

RECEIVED: March 13, 2023 ACCEPTED: March 14, 2023 PUBLISHED: March 22, 2023

Erratum: The collider landscape: which collider for establishing the SM instability?

Roberto Franceschini, Alessandro Strumia and Andrea Wulzer

^aDipartimento di Matematica e Fisica, Università degli Studi di Roma Tre,

Via della Vasca Navale 84, 00146 Roma, Italy

Largo B. Pontecorvo 3, 56127 Pisa, Italy

Via Marzolo 8, 35131 Padova, Italy

 $\textit{E-mail:} \verb| roberto.franceschini@uniroma3.it|, Alessandro.Strumia@unipi.it|,$

wulzer@cern.ch

ERRATUM TO: JHEP08(2022)229

ABSTRACT: We correct the beam energy spread of the points shown for the muon collider

in figure 4.

ARXIV EPRINT: 2203.17197

- We replace figure 4 with the following one. In the new figure we have corrected the beam energy spread for the muon collider to correspond to [1].
- In view of the change of performance of the muon collider we correct our discussion on a $\mu^+\mu^-$ top threshold collider. This option could be considered as a possible first stage of a future very high energy muon collider of $E_{\rm cm}=10$ TeV or more [2], that is currently being investigated by the International Muon Collider Collaboration (IMCC) [3]. Such 'First Muon Collider' was actually proposed long ago [4] (see also [5]). Two parameter sets are proposed in [1]. The first one with energy spread $R=10^{-4}$ and $\mathcal{L}_{\rm MuC}=7\times10^{32}{\rm cm}^{-2}{\rm s}^{-1}$, the second with $R=10^{-3}$ and $\mathcal{L}_{\rm MuC}=6\times10^{33}{\rm cm}^{-2}{\rm s}^{-1}$. The total length L of this collider would be $L=700\,{\rm m}$. Figure 1 shows that, in one year run, both options could achieve better precision than $\delta M_t=50\,{\rm MeV}$ if systematic uncertainties could be reduced. Notice that the sensitivity of muon colliders (in figure 1) is slightly better than the one of e^+e^- colliders with the same luminosity and energy spread because the of the absence of ISR.

^bDipartimento di Fisica "E. Fermi", Università di Pisa,

^cDipartimento di Fisica e Astronomia, Università di Padova,

¹The uncertainty estimated in [4] for $100\,\mathrm{fb}^{-1}$ is in good agreement with ours, taking into account that a $t\bar{t}$ efficiency $\epsilon=(0.3)^2$ (much lower than the realistic $\epsilon=0.7$ [6] we employ) is assumed in [4]. Furthermore, the NNNLO cross-sections we employ give better sensitivity than the ones at NLO used in [4].

Statistical uncertainty on M_t

Statistical uncertainty on M_t

Figure 1. Statistical uncertainty on the top mass. Initial State Radiation is neglected, as appropriate for a muon collider. The left panel assumes running at 10 values of $E_{\rm cm} = \{340, 341, \dots, 349\}$ GeV with $\mathcal{L}/10$ luminosity at each point. The right panel assumes running at $E_{\rm cm} = \{342, 343\}$ GeV with $\mathcal{L}/2$ luminosity at each point. The results are reported in the plane formed by the beam energy spread R, and the luminosity \mathcal{L} . We assumed a 70% efficiency for $t\bar{t}$ reconstruction. In the shaded region the systematic uncertainty on M_t estimated in eq. (3.3) is larger than the statistical uncertainty.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP³ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

- [1] R.B. Palmer, Muon Colliders, Rev. Accel. Sci. Tech. 7 (2014) 137 [INSPIRE].
- [2] J.P. Delahaye et al., Muon Colliders, arXiv:1901.06150 [INSPIRE].
- [3] MUON COLLIDER collaboration, The International Muon Collider Collaboration, JACoW IPAC2021 (2021) 3792 [INSPIRE].
- [4] M.S. Berger, The Top-anti-top threshold at muon colliders, AIP Conf. Proc. 435 (1998) 797[hep-ph/9712486] [INSPIRE].
- [5] V.D. Barger, M.S. Berger, J.F. Gunion and T. Han, Precision W boson and top quark mass determinations at a muon collider, Phys. Rev. D 56 (1997) 1714 [hep-ph/9702334] [INSPIRE].
- [6] K. Nowak and A.F. Zarnecki, Optimising top-quark threshold scan at CLIC using genetic algorithm, JHEP 07 (2021) 070 [arXiv:2103.00522] [INSPIRE].
- [7] Y. Alexahin et al., Muon Collider Higgs Factory for Snowmass 2013, in the proceedings of the Community Summer Study 2013: Snowmass on the Mississippi, Minneapolis, MN, U.S.A., July 29 August 6, 2013, [arXiv:1308.2143] [INSPIRE].