𝑇𝑅) = 𝑨𝑡𝑎𝑛
𝑑𝑖𝑙(𝛾,𝐻𝑀(𝑛𝑜𝑇𝑅)) (24)

𝒅𝛼′ = 𝑨𝑡𝑎𝑛
𝛼′(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅), 𝑨𝑡𝑎𝑛

𝛼′(𝑛𝑜𝑇𝑅) = 𝑨𝑡𝑎𝑛
𝑑𝑖𝑙(𝛼′ ,𝐻𝑀(𝑛𝑜𝑇𝑅)) (25)

where the instantaneous strain concentration tensor for each
phase is dependent on the tensor 𝑳𝑡𝑎𝑛𝐻𝑀(𝑛𝑜𝑇𝑅) (see Eq. (20)2),
which relates the homogenized strain rate and stress rate fields
𝝈̇∇
𝐻𝑀(𝑛𝑜𝑇𝑅) = 𝑳𝑡𝑎𝑛𝐻𝑀(𝑛𝑜𝑇𝑅) ∶ 𝒅𝐻𝑀(𝑛𝑜𝑇𝑅) and is itself a function of

the instantaneous strain concentration tensors, as shown by the
following expression (valid for any mean-field homogenization
approach):

𝑳𝑡𝑎𝑛𝐻𝑀(𝑛𝑜𝑇𝑅) = (1 − 𝑓𝛼′ )𝑳𝑡𝑎𝑛𝛾 ∶ 𝑨𝑡𝑎𝑛
𝛾(𝑛𝑜𝑇𝑅) + 𝑓𝛼′𝑳

𝑡𝑎𝑛
𝛼′ ∶ 𝑨𝑡𝑎𝑛

𝛼′(𝑛𝑜𝑇𝑅) (26)

which is derived from the rate form of the stress average theorem
(Eq. (16)1), in which the rate of the stress tensor in each phase is
expressed as a function of the corresponding rate of deformation
(Eq. (8)), and the latter is related to the homogenized strain
rate field by the corresponding instantaneous strain concentration
tensors (Eq. (19)).

3. Numerical implementation

The constitutive model has been implemented at integration point
level within the finite element solver ABAQUS/ Standard using a UMAT
user material subroutine. The UMAT code is included as Supplementary
Material. Note that the subroutine is specifically designed to handle the
kinetics of martensitic transformation provided by Olson and Cohen
(1975). Recall that the rate of change of the probability of martensite
nucleation, as well as the stress state and strain rate sensitivity of the
martensitic transformation, are not considered in this isothermal kinetic
relation (Section 2.2).

A sketch of the implementation procedure is shown in Fig. 1. At
5

each time step, the total strain increment of the bi-phase material,
𝛥𝝐(𝑛+1)𝛾+𝛼′ , together with the mechanical fields of the previous step, 𝝐(𝑛)𝛾+𝛼′
and 𝝈(𝑛)

𝛾+𝛼′ , are provided by ABAQUS to update the stress components,
𝝈(𝑛+1)
𝛾+𝛼′ , and to provide the Jacobian tensor (𝐷𝐷𝑆𝐷𝐷𝐸 as denoted in

ABAQUS). State variables of the problem (𝑆𝐷𝑉 as denoted in ABAQUS)
are the two terms of the isotropic hardening function in the two phases:
𝑅1𝛾 , 𝑅2𝛾 , 𝑅1𝛼′

, and 𝑅2𝛼′
; the accumulated plastic strain in the two

phases: 𝜖𝑝𝛾 and 𝜖𝑝𝛼′ ; the volume fraction of martensite: 𝑓𝛼′ ; the back
stresses in the two phases: 𝑿1𝛾 , 𝑿2𝛾 , 𝑿1𝛼′

, and 𝑿2𝛼′
; the mechanical

fields in the two phases: 𝝐𝛾 , 𝝈𝛾 , 𝝐𝛼′ , and 𝝈𝛼′ ; the plastic strain in
he two phases: 𝝐𝑝𝛾 and 𝝐𝑝𝛼′ ; and the algorithmic tangent operators for

the two phases: 𝑳𝑡𝑎𝑛𝛾 and 𝑳𝑡𝑎𝑛𝛼′ . The update of the internal tensorial
ariables at each time step during a finite strain analysis takes into
ccount the incremental rotation of the material basis system. Thus,
he second-order tensorial internal variables are rotated to the cur-
ent configuration using the predefined ABAQUS function 𝑅𝑂𝑇𝑆𝐼𝐺,
hich performs the following calculation: 𝛥R(𝑛+1)

(𝑛) (∙)(𝑛)𝛥R(𝑛+1)
(𝑛)

T
, where

𝛥R(𝑛+1)
(𝑛) = R(𝑛+1)R(𝑛)T is the incremental rotation (𝐷𝑅𝑂𝑇 as de-

noted in ABAQUS). The objective increments are hence expressed as
𝛥(∙)(𝑛+1) = (∙)(𝑛+1) −𝛥R(𝑛+1)

(𝑛) (∙)(𝑛)𝛥R(𝑛+1)
(𝑛)

T
. For the fourth-order tensorial

internal variables, 𝑳𝑡𝑎𝑛𝛾 and 𝑳𝑡𝑎𝑛𝛼′ , the operation that requires their rota-
tions to the current configuration is performed as shown in Eq. (A.44)
in Appendix A.1.

Firstly, from the total strain increment in the bi-phase material cor-
responding to the current time step (𝑛+1), the contribution of each indi-
vidual phase is assumed for the first (𝑘 = 1) iterative step of the global
scheme: 𝛥𝝐(𝑛+1)𝛾(𝑘=1) and 𝛥𝝐(𝑛+1)𝛼′(𝑘=1). For the first time step (𝑛 = 1) it is as-
sumed that 𝛥𝝐(𝑛=1)𝛾(𝑘=1) = (1−𝑓 (𝑛=1)

𝛼′(𝑘=1))𝛥𝝐
(𝑛=1)
𝛾+𝛼′ and 𝛥𝝐(𝑛=1)𝛼′(𝑘=1) = 𝑓 (𝑛=1)

𝛼′(𝑘=1)𝛥𝝐
(𝑛=1)
𝛾+𝛼′ ,

while for the rest of the time steps
𝛥𝝐(𝑛+1)𝛾(𝑘=1) = 𝛥𝝐(𝑛)𝛾

(√

𝛥𝝐(𝑛+1)𝛾+𝛼′ ∶ 𝛥𝝐(𝑛+1)𝛾+𝛼′ ∕
√

𝛥𝝐(𝑛)𝛾+𝛼′ ∶ 𝛥𝝐
(𝑛)
𝛾+𝛼′

)

and

𝛥𝝐(𝑛+1)𝛼′(𝑘=1) = 𝛥𝝐(𝑛)𝛼′
(√

𝛥𝝐(𝑛+1)𝛾+𝛼′ ∶ 𝛥𝝐(𝑛+1)𝛾+𝛼′ ∕
√

𝛥𝝐(𝑛)𝛾+𝛼′ ∶ 𝛥𝝐
(𝑛)
𝛾+𝛼′

)

. This is per-
formed in the Initialization box represented in the figure. Subsequently,
the constitutive equations for each individual phase (Section 2.1) are
solved using the numerical implementation explained in Appendix A.1.
Fig. 1. Sketch of the implementation of the homogenized constitutive model (Mori-Tanaka or Self-Consistent scheme) in ABAQUS/Standard.
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In the figure, this step is represented by the Austenite phase and
artensite phase boxes (notice the loop, which represents the sub-

terative process required to solve the problem). Each box uses the
train increment of the specific 𝑘-th iteration of the global iterative
cheme as input, along with the internal variables of the corresponding
ndividual phase. Once the current value of the accumulated plastic
train in the austenite phase for the 𝑘-th iteration of the global it-

erative scheme is known, the kinetics of martensitic transformation
(Section 2.2) can be solved. This step is represented in the figure by the
Kinetics of transformation box, and the corresponding implementation
is described in Appendix A.2. Afterward, the constitutive equations
for the bi-phase material (Section 2.3) are solved, and the bi-phase
material’s mechanical behavior is calculated for the 𝑘-th iteration of
the global iterative scheme. In the figure, this step is represented
by the Bi-phase material (homogenization) box, which uses as inputs
the state variables together with the outputs of the Austenite phase,
Martensite phase, and Kinetics of transformation boxes. The numerical
implementation, which depends on the homogenization scheme (Mori-
Tanaka or Self-Consistent), is described in Appendix A.3. The required
iterative scheme for the implicit Self-Consistent approach is represented
in the figure by a dashed loop, indicating that it is only needed
if the Self-Consistent approach is selected. The outcome of the Bi-
hase material (homogenization) box is the corrected strain increment
or each individual phase. Then, the difference between the strain
ncrement assumed at the beginning of the global iterative scheme and
he corrected strain increment is calculated. If the difference is larger
han a predefined tolerance, a new iteration is performed using the
orrected value of the strain increment for each phase as input in the
ew iterative step of the global scheme: 𝛥𝝐(𝑛+1)𝛾(𝑘+1) and 𝛥𝝐(𝑛+1)𝛼′(𝑘+1). The
hole process, which includes the Austenite phase, Martensite phase, Ki-
etics of transformation, and Bi-phase material (homogenization) boxes, is
ecomputed until the convergence condition is met. When convergence
s fulfilled, the converged stress components 𝝈(𝑛+1)

𝛾+𝛼′ and state variables
re given to ABAQUS/Standard. The Jacobian tensor also has to be
iven to ABAQUS/Standard at the end of each time step. The solver
ses this tensor in its global Newton scheme to achieve an accurate
ssessment of the incremental kinematics. To ensure computational
fficiency with fast convergence, the consistent Jacobian tensor is used;
ts numerical implementation is given in Appendix A.4.

. Identification of material parameters

Two sets of material constants are to be identified: the parame-
ers involved in the mechanical behavior of the individual phases—
ustenite and martensite—and the parameters involved in the kinetics
f martensitic transformation. The first set of parameters consists of the
oung’s modulus 𝐸 and the Poisson’s ratio 𝜈 (Eq. (3)), the initial yield
tress 𝜎𝑦0 (Eq. (5)), and the parameters describing the mixed kinematic-
sotropic hardening: 𝛽, ℎ1, ℎ2, 𝜓1, and 𝜓2 (Eqs. (6) and (7)), all of which
re specific to each individual phase. On the other hand, the parameters
nvolved in the expression for the kinetics of martensitic transformation
roposed by Olson and Cohen (1975) are 𝜁 and 𝜉 (Eq. (9)).

The constitutive model is calibrated to describe the mechanical be-
avior of two different austenitic steel grades that are widely used in su-
erconducting magnet system applications: AISI 304L and AISI 316LN.
he experiments performed by Fernández-Pisón et al. (2021) are the
asis for the identification of the constitutive parameters. The data
et includes uniaxial tensile stress–strain curves and the corresponding
volution of the volume fraction of martensite with the strain for
he two aforementioned grades at room temperature (300 K), liquid
itrogen temperature (77 K), and liquid helium temperature (4 K); see
igs. 4, 13, and 14 therein, where the stress and strain are referred to
he bi-phase material. Exceptionally, the values of the Poisson’s ratio
nd the Bauschinger parameter, 𝜈 = 0.3 and 𝛽 = 0.45, respectively,
re taken from Garion et al. (2006) for the same family of steels
6

AISI 304 and AISI 316L) at cryogenic temperatures. For these two
aterial parameters, identical values for the two individual phases are
ssumed for the two grades over the whole temperature range analyzed
n this work. For the rest of the parameters, an explicit temperature-
volution function is considered, and the coefficients of the function are
etermined by best-fit operation with the aforementioned experimental
ata presented in Fernández-Pisón et al. (2021). The idea is to cover
he entire analyzed temperature range, unlike conventional approaches
hat independently determine the material parameters at a certain
emperature. The temperature-evolution function selected for the ma-
erial parameters involved in the mechanical behavior of the individual
hases is shown in Eq. (27), which is similar to the one used by Hosseini
t al. (2015) for a Chaboche kinematic hardening model. Moreover, the
ame functions proposed by Fernández-Pisón et al. (2021), which are
ased on the experimental data provided by Olson and Cohen (1975),
re adopted here with regard to the material parameters involved in
he kinetics of martensitic transformation, as shown in Eq. (28).

(𝑇 ) = 𝑥1
(

1 − 𝑥2𝑒(𝑇 ∕𝑥3)
)

, 𝜎𝑦0(𝑇 ) = 𝑥4
(

1 − 𝑥5𝑒(𝑇 ∕𝑥6)
)

,

ℎ1(𝑇 ) = 𝑥7
(

1 − 𝑥8𝑒(𝑇 ∕𝑥9)
)

, ℎ2(𝑇 ) = 𝑥10
(

1 − 𝑥11𝑒(𝑇 ∕𝑥12)
)

,

𝜓1(𝑇 ) = 𝑥13
(

1 − 𝑥14𝑒(𝑇 ∕𝑥15)
)

, 𝜓2(𝑇 ) = 𝑥16
(

1 − 𝑥17𝑒(𝑇 ∕𝑥18)
)

(27)

𝜁 (𝑇 ) =
𝜁2

1 + 𝑒−𝜁3(𝑇−𝜁1)
−
𝜁2
2
, 𝜉(𝑇 ) =

𝜉2
1 + 𝑒−𝜉3(𝑇−𝜉1)

(28)

The identification procedure is split into three parts: (i) identifi-
cation of the coefficients corresponding to the material parameters of
the austenite phase; (ii) identification of the coefficients corresponding
to the material parameters of the martensite phase; and (iii) identi-
fication of the coefficients corresponding to the material parameters
of the kinetics of martensite transformation. The determination of the
coefficients is described as follows:

(i) We take as reference the aforementioned experimental stress–
strain curves, but we only use the data with a strain level cor-
responding to a volume fraction of martensite lower than 10%
(so the effect of the martensite phase on the selected data is
considered to be negligible). For each grade, the selected data
is represented as a 𝜎𝑥 − 𝜖𝑝 − 𝑇 surface, with 𝜎𝑥 being the axial
stress component corresponding to the tensile loading direction,
and the surface is then fitted to the function 𝜎𝑥 = 𝜎𝑦0(𝑇 ) +
ℎ1(𝑇 )
𝜓1(𝑇 )

(

1 − 𝑒−𝜓1(𝑇 )𝜖𝑝
)

+ ℎ2(𝑇 )
𝜓2(𝑇 )

(

1 − 𝑒−𝜓2(𝑇 )𝜖𝑝
)

. This function is adapted
from Eq. (5), where a pure isotropic hardening is used because it
is sufficient for determining the parameters (monotonic loading
test). The best-fitting condition using the least squares method
provides the coefficients corresponding to the functions 𝐸(𝑇 ),
𝜎𝑦0(𝑇 ), ℎ1(𝑇 ), ℎ2(𝑇 ), 𝜓1(𝑇 ), and 𝜓2(𝑇 ) for the austenite phase
(see Eq. (27)).

(ii) Unit-cell finite element calculations with a homogenized de-
piction of the bi-phase aggregate are performed under mono-
tonic uniaxial tensile loading (see Section 5.1, with triaxiality
𝑋𝛴𝛾+𝛼′

= 1∕3 and Lode parameter 𝐿𝛾+𝛼′ = −1). The Self-
Consistent scheme version of the UMAT user subroutine described
in Section 3 is employed, but the subroutine includes a sim-
plified form of the kinetic law of martensitic transformation:

𝑓𝛼′ = 1 − 𝑒−𝜉
(

1−𝑒
−𝜁𝜖𝛾+𝛼′𝑥

)4.5

, where 𝜖𝛾+𝛼′𝑥 is the axial strain
component of the bi-phase material that corresponds to the
tensile loading direction (see Fig. 3). This simplified law re-
duces the coupling between the kinetics of transformation and
the homogenization approach, thereby facilitating the parameter
identification operation (note that in the original law, Eq. (9),
the driving force for the transformation is the accumulated plastic
strain in the austenite phase). The finite element calculations are
performed for the AISI 304L at three different constant temper-
atures (300 K, 77 K, and 4 K). The calculations use the material
parameters for the austenite phase identified as described in the
previous paragraph as well as the material parameters for the
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Table 1
Identification of the coefficients of the temperature-evolution parameters corresponding to the austenite and martensite phases and to the kinetic relation of Olson
and Cohen (1975), see Eqs. (27) and (28).
AISI 304L

𝑥1 (MPa) 𝑥2 𝑥3 (K) 𝑥4 (MPa) 𝑥5 𝑥6 (K)
2.06 ⋅ 105 1.52 ⋅ 10−7 2.29 ⋅ 101 6.67 ⋅ 102 4.77 ⋅ 10−1 1.00 ⋅ 103

Austenite 𝑥7 (MPa) 𝑥8 𝑥9 (K) 𝑥10 (MPa) 𝑥11 𝑥12 (K)
phase 1.30 ⋅ 105 6.84 ⋅ 10−1 1.00 ⋅ 103 2.14 ⋅ 103 1.61 ⋅ 10−1 1.00 ⋅ 103

𝑥13 𝑥14 𝑥15 (K) 𝑥16 𝑥17 𝑥18 (K)
1.01 ⋅ 102 1.42 ⋅ 10−10 1.00 ⋅ 103 3.21 ⋅ 100 5.80 ⋅ 10−2 1.27 ⋅ 102

𝑥1 (MPa) 𝑥2 𝑥3 (K) 𝑥4 (MPa) 𝑥5 𝑥6 (K)
2.06 ⋅ 105 1.52 ⋅ 10−7 2.29 ⋅ 101 3.27 ⋅ 103 6.64 ⋅ 10−1 1.00 ⋅ 103

Martensite 𝑥7 (MPa) 𝑥8 𝑥9 (K) 𝑥10 (MPa) 𝑥11 𝑥12 (K)
phase 2.91 ⋅ 103 4.05 ⋅ 10−1 1.00 ⋅ 103 1.71 ⋅ 104 5.85 ⋅ 10−1 1.00 ⋅ 103

𝑥13 𝑥14 𝑥15 (K) 𝑥16 𝑥17 𝑥18 (K)
1.60 ⋅ 101 5.88 ⋅ 10−2 6.67 ⋅ 102 4.61 ⋅ 100 2.37 ⋅ 10−3 6.09 ⋅ 101

Kinetic 𝜁1 (K) 𝜁2 𝜁3 (K−1) 𝜉1 (K) 𝜉2 𝜉3 (K−1)
relation 3.36 ⋅ 102 1.31 ⋅ 101 −4.69 ⋅ 10−2 2.66 ⋅ 102 2.10 ⋅ 100 −8.80 ⋅ 10−2

AISI 316LN

𝑥1 (MPa) 𝑥2 𝑥3 (K) 𝑥4 (MPa) 𝑥5 𝑥6 (K)
2.06 ⋅ 105 1.52 ⋅ 10−7 2.29 ⋅ 101 2.65 ⋅ 103 6.63 ⋅ 10−1 9.89 ⋅ 102

Austenite 𝑥7 (MPa) 𝑥8 𝑥9 (K) 𝑥10 (MPa) 𝑥11 𝑥12 (K)
phase 6.03 ⋅ 104 6.66 ⋅ 10−1 9.38 ⋅ 102 5.87 ⋅ 103 3.14 ⋅ 10−1 4.53 ⋅ 102

𝑥13 𝑥14 𝑥15 (K) 𝑥16 𝑥17 𝑥18 (K)
1.10 ⋅ 102 2.40 ⋅ 10−1 1.00 ⋅ 103 2.00 ⋅ 100 6.94 ⋅ 10−5 9.99 ⋅ 102

𝑥1 (MPa) 𝑥2 𝑥3 (K) 𝑥4 (MPa) 𝑥5 𝑥6 (K)
2.06 ⋅ 105 1.52 ⋅ 10−7 2.29 ⋅ 101 3.27 ⋅ 103 6.64 ⋅ 10−1 1.00 ⋅ 103

Martensite 𝑥7 (MPa) 𝑥8 𝑥9 (K) 𝑥10 (MPa) 𝑥11 𝑥12 (K)
phase 2.91 ⋅ 103 4.05 ⋅ 10−1 1.00 ⋅ 103 1.71 ⋅ 104 5.85 ⋅ 10−1 1.00 ⋅ 103

𝑥13 𝑥14 𝑥15 (K) 𝑥16 𝑥17 𝑥18 (K)
1.60 ⋅ 101 5.88 ⋅ 10−2 6.67 ⋅ 102 4.61 ⋅ 100 2.37 ⋅ 10−3 6.09 ⋅ 101

Kinetic 𝜁1 (K) 𝜁2 𝜁3 (K−1) 𝜉1 (K) 𝜉2 𝜉3 (K−1)
relation 4.62 ⋅ 102 5.89 ⋅ 100 −4.29 ⋅ 10−3 9.00 ⋅ 101 4.84 ⋅ 100 −4.94 ⋅ 10−2
Table 2
Identification of the material parameters corresponding to the austenite and martensite phases and to the kinetic relation of Olson and Cohen (1975), see Eqs. (27)
and (28), for the three analyzed temperatures: 300 K, 77 K, and 4 K.

