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11LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3,
Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex, France
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We measure proton structure parameters sensitive primarily to valence quarks using 8.6 fb−1

of data collected by the D0 detector in
√
s = 1.96 TeV pp̄ collisions at the Fermilab Tevatron.

We exploit the property of the forward-backward asymmetry in dilepton events to be factorized
into distinct structure parameters and electroweak quark-level asymmetries. Contributions to the
asymmetry from s, c and b quarks, as well as from u and d sea quarks, are suppressed allowing valence
u and d quarks to be separately determined. We find an u to d quark ratio near the peak values
in the quark density distributions that is smaller than predictions from modern parton distribution
functions.

The forward-backward asymmetry, AFB , in dilepton
production at hadron colliders is due to parity violation
in the electroweak interaction but also depends upon the
hadron’s partonic structure [1–4]. Although many ob-
servables depend upon the experimentally indistinguish-
able contributions from different quark flavors, AFB has
the capability to provide information on specific quarks.
Contributions to AFB from the s, c and b quarks are sig-
nificantly suppressed because the quark and antiquark
densities are nearly the same and thus AFB predomi-
nately depends on u and d quark densities. Moreover,
the asymmetries for uū and dd̄ initial states depend dif-
ferently on the dilepton mass (M), offering the possibil-
ity to obtain u and d quark densities individually. Recent
analyses [5, 6] show that AFB can be factorized into sep-
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arate electroweak and quantum chromodynamics (QCD)
functions allowing independent determinations of the ef-
fective weak mixing angle parameter sin2 θℓeff, and proton
structure parameters called Pu and Pd for u and d quarks,
respectively. Measurements of Pu and Pd provide unique
information about the proton structure.

In this paper we report a determination of Pu and Pd

from the AFB distributions in pp̄ → Z/γ∗ → ℓ+ℓ− events
using data corresponding to 8.6 fb−1 of integrated lumi-
nosity collected with the D0 detector at the Fermilab
Tevatron pp̄ collider at

√
s = 1.96 TeV. A previous anal-

ysis [7] extracted Pu and Pd from the AFB distributions
measured by the D0 collaboration using 5 fb−1 of data
in only the dielectron final state [8] and after unfolding
the measured mass dependence of AFB to the parton
level. It demonstrated the feasibility of such a measure-
ment and showed a tendency for Pd to be higher and
Pu to be lower than expected [7]. In this paper a larger
data sample and both dielectron and dimuon final states
are used, thus improving the statistical precision rela-
tive to Ref. [7]. The dilepton mass distributions are not
unfolded, thus removing a significant source of system-
atic uncertainty. As explained below, Pu and Pd in pp̄
collisions are dominated by the valence u and d quark
contributions, and their ratio, R = Pu/Pd, directly re-
flects the relative contributions of the two leading quarks
inside a proton. Pu, Pd and R can also be measured us-
ing the data collected at the LHC, but measurements in
pp collisions also involve sea quark contributions compa-
rable to those of the valence quarks. The measurement
presented in this paper is thus unique and provides novel
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information on the valence u and d quark distributions by
separating them from each other and suppressing heavy
quark contributions. In addition, since the sum rules in
the global analysis of the parton distribution functions
(PDFs) relate the valence and sea quarks, this measure-
ment could have implications for the PDFs of sea quarks
and testing the calculations of initial state gluon radia-
tion.

