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We report an improved measurement of the valence u and d quark distributions from the forward-
backward asymmetry in the Drell-Yan process using 8.6 fb−1 of data collected with the D0 detector in pp̄
collisions at

ffiffiffi

s
p ¼ 1.96. This analysis provides the values of new structure parameters that are directly

related to the valence up and down quark distributions in the proton. In other experimental results
measuring the quark content of the proton, d quark contributions are mixed with those from other quark
flavors. In this measurement, the u and d quark contributions are separately extracted by applying a
factorization of the QCD and electroweak portions of the forward-backward asymmetry.
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In the constituent quark model, the valence u and d
quarks comprise the proton. The valence u quark density
has been determined from deep inelastic scattering (DIS)
data, where the u quark contribution dominates in photon-
exchange interactions [1–7]. However, the valence d quark
density has not been well measured as most measure-
ments are not predominantly sensitive to its contribution.
Consequently, our knowledge of the valence d quark
mainly comes from the global analysis of the parton
distribution functions (PDFs), which depend strongly on
the calculations of the perturbative quantum chromody-
namics (QCD), the choice of formalism for the nonpertur-
bative effects, and the sum rules [8–10].
It is difficult to have a d-quark-dominant measurement

because the u and d quark contributions are always mixed
and experimentally indistinguishable in neutral current
interactions. In principle, measurements of the charge
current DIS data could distinguish the u and d quarks in
the initial state. However, these determinations have been
either complicated by nuclear binding effects in the
neutrino-iron interactions [11,12] or limited by the data
sample size in lepton-proton interactions [13]. Recently,
it was shown that the u and d quark information can
be separated from electroweak effects and factorized
into structure parameters, Pu and Pd, in the Drell-Yan
process [14,15]. This factorization, valid to all orders of
QCD, and the use of pp̄ collisions allow for determination
of valence quark distributions for specific quark flavors.

In this paper, we report a determination of Pu and Pd in
pp̄ → Z=γ� → lþl− events using data corresponding to
8.6 fb−1 of integrated luminosity collected with the D0
detector at the Fermilab Tevatron at

ffiffiffi

s
p ¼ 1.96 TeV. Our

analysis provides a model-independent measurement of the
u and d quark densities in the kinematic region where
valence quarks are dominant.
The u and d quark contributions can be individually

factorized in the forward-backward asymmetry, AFB, of the
pp̄ → Z=γ� → lþl− events, defined as

AFB ¼ NF − NB

NF þ NB
; ð1Þ

where NF and NB are the number of forward and backward
events, defined as those for which cos θ > 0 and cos θ < 0,
with θ defined as the angle between the direction of the
negatively charged lepton and the direction of the proton
beam in the Collins-Soper frame [16]. At specific values of
the dilepton rapidity (Y) and transverse momentum (QT)
defined with respect to the beam axis, the observed AFB
distribution as a function of the dilepton invariant mass (M)
can be factorized as [14]

AFBðMÞ ¼
P

q¼u;c½1 − 2DqðMÞ�σqðMÞ
σtotalðMÞ · Au

FBðMÞ

þ
P

q¼d;s;b½1 − 2DqðMÞ�σqðMÞ
σtotalðMÞ · Ad

FBðMÞ

≡ CuðMÞAu
FBðMÞ þ CdðMÞAd

FBðMÞ; ð2Þ

where σq is the subprocess cross section for a specific qq̄
(q ¼ u, d, s, c, b) initial state, σtotal is the total cross section
P

q¼u;d;s;c;b σq, and Au
FB and Ad

FB are asymmetries for
initial up-type states (uū and cc̄) and down-type states
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(dd̄, ss̄, and bb̄), respectively. Forward and backward
events for Au

FB and Ad
FB are defined in the Collins-Soper

frame in terms of a new angle θ0 between the negatively
charged lepton direction and the quark direction. The
dilution factor Dq is defined as the probability for the
qq̄ subprocess to have an initial state where q comes from
the antiproton while q̄ comes from the proton, for
which cos θ ¼ − cos θ0.
Equation (2) factorizes the QCD part of the observed