AISI 304L AISI 316LN

𝑇 = 300 K 𝑇 = 77 K 𝑇 = 4 K 𝑇 = 300 K 𝑇 = 77 K 𝑇 = 4 K

𝐸 (GPa) 191 206 206 191 206 206

𝜎𝑦0 (MPa) 238 323 348 272 753 888

Austenite ℎ1 (MPa) 10 020 33 922 40 657 5040 16 721 19 980

phase ℎ2 (MPa) 1676 1769 1795 2301 3686 4011

𝜓1 101 101 101 74 81 83

𝜓2 1.23 2.87 3.02 2.00 2.00 2.00

𝐸 (GPa) 191 206 206 191 206 206

𝜎𝑦0 (MPa) 338 925 1090 338 925 1090

Martensite ℎ1 (MPa) 1319 1638 1727 1319 1638 1727

phase ℎ2 (MPa) 3581 6275 7034 3581 6275 7034

𝜓1 14.49 14.90 15.01 14.49 14.90 15.01

𝜓2 3.10 4.57 4.59 3.10 4.57 4.59

Kinetic 𝜁 4.47 6.53 6.53 0.98 2.00 2.22

relation 𝜉 0.10 2.10 2.10 0.00 3.17 4.77
kinetic relation proposed by Fernández-Pisón et al. (2021) (see
Table 2 therein). Note that the material parameters for the kinetic
relation are taken directly from Fernández-Pisón et al. (2021) in
this step of the calibration because this former study assumed the
aforementioned simplified kinetic law of martensitic transforma-
tion. Moreover, in accordance with the experiments, the bi-phase
material is initially considered 100% austenite (𝑓 (𝑛=1)

𝛼′ = 0). The
coefficients corresponding to the functions 𝜎𝑦0(𝑇 ), ℎ1(𝑇 ), ℎ2(𝑇 ),
𝜓1(𝑇 ), and 𝜓2(𝑇 ) for the martensite phase are identified for the
best correlation between the numerical results and experimental
7

tensile stress–strain curves in the bi-phase material, now cover-
ing the full range of strain shown in the source figure (Fig. 4
in Fernández-Pisón et al. (2021)). The coefficients corresponding
to the function 𝐸(𝑇 ) are taken to be identical to those obtained
for the austenite phase in accordance with Msolli et al. (2016)
and Perdahcıoğlu and Geijselaers (2011a,b), among others, who
make the simplifying assumption that the elastic properties of
both individual phases are equal.

(iii) Unit-cell finite element calculations with a homogenized depic-
tion of the bi-phase aggregate are performed under monotonic
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Fig. 2. Comparison of the stress–strain curve for the martensite phase resulting from the calibration performed in this work for AISI 304L and experimental data at 𝑇 = 300 K.
The results of the simulations are shown with a black solid line. The experimental data from Rodríguez-Martínez et al. (2011) and Zaera et al. (2012), red markers, corresponds
to the mechanical behavior of the single martensite phase on AISI 304 samples. The experimental data supplied by the manufacturer KVA STAINLESS, green markers, corresponds
to a martensitic stainless steel AISI 410 (Data source: https://www.kvastainless.com). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
a
c

uniaxial tensile loading. The precise Self-Consistent scheme ver-
sion of the UMAT user subroutine, as described in Section 3, is
employed (including the implementation of the original kinetic
law of martensitic transformation shown in Eq. (9)). The finite
element calculations are performed for the two grades, AISI 304L
and AISI 316LN, at the three different constant temperatures.
The calculations use the material parameters for the austenite
and martensite phases identified as described in the previous
paragraphs. The coefficients corresponding to the functions 𝜁 (𝑇 )
and 𝜉(𝑇 ) (see Eq. (28)) are identified for the best correlation
between the numerical results and the experimental data of the
evolution of the volume fraction of martensite with the strain in
the bi-phase material reported in Fernández-Pisón et al. (2021).

Table 1 provides the final values of the coefficients for the
temperature-evolution functions (Eqs. (27) and (28)). Recall that these
functions and associated coefficients are meant to be valid for the
three analyzed temperatures—300 K, 77 K, and 4 K—as well as for any
other temperature 𝑇 in the range under consideration. Particularizing
these functions for the analyzed temperatures provides the material
parameters given in Table 2. Note that the final material parameters
for the kinetic relation (𝜁 and 𝜉) are different from the ones proposed
by Fernández-Pisón et al. (2021), which have also been used here in the
second step of the calibration. It is due to the fact that in the third step
of the calibration, where those parameters are determined, the original
kinetic law of martensitic transformation is used (Eq. (9)). Moreover,
the material parameters for the martensite phase of the AISI 316LN
are the same as those of the AISI 304L. This is because, unlike for
AISI 304L, the experimental stress–strain curves for AISI 316LN steel do
not show any significant change as martensite forms. Therefore, only
the experimental stress–strain curves for AISI 304L are used to calibrate
the martensite phase (as previously mentioned), and it is assumed that
the flow stress and strain hardening material parameters for martensite
are the same for an AISI 316LN steel grade.

Section 6.2 includes a comparison between tensile test calculations
using the calibrated model and experimental data for both steel grades
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at the three analyzed temperatures (see Figs. 19 and 20). Since the ma-
terial is initially fully austenitic, this comparison gives information on
the accuracy of the calibration performed for the austenite phase. Re-
garding the martensite phase, the result of an additional unit-cell finite
element simulation considering a non-evolving martensitic material
(𝑓𝛼′ = 100% and ̇𝑓𝛼′ = 0) is compared with experimental stress–strain
curves for martensite at 𝑇 = 300 K taken from the literature (the authors
are not aware of any experimental martensite’s stress–strain curves at
cryogenic temperatures). The comparison is shown in Fig. 2, where the
experimental data taken from Zaera et al. (2012) corresponds to the
mechanical behavior of the single martensite phase on AISI 304 samples
tensile tested by Rodríguez-Martínez et al. (2011), and the experimental
data supplied by the manufacturer KVA STAINLESS corresponds to
a martensitic stainless steel AISI 410. A good correlation between
the numerical results and the experimental data is obtained, which
indicates the careful calibration developed for the martensite phase.

5. Finite element models

This section describes the main features of the finite element mod-
els created in ABAQUS/Standard to assess the Mori-Tanaka and Self-
Consistent homogenization schemes with regard to their ability to
describe the mechanical behavior and martensitic transformation of
AISI 304L and AISI 316LN austenitic steels. Two different models have
been developed: (i) a cubic unit-cell subjected to controlled macro-
scopic triaxiality and Lode parameter; and (ii) a flat tensile sample
subjected to prescribed displacement.

5.1. Unit-cell

The reference configuration of the unit-cell is defined by the do-
mains 0 ≤ 𝑥 ≤ 𝐿0, 0 ≤ 𝑦 ≤ 𝐿0, and 0 ≤ 𝑧 ≤ 𝐿0, where (𝑥, 𝑦, 𝑧) is

Cartesian coordinate system with origin located at the bottom right
orner of the cell and 𝐿0 = 1 mm (see Fig. 3(a)). The unit-cell plots

included in Figs. 8 and 17 are referred to this coordinate system. We
have performed two different types of unit-cell calculations related to

the representation of the material microstructure:

https://www.kvastainless.com/pdf/KVA_mech_props.pdf
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Fig. 3. Cubic unit-cell finite element model: (a) dimensions and Cartesian coordinate system (𝑥, 𝑦, 𝑧), (b) loading directions for the case of monotonic loading simulations with
𝛴𝛾+𝛼′ 𝐼 , 𝛴𝛾+𝛼′ 𝐼𝐼 , and 𝛴𝛾+𝛼′ 𝐼𝐼𝐼 being the principal values of the macroscopic stress tensor of the bi-phase material.
• Explicit depiction of the martensite inclusions and the austen-
ite matrix. The mechanical behavior of the individual phases
is modeled separately using the constitutive equations of Sec-
tion 2.1. The material is considered to initially contain martensite
inclusions that are represented as spherical particles which are
perfectly bonded to the austenite matrix (consistent with the
assumptions of the homogenization schemes, see Section 2).
Different initial volume fractions of martensite have been investi-
gated: 25%, 45%, and 65%. We have performed calculations with a
single central inclusion, and with multiple inclusions distributed
in the unit-cell, see Figs. 4(a) and 4(b)–(e), respectively. Note
that two distinct cases with FCC-symmetric (face-centered cubic)
distributions of inclusions have been examined: one involves
a representative volume element with particles intersecting the
unit-cell boundaries, see Fig. 4(b), while the other features a
unit-cell with multiple inclusions and a boundary layer devoid
of particles, see Fig. 4(c). We utilize the latter case for com-
parison with the configurations shown in Figs. 4(d)–(e), which
include random spatial distribution of multiple inclusions and
a boundary layer devoid of particles (note that models 4(b)–(c)
essentially produce identical results for the same volume fraction
of particles, see Section 6.1.1). The simulations with random
spatial distribution of the particles have been carried out with
inclusions of the same size and also with inclusions of different
sizes, see Fig. 4(d)–(e). The particles with the same size have
radii of 0.04475 mm, 0.054436 mm, and 0.061534 mm for the
martensite volume fractions of 25%, 45%, and 65%, respectively
(note that these inclusion sizes are used both in microstructures
with random and FCC-symmetric spatial distributions of particles
and a boundary layer devoid of inclusions, see Figs. 4(c)–(d)). For
the particles with different sizes, see Fig. 4(e), following Giom-
pliakis (2014), we use three different families of particles with
radii {𝑅𝑖, 𝑅𝑖𝑖, 𝑅𝑖𝑖𝑖} = { 9

4𝑅𝑚𝑖𝑛,
7
4𝑅𝑚𝑖𝑛, 𝑅𝑚𝑖𝑛} and particle concen-

trations {𝐹𝑖, 𝐹𝑖𝑖, 𝐹𝑖𝑖𝑖} = {0.5𝐹𝛼′ , 0.25𝐹𝛼′ , 0.25𝐹𝛼′}, where 𝐹𝛼′ is the
total volume fraction of martensite in the unit-cell and 𝑅𝑚𝑖𝑛 is
the radius used in the monodisperse microstructure such that
𝑅𝑚𝑖𝑛 = 0.04475 mm, 0.054436 mm, and 0.061534 mm for
𝐹𝛼′ = 25%, 45%, and 65%, respectively. Note that this config-
uration, with a boundary layer devoid of particles, is suitable
for validating the results obtained with the homogenized con-
stitutive models developed in this paper (see Section 6.1.1).
Other configurations where the randomly distributed particles
are allowed to intersect the boundaries while maintaining the
9

periodicity of the unit-cell can be found in the literature. For
results with these other configurations on different composite
materials or where localization processes are analyzed, the reader
is referred to the works of Torquato (2002) and Pierard et al.
(2007). In this work, the unit-cell models (Figs. 4(a)–(e)) have
been discretized with ten-node quadratic tetrahedral elements
(C3D10 in ABAQUS notation), see Fig. 3(b). A very fine mesh near
the spherical particles is necessary to capture the initial geometry
and shape evolution of the martensite inclusions during loading.
The number of elements increases with the number of inclusions
and the martensite volume fraction. For the calculations with a
single central particle and a martensite volume fraction of 25%,
the mesh is discretized with ≈ 34000 elements, while the mesh
of the unit-cell with a FCC-symmetric spatial distribution of the
particles, a boundary layer devoid of particles, and 65% marten-
site consists of ≈ 900000 elements. A mesh sensitivity analysis
has been carried out to confirm that the quantitative results and
general trends provided in this paper are largely independent
of the discretization (the results are not shown for the sake of
brevity). A workstation AMD Milan 7453 @ 2.75 GHz with 56 cores
has been used to perform the calculations. The computational cost
of each simulation varied from 2 hours to 4 weeks, depending on
the microstructure considered, using simultaneously all the cores
of the workstation.

• Homogenized depiction of the bi-phasic aggregate. The effec-
tive mechanical behavior of the material is modeled using the
constitutive equations of Section 2.3. Simulations are performed
using both versions of the UMAT user subroutine (Section 3) cor-
responding to the Mori-Tanaka and Self-Consistent approaches.
The unit-cell has been meshed with 12 ten-node quadratic tetra-
hedral elements (this is the minimum number of C3D10 elements
required to model a cubic geometry). Note that the number of
elements is 3000 times less than in the simulations performed
with a single central martensite inclusion and 75000 times less
than in the calculations with a FCC-symmetric spatial distribution
of the particles, a boundary layer devoid of particles, and 65%
martensite. The calculations have been performed using a single
core of a laptop computer with an Intel(R) Core(TM) i5 − 8350U
CPU @ 1.70 GHz. The computational cost of a simulation varied
between 5 and 40 minutes, depending on the homogenization
scheme considered, i.e., these calculations are significantly faster
than the simulations with an explicit depiction of the martensite
inclusions and the austenite matrix.
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Fig. 4. Unit-cell finite element model with explicit depiction of the martensite inclusions colored in red and the austenite matrix colored in blue: (a) single central inclusion,
(b) representative volume element of a FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting the boundaries, (c) FCC-symmetric spatial
distribution of inclusions with the same size and a boundary layer devoid of particles, (d) random spatial distribution of inclusions with the same size and a boundary layer devoid
of particles, and (e) random spatial distribution of inclusions with different sizes and a boundary layer devoid of particles. The finite element models correspond to the case of
𝐹𝛼′ = 25%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The macroscopic stress tensor in the unit-cell (bi-phase material) is
defined as the volumetric averaging of the microscopic (local, i.e., de-
fined at each integration point) Cauchy stress tensor
𝜮𝛾+𝛼′ = 1

𝑉𝑐𝑒𝑙𝑙
∫𝑉𝑐𝑒𝑙𝑙 𝝈𝑑𝑉 (Vadillo et al., 2016; Hosseini et al., 2022),

with 𝑉𝑐𝑒𝑙𝑙 = ∫𝑉𝑐𝑒𝑙𝑙 𝑑𝑉 being the total volume of the unit-cell. More-
over, the macroscopic strain tensor of the bi-phase material is de-
fined as the volumetric averaging of the microscopic strain tensor
𝜺𝛾+𝛼′ = 1

𝑉𝑐𝑒𝑙𝑙
∫𝑉𝑐𝑒𝑙𝑙 𝝐𝑑𝑉 , where the definition of the microscopic strain

tensor provided by ABAQUS/Standard has been adopted, 𝝐̇∇ = 𝒅,
see Nguyen and Waas (2016). Note that for the simulations with
the homogenized depiction of the bi-phasic aggregate, the so-called
microscopic stress and strain tensors, 𝝈 and 𝝐, are referred to the bi-
phase material, 𝝈𝛾+𝛼′ and 𝝐𝛾+𝛼′ , respectively, see Fig. 1. Furthermore,
the formulations of the macroscopic stress and strain tensors of the bi-
phase material are equivalent to the stress and strain average theorems
applied in homogenization procedures, see Eq. (4.1) in Chatzigeorgiou
et al. (2018) and Eq. (1.4) in Böhm (1998). Similarly, the macroscopic
stress and strain tensors for each individual phase are defined as
𝜮𝑝 = 1

𝑉𝑝
∫𝑉𝑐𝑒𝑙𝑙 𝝈𝑝𝑑𝑉𝑝 and 𝜺𝑝 = 1

𝑉𝑝
∫𝑉𝑐𝑒𝑙𝑙 𝝐𝑝𝑑𝑉𝑝, with 𝑉𝑝 = ∫𝑉𝑐𝑒𝑙𝑙 𝑑𝑉𝑝

being the total volume of each individual phase, where the subscript
𝑝 refers to either the austenite or the martensite phase (𝑝 = 𝛾 or
𝑝 = 𝛼′, respectively). In the simulations with explicit depiction of
the martensite inclusions and the austenite matrix, the macroscopic
fields of each individual phase only account for the elements whose
material corresponds to this specific phase (Srivastava et al., 2015).
It means that, for the martensite phase, (∙)𝑝 𝑑𝑉𝑝 = (∙) 𝑑𝑉 for elements
within the particles and (∙)𝑝 𝑑𝑉𝑝 = 0 for elements within the matrix,
and the inverse for the austenite phase. On the other hand, for the
simulations with the homogenized depiction of the bi-phasic aggregate,
the macroscopic fields are calculated accounting for all the elements in
the unit-cell using (∙)𝑝 𝑑𝑉𝑝 = (∙)𝑝 𝑓𝑝𝑑𝑉 , with 𝑓𝑝 being the microscopic
volume fraction of the considered phase (see Section 2.2). Note that
the formulations of the macroscopic stress and strain tensors for each
individual phase are equivalent to the phase-wise uniform stress and
strain fields employed in mean-field homogenization approaches, see
Eq. (1.16) in Böhm (1998). Furthermore, the macroscopic volume
fraction of martensite is defined as 𝐹𝛼′ = 1

𝑉𝑐𝑒𝑙𝑙
∫𝑉𝑐𝑒𝑙𝑙 𝑑𝑉𝛼′ where, in

simulations with explicit depiction of the martensite inclusions and
the austenite matrix, 𝑑𝑉𝛼′ = 𝑑𝑉 for elements within the particles and
𝑑𝑉𝛼′ = 0 for elements within the matrix; while, for the simulations with
homogenized depiction of the bi-phasic aggregate, 𝑑𝑉𝛼′ = 𝑓𝛼′𝑑𝑉 for
all the elements. Note that the terms microscopic and macroscopic adopt
the conventional definitions used in unit-cell finite element simulations:
microscopic refers to the integration point level, and macroscopic refers
to a volumetric average in the unit-cell. Notice the difference with
literature dealing exclusively with homogenization notions, where the
term macroscopic is reserved for the bi-phase material.
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The stress state in the unit-cell (bi-phase material) and in the
individual phases is described by the corresponding macroscopic stress
triaxiality 𝑋𝛴 = 𝛴ℎ

𝛴
and macroscopic Lode parameter 𝐿 = 2𝛴𝐼𝐼−𝛴𝐼−𝛴𝐼𝐼𝐼

𝛴𝐼−𝛴𝐼𝐼𝐼
.