At the Tevatron AFB is defined as:

AFB =
NF −NB

NF +NB

, (1)

where NF and NB are the number of forward and back-
ward events, defined as those for which cos θ > 0 and
cos θ < 0, with θ defined as the angle between the direc-
tion of the negatively charged lepton and the direction
of the proton beam in the Collins-Soper frame [9]. At
specific values of the dilepton rapidity Y and transverse
momentumQT defined with respect to the beam axis, the
observed AFB distribution as a function of the dilepton
invariant mass M can be factorized as [5]:

AFB(M) =

∑

q=u,c

[1− 2Dq(M)]σq(M)

σtotal(M)
·Au

FB(M)

+

∑

q=d,s,b

[1− 2Dq(M)]σq(M)

σtotal(M)
·Ad

FB(M)

≡ Cu(M)Au
FB(M) + Cd(M)Ad

FB(M), (2)

where σq is the subprocess cross section for a specific
qq̄ (q = u, d, s, c, b) initial state, σtotal is the total cross
section

∑
q=u,d,s,c,b σq, and Au

FB and Ad
FB are asymme-

tries for initial up-type states (uū and cc̄) and down-type
states (dd̄, ss̄ and bb̄), respectively. Forward and back-
ward events for the qq̄ subprocesses are defined in the
Collins-Soper frame in terms of a new angle θ′ between
the negatively charged lepton direction and the quark di-
rection. Au

FB and Ad
FB are determined by sin2 θℓeff and

are independent of parton densities. The dilution factor
Dq is defined as the probability for the qq̄ subprocess to
have an initial state where q comes from the antiproton
while q̄ comes from the proton, for which cos θ = − cos θ′.
The weights for the up- and down-type quarks, Cu and
Cd, can be averaged over a finite mass range, to further
separate them into mass-averaged structure parameters
(Pu and Pd) and mass-dependent structure parameters
(∆u and ∆d) [5]:

Cu,d(M) = Pu,d +∆u,d(M). (3)

In this Letter, we have defined Pu and Pd by averaging
over the mass range of [70, 116] GeV. The structure pa-
rameters, cross sections, asymmetries, and dilution fac-
tors all depend on Y and QT . Note that Eq. (2) factorizes
the QCD part of the observed AFB into Cu and Cd, and
the electroweak part as Au

FB and Ad
FB.

The dilution factors Du and Dd are modeled by the
PDFs and are small since the interactions of an anti-
quark in the proton and a quark in the antiproton are
suppressed in the relevant x-range at the Tevatron. The
dilution factors for s, c and b quarks are very close to
0.5 [10–12] and thus Pu and Pd are dominated by the
valence u and d quarks at leading order. As a result, Pu

and Pd at the Tevatron are approximately

Pu ∼ u(x1)u(x2)/σtotal(x1, x2),

Pd ∼ d(x1)d(x2)/σtotal(x1, x2), (4)

where x1,2 is the Bjorken variable for the colliding quark
and antiquark respectively, defined at leading order as

x1,2 =

√
M2+Q2

T√
s

e±Y . The ratio R = Pu/Pd, in which the

total cross section cancels, represents the relative contri-
bution of u and d quarks. Due to the detector acceptance
discussed below, the data in this measurement has dilep-
ton rapidity in the interval |Y | = [0, 2.3]. The Pu, Pd

and R measured in this paper correspond to the values
of x from approximately 0.004 to 0.45. We obtain infor-
mation on the x-dependence of the structure parameters
by analyzing the data separately for |Y | intervals of [0,
0.5], [0.5, 1.0], [1.0, 1.5], and [1.5, 2.3].
This Letter focuses on the measurement of Pu and Pd.

The ∆u and ∆d terms can be predicted with small uncer-
tainties for M in a narrow window around the Z boson
pole [5, 6]. Au

FB and Ad
FB can be precisely predicted

and have different dependences on M . Pu and Pd can be
determined by comparing Eq. (2) to the measured AFB

distribution. The asymmetries Au
FB and Ad

FB, and the
uncertainties on AFB due to the Pq and ∆q parameters
are calculated using ResBos [13] with CT18NNLO [10]
PDFs, and are shown in Fig. 1.
The D0 detector consists of a tracking system sur-