AFB into Cu and Cd, and the electroweak part as Au
FB and

Ad
FB, so that the observed AFB is a combination of the two

hard-process-level asymmetries with the proton structure
information as their weights. Both Au

FB and Ad
FB are

determined by the effective weak mixing angle sin2 θleff
and are independent of parton densities, but have different
dependences on M due to the different Z-to-up and
Z-to-down quark couplings. Au

FB and Ad
FB can be precisely

predicted. Figure 1(a) shows Au
FB and Ad

FB as a function
of M, calculated using ResBos [17] with CT18N NLO
PDFs [8].
Cu and Cd can be averaged over a finite mass range to

further separate them into mass-averaged structure param-
eters (Pu and Pd) and mass-dependent structure parameters
(Δu and Δd) [14]:

Cu;dðMÞ ¼ Pu;d þ Δu;dðMÞ: ð3Þ

In this analysis, Pu and Pd are defined by averaging over
the dilepton mass range [70, 116] GeV. The Δu and Δd
terms can be predicted with small uncertainties for M in
this narrow window around the Z boson pole [14,15].

The uncertainties on AFB due to the Pq and Δq parameters
are shown in Fig. 1(b), indicating that Pq dominates the
proton structure information in AFB.
In this paper, we focus on the measurement of Pu and Pd,

which can be determined by comparing Eqs. (2) and (3) to
the measured AFB distribution. The values of Δu andΔd are
fixed to the CT18NNLO predictions. Pu and Pd contain
both the dilution and the cross section parts. The dilution
factors Du and Dd are small since the interactions of an
antiquark in the proton and a quark in the antiproton
are suppressed in the relevant x range at the Tevatron [18].
The dilution factors for s, c, and b quarks are very close to
0.5 [8–10], and thus the s, c, and b quark contributions are
significantly suppressed. As a result, Pu and Pd at the
Tevatron are approximately

Pu ∼ uðx1Þuðx2Þ=σtotalðx1; x2Þ;
Pd ∼ dðx1Þdðx2Þ=σtotalðx1; x2Þ; ð4Þ

where x1;2 are the Bjorken variables for the colliding quark
and antiquark, respectively, defined at leading order as

x1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

M2þQ2
T

p
ffiffi

s
p e�Y . The ratio R ¼ Pu=Pd, in which the

total cross section cancels, represents the relative contri-
bution of u and d quarks. Owing to the detector acceptance
discussed below, the data in this measurement have
dilepton rapidity in the interval jYj ¼ ½0; 2.3�. The Pu,
Pd, and R measured in this paper correspond to the values
of x from approximately 0.004 to 0.45. We obtain infor-
mation on the x dependence of the structure parameters by
analyzing the data separately for jYj intervals of [0, 0.5],
[0.5, 1.0], [1.0, 1.5], and [1.5, 2.3]. The ranges of the x1 and
x2 values for different jYj bins have small overlaps due to
the preponderance of data in the small mass interval around
the Z boson pole.
The D0 detector consists of tracking detectors sur-

rounded by a solenoid magnet, calorimeters, and a muon
system [19–21]. Dielectron and dimuon events are col-
lected with lepton triggers and are required to have a
lepton-antilepton pair in the offline analysis. Leptons are
required to be well separated from other particles in both
the tracking system and the calorimeter. Muons are
measured as tracks in the tracking and muon detectors
with jηdetj < 1.8 [22], and are required to have transverse
momentum pT > 15 GeV. Electrons are reconstructed as
clusters in the central calorimeter with jηdetj < 1.1, and in
an end calorimeter (EC) with 1.5 < jηdetj < 3.5. They are
required to have a spatially matched track in the tracking
system so that their electric charge can be determined, and
for discriminating against photons. The threshold for the
electron pT is 25 GeV. The EC-EC events, where both
electrons are in an EC, are excluded due to the higher
level of background for such events. As a result, the back-
ground contributions from Z=γ� → ττ, W þ jets, diboson
(WW andWZ), γγ, top quarks, and multijets are suppressed

(a)

(b)