Note that 𝛴ℎ = 𝛴𝐼+𝛴𝐼𝐼+𝛴𝐼𝐼𝐼
3 and 𝛴 =

√

3
2𝜮

′ ∶ 𝜮′ are the macroscopic
hydrostatic stress and the macroscopic effective stress, respectively,
with 𝛴𝐼 , 𝛴𝐼𝐼 , and 𝛴𝐼𝐼𝐼 (𝛴𝐼 ≥ 𝛴𝐼𝐼 ≥ 𝛴𝐼𝐼𝐼 ) being the principal
values of the macroscopic stress tensor and 𝜮′ = 𝜮 − 𝛴ℎ1 being the
macroscopic deviatoric stress tensor. Moreover, for representation pur-
poses, we also define a macroscopic effective strain as 𝜀 =

√

2
3 𝜺

′ ∶ 𝜺′,
where 𝜺′ = 𝜺 − 𝜀ℎ1 is the macroscopic deviatoric strain tensor and
𝜀ℎ = 𝜀𝐼+𝜀𝐼𝐼+𝜀𝐼𝐼𝐼

3 is the macroscopic volumetric strain, with 𝜀𝐼 , 𝜀𝐼𝐼 , and
𝜀𝐼𝐼𝐼

(

𝜀𝐼 ≥ 𝜀𝐼𝐼 ≥ 𝜀𝐼𝐼𝐼
)

being the principal values of the macroscopic
strain tensor. Note that for the previous definitions, the subscripts
(𝛾 + 𝛼′, 𝛾, or 𝛼′, denoting the bi-phase material, austenite phase,
and martensite phase, respectively) have been omitted because these
definitions can be applied separately to any of them by using the
corresponding macroscopic stress and strain tensors that were previ-
ously introduced. Hereinafter, when these variables appear without a
subscript, it means that they refer to the three of them separately: the
bi-phase material, the austenite phase, and the martensite phase.

In the simulations, periodic boundary conditions have been applied
on the unit-cell using the equations for the nodal displacements re-
ported in Appendix A of Dakshinamurthy et al. (2021). The multi-point
constraint subroutine developed by Dakshinamurthy et al. (2021) has
been employed to impose controlled values of macroscopic stress tri-
axiality and macroscopic Lode parameter in the unit-cell (bi-phase ma-
terial), 𝑋𝛴𝛾+𝛼′

and 𝐿𝛾+𝛼′ , respectively—see also Hosseini et al. (2022)
and Vishnu et al. (2023). The loading directions are parallel to the
principal directions of the macroscopic stress tensor of the bi-phase
material, such that the major loading direction corresponds to the
principal stress direction associated with 𝛴𝛾+𝛼′𝐼 and the minor loading
direction corresponds to the principal stress direction associated with
𝛴𝛾+𝛼′𝐼𝐼𝐼 ; see Fig. 3(b) for the case of the monotonic loading simulations
(for the cyclic loading simulations, the direction of 𝛴𝛾+𝛼′𝐼 and 𝛴𝛾+𝛼′𝐼𝐼𝐼
switches, see Fig. 12).

The calculations with an explicit description of the microstruc-
ture are to be compared with the simulations performed with the
Mori-Tanaka and Self-Consistent approaches to evaluate the ability of
the homogenization schemes to describe the effective behavior of the
bi-phase material and the individual phases. Section 6.1 includes cal-
culations performed under monotonic and cyclic loading for different
values of macroscopic triaxiality 𝑋𝛴𝛾+𝛼′

= −0.5, 0.5, 1.5, and 3 and
macroscopic Lode parameter 𝐿𝛾+𝛼′ = −1, 0, and 1 for constant and
evolving martensite volume fraction. The calculations are performed
using the material parameters corresponding to AISI 304L austenitic
stainless steel at the constant temperature of 𝑇 = 77 K (see Table 2).
Additional calculations using the material parameters for AISI 304L at
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Fig. 5. Tensile sample finite element model: (a) geometry and dimensions in millimeters (thickness is 4 mm), (b) mesh and boundary conditions.
𝑇 = 4 K and for AISI 316LN at 𝑇 = 77 K are presented in Appendix B
and Appendix C, respectively. Note that the material parameters were
identified against experiments based on the homogenized model pre-
dictions for the evolving bi-phase material under tensile loading (see
Section 4). The unit-cell simulations presented in Section 6.1 do not
involve any prior calibration of the homogenized model (no further
calibrations were performed for constant martensite volume fractions
or for different loading conditions). Therefore, the comparison between
the unit-cell simulations using the homogenization schemes and the
calculations with an explicit description of the microstructure (Sec-
tion 6.1) is independent of the calibration procedure. The idea is to
avoid using the same set of data for both parameter identification and
model evaluation.

5.2. Tensile test

The geometry of the tensile sample is based on a ‘‘non-proportional
test piece’’ according to the standard ISO-6892-4 (2015), see Fig. 5.
This is the sample used by Fernández-Pisón et al. (2021) to perform
the tensile experiments that are employed in Section 4 to calibrate the
constitutive model. Material points are referred to using a Cartesian
coordinate system with positions in the reference configuration denoted
as (𝑥, 𝑦, 𝑧), the origin of coordinates is located in the center of mass of
the sample, see Fig. 5.

The boundary conditions used in the finite element model are such
that the right-side surface of the sample is clamped:

𝑈𝑥 (−40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑦 (−40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑧 (−40.575, 𝑦, 𝑧, 𝑡) = 0

𝑈𝑅𝑥 (−40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑅𝑦 (−40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑅𝑧 (−40.575, 𝑦, 𝑧, 𝑡) = 0

(29)

and a uniform displacement is prescribed in the axial direction on the
left-side surface of the sample:

𝑈𝑥 (40.575, 𝑦, 𝑧, 𝑡) = 𝑈0

𝑈𝑦 (40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑧 (40.575, 𝑦, 𝑧, 𝑡) = 0

𝑈𝑅𝑥 (40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑅𝑦 (40.575, 𝑦, 𝑧, 𝑡) = 𝑈𝑅𝑧 (40.575, 𝑦, 𝑧, 𝑡) = 0
(30)

where 𝑈 and 𝑈𝑅 are the displacement and rotation along a given
direction (indicated by the subscript 𝑥, 𝑦, or 𝑧, see Fig. 5) and 𝑈0
is the magnitude of the prescribed displacement, which is taken to
be between 15 mm and 20 mm, depending on the sample’s material
(AISI 304L or AISI 316LN) and the testing temperature, in order to
ensure that the material’s ultimate tensile strength is attained.

Moreover, a constant temperature is imposed in the finite element
simulations:

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇0 (31)

where 𝑇0 is 300 K, 77 K, or 4 K. The analysis is isothermal, the sample’s
temperature is uniform in space and remains constant over time. This
11
assumption is based on the observation that under cryogenic conditions
and low strain rates, the heat released during the test (generated by
the deformation or phase transformation) is rapidly removed by the
cryogenic coolant. The reader is referred to the work of Tabin et al.
(2016, 2019), which shows local temperature rises in the form of
𝛿-Dirac function (temperature spikes) on tensile samples during testing
at 4 K.

The effective mechanical behavior of the material is modeled us-
ing the constitutive equations of Section 2.3 (i.e., the homogenized
depiction of the bi-phasic aggregate). Simulations are performed using
the UMAT user subroutine described in Section 3. The material is
considered to be fully austenitic in the undeformed configuration. The
martensitic transformation occurs as the loading proceeds. The sample
has been meshed with 450 eight-node tri-linear brick elements (C3D8 in
ABAQUS notation). A mesh convergence study has been performed in
which the time evolution of different critical output variables, namely
stress, strain, volume fraction of martensite, and necking inception,
were compared against different mesh sizes. While we have found
some mesh sensitivity in the numerical results, we have checked that
it does not significantly affect our results, neither qualitatively nor
quantitatively. The calculations have been carried out using a single
core of a laptop computer with an Intel(R) Core(TM) i5 − 8350U CPU
@ 1.70 GHz. The computational cost of a simulation varied between 10
and 45 minutes, depending on the rate of the martensitic transformation
(the calculations are faster for cases showing a slow or nonexistent
transformation) and on the homogenization scheme considered (the
Mori-Tanaka scheme was 10% faster than the Self-Consistent for the
case with the maximum time difference between the two). Note that
the computational cost is not significantly higher than in the unit-cell
calculations using the same homogenized model because the unit-cell
calculations include cyclic loading simulations where the accumulated
macroscopic effective strain of the bi-phase material is more than three
times higher than in the tensile simulations. The tensile test calculations
are to be compared with the experiments of Fernández-Pisón et al.
(2021) to check the ability of the developed homogenized model to
predict the martensitic transformation in AISI 304L and AISI 316LN
steels subjected to cryogenic temperatures (see Figs. 19 and 20).

6. Results

The calculations performed with the unit-cell model and the tensile
sample are reported in Sections 6.1 and 6.2, respectively.

6.1. Unit-cell calculations

The results obtained with the explicit representation of the marten-
site inclusions and the austenite matrix are systematically compared
to the calculations carried out using Mori-Tanaka and Self-Consistent
homogenization schemes. The calculations are performed with param-

eters corresponding to AISI 304L steel tested at 𝑇 = 77 K, see Table 2.
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Section 6.1.1 shows results for different values of stress triaxiality
𝑋𝛴𝛾+𝛼′

= −0.5, 0.5, 1.5, and 3 and Lode parameter 𝐿𝛾+𝛼′ = −1, 0,
nd 1, for monotonic and cyclic loading, and for a constant volume
raction of martensite of 𝐹𝛼′ = 45%. Section 6.1.2 includes calculations
erformed with two additional values of constant martensite volume
raction, 𝐹𝛼′ = 25% and 65%, for stress triaxiality 𝑋𝛴𝛾+𝛼′

= 0.5, and Lode
arameter 𝐿𝛾+𝛼′ = −1. Simulations with evolving volume fraction of
artensite for 𝑋𝛴𝛾+𝛼′

= 0.5 and 𝐿𝛾+𝛼′ = −1 are shown in Section 6.1.3.
ote that the calculations presented in Sections 6.1.1 and 6.1.2 assess

he predictive capacity of both homogenization models to capture the
echanical response of unit-cells with an explicit representation of the
artensitic microstructure. The mechanical behavior of the individual
hases in both the homogenization models and the simulations with
icrostructure representation is the same. It is important to emphasize

hat there has not been any prior calibration of the homogenized
odels to align with the mechanical response of the unit-cells featuring
icrostructure representation.

.1.1. Salient results
Fig. 6 shows the evolution of the normalized macroscopic effective

tress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for calculations
12

ith different microstructures with an explicit representation of the
artensite inclusions: (a) single central particle, (b) representative
olume element of a FCC-symmetric spatial distribution of inclusions
ith the same size and particles intersecting the boundaries, (c) FCC-

ymmetric spatial distribution of inclusions with the same size and a
oundary layer devoid of particles and (d) random spatial distribution
f particles with different sizes. The volume fraction of martensite
s 𝐹𝛼′ = 45%. The choice of this high martensite volume fraction
s motivated by the fact that the model has been specifically devel-
ped for cryogenic temperatures, during which certain grades show
arge amount of transformed martensite. Note also that a microstruc-
ure with a random distribution of particles of the same size (similar
o the one shown in Fig. 4(d) for 𝐹𝛼′ = 25%) is not possible for
𝛼′ = 45% (however, other configurations that do not have the particle-
ree boundary layer are able to achieve larger fractions, see Torquato
2002) and Luo et al. (2023)). The results with explicit depiction of the
icrostructure are compared with the predictions of the Mori-Tanaka

nd Self-Consistent homogenization schemes for the bi-phase material,
he austenite phase, and the martensite phase (for the homogenized
odel, a constant 𝑓𝛼′ = 45% is imposed). The idea is to assess

he capability of the homogenized models to describe the mechanical
esponse of the effective material and the individual phases in unit-
ell calculations with an explicit description of the microstructure for
Fig. 6. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to different microstructures: (a) single central particle, Fig. 4(a), (b) FCC-symmetric spatial distribution
of inclusions with the same size and particles intersecting the boundaries, Fig. 4(b), (c) FCC-symmetric spatial distribution of inclusions with the same size and a boundary layer
devoid of particles, Fig. 4(c), and (d) random spatial distribution of particles with different sizes, Fig. 4(e). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with
he macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material, the austenite phase, and the martensite phase for a stress triaxiality and Lode parameter in the
nit-cell equal to 𝑋𝛴𝛾+𝛼′ = 0.5 and 𝐿𝛾+𝛼′ = −1, respectively. The colored markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic
ffective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
nd Self-Consistent homogenization schemes with calculations corresponding to different microstructures: (a) single central particle, Fig. 4(a), (b) FCC-symmetric spatial distribution
f inclusions with the same size and particles intersecting the boundaries, Fig. 4(b), (c) FCC-symmetric spatial distribution of inclusions with the same size and a boundary layer
evoid of particles, Fig. 4(c), and (d) random spatial distribution of particles with different sizes, Fig. 4(e). Evolution of the macroscopic effective strain in the austenite 𝜀̄𝛾 and
he martensite 𝜀̄𝛼′ with the macroscopic effective strain in the bi-phase material 𝜀̄𝛾+𝛼′ . Results for a stress triaxiality and Lode parameter in the unit-cell equal to 𝑋𝛴𝛾+𝛼′ = 0.5 and
𝛾+𝛼′ = −1, respectively. The colored markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the bi-phase
aterial of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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his specific case (martensite inclusions and austenite matrix). The
alculations correspond to monotonic loading, with the stress triaxiality
nd Lode parameter being 𝑋𝛴𝛾+𝛼′

= 0.5 and 𝐿𝛾+𝛼′ = −1 (axisymmetric
ension), respectively. The macroscopic effective strain in the bi-phase
aterial is imposed to reach 𝜀̄𝛾+𝛼′ = 0.4, and the colored markers

ndicate the corresponding value of the macroscopic effective strain
n the individual phases. Recall that the behavior of the individual
hases is the same in both homogenization schemes and in the sim-
lations with microstructure representation, and that the behavior
f the phases was determined based on the tensile experiments pre-
ented in Fernández-Pisón et al. (2021). Consequently, the comparison
erformed between Mori-Tanaka and Self-Consistent predictions with
nit-cell simulations including explicit representation of the austenite
nd martensite microstructure does not entail any a priori calibration
f the homogenization schemes.

As can be seen in Fig. 6, the predictions of the homogenization
chemes for the effective behavior of the bi-phase material are very
lose to the results obtained with the four microstructures consid-
red (single central particle, representative volume element of a FCC-
ymmetric spatial distribution of inclusions with the same size and
articles intersecting the boundaries, FCC-symmetric spatial distribu-
ion of inclusions with the same size and a boundary layer devoid of
articles, and random spatial distribution of particles); notably, the
13
elf-Consistent model virtually overlaps with the unit-cell calculations
ith explicit representation of the martensite inclusions. However,

he partitioning of the strain between the two phases calculated with
he homogenization schemes shows important differences with the
imulations with explicit representation of the microstructure since
oth Self-Consistent and Mori-Tanaka underestimate the strain in the
artensite and overestimate the strain in the austenite. The largest
ifferences are obtained with the Mori-Tanaka model. For instance,
or the calculation with a single central particle (see Fig. 6(a)), for a
acroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4,

he Self-Consistent and Mori-Tanaka models underestimate the strain
n the martensite by 20% and 45%, respectively, and overestimate the
train in the austenite by 14% and 27%. Note that, since the martensite
s the hard phase, the effective strain is significantly smaller than in
he austenite (as expected). In fact, the larger strain in the martensite
redicted by the Self-Consistent scheme explains the slightly higher
tress in the bi-phase material obtained by this scheme compared to
he Mori-Tanaka scheme (the Self-Consistent 𝛴̄𝛾+𝛼′∕𝜎

𝑦0
𝛾 − 𝜀̄𝛾+𝛼′ curve

ies above the Mori-Tanaka curve). Moreover, note that, unlike in the
riginal model of Garion and Skoczeń (2002), the strain increment
n the bi-phase material does not match the strain increment in the
ustenite matrix. Note also that the results shown in Figs. 6(b) and
(c) for the representative volume element of an FCC-symmetric spatial
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Fig. 8. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Contours of accumulated plastic
strain 𝜖𝑝 for calculations corresponding to different microstructures: (a) single central particle, Fig. 4(a), (b) FCC-symmetric spatial distribution of inclusions with the same size
and particles intersecting the boundaries, Fig. 4(b), (c) FCC-symmetric spatial distribution of inclusions with the same size and a boundary layer devoid of particles, Fig. 4(c),
and (d) random spatial distribution of particles with different sizes, Fig. 4(e). Stress triaxiality and Lode parameter in the unit-cell: 𝑋𝛴𝛾+𝛼′ = 0.5 and 𝐿𝛾+𝛼′ = −1, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
distribution of inclusions with the same size and particles intersecting
the boundaries (Fig. 4(b)), and for the FCC-symmetric spatial distri-
bution of inclusions with the same size and a boundary layer devoid
of particles (Fig. 4(c)), respectively, are virtually the same. These two
representations of the FCC-symmetric spatial distribution of inclusions
are essentially equivalent, as expected. Furthermore, for this particular
case of martensite inclusions in an austenite matrix, the FCC-symmetric
spatial distribution models provide results that are very similar to those
with a random spatial distribution (compare Figs. 6(b) and 6(c) with
6(d)).