rounded by a solenoid magnet, calorimeters, and a muon
system [14–16]. Dielectron and dimuon events are col-
lected with lepton triggers and are required to have a
lepton-antilepton pair in the offline analysis. Leptons
are required to be well separated from other particles
both in the tracking system and the calorimeter. Muons
are measured as tracks in the tracking and muon systems
with |ηdet| < 1.8 [17], and are required to have transverse
momentum pT > 15 GeV. Electrons are reconstructed as
clusters in the central calorimeter (CC) with |ηdet| < 1.1,
and in an end calorimeter (EC) with 1.5 < |ηdet| < 3.5.
They are required to have a spatially matched track in
the tracking system, so that their electric charge can be
determined, and also for discriminating against photons.
The EC-EC events, where both electrons are in an EC,
are excluded due to the high level of background for such
events. The threshold for the electron transverse momen-
tum is 25 GeV. As a result, the background contributions
from Z/γ∗ → ττ , W+jets, diboson (WW and WZ), γγ,
top quarks and multi-jets are suppressed to O(1%) in the
mass region 70 < M < 116 GeV used in this analysis.
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FIG. 1: (a) The PDF-independent Au
FB

and Ad
FB

predicted by
ResBos as a function of M and the resulting AFB in pp̄ collisions
using the CT18NNLO PDF. (b) The PDF induced absolute uncer-
tainties in AFB due to Pu, Pd, ∆u and ∆d.

A Monte Carlo (MC) sample of Z/γ∗ → ℓ+ℓ− events is
generated using the leading-order pythia generator [18]
with CT18NNLO PDFs, followed by a geant-based [19]
simulation of the D0 detector. The samples are further
corrected by reweighting the MC events at the generator
level in M , QT , Y and cos θ to match the calculation
of ResBos [13], which is at approximate next-to-next-
to-leading order and next-to-next-to-leading logarithm in
QCD. The electron energy and muon momentum are cal-
ibrated using the known resonances in the dilepton mass
spectrum. The efficiencies of the online and offline se-
lection criteria are determined using the tag-and-probe
method [20] and the MC simulation is corrected to be
consistent with the data. The multi-jets background is
estimated using data, while other backgrounds are deter-
mined using pythiaMC simulations. The methodologies
used to derive the energy and momentum calibrations,
efficiencies and estimations of the background contribu-
tions were also employed in the previous measurements
of the effective weak mixing angle [21, 22]. Many sys-
tematic effects are suppressed since AFB is defined as a
ratio.

For the measurement of Pu and Pd in the full 0 <
|Y | < 2.3 range or in a particular |Y | interval, a set of
MC template distributions of AFB is prepared in which
Pu and Pd are varied while keeping ∆u and ∆d fixed at
their values calculated using ResBos and CT18NNLO.
A set of Cq = Pq + ∆q values is calculated for intervals
in Y , M and QT [23]. AFB templates are acquired by

reweighting the generator level differential cross sections
σq(Y,M,QT , cos θ) of the MC sample according to the
Cq value. In the MC reweighting procedures, Au

FB and
Ad

FB are calculated using ResBos, with sin2 θℓeff set to
the average of the results from the electron-positron col-
liders LEP and SLC [24]. Corresponding uncertainties on
sin2 θℓeff are extrapolated to the measured Pu and Pd. We
do not use the hadron collider results on sin2 θℓeff in order
to avoid the influence from the specific PDF predictions
used in their measurement, but this choice has a negli-
gible impact on the result because the hadron collider
measurements [25–28] give values of sin2 θℓeff very close
to the combined LEP/SLC result. Uncertainties on ∆u

and ∆d are estimated using the error PDF sets given by
CT18NNLO. Equation (2) is only strictly true when Y
and QT dependences are fully considered. In this letter,
the observed AFB is averaged over QT and Y so that the
factorization formalism of Eq. (2) becomes an approxi-
mation. This gives rise to additional uncertainties in the
calculation of σq and higher order QCD contributions.
Part of this uncertainty is already included when taking
the CT18NNLO error PDF sets into account. The re-
mainder is estimated by varying the QT distribution of
ResBos to match the predictions of pythia.
Pu and Pd are determined by requiring the best agree-

ment between the observed AFB distributions in both
the dielectron and dimuon events and their correspond-
ing MC templates. Since Pu and Pd are simultaneously
fitted, their values and corresponding uncertainties are
correlated with a correlation coefficient ρ = −0.859. The
central value of R and its uncertainty are calculated us-
ing the measured values and the total uncertainties of Pu

and Pd, and their correlation.
The measured Pu, Pd and the ratio R in the full range

|Y | = [0, 2.3] is:

Pu = 0.602± 0.019(stat.)± 0.010(theory)± 0.006(syst.)

= 0.602± 0.022

Pd = 0.258± 0.023(stat.)± 0.012(theory)± 0.005(syst.)

= 0.258± 0.026

R = 2.34± 0.32.

The systematic uncertainty corresponds to the quadratic
sum of the uncertainties of imperfect efficiency deter-
mination, lepton calibration and background estimation.
The theory uncertainty is the quadratic sum of the uncer-
tainties due to ∆ parameters, QCD calculation and fixed
value of sin2 θℓeff. The systematic and theoretical uncer-
tainties are small compared with the statistical uncer-
tainties. Compared with the predictions of CT18NNLO,
MSHT20 [11] and NNPDF4.0 [12] shown in Table I, the
measured Pu is lower than the PDF predictions, while
Pd is higher. This tendency is consistent with the pre-
vious measurement using 5 fb−1 of D0 data [7], where
the mass distribution was unfolded. In the current anal-
ysis, the Pu and Pd parameters are measured by compar-
ing the data and the simulated MC, and hence there is



6

no unfolding-related uncertainties. The ratio R is lower
than the predictions by about 2 standard deviations (the
largest difference, 2.8 standard deviations, is observed
with respect to NNPDF4.0).

Pu Pd R

Measured 0.602±0.022 0.258±0.026 2.34±0.32
CT18NNLO 0.636±0.011 0.213±0.009 2.99±0.16
MSHT20 0.633±0.009 0.204±0.008 3.10±0.14
NNPDF4.0 0.624±0.008 0.190±0.007 3.29±0.13

TABLE I: Measured values of Pu, Pd and R in the full |Y |
range [0, 2.3], together with their predictions from the CT18NNLO,
MSHT20 and NNPDF4.0 PDFs. Predictions are calculated using
ResBos based on the definition in Eq. (2) and Eq. (3). The mea-
sured values are presented with their total uncertainties. The the-
oretical predictions are calculated in the same |Y | range and shown
with their PDF uncertainties.

The |Y |-dependent measurements using both the di-
electron and dimuon AFB distributions are shown in Ta-
ble II. The correlation coefficients of Pu and Pd in the four
|Y | intervals are −0.855, −0.862, −0.866 and −0.871 re-
spectively. The comparison between the measured values
and the predictions from representative PDFs is shown
in Fig. 2. For 1 < |Y | < 1.5 corresponding to x ∼ 0.2,
which is around the peak of the parton density distribu-
tions of the u and d quarks, the measured R differs from
the PDF predictions by more than 3.5 standard devia-
tions, indicating that the d quark contribution is higher
than the PDF expectations. For the other three bins, the
measurements of Pu and Pd show good agreement with
the predictions.

|Y | range Pu δPu

[0, 0.5] 0.515 ± 0.031 ± 0.011 ± 0.009 ± 0.004 ± 0.005 0.034
[0.5, 1.0] 0.589 ± 0.035 ± 0.010 ± 0.008 ± 0.004 ± 0.005 0.038
[1.0, 1.5] 0.568 ± 0.036 ± 0.007 ± 0.010 ± 0.005 ± 0.003 0.038
[1.5, 2.3] 0.680 ± 0.060 ± 0.009 ± 0.020 ± 0.005 ± 0.003 0.064