FIG. 1. (a) The PDF-independent Au
FB and Ad

FB predicted by
ResBos as a function of M and the resulting AFB in pp̄ collisions
using the CT18NNLO PDF. (b) The PDF induced absolute
uncertainties in AFB due to Pu, Pd, Δu, and Δd.
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to Oð1%Þ in the mass region 70 < M < 116 GeV used in
this analysis.
A Monte Carlo (MC) sample of Z=γ� → lþl− events is

generated using the leading-order PYTHIA generator [23]
with CT18NNLO PDFs, followed by a Geant-based [24]
simulation of the D0 detector. The samples are further
corrected by reweighting the MC events at the generator
level in M, QT , Y, and cos θ to match the calculation of
ResBos [17], which is at the approximate next-to-next-to-
leading order and next-to-next-to-leading logarithm in
QCD. The electron energy and muon momentum are
calibrated using the known resonances in the dilepton
mass spectrum. The efficiencies of the online and offline
selection criteria are determined using the tag-and-probe
method [25] and the MC simulation is corrected to be
consistent with the data. The multijets background is
estimated using data, while other backgrounds are deter-
mined using the PYTHIA MC simulations. The method-
ologies used to derive the energy and momentum
calibrations, efficiencies, and estimates of the background
contributions were also employed in the previous mea-
surements of the effective weak mixing angle [26,27].
Many systematic effects are suppressed since AFB is
defined as a ratio. The observed AFB distributions as a
function ofM in different intervals are shown in Fig. 2 with
comparisons to the corresponding predictions from the
simulated MC samples.
For the measurement of Pu and Pd in the full 0 < jYj <

2.3 range, or in a particular jYj interval, a set of MC
template distributions of AFB is prepared in which Pu
and Pd are varied while keeping Δu and Δd fixed at
their values calculated using ResBos and CT18NNLO.
A set of Cq ¼ Pq þ Δq values is calculated for intervals
in Y, M, and QT [28]. AFB templates are acquired by
reweighting the generator-level differential cross sections

σqðY;M;QT; cos θÞ of the MC sample according to the Cq
value. In the MC reweighting procedures, Au

FB and Ad
FB are

calculated using ResBos, with sin2θleff set to the average of
the results from the electron-positron colliders LEP and
SLC [29]. The uncertainties on sin2θleff are propagated to
the measured Pu and Pd. We do not use the hadron collider
results on sin2θleff , in order to avoid the influence from the
specific PDF predictions used in their measurement, but
this choice has a negligible impact on the result because
the hadron collider measurements [30–33] give values of
sin2θleff very close to the combined LEP/SLC result.
Uncertainties on Δu and Δd are estimated using the error
PDF sets given by CT18NNLO. The differences in Δu and
Δd for different PDF sets are well covered by the estimated
uncertainty. Equation (2) is strictly true only when Y and
QT dependences are fully considered. In this paper, the
observed AFB is averaged over QT and Y intervals so that
the factorization formalism of Eq. (2) becomes an approxi-
mation. This gives rise to additional uncertainties in the
calculation of σq and higher-order QCD contributions. Part
of this uncertainty is already included when taking the
CT18NNLO error PDF sets into account. The remainder is
estimated by varying the QT distribution of ResBos to match
the predictions of PYTHIA.
Pu and Pd are determined by requiring the best agree-

ment between the observed AFB distributions in both the
dielectron and dimuon events and their corresponding MC
templates. Since Pu and Pd are simultaneously fitted, their
values and corresponding uncertainties are correlated with
a correlation coefficient ρ ¼ −0.859. The central value of
R and its uncertainty are calculated using the measured
values and the total uncertainties of Pu and Pd, and their
correlation.
The measured Pu, Pd, and the ratio R in the full range

jYj ¼ ½0; 2.3� are

Pu ¼ 0.602� 0.019ðstatÞ � 0.010ðtheoryÞ � 0.006ðsystÞ
¼ 0.602� 0.022;

Pd ¼ 0.258� 0.023ðstatÞ � 0.012ðtheoryÞ � 0.005ðsystÞ
¼ 0.258� 0.026;

R ¼ 2.34� 0.32:

The systematic uncertainty corresponds to the quadratic
sum of the uncertainties of efficiency determination, lepton
calibration, and background estimation. The theory uncer-
tainty is the quadratic sum of the uncertainties due to the Δ
parameters, QCD calculation, and value of sin2θleff . The
systematic and theoretical uncertainties are small compared
to the statistical uncertainties. Compared to the predictions
of CT18NNLO, MSHT20 [9], and NNPDF4.0 [10] shown
in Table I, the measured Pu is lower than the PDF
predictions, while Pd is higher. The ratio R is lower than
the predictions by about 2 standard deviations (the largest

FIG. 2. AFB distribution as a function of M in different Y bins
observed from data compared to the corresponding predictions
from the simulated MC samples. The Pu and Pd parameters in the
MC samples have the fitted values listed in Table II.
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difference, 2.8 standard deviations, is observed for
NNPDF4.0).
The jYj-dependent measurements using both the dielec-

tron and dimuon AFB distributions are shown in Table II.
The correlation coefficients of Pu and Pd in the four jYj
intervals are −0.855, −0.862, −0.866, and −0.871, respec-
tively. The comparison between the measured values and
the predictions from representative PDFs is shown in Fig. 3.
For 1 < jYj < 1.5, the measured R differs from the PDF
predictions by about 3.5 standard deviations, suggesting
that the d quark contribution is higher than the PDF
expectations. This interval corresponds to x ∼ 0.2 for the
quark with higher energy and x ∼ 0.01 for the quark with
lower energy, covering the peak of the parton density
distributions of the u and d quarks. For the other three bins,
the measurements of Pu and Pd show good agreement with
the predictions. In Fig. 4, we show the pull of AFB, which is

defined as the difference between the measured AFB value
and the predicted AFB value divided by the uncertainty of
the measured AFB. The pulls of the best fitPu and Pd values
shown in Fig. 4 conform well to the expected distributions.
The measurements of Pu and Pd for dielectron and

dimuon channels separately are given in Table III. Owing
to the limited detector acceptance and efficiencies for the

TABLE I. Measured values of Pu, Pd, and R in the full jYj
range [0, 2.3], together with their predictions from the
CT18NNLO, MSHT20, and NNPDF4.0 PDFs. The predictions
are calculated using ResBos based on the definition in Eqs. (2)
and (3). The measured values are presented with their total
uncertainties. The theoretical predictions are calculated in the
same jYj range and shown with their PDF uncertainties.

Pu Pd R

Measured 0.602� 0.022 0.258� 0.026 2.34� 0.32
CT18NNLO 0.636� 0.011 0.213� 0.009 2.99� 0.16
MSHT20 0.633� 0.009 0.204� 0.008 3.10� 0.14
NNPDF4.0 0.624� 0.008 0.190� 0.007 3.29� 0.13

TABLE II. Measurements of Pu, Pd, and R in different jYj bins.
The uncertainties, in order, are statistical, experimental system-
atic, Δ-induced, sin2θleff , and QCD modeling. The final column is
the total uncertainty.

jYj range Pu δPu

[0, 0.5] 0.515� 0.031� 0.011� 0.009� 0.004� 0.005 0.034
[0.5, 1.0] 0.589� 0.035� 0.010� 0.008� 0.004� 0.005 0.038
[1.0, 1.5] 0.568� 0.036� 0.007� 0.010� 0.005� 0.003 0.038
[1.5, 2.3] 0.680� 0.060� 0.009� 0.020� 0.005� 0.003 0.064

jYj range Pd δPd

[0, 0.5] 0.232� 0.036� 0.007� 0.007� 0.008� 0.001 0.038
[0.5, 1.0] 0.189� 0.042� 0.008� 0.007� 0.008� 0.004 0.044
[1.0, 1.5] 0.348� 0.046� 0.005� 0.008� 0.010� 0.002 0.048
[1.5, 2.3] 0.252� 0.076� 0.014� 0.020� 0.009� 0.002 0.081

jYj range R δR

[0, 0.5] 2.22 0.50
[0.5, 1.0] 3.11 0.90
[1.0, 1.5] 1.63 0.33
[1.5, 2.3] 2.70 1.09

FIG. 3. Measured values of Pu, Pd, and R parameters compared
with the predictions of CT18NNLO, MSHT20, and NNPDF4.0.
Error bars of the data points correspond to the total uncertainty of
the measurement, while error bars on the predictions correspond
to the PDF uncertainties. The PDF predictions are offset from the
centers of the intervals for clarity.