Fig. 7 shows the evolution of the macroscopic effective strain in
the austenite 𝜀̄𝛾 and the martensite 𝜀̄𝛼′ with the macroscopic effective
strain in the bi-phase material 𝜀̄𝛾+𝛼′ for the same calculations included
in Fig. 6. The strain in the phases increases linearly with the strain in
the bi-phase material, with a higher growth rate in the austenite and
14
a lower one in the martensite compared to the bi-phase material (as
expected since the martensite is the hard phase). Consistent with Fig. 6,
the predictions of the Self-Consistent model are closer to the results
obtained with the explicit description of the microstructure than those
provided by the Mori-Tanaka homogenization scheme.

The different deformation of austenite matrix and martensite parti-
cles is further illustrated in the contour plots of accumulated plastic
strain 𝜖𝑝 included in Fig. 8. Note that the results correspond to the
same calculations presented in Figs. 6 and 7 with explicit representation
of the microstructure. The plots correspond to two different values of
the macroscopic effective strain: 𝜀̄𝛾+𝛼′ = 0.2 and 𝜀̄𝛾+𝛼′ = 0.4, showing
matrix and inclusions separately. The cut-view of the matrix shows the
imprint of the martensite particles, which stretch out during loading,
turning into elongated spheroids with the semimajor axis parallel to the
major loading direction. Note that, even when the inclusions lose their
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Fig. 9. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting
the boundaries, see Fig. 4(b). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material,
the austenite phase, and the martensite phase for stress triaxiality in the unit-cell 𝑋𝛴𝛾+𝛼′ = 0.5. Lode parameter in the unit-cell: (a) 𝐿𝛾+𝛼′ = 0 and (b) 𝐿𝛾+𝛼′ = 1. The colored markers
indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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original spherical shape, the expression used for Eshelby’s tensor in the
homogenized model (Eq. (21)) does not lead to inaccurate predictions
of the material’s effective behavior (see Figs. 6 and 9). The color coding
of the isocontours is such that accumulated plastic strains ranging from
0 to 0.6 correlate with a color scale that goes from blue to red. Accu-
mulated plastic strains above 0.6 remain red. The color maps indicate
larger plastic strains and larger plastic strain gradients in the austenite
compared to the martensite. Notice that the accumulated plastic strain
in the particles is generally smaller than the macroscopic effective
strain in the bi-phase material, while the accumulated plastic strain
in the matrix is greater (as expected since the martensite is the hard
phase in the bi-phase material). Namely, for the macroscopic strain
𝜀̄𝛾+𝛼′ = 0.4, the maximum accumulated plastic strain for the microstruc-
tures with a single central particle, FCC-symmetric spatial distribution
of inclusions with the same size and particles intersecting the bound-
aries, FCC-symmetric spatial distribution of inclusions with the same
size and a boundary layer devoid of particles, and a random spatial
distribution of particles is 1.27, 1.40, 2.43, and 12.5, respectively (such
high values are obtained because no failure criterion is used). These
large values of accumulated plastic strain are located near the inter-
face between austenite and martensite, close to the semimajor axis
of the deformed particles, so that the interaction between martensite
inclusions promotes plastic localization in the austenite. Furthermore,
in a microstructure with randomly distributed particles, the highest
accumulated plastic strain occurs in the region between closely spaced
inclusions (note that the minimum allowed distance between particles
in the undeformed configuration is 1 μm).

Fig. 9 shows the evolution of the normalized macroscopic effective
stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for the microstruc-
ture with FCC-symmetric spatial distribution of inclusions with the
same size and particles intersecting the boundaries, see Fig. 4(b),
for the Mori-Tanaka and Self-Consistent homogenization schemes. The
difference with Fig. 6(b) is that the Lode parameter in the unit-cell is
𝐿𝛾+𝛼′ = 0 (generalized shear) and 𝐿𝛾+𝛼′ = 1 (axisymmetric compres-
sion) in Figs. 9(a) and 9(b), respectively. The results for the three values
of the Lode parameter are very similar, with the normalized macro-
scopic effective stress in the bi-phase material for the FCC-symmetric
distribution of particles slightly decreasing as the Lode parameter
increases (notice that the homogenization scheme providing closer
predictions to the 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄ curve obtained with the explicit repre-
sentation of the microstructure is the Self-Consistent for 𝐿 = −1,
15

𝛾+𝛼′
and the Mori-Tanaka for 𝐿𝛾+𝛼′ = 1, compare Figs. 6(b) and 9(b)).
Moreover, there is a difference in the strain in the individual phases for
the calculations with explicit representation of the microstructure: the
effective strain in the austenite/martensite is slightly smaller/greater
for 𝐿𝛾+𝛼′ = −1 than for 𝐿𝛾+𝛼′ = 1, with 𝐿𝛾+𝛼′ = 0 representing an
intermediate situation between the other two (see the colored markers
and the numbers for 𝜀̄𝛾+𝛼′ = 0.4 in the legend of Figs. 6(b) and 9).

Fig. 10 includes 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄ curves obtained with the FCC-symmetric
spatial distribution of inclusions with the same size and particles in-
tersecting the boundaries, see Fig. 4(b), and with the Mori-Tanaka and
Self-Consistent homogenization schemes. The difference with Fig. 6(b)
is that the stress triaxiality in the unit-cell is greater: 𝑋𝛴𝛾+𝛼′

= 1.5 and
𝑋𝛴𝛾+𝛼′

= 3 in Figs. 10(a) and 10(b), respectively. The 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄ curves
are virtually insensitive to the triaxiality because the individual phases
are modeled using von Mises plasticity, see Section 2.1. However,
the distribution of hydrostatic stress in the phases depends on the
triaxiality. Figs. 11(a) and 11(b) show the evolution of the normalized
macroscopic hydrostatic stress 𝛴ℎ∕𝜎

𝑦0
𝛾 with the macroscopic effective

strain 𝜀̄ for the same calculations included in Figs. 10(a) and 10(b),
respectively. Note that the hydrostatic stress in the bi-phase material
and in the individual phases is double for 𝑋𝛴𝛾+𝛼′

= 3 than for 1.5. The
Self-Consistent scheme yields 𝛴ℎ∕𝜎

𝑦0
𝛾 results that are very similar to the

alculations with FCC-symmetric spatial distribution of particles, while
he Mori-Tanaka scheme overestimates the hydrostatic stress in the
artensite and underestimates the hydrostatic stress in the austenite

nd in the bi-phase material. For a given value of the effective strain in
he individual phases, the hydrostatic stress in the martensite is higher
han in the austenite (due to the higher flow strength in the martensite).
owever, under a given homogenization scheme, the macroscopic hy-
rostatic stress predicted for the bi-phase material is the same as that
or the individual phases at a given value of the macroscopic effective
train in the bi-phase material (recall that the elastic properties of
oth individual phases are assumed to be equal). For instance, the
alculations with the Self-Consistent model for 𝑋𝛴𝛾+𝛼′

= 1.5 and at
̄𝛾+𝛼′ = 0.4 predicts a normalized macroscopic hydrostatic stress of
ℎ∕𝜎

𝑦0
𝛾 = 7 for the bi-phase material and the two individual phases

see Fig. 11(a)).

Fig. 12 compares cyclic loading results obtained with the explicit
epresentation of a single central martensitic inclusion, see Fig. 4(a),
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Fig. 10. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori–Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting
the boundaries, see Fig. 4(b). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material,
the austenite phase, and the martensite phase for the Lode parameter in the unit-cell 𝐿𝛾+𝛼′ = −1. Stress triaxiality in the unit-cell: (a) 𝑋𝛴𝛾+𝛼′ = 1.5 and (b) 𝑋𝛴𝛾+𝛼′ = 3. The colored
markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting
the boundaries, see Fig. 4(b). Evolution of the normalized macroscopic hydrostatic stress 𝛴ℎ∕𝜎

𝑦0
𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase

material, the austenite phase, and the martensite phase for the Lode parameter in the unit-cell 𝐿𝛾+𝛼′ = −1. Stress triaxiality in the unit-cell: (a) 𝑋𝛴𝛾+𝛼′ = 1.5 and (b) 𝑋𝛴𝛾+𝛼′ = 3.
he colored markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ith the results from the Mori-Tanaka and Self-Consistent homoge-
ization schemes. The normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾
s plotted against the macroscopic effective strain 𝜀̄ for the bi-phase
aterial, the austenite phase, and the martensite phase in subfigures
2(a), 12(b), and 12(c), respectively. The simulations are performed
or the macroscopic effective strain to vary in the bi-phase material
𝜀̄𝛾+𝛼′ from 0.15 to −0.15. Note that the negative values of the macro-
copic effective stress and the macroscopic effective strain are for
epresentation purposes only, actually, the macroscopic effective stress
nd strain are always positive. The positive/negative values of the
acroscopic effective strain in the bi-phase material 𝜀̄𝛾+𝛼′ correspond

o the positive/negative displacements of the unit-cell side 𝑥 = 0
long the 𝑥-direction, see Fig. 3. Moreover, the positive values of
he normalized macroscopic effective stress in the bi-phase material
̄𝛾+𝛼′∕𝜎

𝑦0
𝛾 correspond to 𝑋𝛴𝛾+𝛼′

= 0.5 and 𝐿𝛾+𝛼′ = −1, while the
egative values corresponds to 𝑋𝛴𝛾+𝛼′

= −0.5 and 𝐿𝛾+𝛼′ = 1 (the
ign of triaxiality and Lode parameter in the unit-cell switches during
16
he simulation). For the individual phases, the positive values of the
ormalized macroscopic effective stress 𝛴̄𝑝∕𝜎

𝑦0
𝛾 correspond to 𝐿𝑝 = −1

nd the negative values correspond to 𝐿𝑝 = 1, where the subscript 𝑝
efers to either the austenite or the martensite phase (𝑝 = 𝛾 or 𝑝 = 𝛼′,
espectively). The positive/negative values of the macroscopic effective
train 𝜀̄𝑝 are deduced from the shape of the 𝛴̄𝑝∕𝜎

𝑦0
𝛾 − 𝜀̄𝑝 curve. The

imulations consist of two and a quarter cycles.
The predictions of the homogenization schemes for the bi-phase

aterial are in satisfactory agreement with the single particle simu-
ation results, see Fig. 12(a), notably in the case of the Self-Consistent
pproach (the Mori-Tanaka model slightly underestimates the effective
tress). Notice that the kinematic contribution to the hardening of the
ndividual phases (recall that the Bauschinger parameter was taken
s 𝛽 = 0.45 for both austenite and martensite) makes the absolute
ffective stress in the bi-phase material drop from 1185 MPa at the
eginning of the first unloading (see the yellow marker in Fig. 12(a),
̄ ∕𝜎𝑦0 = 3.67) to −113 MPa (𝛴̄ ∕𝜎𝑦0 = −0.35) when plastic strains
𝛾+𝛼′ 𝛾 𝛾+𝛼′ 𝛾
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Fig. 12. Unit-cell finite element simulations. Cyclic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Varying stress triaxiality
𝑋𝛴𝛾+𝛼′ = ±0.5 and Lode parameter 𝐿𝛾+𝛼′ = ±1 in the unit-cell. Comparison of Mori-Tanaka and Self-Consistent homogenization schemes with calculations corresponding to a single
central particle, see Fig. 4(a). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ varying the macroscopic effective strain of the
bi-phase material between 0.15 and −0.15. Results corresponding to: (a) bi-phase material, (b) austenite phase, and (c) martensite phase. The colored arrows and numbers indicate
the loading sequence and order of cycles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
start developing again (these values refer to the unit-cell simulation
performed with the Self-Consistent homogenization scheme). However,
the homogenization schemes provide less accurate predictions for the
mechanical behavior of the individual phases (notice that both the scale
of the abscissa and ordinate axis are different in subplots 12(a), 12(b),
and 12(c)). Consistent with the results shown in Figs. 6, 9, and 10, Self-
Consistent and Mori-Tanaka overestimate the strain in the austenite and
underestimate the strain in the martensite, with increasing differences
as the number of cycles increases. Notice that the 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄ cycles
predicted by the homogenization schemes for the austenite/martensite
are exterior/interior to the results for the single central particle, with
the cycle obtained with Mori-Tanaka displaying the largest/smallest
amplitude.

6.1.2. The effect of martensite volume fraction
Fig. 13 shows the evolution of the normalized macroscopic effec-

tive stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for calcu-
lations with two different microstructures: (a) single central particle,
see Fig. 4(a), and (b) random spatial distribution of particles with
the same size, see Fig. 4(d). The volume fraction of martensite is
𝐹𝛼′ = 25% in contrast to the calculations included in previous Sec-
tion 6.1.1 that correspond to a larger martensite content of 45%. Note
17
that for 𝐹𝛼′ = 25%, it is possible to create all microstructures introduced
in Fig. 4. For the sake of brevity and since it does not significantly
affect the results, neither qualitatively nor quantitatively, only the
calculations corresponding to the two aforementioned microstructures
have been included in Fig. 13 (results for the FCC-symmetric spatial
distribution of particles are provided and discussed in a following
paragraph). The results are compared with the predictions of the Mori-
Tanaka and Self-Consistent homogenization schemes. Recall that the
homogenized models have not been calibrated to align with the me-
chanical response of the unit cells with an explicit representation of the
microstructure. Both homogenization schemes and the explicit model
use the same behavior of the individual phases, which were determined
based on experimental data (see Section 4). The calculations presented
in Fig. 13 correspond to monotonic loading, with the stress triaxiality
and Lode parameter being 𝑋𝛴𝛾+𝛼′

= 0.5 and 𝐿𝛾+𝛼′ = −1, respectively.
Similarly to the calculations performed with 𝐹𝛼′ = 45% in Fig. 6, the
homogenization models yield results for the bi-phase material that are
in agreement with the calculations with explicit representation of the
microstructure, yet both Mori-Tanaka and Self-Consistent overestimate
the strain in the austenite and underestimate the strain in the marten-
site. Moreover, note that in comparison with the results shown in Fig. 6,
decreasing the volume fraction of martensite from 45% to 25% has led
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Fig. 13. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 25%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to two different microstructures: (a) single central particle, see Fig. 4(a), and (b) random spatial
distribution of inclusions with the same size and a boundary layer devoid of particles, see Fig. 4(d). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the
macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material, the austenite phase, and the martensite phase for a stress triaxiality and Lode parameter in the
unit-cell equal to 𝑋𝛴𝛾+𝛼′ = 0.5 and 𝐿𝛾+𝛼′ = −1, respectively. The colored markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic
effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K. Comparison of Mori-Tanaka and Self-Consistent homogenization schemes
with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting the boundaries, see Fig. 4(b), for two volume
fractions of martensite: (a) 𝐹𝛼′ = 25% and (b) 𝐹𝛼′ = 65%. Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding
o the bi-phase material, the austenite phase, and the martensite phase for a stress triaxiality and Lode parameter in the unit-cell equal to 𝑋𝛴𝛾+𝛼′ = 0.5 and 𝐿𝛾+𝛼′ = −1, respectively.
he colored markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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o a decrease in the normalized macroscopic effective stress of ≈ 30%
or a macroscopic effective strain of 𝜀̄𝛾+𝛼′ = 0.4.

The effect of the martensite volume fraction is further investigated
n Fig. 14, which shows the evolution of the normalized macroscopic
ffective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for cal-
ulations performed with the FCC-symmetric spatial distribution of
nclusions with the same size and particles intersecting the boundaries,
ee Fig. 4(b). Two different values of the volume fraction of martensite
re considered, 𝐹𝛼′ = 25% in subplot 14(a) and 𝐹𝛼′ = 65% in subplot
4(b). Note that neither the single central inclusion nor the random
patial distribution of inclusions with a boundary layer devoid of
articles are possible for 𝐹𝛼′ = 65%. The results are compared with
he predictions obtained from Mori-Tanaka and Self-Consistent models
for the homogenized models, a constant 𝑓𝛼′ = 25% and 𝑓𝛼′ = 65%
s imposed, corresponding to subplots 14(a) and 14(b), respectively).
otice that the macroscopic effective stress is shifted upward as the
18
volume fraction of martensite increases. For instance, the calculations
with the FCC-symmetric spatial distribution of particles predict that
the value of 𝛴̄𝛾+𝛼′∕𝜎

𝑦0
𝛾 for 𝜀̄𝛾+𝛼′ = 0.4 is 4.06 for 𝐹𝛼′ = 25%, and 5.32

or 𝐹𝛼′ = 65%. The predictions of the homogenization schemes for
he effective behavior of the bi-phase material are close to the results
btained with the FCC-symmetric distribution of particles for both
nalyzed volume fractions of martensite. The 𝛴̄𝛾+𝛼′∕𝜎

𝑦0
𝛾 − 𝜀̄𝛾+𝛼′ curves

redicted by the two homogenization models differ more as the volume
raction of martensite increases, with the curve corresponding to the
elf-Consistent scheme lying above the one corresponding to the Mori-
anaka model, which is explained by the higher strain in the martensite
or the Self-Consistent scheme. In fact, there are notable differences
n the results obtained from the two homogenization schemes for the
artitioning of the strain between the phases. Specifically, for the
elf-Consistent model, the predictions are closer to the calculations
ith explicit representation of the microstructure as the volume of
artensite increases, while in the case of the Mori-Tanaka model, the
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predictions are less accurate. These results are consistent with the fact
that the validity of the Mori-Tanaka scheme is questioned when the
matrix-particle microtopology is lost for a high volume fraction of
martensite (see Section 1, and Böhm (1998) and Chatzigeorgiou et al.
(2018)). On the other hand, notice the exceptional quantitative agree-
ment between the Self-Consistent predictions and the results of the
FCC-symmetric distribution of particles for 𝐹𝛼′ = 65% (less than 3% and
% difference in the macroscopic effective strain in the austenite and
he martensite, respectively, for a macroscopic strain in the bi-phase
aterial of 𝜀̄𝛾+𝛼′ = 0.4).

.1.3. The effect of martensitic transformation
Fig. 15(a) shows the predictions of Mori-Tanaka and Self-Consistent

omogenization schemes for the evolution of the normalized macro-
copic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄
or the bi-phase material and the individual phases. The results corre-
pond to monotonic loading, temperature 𝑇 = 77 K, stress triaxiality
𝛴𝛾+𝛼′

= 0.5 and Lode parameter 𝐿𝛾+𝛼′ = −1. Fig. 15(b) displays
he corresponding evolution of the macroscopic volume fraction of
artensite 𝐹𝛼′ (%) with the macroscopic effective strain in the bi-phase
aterial 𝜀̄𝛾+𝛼′ . Note that the scale of the abscissa axis in Fig. 15(b)

s four times smaller than in Fig. 15(a) for better visualization of the
artensitic transformation. Recall that the behavior of the individual
hases and the kinetics of the martensitic transformation are the same
n both homogenization schemes and were determined based on the
ensile experiments presented in Fernández-Pisón et al. (2021).