|Y | range Pd δPd

[0, 0.5] 0.232 ± 0.036 ± 0.007 ± 0.007 ± 0.008 ± 0.001 0.038
[0.5, 1.0] 0.189 ± 0.042 ± 0.008 ± 0.007 ± 0.008 ± 0.004 0.044
[1.0, 1.5] 0.348 ± 0.046 ± 0.005 ± 0.008 ± 0.010 ± 0.002 0.048
[1.5, 2.3] 0.252 ± 0.076 ± 0.014 ± 0.020 ± 0.009 ± 0.002 0.081

|Y | range R δR

[0, 0.5] 2.22 0.50
[0.5, 1.0] 3.11 0.90
[1.0, 1.5] 1.63 0.33
[1.5, 2.3] 2.70 1.09

TABLE II: Measurements of Pu, Pd and R in different |Y | bins.
The uncertainties, in order, are statistical, experimental system-
atic, ∆-induced, sin2 θℓ

eff
and QCD modelling. The final column is

the total uncertainty.

The measurements of Pu and Pd for dielectron and
dimuon channels separately are given in Table III. Due
to the limited detector acceptance and efficiencies for the
muons, the dimuon events contribute appreciably only to
the two lower |Y | intervals. For both the Pu and Pd pa-
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FIG. 2: Measured values of Pu, Pd and R parameters compared
with the predictions of CT18NNLO, MSHT20 and NNPDF4.0. Er-
ror bars of the data points correspond to the total uncertainty of
the measurement, while error bars on the predictions correspond
to the PDF uncertainties. The PDF predictions are offset from the
centers of the intervals for clarity.

rameters in the two lower |Y | bins, the electron and muon
measurements agree within 1.7 standard deviations.

|Y | range Pu δPu

[0, 0.5]
ee 0.554± 0.048± 0.008± 0.010 0.049
µµ 0.504± 0.041± 0.017± 0.014 0.047

CT18NNLO 0.535± 0.010

[0.5, 1]
ee 0.528± 0.049± 0.010± 0.010 0.051
µµ 0.656± 0.054± 0.017± 0.013 0.058

CT18NNLO 0.572± 0.010

|Y | range Pd δPd

[0, 0.5]
ee 0.143± 0.063± 0.004± 0.010 0.064
µµ 0.266± 0.044± 0.012± 0.012 0.047

CT18NNLO 0.211± 0.008

[0.5, 1]
ee 0.270± 0.066± 0.007± 0.011 0.067
µµ 0.124± 0.055± 0.013± 0.012 0.058

CT18NNLO 0.220± 0.007

TABLE III: Central values and uncertainties of the |Y |-dependent
Pu and Pd parameters using dielectron events and dimuon events.
The uncertainties, in order, are statistical, experimental systemat-
ics and theoretical systematics including PDF, sin2 θℓ

eff
and QCD

modelling. The last column δPq gives the total uncertainty. Pre-
dictions of CT18NNLO are shown with corresponding PDF uncer-
tainties.

In conclusion, we have performed a new measurement
of the proton structure parameters Pu and Pd using the
forward-backward asymmetry in pp̄ → Z/γ∗ → ℓ+ℓ−

events using Tevatron data corresponding to 8.6 fb−1 of
integrated luminosity. Taking advantage of the asymme-
try of the weak interaction, the u and d quark contri-
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butions are determined separately. For pp̄ collisions at√
s = 1.96 TeV, Pu and Pd are dominated by the valence

u and d quarks for 0.004 < x < 0.45. Pu, Pd and their
ratio R are measured both for the dilepton rapidity inter-
val |Y | = [0, 2.3], and for finer |Y | intervals to investigate
their dependence on x. For the interval 1 < |Y | < 1.5,
the ratio of Pu and Pd differs from CT18NNLO, MSHT20
and NNPDF4.0 PDF predictions by more than 3.5 stan-
dard deviations. For the other three intervals, the results
show good agreement with the PDF predictions.
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