FIG. 4. The pull of AFB distribution, calculated using the AFB
predictions corresponding to the default Pu and Pd values in
CT18NNLO predictions, and using the predictions correspond-
ing to the best fitted values of Pu and Pd.
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muons, the dimuon events contribute appreciably only to
the two lower jYj intervals. For both the Pu and Pd
parameters in the two lower jYj bins, the electron and
muon measurements agree within 1.7 standard deviations.
The precision in this analysis is better than the previous

DIS measurements that provide indirect constraints on the
d quark density. For example, the ν-Fe measurement gives a
relative uncertainty larger than 25% [12], while the relative
uncertainty on Pu and Pd is about 10% in this analysis. In
addition, Pu and Pd have higher sensitivity to the valence
quarks due to the quadratic terms in Eq. (4). A previous
study [34] used asymmetries that were deconvoluted from
the measured values to remove the effects of the detector
resolution, unlike the current analysis, which uses the
measured asymmetries directly. Such unfolding depends
significantly upon the PDF predictions, and thus contains
assumptions about the u and d quark densities that are
being studied. In the current analysis, the Pu and Pd
parameters are measured by comparing the uncorrected
data and simulated MC events, and hence there is no
unfolding-related bias.
In conclusion, we have performed a new measurement of

the proton structure parameters Pu and Pd using pp̄ →
Z=γ� → lþl− events of Tevatron data corresponding to
8.6 fb−1 of integrated luminosity. Taking advantage of the

asymmetry of the weak interaction, the u and d quark
contributions are determined separately, giving a model-
independent measurement of the valence d quarks. For pp̄
collisions at

ffiffiffi

s
p ¼ 1.96 TeV, Pu and Pd are dominated by

the valence u and d quarks for 0.004 < x < 0.45. Pu, Pd,
and their ratio R are measured both for the dilepton rapidity
interval jYj ¼ ½0; 2.3� and for finer jYj intervals to inves-
tigate their dependence on x. The ratio of Pu and Pd is
consistent with the CT18NNLO, MSHT20, and NNPDF4.0
PDF predictions for dilepton rapidities less than 1. However,
for the interval 1 < jYj < 1.5, it is smaller than predicted for
the PDFs by a factor of between 3.5 and 3.7 standard
deviations. For this interval, the x value of the quark with the
larger Bjorken x is near the peak of the valence quark
distribution, while that of the smaller x quark is about 0.01.
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TABLE III. Central values and uncertainties of the
jYj-dependent Pu and Pd parameters using dielectron events
and dimuon events. The uncertainties, in order, are statistical,
experimental systematics, and theoretical systematics including
PDF, sin2θleff , and QCD modeling. The last column, δPq, gives
the total uncertainty. The predictions for CT18NNLO are shown
with the corresponding PDF uncertainties.

jYj range Pu δPu

[0, 0.5] ee 0.554� 0.048� 0.008� 0.010 0.049
μμ 0.504� 0.041� 0.017� 0.014 0.047

CT18NNLO 0.535� 0.010

[0.5, 1] ee 0.528� 0.049� 0.010� 0.010 0.051
μμ 0.656� 0.054� 0.017� 0.013 0.058

CT18NNLO 0.572� 0.010

jYj range Pd δPd

[0, 0.5] ee 0.143� 0.063� 0.004� 0.010 0.064
μμ 0.266� 0.044� 0.012� 0.012 0.047

CT18NNLO 0.211� 0.008

[0.5, 1] ee 0.270� 0.066� 0.007� 0.011 0.067
μμ 0.124� 0.055� 0.013� 0.012 0.058

CT18NNLO 0.220� 0.007
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