The 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄ curves shown in Fig. 15 (a) for the bi-phase material
isplay a sigmoidal-type shape due to the transformation of austenite
nto martensite. At the beginning of the loading process, the effective
tress in the bi-phase material corresponds to the effective stress in
he austenite (the bi-phase material is initially 100% austenite). As the
oading continues, the formation of martensite leads to a rapid increase
f the effective stress in the bi-phase material, which eventually ap-
roaches the effective stress of the martensite (e.g., for 𝜀̄𝛾+𝛼′ = 0.1 both
ori-Tanaka and Self-Consistent predict 8.6% of martensite; and for

𝜀̄𝛾+𝛼′ = 0.2, they predict 84.7% and 76.7%, respectively, see Fig. 15(b)).
he differences in the effective stress of the bi-phase material ultimately
ome from the differences in the partitioning of the strain between
he two phases predicted by the two homogenization schemes. On
he one hand, the greater strain in the austenite computed with the
19

ori-Tanaka model (see Fig. 15(a)) makes the volume fraction of
ransformed martensite increase faster (see Fig. 15(b)). Note that the
aw of Olson and Cohen (1975) solely depends on the accumulated
lastic strain in the austenite, see Eq. (9). Moreover, this faster trans-
ormation for the Mori-Tanaka model implies a faster increase in the
acroscopic effective stress of the bi-phase material since, as concluded

rom Section 6.1.2, a higher martensite volume fraction yields a higher
ffective stress (compare Figs. 6(b) and 14). On the other hand, for
similar martensite volume fraction (large strain values where the

ransformation is close to saturation, see Fig. 15(b)), the greater strain
n the martensite predicted by the Self-Consistent model makes the
ffective stress in the bi-phase material to increase (see Fig. 15(a)).
hese results make apparent the effect of the homogenization scheme
n the kinetics of the phase transformation.

Fig. 16 presents results for a unit-cell that contains a single central
ustenite particle, see Fig. 4(a), of 45% volume which is modeled
ith Mori-Tanaka and Self-Consistent homogenization schemes (sepa-

ately) while accounting for the martensitic transformation. The matrix
aterial surrounding the inclusion is modeled as non-transforming

ustenite. The difference with respect to the results in Fig. 15 is that
nly the inclusion (instead of the whole unit-cell) may transform.
he idea is to model the formation of a martensite inclusion in an

nitially (fully) austenitic material. Also, the idea is to analyze the
on-uniform distribution of martensite in the particle since, in the
revious simulations, the microscopic volume fraction of martensite
as always uniform and equal to the macroscopic value. Note that

his configuration could also be used to analyze TRIP steels by simply
odeling the matrix material as a non-transforming ferrite. Fig. 16(a)

hows the evolution of the normalized macroscopic effective stress
̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for the bi-phase material
nd the individual phases, while Fig. 16(b) includes the evolution of the
acroscopic volume fraction of martensite 𝐹𝛼′ (%) with the macroscopic

ffective strain in the bi-phase material 𝜀̄𝛾+𝛼′ . Note that, unlike Fig. 15,
the scale of the abscissa axis in Figs. 16(a) and Fig. 16(b) is the same.

The calculation results shown in Fig. 16 yield the same qualita-
tive results as the ones in Fig. 15. The Mori-Tanaka scheme predicts
less/more strain in the martensite/austenite than the Self-Consistent
model and thus faster martensite transformation, which yields greater
strain hardening and effective stress in the bi-phase material for in-
termediate values of the macroscopic effective strain (greater strain

hardening within the range 0.14−0.17 and greater effective stress within
Fig. 15. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K. Stress triaxiality and Lode parameter in the unit-cell are 𝑋𝛴𝛾+𝛼′ = 0.5 and
𝐿𝛾+𝛼′ = −1, respectively. Comparison of Mori-Tanaka and Self-Consistent homogenization schemes. (a) Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the

acroscopic effective strain 𝜀̄. The red and green markers indicate the value of the macroscopic effective strain in the individual phases for a macroscopic effective strain in the
i-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (b) Evolution of the macroscopic volume fraction of martensite 𝐹𝛼′ (%) with the macroscopic effective strain in the bi-phase material 𝜀̄𝛾+𝛼′ . (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the range 0.14−0.24) and lower strain hardening and effective stress for
larger strain values, see Fig. 16(a). The rapid martensitic transformation
increases the hardening rate, while the high martensite volume fraction
and the large strain in the martensite increase the effective stress.
Note that the maximum difference in the martensite volume fraction
between Mori-Tanaka and Self-Consistent models shown in Fig. 16(b)
corresponds to 𝜀̄𝛾+𝛼′ = 0.16. For this value of the macroscopic effective
strain in the bi-phase material, the volume fraction of martensite
in the unit-cell (referred to as the macroscopic volume fraction of
martensite 𝐹𝛼′ ) is 33% and 27% for Mori-Tanaka and Self-Consistent
models, respectively, while the fraction of the austenite particle that has
transformed into martensite amounts to 74.2% and 61.2%, respectively.
The contours of the microscopic volume fraction of martensite included
in Fig. 17 show that, as expected, the transformation does not occur
20
uniformly throughout the particle (the cut-view has been included to
expose the non-uniform transformation inside of the particle). Note that
a microscopic volume fraction of martensite equal to 𝑓𝛼′ = 100%, would
mean that the given element has been completely transformed into
martensite. Moreover, Fig. 18 shows the evolution of the microscopic
volume fraction of martensite 𝑓𝛼′ (%) along the normalized major semi-
axis of the inclusion 𝑥̄ measured along the white solid line indicated
in Fig. 17 (note that the data plotted in Fig. 18 covers the entire
major semi-axis of the inclusion). The results correspond to three
different values of the macroscopic effective strain in the bi-phase
material 𝜀̄𝛾+𝛼′ = 0.08, 0.16 and 0.24 (see yellow and blue markers in
Fig. 16(b)). Note that 𝜀̄𝛾+𝛼′ = 0.16 corresponds to the contour plots
shown in Fig. 17. For 𝜀̄𝛾+𝛼′ = 0.08, the martensite volume fraction is
relatively small ≈ 3.5%, and it is evenly distributed throughout the
Fig. 16. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 77 K. Stress triaxiality and Lode parameter in the unit-cell are 𝑋𝛴𝛾+𝛼′ = 0.5 and
𝐿𝛾+𝛼′ = −1, respectively. Comparison of Mori-Tanaka and Self-Consistent homogenization schemes. The unit-cell contains an austenite inclusion of 45% volume, which is modeled
with Mori-Tanaka and Self-Consistent homogenization schemes, separately, while accounting for the martensitic transformation in a non-transforming austenite matrix. (a) Evolution
of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. The red and green markers indicate the value of the macroscopic effective strain in
the individual phases for a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (b) Evolution of the macroscopic volume fraction of martensite 𝐹𝛼′ (%) with the
macroscopic effective strain in the bi-phase material 𝜀̄𝛾+𝛼′ . The yellow markers indicate the value of the macroscopic effective strain in the bi-phase material corresponding to the
maximum difference in the martensite volume fraction between the Mori-Tanaka and Self-Consistent models (for this strain value, the contours and evolution of the microscopic
volume fraction of martensite are shown in Figs. 17 and 18, respectively). The blue markers correspond to values of the macroscopic effective strain in the bi-phase material of
0.08 and 0.24 (for these strain values, the evolution of the microscopic volume fraction of martensite is also shown in Fig. 18). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Unit-cell finite element simulations. Monotonic loading. Material 304L and temperature 𝑇 = 77 K. Contours of the microscopic volume fraction of martensite 𝑓𝛼′ (%)
for calculations corresponding to a single austenite inclusion of 45% volume, which is modeled with Mori-Tanaka and Self-Consistent homogenization schemes, separately, while
accounting for the martensitic transformation in a fully non-evolving austenite matrix. The plots correspond to a macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.16
and a macroscopic volume fraction of 𝐹𝛼′ = 33% and 𝐹𝛼′ = 27% for the Mori-Tanaka and Self-Consistent homogenization schemes, respectively (see the yellow marker in Fig. 16(b)).
The white solid line included in the figure indicates the major semi-axis of the inclusion, which corresponds to the measurement path used in Fig. 18. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).
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Fig. 18. Unit-cell finite element simulations. Monotonic loading. Material 304L and temperature 𝑇 = 77 K. Comparison of Mori-Tanaka and Self-Consistent homogenization schemes.
Calculations corresponding to a single austenite inclusion of 45% volume, which is modeled with Mori-Tanaka and Self-Consistent homogenization schemes, while accounting for
the martensitic transformation in a fully non-evolving austenite matrix. Evolution of the microscopic volume fraction of martensite 𝑓𝛼′ (%) along the normalized major semi-axis
of the inclusion 𝑥̄, see white solid line in Fig. 17. The data correspond to three values of the macroscopic effective strain in the bi-phase material of 𝜀̄𝛾+𝛼′ : 0.08, 0.16 and 0.24.

he corresponding values of the macroscopic volume fraction are: 𝐹𝛼′ = 1.5%, 33% and 40%, and 𝐹𝛼′ = 1.5%, 27% and 37%, for the Mori-Tanaka and Self-Consistent homogenization
chemes, respectively (see the yellow and blue markers in Fig. 16(b)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.).
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nclusion. Furthermore, there are no noticeable differences between the
redictions obtained from both homogenization schemes. However, for
𝜀̄𝛾+𝛼′ = 0.16, the Mori-Tanaka scheme predicts ≈ 12% more martensite
han the Self-Consistent model (as mentioned above), and the volume
raction of martensite is greater in the central section of the inclusion,
here larger plastic strains are attained. The lower transformation is

ocated near the interface between inclusion and matrix (where the
aximum plastic strain in the austenite matrix occurs, see Fig. 8 and

he discussion therein). Similar qualitative results are obtained for
𝜀̄𝛾+𝛼′ = 0.24, but the martensite volume fraction predicted by both Mori-

anaka and Self-Consistent schemes is greater, and the difference in
he predictions between both homogenization schemes are smaller (5%
ore martensite predicted by the Mori-Tanaka model).

.2. Tensile test calculations

The experimental results reported by Fernández-Pisón et al. (2021)
or AISI 304L and AISI 316LN samples subjected to uniaxial tension
re compared with numerical simulations performed with the finite
lement model presented in Section 5.2, in which the mechanical
ehavior of the bi-phase material is described with Mori-Tanaka and
elf-Consistent homogenization schemes separately. Recall that the
aterial parameters for both steel grades are included in Table 2. The

omparison between experiments and finite elements is performed for
he samples subjected to three different temperatures: 𝑇 = 300 K (room
emperature), 77 K, and 4 K. In the calculations, the temperature is
ssumed to be constant during the entire deformation process, and the
aterial is considered to be initially fully austenitic, consistent with the
icrostructural observations of Fernández-Pisón et al. (2021).

Fig. 19 shows experimental data and finite element results for the
volution of the true stress 𝜎 and the volume fraction of martensite 𝑓𝛼′
ith the true strain 𝜖 in AISI 304L tensile samples. Note that true strain
nd true stress are computed in the same manner in the experiments
nd in the finite element simulations. On the one hand, 𝜖 = ln (1 + 𝑒),
here 𝑒 = 𝛥𝐿

𝐿 is the nominal strain, with 𝐿 being the initial gage length
nd 𝛥𝐿 the axial elongation of the gage length. On the other hand, 𝜎 =
𝐹 1 + 𝑒 , where 𝐹 is the axial force in the sample and 𝐴 is the initial
21

𝐴 ( )
ross-section area in the gage region. The volume fraction of martensite
s computed by averaging the martensite content in the gage, both
n the experiments (for each measuring method, see Fernández-Pisón
t al. (2021)) and in the finite element simulations. The data shown in
he graphs correspond to strain values before the maximum axial force
s reached. Moreover, note that at 𝑇 = 4 K, the experiments showed

discontinuous plastic flow (see Fernández-Pisón et al. (2021)), yet the
constitutive model does not include features to describe this material
instability, so the test data in Fig. 19(c) correspond to the upper envelop
of the actual experimental results in order to facilitate the comparison
with the simulations.

For 𝑇 = 300 K, see Fig. 19(a), both homogenization schemes yield
virtually the same results. Mori-Tanaka and Self-Consistent predictions
find very good quantitative agreement with the experimental stress–
strain characteristic and capture the quasi-linear increase of the volume
fraction of martensite with the sample deformation. Just like in the
experiments, the simulations predict the transformation to start at
𝜖 ≈ 0.05, such that the content of martensite reaches ≈ 5% when
≈ 0.4. The quantitative differences between experiments and simu-

lations for the volume fraction of martensite are due to the inherent
scatter of the local experimental measurements (see Fernández-Pisón
et al., 2021). The relatively low amount of austenite transformed into
martensite causes the strain hardening of the material to be roughly
linear (i.e., very similar to the strain hardening of the austenite phase).

For 𝑇 = 77 K, see Fig. 19(b), the experimental 𝜎 − 𝜖 curve dis-
lays a sigmoidal shape—due to the increasing amount of austenite
ransformed into martensite—which is captured by both Mori-Tanaka
nd Self-Consistent models. Notice that both the scale of the abscissa
nd ordinate axis are different than in Fig. 19(a). The quantitative dif-
erences between measured and predicted stress–strain characteristics
re mainly limited to a narrow range of intermediate strain values,
.15 ≤ 𝜖 ≤ 0.25, for which the homogenization models overestimate
he stress and strain hardening of the material. Notice that both Mori-
anaka and Self-Consistent provide fairly accurate predictions for the
train at which transformation starts (𝜖 ≈ 0.05), for the strain at

which transformation ends (𝜖 ≈ 0.25), and for the saturation value of
martensite (𝑓 ≈ 85%). Indeed, the strain at which the transformation
𝛼′
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Fig. 19. Tensile test finite element simulations. Material 304L. Evolution of the true stress 𝜎 and the volume fraction of martensite 𝑓𝛼′ versus the true strain 𝜖 for calculations
erformed with Mori-Tanaka and Self-Consistent homogenization schemes accounting for the martensitic transformation in an initial fully austenitic material. Comparison with the
xperimental results reported in Fernández-Pisón et al. (2021). Temperature: (a) 𝑇 = 300 K, (b) 𝑇 = 77 K, and (c) 𝑇 = 4 K. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
egins and the saturation value of martensite are not influenced by the
omogenization scheme but are determined by the Olson and Cohen
1975) law and the corresponding material parameters. On the other
and, the transformation rate obtained with the homogenization mod-
ls for intermediate strains seems to be greater than in the experiments,
specially for the Mori-Tanaka model, causing the overestimation of the
tress and the strain hardening at intermediate values of strain.

For 𝑇 = 4 K, see Fig. 19(c), the experimental results for the evolution
f the true stress 𝜎 and the volume fraction of martensite 𝑓𝛼′ are

qualitatively very similar to the data obtained at 77 K. On the other
hand, the flow strength of the material has increased with the decrease
in testing temperature, most likely due to the temperature sensitivity
of the individual phases rather than to the martensitic transformation,
which occurs at a similar rate to that at 77 K. Both Mori-Tanaka and
Self-Consistent models describe the sigmoidal strain hardening of the
material and the boost of the flow stress with the temperature decrease.
For instance, the homogenization models capture the increase in the
initial yield stress of the material as the testing temperature decreases,
which goes from 300 MPa to 350 MPa and 400 MPa (determined from
he experimental curves as the 0.2% offset yield strength according to
he standard ASTM-E8) at 300 K, 77 K, and 4 K, respectively. It shows

the accurate calibration of the mechanical behavior of the austenite
(at low strains 𝜖 ≤ 0.1, the microstructure of the material is largely
ustenite). Moreover, notice that at larger strains (𝜖 ≥ 0.15), the
22
predictions of the Self-Consistent scheme are closer to the experiments
than the results obtained with the Mori-Tanaka model, just like it
happened for 77 K, because the Self-Consistent scheme shows a lower
transformation rate (Mori-Tanaka seems to overestimate the maximum
transformation rate at intermediate strains).

Fig. 20 shows experimental data and finite element results for the
evolution of the true stress and the volume fraction of martensite with
the true strain in AISI 316LN tensile samples tested at 300 K, 77 K, and
4 K. The only difference with respect to the results shown in Fig. 19 is
the steel grade investigated.

For 𝑇 = 300 K, see Fig. 20(a), both homogenization models accu-
rately predict the flow strength level and the quasi-linear hardening of
the material, as well as the lack of martensitic transformation within
the whole range of strains considered (recall that the data displayed
in the graphs correspond to strain values prior to the maximum ax-
ial force being attained). Decreasing the testing temperature to 77 K
makes the flow strength increase and promotes the transformation from
austenite into martensite, Fig. 20(b). Notice that both the scale of
the abscissa and ordinate axis are different than in Fig. 20(a). The
strain hardening of the material is quasi-linear (as for 300 K), most
likely because the mechanical behavior of austenite and martensite
phases is more similar than in the case of AISI 304L, see Fig. C.22,
and also because of the gradual transformation and relatively low
volume fraction of transformed austenite (slower transformation and
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Fig. 20. Tensile test finite element simulations. Material 316LN. Evolution of the true stress 𝜎 and the volume fraction of martensite 𝑓𝛼′ versus the true strain 𝜖 for calculations
performed with Mori-Tanaka and Self-Consistent homogenization schemes accounting for the martensitic transformation in an initial fully austenitic material. Comparison with the
experimental results reported in Fernández-Pisón et al. (2021). Temperature: (a) 𝑇 = 300 K, (b) 𝑇 = 77 K, and (c) 𝑇 = 4 K. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
less content of martensite than in the case of AISI 304L at the same
temperature of 77 K). The evolution of the volume fraction of marten-
site displays a concave-upward shape, reaching 𝑓𝛼′ ≈ 20% for 𝜖 ≈ 0.4.
Notice that the predictions of both homogenization schemes overlap
and find very good qualitative and quantitative agreement with the
experimental results. Similarly, both Mori-Tanaka and Self-Consistent
yield virtually the same numerical results at 4 K, see Fig. 20(c), and
predict the increase in the flow strength of the material and the greater
transformation rate with the temperature decrease (recall that the test
data included in the graph corresponds to the upper envelop of the flow
stress, so it does not show the discontinuous plastic flow observed in
the actual experimental results, see Fernández-Pisón et al., 2021). For
instance, the simulations accurately predict that the initial yield stress
of AISI 316LN increases as the testing temperature decreases, which
goes from 750 MPa to 950 MPa (determined from the experimental
curves as the 0.2% offset yield strength according to the standard ASTM-
E8) at 77 K and 4 K, respectively. Besides, the simulations also capture
the concave-upward shape of the evolution of the volume fraction of
martensite with the strain in the sample, such that 𝑓𝛼′ ≈ 27% for
𝜖 ≈ 0.32. Note that if the amount of transformed martensite is low,
23
practically any homogenization model can generate results that repli-
cate the material’s effective behavior. Moreover, in such a case, one
could even forget the homogenization approach and instead employ
a conventional material model with a macroscopic yield function that
does not consider the evolving material microstructure. However, in ap-
plications like high-field superconducting magnet systems, it is critical
to ascertain whether the material undergoes martensitic transformation
and consequently exhibits ferromagnetic properties. In such cases, it is
encouraged to consider homogenization models that account for the
phase transformation.

These results suggest that if the mechanical behavior of the phases
is similar (as in the case of AISI 316LN, see the behavior of the
individual phases in Fig. C.22), the differences in the predictions of
Mori-Tanaka and Self-Consistent models are small, and both homoge-
nization schemes accurately capture the effective mechanical behavior
of the material and the rate of the martensitic transformation for a wide
range of strains and testing temperatures, see Fig. 20. However, if the
mechanical behavior of the phases is rather different (as in the case
of AISI 304L, see the behavior of the individual phases for example in
Fig. B.21), the differences in the predictions of Mori-Tanaka and Self-
Consistent models become noticeable, and the Self-Consistent scheme
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yields results closer to experiments for the effective behavior of the ma-
terial and for the martensitic transformation rate at low temperatures
and large strains (when the volume fraction of transformed martensite
is large), see Fig. 19.

7. Summary and conclusions

In this paper, we have developed a homogenized constitutive model
based on a Hill-type incremental formulation to capture the effective
mechanical behavior and martensitic transformation of austenitic steels
at cryogenic temperatures. Two different mean-field homogenization
schemes have been used: the explicit Mori-Tanaka scheme, which
assumes the austenite phase as the parent medium in which the marten-
site phase is embedded, and the implicit Self-Consistent scheme, which
considers the homogenized material as the parent medium in which the
austenite and martensite phases are embedded. The individual phases
have been modeled with linear elasticity and von Mises plasticity. The
evolution of the yield stress has been described with a rate-independent
nonlinear mixed kinematic-isotropic hardening law, and the martensitic
transformation has been modeled with the sigmoidal kinetic relation-
ship proposed by Olson and Cohen (1975). A return mapping algorithm
based on the implicit backward Euler integration scheme has been used
to implement the constitutive model into ABAQUS/Standard through a
UMAT user subroutine, for which a closed-form expression of the con-
sistent Jacobian tensor has been derived. The UMAT code is included as
Supplementary Material. Former tensile experiments performed at 300 K,
77 K, and 4 K have been used to identify the parameters describing
the mechanical behavior of the individual phases and the kinetics of
the martensitic transformation for AISI 304L and AISI 316LN steel
grades. The Mori-Tanaka and Self-Consistent schemes integrated into
the model have been evaluated with regard to their ability to describe
the mechanical behavior of the bi-phase material by comparing the
predictions of the homogenization schemes with unit-cell finite element
calculations with an explicit description of the martensite inclusions
and the austenite matrix. The comparison has been performed for
different stress states with controlled triaxiality and Lode parameter
under monotonic and cycling loading. Moreover, finite element sim-
ulations on tensile samples subjected to prescribed displacement at
the three different constant temperatures (300 K, 77 K, and 4 K) have
been compared with the experiments to validate the capability of the
homogenized constitutive model to predict cryogenic martensitic trans-
formation in austenitic stainless steels. The main conclusions drawn
from this investigation are as follows:

• Mori-Tanaka and Self-Consistent models yield predictions for the
effective behavior of the bi-phase material that find quantitative
agreement with unit-cell calculations carried out with explicit
description of the austenite matrix and the martensite inclusions
under monotonic and cyclic loading.

• The partitioning of the strain between the two phases calculated
with the homogenization schemes shows noticeable differences
with the unit-cell simulations with explicit representation of the
microstructure since both Self-Consistent and Mori-Tanaka under-
estimate the strain in the martensite and overestimate the strain
in the austenite.

• The predictions of the Self-Consistent/Mori-Tanaka model for the
strain in the phases in general find better/worse agreement with
the calculations with explicit representation of the microstructure
as the volume of martensite increases.

• The Self-Consistent model yields results for the hydrostatic stress
in the bi-phase material and the individual phases that are very
similar to the calculations with explicit description of the marten-
site particles, while the Mori-Tanaka model overestimates the
hydrostatic stress in the martensite and underestimates the hy-
24

drostatic stress in the austenite and in the bi-phase material.
• Increasing differences in the mechanical behavior of the indi-
vidual phases boosts the differences in the predictions of Mori-
Tanaka and Self-Consistent models, such that the Self-Consistent
scheme yields results closer to those of the unit-cell calculations
and experiments for the effective behavior of the material and
also for the martensitic transformation rate, specifically at large
strains and low temperatures.

• The two homogenization schemes investigated accurately de-
scribe the quasi-linear strain hardening and temperature sensi-
tivity of the flow strength of AISI 316LN, as well as the lack
of martensitic transformation at 300 K and the concave-upward
shape of the martensite content evolution at 77 K and 4 K.

• Mori-Tanaka and Self-Consistent yield virtually the same numer-
ical results for the mechanical behavior of AISI 304L at 300 K
and capture the quasi-linear increase of the volume fraction of
martensite with the material straining.

• The differences in the results of the two homogenization schemes
for the AISI 304L become noticeable at cryogenic temperatures
since the transformation rate at intermediate strains predicted by
the Mori-Tanaka model is greater than in the experiments, leading
to an overestimation of the stress and the strain hardening of the
material, while the Self-Consistent model captures accurately the
sigmoidal shape of both strain hardening and martensite content
evolution.

All in all, the key outcomes of this work are: (i) the validation of
the homogenization schemes against finite element models that include
a resolved description of the austenite–martensite microstructure for
different stress states, and (ii) the suitability of the homogenized model
to predict the mechanical behavior at large strains and high volume
fractions of transformed martensite. The quantitative agreement of the
homogenized model predictions with unit-cell finite element calcula-
tions and experimental data, notably in the case of the Self-Consistent
scheme, validates the constitutive framework developed in this work.
The homogenized model has been proven to be suitable for predicting
the mechanical behavior and martensitic transformation of austenitic
stainless steels under the wide range of temperatures of interest for
superconducting magnet systems. Future work includes: (i) enhancing
the model formulation to take into account the discontinuous plastic
flow shown by AISI 304L and AISI 316LN at 4 K (Fernández-Pisón
et al., 2021), (ii) capturing the strain rate sensitivity of the flow strength
of the material (Tomita and Iwamoto, 1995; Papatriantafillou et al.,
2006), and (iii) accounting for a rate of change of the probability of
martensite nucleation as well as stress state (Stringfellow et al., 1992)
and strain rate (Tomita and Iwamoto, 1995) sensitivities in the kinetics
of the martensitic transformation.
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ppendix A. Specifics of the numerical implementation

.1. Numerical implementation of the individual phases

The numerical implementation is performed using a return mapping
lgorithm in which an implicit backward Euler integration scheme is
mployed (Safaei, 2013; Hosseini and Rodríguez-Martínez, 2021). The
iscretized constitutive equations are the following:

(𝑛+1) = 𝛥R(𝑛+1)
(𝑛) 𝝐(𝑛)𝛥R(𝑛+1)

(𝑛)
T
+ 𝛥𝝐(𝑛+1) (A.1)

𝑝(𝑛+1) = 𝛥R(𝑛+1)
(𝑛) 𝝐𝑝(𝑛)𝛥R(𝑛+1)

(𝑛)
T
+ 𝛥𝜆(𝑛+1)𝑵 (𝑛+1) (A.2)

(𝑛+1) = 𝛥R(𝑛+1)
(𝑛) 𝝈(𝑛)𝛥R(𝑛+1)

(𝑛)
T
+𝑳𝑒 ∶

(

𝛥𝝐𝑒(𝑛+1)
)

= 𝝈𝑡𝑟(𝑛+1) −𝑳𝑒 ∶
(

𝛥𝝐𝑝(𝑛+1)
)

(A.3)

𝑿(𝑛+1)
1 = 𝛥R(𝑛+1)

(𝑛) 𝑿(𝑛)
1 𝛥R(𝑛+1)

(𝑛)
T
+ 𝛥𝜆(𝑛+1)𝒒(𝑛+1)𝑋1

(A.4)

𝑿(𝑛+1)
2 = 𝛥R(𝑛+1)

(𝑛) 𝑿(𝑛)
2 𝛥R(𝑛+1)

(𝑛)
T
+ 𝛥𝜆(𝑛+1)𝒒(𝑛+1)𝑋2

(A.5)

𝑅(𝑛+1)
1 = (1 − 𝛽)

ℎ1
𝜓1

(

1 − 𝑒−𝜓1
(

𝜖𝑝(𝑛)+𝛥𝜆(𝑛+1)
)
)

(A.6)

𝑅(𝑛+1)
2 = (1 − 𝛽)

ℎ2
𝜓2

(

1 − 𝑒−𝜓2
(

𝜖𝑝(𝑛)+𝛥𝜆(𝑛+1)
)
)

(A.7)

𝐹 (𝑛+1) = 𝐽2
(

𝝈𝑟𝑒𝑙(𝑛+1)
)

−
(

𝜎𝑦0 + 𝑅(𝑛+1)
1 + 𝑅(𝑛+1)

2

)

≤ 0 (A.8)

ith 𝑵 (𝑛+1) = 3
2

𝝈𝑟𝑒𝑙(𝑛+1)
𝐽2(𝝈𝑟𝑒𝑙(𝑛+1))

, 𝒒(𝑛+1)𝑋1
= 𝛽ℎ1

𝝈𝑟𝑒𝑙(𝑛+1)
𝐽2(𝝈𝑟𝑒𝑙(𝑛+1))

− 𝜓1𝑿
(𝑛+1)
1 , 𝒒(𝑛+1)𝑋2

=

𝛽ℎ2
𝝈𝑟𝑒𝑙(𝑛+1)

𝐽2(𝝈𝑟𝑒𝑙(𝑛+1))
− 𝜓2𝑿

(𝑛+1)
2 , 𝐽2

(

𝝈𝑟𝑒𝑙(𝑛+1)
)

=
√

3
2

(

𝝈𝑟𝑒𝑙(𝑛+1)
)

∶
(

𝝈𝑟𝑒𝑙(𝑛+1)
)

,
nd 𝝈𝑟𝑒𝑙(𝑛+1) = 𝒔(𝑛+1) − 𝑿(𝑛+1)

1 − 𝑿(𝑛+1)
2 . Eq. (A.3) includes the trial

tress 𝝈𝑡𝑟(𝑛+1) = 𝛥R(𝑛+1)
(𝑛) 𝝈(𝑛)𝛥R(𝑛+1)

(𝑛)
T
+ 𝑳𝑒 ∶ 𝛥𝝐(𝑛+1), which is calculated

during the elastic predictor step of the return mapping algorithm (Zaera
and Fernández-Sáez, 2006), as well as the decomposition of the total
strain increment into elastic and plastic components 𝛥𝝐(𝑛+1) = 𝛥𝝐𝑒(𝑛+1)+
𝛥𝝐𝑝(𝑛+1). Notice the update of the variables in the objective increments
(term 𝛥R(𝑛+1)

(𝑛) (∙)(𝑛)𝛥R(𝑛+1)
(𝑛)

T
), which accounts for the incremental rota-

tion of the material basis. The predefined ABAQUS function ROTSIG
can be used to compute this term (the incremental rotation 𝛥R(𝑛+1)

(𝑛) is
provided by the ABAQUS variable DROT ).
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The plastic multiplier increment is computed using an iterative
ewton–Raphson procedure based on the linearization of the set of
quations, assuming that the total strain and the values of the pre-
ious step (𝑛) are constants. According to the Newton–Raphson pro-
edure, the linearization of any equation such as 𝑔(𝛥𝜆) = 0 leads to
(𝑘+1) = 𝑔(𝑘)+

(

𝑑𝑔
𝑑𝛥𝜆

)

(𝑘)
𝛿𝜆(𝑘) = 0 and subsequently 𝛿𝜆(𝑘) =

−𝑔(𝑘)
(

𝑑𝑔
𝑑𝛥𝜆

)

(𝑘)

, where

𝜆(𝑘) is the iterative change in 𝛥𝜆 at the 𝑘-th iteration of the Newton–
aphson procedure (Eq. (A.24)). Thus, the updated expressions of
qs. (A.2)–(A.5) and (A.8) can be cast into the following forms suitable
or the Newton–Raphson iteration scheme:

(𝑛+1)
1 = −𝝐𝑝(𝑛+1) + 𝛥R(𝑛+1)

(𝑛) 𝝐𝑝(𝑛)𝛥R(𝑛+1)
(𝑛)

T
+ 𝛥𝜆(𝑛+1)𝑵 (𝑛+1) (A.9)

= (𝑳𝑒)−1 ∶
(

𝝈(𝑛+1) − 𝝈𝑡𝑟(𝑛+1)
)

+ 𝛥𝜆(𝑛+1)𝑵 (𝑛+1)

𝒈(𝑛+1)2 = −𝑿(𝑛+1)
1 + 𝛥R(𝑛+1)

(𝑛) 𝑿(𝑛)
1 𝛥R(𝑛+1)

(𝑛)
T
+ 𝛥𝜆(𝑛+1)𝒒(𝑛+1)𝑋1

(A.10)

(𝑛+1)
3 = −𝑿(𝑛+1)

2 + 𝛥R(𝑛+1)
(𝑛) 𝑿(𝑛)

2 𝛥R(𝑛+1)
(𝑛)

T
+ 𝛥𝜆(𝑛+1)𝒒(𝑛+1)𝑋2

(A.11)

(𝑛+1) = 𝐽2
(

𝝈𝑟𝑒𝑙(𝑛+1)
)

−
(

𝜎𝑦0 + 𝑅(𝑛+1)
1 + 𝑅(𝑛+1)

2

)

(A.12)

Note that Eqs. (A.6) and (A.7) are not included because they do
ot need to be linearized, Eq. (A.10) combines Eqs. (A.2) and (A.3),
nd Eqs. (A.12) is particularized for the case of plastic yielding (𝐹 = 0).
inearization of Eqs. (A.10)–(A.12) gives:

(𝑛+1)
1(𝑘) +(𝑳𝑒)−1 ∶

( 𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) +𝛥𝜆(𝑛+1)(𝑘)

( 𝑑𝑵
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) +𝛿𝜆(𝑛+1)(𝑘) 𝑵 (𝑛+1)

(𝑘) = 0

(A.13)

(𝑛+1)
2(𝑘) −

(

𝑑𝑿1

𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) + 𝛥𝜆(𝑛+1)(𝑘)

( 𝑑𝒒𝑋1

𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) + 𝛿𝜆(𝑛+1)(𝑘) 𝒒𝑋1

(𝑛+1)
(𝑘) = 0

(A.14)

𝒈(𝑛+1)3(𝑘) −
(

𝑑𝑿2

𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) + 𝛥𝜆(𝑛+1)(𝑘)

( 𝑑𝒒𝑋2

𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) + 𝛿𝜆(𝑛+1)(𝑘) 𝒒𝑋2

(𝑛+1)
(𝑘) = 0

(A.15)

𝐹 (𝑛+1)
(𝑘) +

(𝑑𝐹
𝑑𝝈

∶ 𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) +

(

𝑑𝐹
𝑑𝑿1

∶
𝑑𝑿1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘)

+
(

𝑑𝐹
𝑑𝑿2

∶
𝑑𝑿2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘)

+
(

𝑑𝐹
𝑑𝑅1

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) +

(

𝑑𝐹
𝑑𝑅2

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) = 0

(A.16)

here all the derivatives can be expressed as a function of
(

𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
,

𝑑𝑿1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
,
(

𝑑𝑿2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
,
(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
, and

(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
, such that the lin-

earized Eqs. (A.13)–(A.15) can be written in matrix form as follows:

G(𝑛+1)
(𝑘) +

(

E(𝑛+1)
(𝑘)

)−1
𝜟K(𝑛+1)

(𝑘) + 𝛿𝜆(𝑛+1)(𝑘) B(𝑛+1)
(𝑘) = O (A.17)

with:

G(𝑛+1)
(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝒈(𝑛+1)1(𝑘)

]

[

𝒈(𝑛+1)2(𝑘)

]

[

𝒈(𝑛+1)3(𝑘)

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝜟K(𝑛+1)
(𝑘) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

(

𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)

]

[

(

𝑑𝑿1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)

]

[

(

𝑑𝑿2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝛿𝜆(𝑛+1)(𝑘)

B(𝑛+1)
(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑵 (𝑛+1)
(𝑘)

]

[

𝒒𝑋1
(𝑛+1)
(𝑘)

]

[

𝒒𝑋2
(𝑛+1)
(𝑘)

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

O =

⎧

⎪

⎨

⎪

⎩

[

0
]

[

0
]

[

0
]

⎫

⎪

⎬

⎪

⎭

(A.18)
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(

E(𝑛+1)
(𝑘)

)−1
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

𝑳𝑒
]−1 + 𝛥𝜆(𝑛+1)(𝑘)

[

(

𝑑𝑵
𝑑𝝈

)(𝑛+1)

(𝑘)

]

−𝛥𝜆(𝑛+1)(𝑘)

[

(

𝑑𝑵
𝑑𝝈

)(𝑛+1)

(𝑘)

]

−𝛥𝜆(𝑛+1)(𝑘)

[

(

𝑑𝑵
𝑑𝝈

)(𝑛+1)

(𝑘)

]

𝛥𝜆(𝑛+1)(𝑘)

[

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)

]

−𝛥𝜆(𝑛+1)(𝑘)

[(

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)
+ 𝜓1𝑰

)

− 𝑰
]

−𝛥𝜆(𝑛+1)(𝑘)

[

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)

]

𝛥𝜆(𝑛+1)(𝑘)
ℎ2
ℎ1

[

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)

]

−𝛥𝜆(𝑛+1)(𝑘)
ℎ2
ℎ1

[

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)

]

−𝛥𝜆(𝑛+1)(𝑘)

[(

ℎ2
ℎ1

( 𝑑𝒒𝑋1
𝑑𝝈

)(𝑛+1)

(𝑘)
+ 𝜓2𝑰

)

− 𝑰
]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(A.19)

Box I.
p

𝑑

nd
(

E(𝑛+1)
(𝑘)

)−1
is given in Box I (Eq. (A.19)). Note that [(∙)] denotes the

6 × 1 or 6 × 6 matrix which corresponds to the symmetric second-order
or fourth-order tensor, respectively (see Eqs. (C.1) and (C.5) in Doghri
(2000)); and

[

0
]

is a 6 × 1 null matrix. Therefore, G(𝑛+1)
(𝑘) , 𝜟K(𝑛+1)

(𝑘) , B(𝑛+1)
(𝑘) ,

and O are 18 × 1 matrices, and E(𝑛+1)
(𝑘) is a 18 × 18 matrix.

The linearized Eq. (A.16) can also be written in matrix form as:

𝐹 (𝑛+1)
(𝑘) +

(

𝜟F(𝑛+1)
(𝑘)

)𝑇
𝜟K(𝑛+1)

(𝑘) −
(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) −

(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) = 0

(A.20)

here the 18 × 1 matrix 𝜟F(𝑛+1)
(𝑘) is defined as:

F(𝑛+1)
(𝑘) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

(

𝑑𝐹
𝑑𝝈

)(𝑛+1)

(𝑘)

]

[

(

𝑑𝐹
𝑑𝑿1

)(𝑛+1)

(𝑘)

]

[

(

𝑑𝐹
𝑑𝑿2

)(𝑛+1)

(𝑘)

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑵 (𝑛+1)
(𝑘)

]

−
[

𝑵 (𝑛+1)
(𝑘)

]

−
[

𝑵 (𝑛+1)
(𝑘)

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A.21)

Substituting Eq. (A.17) into Eq. (A.20) results in:

𝐹 (𝑛+1)
(𝑘) −

(

𝜟F(𝑛+1)
(𝑘)

)𝑇
E(𝑛+1)

(𝑘) G(𝑛+1)
(𝑘) − 𝛿𝜆(𝑛+1)(𝑘)

(

(

𝜟F(𝑛+1)
(𝑘)

)𝑇
E(𝑛+1)

(𝑘) B(𝑛+1)
(𝑘)

)

− 𝛿𝜆(𝑛+1)(𝑘)

(

(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
+
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)

)

= 0 (A.22)

from which 𝛿𝜆(𝑛+1)(𝑘) is computed:

𝜆(𝑛+1)(𝑘) =
𝐹 (𝑛+1)
(𝑘) −

(

𝜟F(𝑛+1)
(𝑘)

)𝑇
E(𝑛+1)

(𝑘) G(𝑛+1)
(𝑘)

(

𝜟F(𝑛+1)
(𝑘)

)𝑇
E(𝑛+1)

(𝑘) B(𝑛+1)
(𝑘) +

(

(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
+
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)

) (A.23)

which allows us to determine the plastic multiplier increment:

𝛥𝜆(𝑛+1)(𝑘+1) = 𝛥𝜆(𝑛+1)(𝑘) + 𝛿𝜆(𝑛+1)(𝑘) (A.24)

which is used for the subsequent update of all the variables. Note that
𝑅(𝑛+1)
1(𝑘+1) and 𝑅(𝑛+1)

2(𝑘+1) are updated directly using Eqs. (A.6) and (A.7),
respectively. The rest of the variables are updated using (∙)(𝑛+1)(𝑘+1) =

(∙)(𝑛+1)(𝑘) +
(

𝑑(∙)
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
𝛿𝜆(𝑛+1)(𝑘) , where

(

𝑑𝝐𝑝
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
= (𝑳𝑒)−1

(

𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
and

𝑑𝑿1
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
,
(

𝑑𝑿2
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
, and

(

𝑑𝝈
𝑑𝛥𝜆

)(𝑛+1)

(𝑘)
are obtained by solving 𝜟K(𝑛+1)

(𝑘)
rom Eqs. (A.17). The iterative Newton–Raphson method continues
ntil convergence is obtained within an acceptably small tolerance:
(𝑛+1)
1(𝑘+1) ≈ 0, 𝒈(𝑛+1)2(𝑘+1) ≈ 0, 𝒈(𝑛+1)3(𝑘+1) ≈ 0, and 𝐹 (𝑛+1)

(𝑘+1) ≈ 0 (see Eqs. (A.10)–
(A.12)). Note that if the material behaves elastically during the loading
step, then 𝐹 (𝑛+1) < 0 and 𝛥𝜆(𝑛+1) = 0.

Additionally, for the implementation of the homogenization proce-
dure, it is necessary to compute the instantaneous algorithmic tangent
operator 𝑳𝑡𝑎𝑛 = 𝑑(𝛥𝝈)

𝑑(𝛥𝝐) (as defined in Doghri and Ouaar (2003)). For that
urpose, the discretized constitutive Eqs. (A.2)–(A.8) are differentiated
ith respect to all the variables at 𝑡𝑛+1, assuming the values of the
26
revious step (𝑛) as constant but the total strain as non-constant:
(

𝛥𝝐𝑝(𝑛+1)
)

= 𝑑
(

𝛥𝜆(𝑛+1)
)

𝑵 (𝑛+1) + 𝛥𝜆(𝑛+1)𝑑𝑵 (𝑛+1) (A.25)
(

𝛥𝝈(𝑛+1)) = 𝑳𝑒 ∶ 𝑑
(

𝛥𝝐𝑒(𝑛+1)
)

= 𝑳𝑒 ∶
(

𝑑
(

𝛥𝝐(𝑛+1)
)

− 𝑑
(

𝛥𝝐𝑝(𝑛+1)
)) (A.26)

𝑑
(

𝛥𝑿(𝑛+1)
1

)

= 𝑑
(

𝛥𝜆(𝑛+1)
)

𝒒(𝑛+1)𝑋1
+ 𝛥𝜆(𝑛+1)𝑑𝒒(𝑛+1)𝑋1

(A.27)

𝑑
(

𝛥𝑿(𝑛+1)
2

)

= 𝑑
(

𝛥𝜆(𝑛+1)
)

𝒒(𝑛+1)𝑋2
+ 𝛥𝜆(𝑛+1)𝑑𝒒(𝑛+1)𝑋2

(A.28)

𝑑
(

𝛥𝑅(𝑛+1)
1

)

=
(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)
𝑑
(

𝛥𝜆(𝑛+1)
)

(A.29)

𝑑
(

𝛥𝑅(𝑛+1)
2

)

=
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)
𝑑
(

𝛥𝜆(𝑛+1)
)

(A.30)

(

𝑑𝐹
𝑑𝝈

∶ 𝑑𝝈
𝑑 (𝛥𝝈)

)(𝑛+1)
∶ 𝑑

(

𝛥𝝈(𝑛+1))

+

(

𝑑𝐹
𝑑𝑿1

∶
𝑑𝑿1

𝑑
(

𝛥𝑿1
)

)(𝑛+1)

∶ 𝑑
(

𝛥𝑿(𝑛+1)
1

)

+

(

𝑑𝐹
𝑑𝑿2

∶
𝑑𝑿2

𝑑
(

𝛥𝑿2
)

)(𝑛+1)

∶ 𝑑
(

𝛥𝑿(𝑛+1)
2

)

+
(

𝑑𝐹
𝑑𝑅1

𝑑𝑅1
𝑑𝛥𝑅1

)(𝑛+1)
𝑑
(

𝛥𝑅(𝑛+1)
1

)

+
(

𝑑𝐹
𝑑𝑅2

𝑑𝑅2
𝑑𝛥𝑅2

)(𝑛+1)
𝑑
(

𝛥𝑅(𝑛+1)
2

)

= 0

(A.31)

where Eq. (A.31) is particularized for the case of plastic flow
(𝐹 (𝑛+1) = 0).

Eqs. (A.25)–(A.28) and (A.31) are rearranged similarly to (A.10)–
(A.12) (note that Eqs. (A.29) and (A.30) do not need to be linearized).
Expressions (A.25)–(A.28) are then rewritten as:

−𝑑
(

𝛥𝝐(𝑛+1)
)

+(𝑳𝑒)−1 ∶
(

𝛥𝝈(𝑛+1))+𝑑
(

𝛥𝜆(𝑛+1)
)

𝑵 (𝑛+1)+𝛥𝜆(𝑛+1)𝑑𝑵 (𝑛+1) = 0

(A.32)

−𝑑
(

𝛥𝑿(𝑛+1)
1

)

+ 𝑑
(

𝛥𝜆(𝑛+1)
)

𝒒(𝑛+1)𝑋1
+ 𝛥𝜆(𝑛+1)𝑑𝒒(𝑛+1)𝑋1

= 0 (A.33)

−𝑑
(

𝛥𝑿(𝑛+1)
2

)

+ 𝑑
(

𝛥𝜆(𝑛+1)
)

𝒒(𝑛+1)𝑋2
+ 𝛥𝜆(𝑛+1)𝑑𝒒(𝑛+1)𝑋2

= 0 (A.34)

where Eq. (A.32) results from combining Eqs. (A.25) and (A.26). This
set of Eqs. (A.32)–(A.34) is expressed in matrix form as follows:

−G∗(𝑛+1) +
(

E(𝑛+1))−1 𝜟K∗(𝑛+1) + 𝑑
(

𝛥𝜆(𝑛+1)
)

B(𝑛+1) = O (A.35)

where B(𝑛+1), O, and E(𝑛+1) are defined in Eqs. (A.18)3, (A.18)4, and
(A.19), respectively (the subscript (𝑘) should be omitted), while G∗(𝑛+1)

and 𝜟K∗(𝑛+1) are defined as:

G∗(𝑛+1) =

⎧

⎪

⎨

⎪

⎩

[

𝑑
(

𝛥𝝐(𝑛+1)
)]

[

0
]

[

0
]

⎫

⎪

⎬

⎪

⎭

𝜟K∗(𝑛+1) =

⎧

⎪

⎪

⎨

⎪

⎪

[

𝑑
(

𝛥𝝈(𝑛+1))]

[

𝑑
(

𝛥𝑿(𝑛+1)
1

)]

[

𝑑
(

𝛥𝑿(𝑛+1)
)]

⎫

⎪

⎪

⎬

⎪

⎪

(A.36)
⎩

2
⎭
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

s
c
a
𝑳

A

p
T
a
s

𝑓

𝛥

Moreover, Eq. (A.31) can also be rewritten using the matrix formu-
lation:
(

𝜟F(𝑛+1))𝑇 𝜟K∗(𝑛+1) − 𝑑
(

𝛥𝑅(𝑛+1)
1

)

− 𝑑
(

𝛥𝑅(𝑛+1)
2

)

= 0 (A.37)

where 𝜟F(𝑛+1) is defined in Eq. (A.21) (the subscript (𝑘) should be
omitted).

Subsequently, inserting Eq. (A.35) and Eqs. (A.29)–(A.30) into
Eq. (A.37) leads to:

𝑑
(

𝛥𝜆(𝑛+1)
)

=

(

𝜟F(𝑛+1))𝑇 E(𝑛+1)G∗(𝑛+1)

(

𝜟F(𝑛+1)
)𝑇 E(𝑛+1)B(𝑛+1) +

(

(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)
+
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)
)

(A.38)

and inserting Eq. (A.38) into (A.35) results in:

𝜟K∗(𝑛+1) = E(𝑛+1)G∗(𝑛+1)

−
E(𝑛+1)B(𝑛+1) (𝜟F(𝑛+1))𝑇 E(𝑛+1)G∗(𝑛+1)

(

𝜟F(𝑛+1)
)𝑇 E(𝑛+1)B(𝑛+1) +

(

(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)
+
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)
) (A.39)

from which the 18 × 18 matrix L(𝑛+1) can be defined:

L(𝑛+1) = E(𝑛+1) −
E(𝑛+1)B(𝑛+1) (𝜟F(𝑛+1))𝑇 E(𝑛+1)

(

𝜟F(𝑛+1)
)𝑇 E(𝑛+1)B(𝑛+1) +

(

(

𝑑𝑅1
𝑑𝛥𝜆

)(𝑛+1)
+
(

𝑑𝑅2
𝑑𝛥𝜆

)(𝑛+1)
)

(A.40)

so that 𝜟K∗(𝑛+1) = L(𝑛+1)G∗(𝑛+1), which, using the definitions of G∗(𝑛+1)

nd 𝜟K∗(𝑛+1) shown in Eq. (A.36), leads to:
[

𝑑
(

𝛥𝝈(𝑛+1))]

[

𝑑
(

𝛥𝑿(𝑛+1)
1

)]

[

𝑑
(

𝛥𝑿(𝑛+1)
2

)]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

L(𝑛+1)
11 L(𝑛+1)

12 L(𝑛+1)
13

L(𝑛+1)
21 L(𝑛+1)

22 L(𝑛+1)
23

L(𝑛+1)
31 L(𝑛+1)

32 L(𝑛+1)
33

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

[

𝑑
(

𝛥𝝐(𝑛+1)
)]

[

0
]

[

0
]

⎫

⎪

⎬

⎪

⎭

(A.41)

where each component L(𝑛+1)
𝑖𝑗 is a 6 × 6 matrix (with 𝑖 and 𝑗 ranging

between 1 and 3). The component L(𝑛+1)
11 is particularly interesting since

[

𝑑
(

𝛥𝝈(𝑛+1))] = L(𝑛+1)
11

[

𝑑
(

𝛥𝝐(𝑛+1)
)]

, so that it corresponds to the 6 × 6
matrix format of the instantaneous algorithmic tangent operator:
[

𝑳𝑡𝑎𝑛(𝑛+1)
]

= L(𝑛+1)
11 (A.42)

which can be easily converted to its original format as a symmetric
fourth-order tensor (see Eq. (C.5) in Doghri (2000)).

A generalized variable-point rule (∙)(𝑛+𝛬) = (1 − 𝛬)(∙)(𝑛) + 𝛬(∙)(𝑛+1) is
used for the numerical implementation of the instantaneous algorithmic
tangent operator, where explicit and implicit integrations correspond to
𝛬 = 0 and 𝛬 > 0, respectively, with special cases: 𝛬 = 1 (backward
Euler) and 𝛬 = 1∕2 (mid-point rule). In this work, the value of
𝛬 is determined as the one providing the least difference between
the increment of stress calculated using the implicit backward Euler
integration scheme (after convergence) and the one resulting from the
relationship:

𝛥𝝈(𝑛+1) = 𝑳𝑡𝑎𝑛(𝑛+𝛬) ∶ 𝛥𝝐(𝑛+1) (A.43)

which is the numerical implementation of Eq. (8). In order to apply the
generalized variable-point rule, the algorithmic tangent operator of the
previous step 𝑳𝑡𝑎𝑛(𝑛) has to be rotated to the current configuration. The
generalized variable-point rule can be written in the following 6 × 6
matrix format:
[

𝑳𝑡𝑎𝑛(𝑛+𝛬)] = (1 − 𝛬)
[

𝑄
(

𝛥R(𝑛+1)
(𝑛)

)]

[

𝑳𝑡𝑎𝑛(𝑛)]
[

𝑄
(

𝛥R(𝑛+1)
(𝑛)

T
)]

+ 𝛬
[

𝑳𝑡𝑎𝑛(𝑛+1)]

(A.44)

where [𝑄 (∙)] is a 6 × 6 matrix that allows to express operations with
(𝑛+1)
27

non-symmetric tensors (such as 𝛥R(𝑛) ) using a 6 × 6 matrix format,
ee Eqs. (C.22) and (C.29) in Doghri (2000). Note that, if for the
onsidered time step the material behaves elastically, the instantaneous
lgorithmic tangent operator corresponds to the elastic stiffness tensor
𝑒.

.2. Numerical implementation of kinetics of the martensitic transformation

The implementation of the kinetics of martensitic transformation is
erformed by adapting Eq. (9) to the specific time step, see Eq. (A.45).
he increment of the volume fraction of martensite is calculated
s the difference between the current step and the previous step,
ee Eq. (A.46).

(𝑛+1)
𝛼′ = 1 − 𝑒

−𝜉
(

1−𝑒−𝜁𝜖
𝑝(𝑛+1)
𝛾

)4.5

(A.45)

𝑓 (𝑛+1)
𝛼′ = 𝑓 (𝑛+1)

𝛼′ − 𝑓 (𝑛)
𝛼′ (A.46)

A.3. Numerical implementation of the bi-phase material (homogenization)

The implementation of the homogenization procedure consists of
two parts. Firstly, the strain and stress increments of the bi-phase
material are calculated, the same procedure is followed for both Mori-
Tanaka and Self-Consistent approaches. Note that the values of the me-
chanical fields in the austenite and martensite are taken from the previ-
ous resolution of the equations corresponding to the individual phases,
see Appendix A.1. Secondly, the instantaneous strain concentration
tensors, which depend on the homogenization scheme, are computed
and the strain increment for each individual phase is corrected.

The strain increment components of the bi-phase material are cal-
culated as follows:

𝛥𝝐(𝑛+1)𝑇𝑅(𝑣𝑜𝑙) =
1
3
𝛥𝑓 (𝑛+1)

𝛼′ 𝛥𝑣1 (A.47)

𝛥𝝐(𝑛+1)𝐻𝑀(𝑇𝑅) = 𝛥𝑓 (𝑛+1)
𝛼′

(

𝝐(𝑛+1)𝛼′ − 𝝐(𝑛+1)𝛾

)

(A.48)

𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) = 𝛥𝝐(𝑛+1)𝛾+𝛼′ − 𝛥𝝐(𝑛+1)𝐻𝑀(𝑇𝑅) − 𝛥𝝐
(𝑛+1)
𝑇𝑅(𝑣𝑜𝑙) (A.49)

Moreover, the two terms corresponding to the homogenized stress
increment are calculated, and the stress increment of the bi-phase
material is then computed:

𝛥𝝈(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) =

(

1 − 𝑓 (𝑛+1)
𝛼′

)

𝛥𝝈(𝑛+1)
𝛾 + 𝑓 (𝑛+1)

𝛼′ 𝛥𝝈(𝑛+1)
𝛼′ (A.50)

𝛥𝝈(𝑛+1)
𝐻𝑀(𝑇𝑅) = 𝛥𝑓 (𝑛+1)

𝛼′

(

𝝈(𝑛+1)
𝛼′ − 𝝈(𝑛+1)

𝛾

)

(A.51)

𝛥𝝈(𝑛+1)
𝛾+𝛼′ = 𝛥𝝈(𝑛+1)

𝐻𝑀(𝑛𝑜𝑇𝑅) + 𝛥𝝈
(𝑛+1)
𝐻𝑀(𝑇𝑅) (A.52)

Depending on the homogenization scheme, the instantaneous strain
concentration tensors are calculated:

• Mori-Tanaka scheme. First, the tangent bulk and shear moduli
corresponding to the isotropic version of the algorithmic tangent
operator of the austenite phase are calculated (see Eq. (A.53)).
Subsequently, the tangent Poisson’s ratio and the Eshelby’s ten-
sor are determined (see Eq. (A.54)). Then, the instantaneous
dilute concentration tensor is obtained, from which the instanta-
neous strain concentration tensor is calculated for each phase (see
Eqs. (A.55)–(A.57)). Finally, the homogenized tangent stiffness
tensor, which is later used for the computation of the Jacobian
tensor A.4, is determined (see Eq. (A.58)).

𝜅𝑡𝑎𝑛(𝑛+1)𝛾 = 1
3
𝑰𝑣𝑜𝑙 ∶∶ 𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾 , 𝜇𝑡𝑎𝑛(𝑛+1)𝛾 = 1

10
𝑰𝑑𝑒𝑣 ∶∶ 𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾

(A.53)



Mechanics of Materials 189 (2024) 104891P. Fernández-Pisón et al.

w
p
K
t
g
o
i
e

e

𝛥

w

𝛥

𝛥

w

𝝓

𝜈𝑡𝑎𝑛(𝑛+1)𝛾 =
3𝜅𝑡𝑎𝑛(𝑛+1)𝛾 − 2𝜇𝑡𝑎𝑛(𝑛+1)𝛾

2
(

3𝜅𝑡𝑎𝑛(𝑛+1)𝛾 + 𝜇𝑡𝑎𝑛(𝑛+1)𝛾

) ,

𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜(𝑛+1)𝛾,𝑠𝑝ℎ𝑒𝑟 = 1
3
1 + 𝜈𝑡𝑎𝑛(𝑛+1)𝛾

1 − 𝜈𝑡𝑎𝑛(𝑛+1)𝛾

𝑰𝑣𝑜𝑙 +
2
15

4 − 5𝜈𝑡𝑎𝑛(𝑛+1)𝛾

1 − 𝜈𝑡𝑎𝑛(𝑛+1)𝛾

𝑰𝑑𝑒𝑣

(A.54)

𝑨𝑡𝑎𝑛(𝑛+1)
𝑑𝑖𝑙(𝛼′ ,𝛾) =

(

𝑰 + 𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜(𝑛+1)
𝛾,𝑠𝑝ℎ𝑒𝑟 ∶

(

𝑳𝑡𝑎𝑛(𝑛+𝛬)
𝛾

)−1
∶
(

𝑳𝑡𝑎𝑛(𝑛+𝛬)
𝛼′ −𝑳𝑡𝑎𝑛(𝑛+𝛬)

𝛾

)

)−1

(A.55)

𝑨𝑡𝑎𝑛(𝑛+1)
𝛾(𝑛𝑜𝑇𝑅) =

((

1 − 𝑓 (𝑛+1)
𝛼′

)

𝑰 + 𝑓 (𝑛+1)
𝛼′ 𝑨𝑡𝑎𝑛(𝑛+1)

𝑑𝑖𝑙(𝛼′ ,𝛾)

)−1
(A.56)

𝑨𝑡𝑎𝑛(𝑛+1)
𝛼′(𝑛𝑜𝑇𝑅) = 𝑨𝑡𝑎𝑛(𝑛+1)

𝑑𝑖𝑙(𝛼′ ,𝛾) ∶
((

1 − 𝑓 (𝑛+1)
𝛼′

)

𝑰 + 𝑓 (𝑛+1)
𝛼′ 𝑨𝑡𝑎𝑛(𝑛+1)

𝑑𝑖𝑙(𝛼′ ,𝛾)

)−1
(A.57)

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) = (1 − 𝑓 (𝑛+1)
𝛼′ )𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾 ∶ 𝑨𝑡𝑎𝑛(𝑛+1)

𝛾(𝑛𝑜𝑇𝑅)

+ 𝑓 (𝑛+1)
𝛼′ 𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛼′ ∶ 𝑨𝑡𝑎𝑛(𝑛+1)

𝛼′(𝑛𝑜𝑇𝑅)

(A.58)

• Self-Consistent scheme. For the first iteration of the scheme, a
trial homogenized tangent stiffness tensor is assumed and used to
calculate the tangent bulk and shear moduli corresponding to the
isotropic version of the tensor (see Eq. (A.59)). Subsequently, the
tangent Poisson’s ratio and the Eshelby’s tensor are determined
(see Eq. (A.60)). Then, the instantaneous strain concentration ten-
sor for each phase is calculated (Eqs. (A.61)–(A.62)). Afterward,
the instantaneous homogenized tangent stiffness tensor is com-
puted and updated for the next iteration (see Eq. (A.63)). The set
of Eqs. (A.59)–(A.63) is recomputed until the difference between
the instantaneous homogenized tangent stiffness tensor calculated
in consecutive iterations is lower than a specific tolerance (note
that the subscript (𝑘) indicates the step in the iterative scheme).

𝜅𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘) =
1
3
𝑰𝑣𝑜𝑙 ∶∶ 𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘),

𝜇𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘) =
1
10

𝑰𝑑𝑒𝑣 ∶∶ 𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

(A.59)

𝜈𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘) =
3𝜅𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘) − 2𝜇𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

2
(

3𝜅𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘) + 𝜇
𝑡𝑎𝑛(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

) ,

𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘),𝑠𝑝ℎ𝑒𝑟 =

1
3

1 + 𝜈𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

1 − 𝜈𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

𝑰𝑣𝑜𝑙 +
2
15

4 − 5𝜈𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

1 − 𝜈𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

𝑰𝑑𝑒𝑣

(A.60)

𝑨𝑡𝑎𝑛(𝑛+1)
𝛾(𝑛𝑜𝑇𝑅)(𝑘) =

(

𝑰 + 𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘),𝑠𝑝ℎ𝑒𝑟 ∶
(

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

)−1

∶
(

𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾 −𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

))−1
(A.61)

𝑨𝑡𝑎𝑛(𝑛+1)
𝛼′(𝑛𝑜𝑇𝑅)(𝑘) =

(

𝑰 + 𝑺 𝑡𝑎𝑛-𝑖𝑠𝑜(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘),𝑠𝑝ℎ𝑒𝑟 ∶
(

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

)−1

∶
(

𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛼′ −𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘)

))−1
(A.62)

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)(𝑘+1) = (1 − 𝑓 (𝑛+1)
𝛼′ )𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾 ∶ 𝑨𝑡𝑎𝑛(𝑛+1)

𝛾(𝑛𝑜𝑇𝑅)(𝑘)

+ 𝑓 (𝑛+1)
𝛼′ 𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛼′ ∶ 𝑨𝑡𝑎𝑛(𝑛+1)

𝛼′(𝑛𝑜𝑇𝑅)(𝑘)

(A.63)

Finally, the strain increment in each phase is corrected using the
corresponding instantaneous strain concentration tensor. If
𝑓 (𝑛+1)
𝛼′ < 1, the corrected strain increment for the austenite is calculated

with Eq. (A.64); otherwise, 𝛥𝝐(𝑛+1)𝛾 = 0. If 𝑓 (𝑛+1)
𝛼′ > 0, the corrected strain

increment for the martensite is calculated with Eq. (A.65); otherwise,
𝛥𝝐(𝑛+1)𝛼′ = 0.

𝛥𝝐(𝑛+1) = 𝑨𝑡𝑎𝑛(𝑛+1) ∶ 𝛥𝝐(𝑛+1) (A.64)
28

𝛾 𝛾(𝑛𝑜𝑇𝑅) 𝐻𝑀(𝑛𝑜𝑇𝑅)
𝛥𝝐(𝑛+1)𝛼′ = 𝑨𝑡𝑎𝑛(𝑛+1)
𝛼′(𝑛𝑜𝑇𝑅) ∶ 𝛥𝝐

(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) (A.65)

A.4. Numerical implementation of the consistent Jacobian tensor

The consistent Jacobian tensor is defined as:

1
𝐽 (𝑛+1)
𝛾+𝛼′

𝜕𝛥𝝉 (𝑛+1)𝛾+𝛼′

𝜕𝛥𝝐(𝑛+1)𝛾+𝛼′

= 𝝈(𝑛+1)
𝛾+𝛼′ ⊗ 1 +𝑳𝑡𝑎𝑛(𝑛+1)𝛾+𝛼′ (A.66)

hich refers to the objective increment of the fields at the integration
oint level (𝛾 + 𝛼′) for the current time step (𝑛 + 1), where 𝝉 is the
irchhoff stress tensor, 𝐽 is the determinant of the deformation gradient

ensor, and 𝑳𝑡𝑎𝑛(𝑛+1)𝛾+𝛼′ is the so-called material tangent modulus which is
iven by 𝛥𝝈(𝑛+1)

𝛾+𝛼′ = 𝑳𝑡𝑎𝑛(𝑛+1)𝛾+𝛼′ ∶ 𝛥𝝐(𝑛+1)𝛾+𝛼′ . In order to derive the expression
f the material tangent modulus, the relationship between the stress
ncrement and the strain increment in the bi-phase material must be
stablished.

For that purpose, the stress increment in the bi-phase material is
xpressed as follows (see Eqs. (12) and (14)):

𝝈(𝑛+1)
𝛾+𝛼′ = 𝛥𝝈(𝑛+1)

𝐻𝑀 = 𝛥𝝈(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) + 𝛥𝝈

(𝑛+1)
𝐻𝑀(𝑇𝑅) (A.67)

ith (see Eq. (16)):

𝝈(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) = 𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) ∶ 𝛥𝝐

(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) (A.68)

𝝈(𝑛+1)
𝐻𝑀(𝑇𝑅) =

(

𝝈(𝑛+1)
𝛼′ − 𝝈(𝑛+1)

𝛾

)(

𝝓(𝑛+1) ∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)

)

(A.69)

here the term 𝛥𝝈(𝑛+1)
𝐻𝑀(𝑛𝑜𝑇𝑅) is expressed as a function of 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)

using the tensor 𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) (see Eq. (26)), and the term 𝛥𝝈(𝑛+1)
𝐻𝑀(𝑇𝑅)

is also expressed as a function of 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) using the relationship
𝛥𝑓 (𝑛+1)

𝛼′ = 𝝓(𝑛+1) ∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅). The consistent second-order tensor 𝝓(𝑛+1)

is obtained as follows:

𝝓(𝑛+1) =

(

𝑑
(

𝛥𝑓𝛼′
)

𝑑
(

𝛥𝝐𝐻𝑀(𝑛𝑜𝑇𝑅)
)

)(𝑛+1)

=
(

𝜙1 𝝓2 ∶ 𝝓3 ∶ 𝝓4
)(𝑛+1) (A.70)

with:

𝜙(𝑛+1)
1 =

(

𝑑
(

𝛥𝑓𝛼′
)

𝑑
(

𝛥𝜖𝑝𝛾
)

)(𝑛+1)

= 4.5𝜉𝜁 [1 − 𝑒−𝜁𝜖
𝑝(𝑛+1)
𝛾 ]3.5𝑒−𝜁𝜖

𝑝(𝑛+1)
𝛾 (1 − 𝑓 (𝑛+1)

𝛼′ )

(A.71)

(𝑛+1)
2 =

(

𝑑
(

𝛥𝜖𝑝𝛾
)

𝑑
(

𝛥𝝐𝑝𝛾
)

)(𝑛+1)

= 2
3
𝛥𝝐𝑝(𝑛+1)𝛾

𝛥𝜖𝑝(𝑛+1)𝛾

(A.72)

𝝓(𝑛+1)
3 =

(

𝑑
(

𝛥𝝐𝑝𝛾
)

𝑑
(

𝛥𝝐𝛾
)

)(𝑛+1)

=
[

𝑰 −
(

𝑳𝑒𝛾
)−1

∶ 𝑳𝑡𝑎𝑛(𝑛+𝛬)𝛾

]

(A.73)

𝝓(𝑛+1)
4 =

(

𝑑
(

𝛥𝝐𝛾
)

𝑑
(

𝛥𝝐𝐻𝑀(𝑛𝑜𝑇𝑅)
)

)(𝑛+1)

= 𝑨𝑡𝑎𝑛(𝑛+1)
𝛾(𝑛𝑜𝑇𝑅) (A.74)

Thus, inserting Eqs. (A.68) and (A.69) into Eq. (A.67) leads to:

𝛥𝝈(𝑛+1)
𝛾+𝛼′ =

(

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) +
(

𝝈(𝑛+1)
𝛼′ − 𝝈(𝑛+1)

𝛾

)

⊗ 𝝓(𝑛+1)
)

∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)

(A.75)

where a relationship between 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) and 𝛥𝝐(𝑛+1)𝛾+𝛼′ is still required.
For this purpose, the relationship 𝛥𝑓 (𝑛+1)

𝛼′ = 𝝓(𝑛+1) ∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) is
also used in the definition of 𝛥𝝐(𝑛+1)𝐻𝑀(𝑇𝑅) and 𝛥𝝐(𝑛+1)𝑇𝑅(𝑣𝑜𝑙) as follows (see
Eqs. (15)2 and (11), respectively):

𝛥𝝐(𝑛+1)𝐻𝑀(𝑇𝑅) =
(

𝝐(𝑛+1)𝛼′ − 𝝐(𝑛+1)𝛾

)(

𝝓(𝑛+1) ∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)

)

(A.76)

𝛥𝝐(𝑛+1) = 1𝛥𝑣1
(

𝝓(𝑛+1) ∶ 𝛥𝝐(𝑛+1)
)

(A.77)
𝑇𝑅(𝑣𝑜𝑙) 3 𝐻𝑀(𝑛𝑜𝑇𝑅)
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so that the total strain increment in the bi-phase material (see Eqs. (10)
and (13)) is expressed as:

𝛥𝝐(𝑛+1)𝛾+𝛼′ = 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) + 𝛥𝝐
(𝑛+1)
𝐻𝑀(𝑇𝑅) + 𝛥𝝐

(𝑛+1)
𝑇𝑅(𝑣𝑜𝑙)

=
(

𝑰 +
((

𝝐(𝑛+1)𝛼′ − 𝝐(𝑛+1)𝛾

)

+ 1
3
𝛥𝑣1

)

⊗ 𝝓(𝑛+1)
)

∶ 𝛥𝝐(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅)

(A.78)

which, inserted into Eq. (A.75), leads to 𝛥𝝈(𝑛+1)
𝛾+𝛼′ = 𝑳𝑡𝑎𝑛(𝑛+1)𝛾+𝛼′ ∶ 𝛥𝝐(𝑛+1)𝛾+𝛼′ ,

where the instantaneous material tangent modulus is given by:

𝑳𝑡𝑎𝑛(𝑛+1)𝛾+𝛼′ =
(

𝑳𝑡𝑎𝑛(𝑛+1)𝐻𝑀(𝑛𝑜𝑇𝑅) +
(

𝝈(𝑛+1)
𝛼′ − 𝝈(𝑛+1)

𝛾

)

⊗ 𝝓(𝑛+1)
)

∶
(

𝑰 +
((

𝝐(𝑛+1)𝛼′ − 𝝐(𝑛+1)𝛾

)

+ 1
3
𝛥𝑣1

)

⊗ 𝝓(𝑛+1)
)−1

(A.79)

Note that the material tangent modulus (Eq. (A.79)) and the con-
istent Jacobian tensor (Eq. (A.66)) may be nonsymmetric, so the
nsymmetric equation solution capability in ABAQUS/Standard should
e invoked (see Section 6.1.1 in ABAQUS (2016)).

ppendix B. Unit-cell calculations: the effect of temperature

Fig. B.21 shows the evolution of the normalized macroscopic effec-
ive stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for a simulation
ith the FCC-symmetric spatial distribution of inclusions with the same

ize and particles intersecting the boundaries, Fig. 4(b). The material
arameters correspond to AISI 304L. The results are compared with
he predictions of the Mori-Tanaka and Self-Consistent homogenization
chemes. The martensite volume fraction is 45%, i.e., the simulations
o not take into account the martensitic transformation. The difference
ith the calculations included in Fig. 6(b) is that the material temper-
ture is lower: 4 K (instead of 77 K). The comparison of Figs. 6(b)
nd B.21 shows that with decreasing temperature, the 𝛴̄∕𝜎𝑦0𝛾 − 𝜀̄
urves of both the individual phases and the bi-phase material shift
29

s

pward (due to the temperature sensitivity of the flow strength of both
ustenite and martensite, see Table 2). Notice that the Self-Consistent
odel predictions find excellent agreement with the results obtained
ith the explicit representation of the martensite inclusions for the
i-phase material, while underestimating the strain in the martensite
nd overestimating the strain of the austenite, just like at the higher
emperature of 𝑇 = 77 K. On the other hand, note that the Mori-
anaka model predictions are less accurate for this low temperature
s compared to 77 K: the effective stress in the bi-phase material is
ncreasingly underestimated, and the differences in the strain of the
hases are more important.

ppendix C. Unit-cell calculations: the effect of material parame-
ers

Fig. C.22 shows the evolution of the normalized macroscopic effec-
ive stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄ for a simulation
ith the FCC-symmetric spatial distribution of inclusions with the same

ize and particles intersecting the boundaries, Fig. 4(b). The results
re compared with the predictions of Mori-Tanaka and Self-Consistent
omogenization schemes. The martensite volume fraction is constant
5%, i.e., the simulations do not take into account the martensitic trans-
ormation. The difference with the calculations included in Fig. 6(b)
s that the material parameters correspond to stainless steel 316LN,
ee Table 2. The simulations with the homogenization models yield
redictions that are much closer to the results obtained with the explicit
epresentation of the martensite inclusions than in the case of steel
04L (compare Figs. 6(b) and C.22). Most likely, it is due to the
act that the mechanical behavior of austenite and martensite is more
imilar in the case of 316LN. Note that for a macroscopic effective strain
f 𝜀̄ = 0.4, the value of the macroscopic effective stress in the martensite
s (only) 9% greater than in the austenite, while in the case of the 304L

teel, the difference is 98%.
Fig. B.21. Unit-cell finite element simulations. Monotonic loading. Material 304L, temperature 𝑇 = 4 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting
the boundaries, Fig. 4(b). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material,
the austenite phase, and the martensite phase for stress triaxiality 𝑋𝛴𝛾+𝛼′ = 0.5 and Lode parameter 𝐿𝛾+𝛼′ = −1. The colored markers indicate the maximum value of the macroscopic
effective strain for the individual phases for a macroscopic effective strain of the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. C.22. Unit-cell finite element simulations. Monotonic loading. Material 316LN, temperature 𝑇 = 77 K, and volume fraction of martensite 𝐹𝛼′ = 45%. Comparison of Mori-Tanaka
and Self-Consistent homogenization schemes with calculations corresponding to the FCC-symmetric spatial distribution of inclusions with the same size and particles intersecting
the boundaries, Fig. 4(b). Evolution of the normalized macroscopic effective stress 𝛴̄∕𝜎𝑦0𝛾 with the macroscopic effective strain 𝜀̄. Results corresponding to the bi-phase material,
the austenite phase, and the martensite phase for stress triaxiality 𝑋𝛴𝛾+𝛼′ = 0.5 and Lode parameter 𝐿𝛾+𝛼′ = −1. The colored markers indicate the maximum value of the macroscopic
effective strain for the individual phases for a macroscopic effective strain of the bi-phase material of 𝜀̄𝛾+𝛼′ = 0.4. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Appendix D. Supplementary data

The UMAT subroutine coded to implement in the finite element
code ABAQUS the developed homogenized constitutive model can be
found online at https://doi.org/10.21950/H27ZVN.
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