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1 Introduction

There have been renewed interests recently in exploring physics opportunities at multi-TeV
lepton colliders, thanks to the breakthrough in the cooling technology for a muon beam [1],
and the advancement of the wake-field electron acceleration technology [2]. This exciting
possibility could lead us to an unexplored regime at the energy and luminosity frontier for
new physics reach beyond the Standard Model (SM). Indeed, beyond the extensive studies
for a multi-TeV e+e− collider of the CERN Compact Linear Collider (CLIC) [3], some recent
works on a high-energy muon collider have shown great physics potential for precision
SM Higgs physics [4–6], BSM heavy Higgs boson discovery [7, 8], WIMP dark matter
searches [9, 10], electroweak phase transition [11], lepton-universality violation [12, 13],
and a broad coverage for other new physics scenarios [14–19].

While a lepton collider has the great merit for a monochromatic energy spectrum at the
designed center-of-momentum (c.m.) energy

√
s, it simultaneously offers a broad energy

spectrum due to the enhanced collinear radiation of the electroweak (EW) gauge bosons.
This leads to the familiar phenomena of the photon-photon collisions [20, 21]. In fact,
the vector-boson fusion (VBF) mechanism dominates the physical processes in high-energy
leptonic collisions [14, 22, 23]. To properly describe those reactions, it was emphasized
recently [23] that it is appropriate to adopt the partonic picture by introducing the elec-
troweak parton distribution functions (EW PDFs) [24–27], which run according to the
evolution equations of the unbroken gauge theory of SU(2)L⊗U(1)Y at high energies above
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the EW scale. It is important to formulate the EW PDFs to predict the SM expectations
at the ultra-high energies, before estimating the sensitivity for new physics searches.

In the subsequent splitting of the EW gauge bosons, quarks enter the picture of the EW
partons from γ/Z,W± → qq̄′. The strong QCD interactions of quarks and gluons take over
and the coupled DGLAP equations of the full Standard Model must be invoked [28, 29].
This would yield QCD contributions in leptonic collisions and thus lead to new mechanisms
for the production of colored states [30]. In fact, quark contributions to QCD jet production
in e+e− collisions were considered in the literature [31]. They are the dominant phenomena
in the kinematical region with forward-backward scattering and lower energy transfer. It is
thus important to have a clear understanding of the events and the characteristics taking
into account the EW and QCD interactions of the partons in high-energy lepton collisions.
Motivated by the recent discussions on the future high-energy e+e− or µ+µ− colliders, we
consider a collider with the c.m. energies

√
s = 3 TeV− 15 TeV, (1.1)

with a few benchmark points as 3TeV, 6TeV, 10TeV, and 14TeV. The 3-TeV c.m. energy
is the benchmark for the Compact Linear Collider [3] and the higher energies are those
under discussion for future muon colliders [1]. The total integrated luminosity is assumed
to be in the range of (1− 10) ab−1.

In section 2, we present the full DGLAP equations for the quarks and gluons coupled to
the EW sector in the SM. In dealing with the full SM spectrum, the physics is characterized
by two scales, namely, ΛQCD ∼ 200MeV and ΛEW ∼ 250GeV. To assure perturbativity,
we take µQCD = 0.5GeV, inspired by the critical scale adopted in ref. [31]. The different
choice of µQCD is ascribed to the non-perturbative uncertainty. The EW threshold is
taken at µEW = MZ to excite the EW gauge bosons and the top quark. We solve DGLAP
equations numerically and calculate the quark and gluon PDFs of a lepton at representative
factorization scales. We find substantial quark and gluon luminosities resulting from an
initial electron and a muon, especially in the relatively low invariant mass region.

After setting up the QCD/EW partonic formalism, we calculate the SM prediction for
some leading production processes at high-energy electron and muon colliders as shown in
section 3. In particular, we present in detail the QCD jet production initiated by quarks
and gluons, which present the dominant contributions, up to the transverse momenta about
60GeV. We also provide an estimation of the total cross section for the photon-induced
hadronic production at low partonic energies, which dominates the event shape in this
energy regime. We summarize our results and conclude section 4.

2 The parton distribution functions for quarks and gluons

Different from a proton beam, the parton contents inside of a lepton can be calculated
perturbatively. The evolutions of parton distribution functions (PDFs) over a factorization
scale Q are governed by the well-known DGLAP equations [32–35]

dfi
d logQ2 =

∑
I

αI
2π
∑
j

P Ii,j ⊗ fj , (2.1)
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where the index I loops the different SM interactions. The symbol ⊗ stands for a convo-
lution

[f ⊗ g] (x) =
∫ 1

0
dξdζδ(x− ξζ)f(ξ)g(ζ) =

∫ 1

x

dξ
ξ
f(ξ)g

(
x

ξ

)
. (2.2)

P Ii,j are the splitting functions for j → i under the SM interaction I, and x is the mo-
mentum fraction carried by the daughter particle i. The leading order QCD and QED
splitting functions are known for decades and can be found in textbooks [36, 37]. They
are extended to include mixed term O(ααs) in ref. [38] and next-to-leading order (NLO)
QED in ref. [39]. The pure QCD splittings are known up to next-to-next-to-leading order
(NNLO) [40, 41], which are employed to determine the QCD PDFs of proton in several
global fitting groups [42–47]. The QED and QED mixed evolutions are adopted to deter-
mine the photon content in refs. [48–50]. Recently, a more precise determination of the
photon PDF of a proton in terms of the electromagnetic structure functions was proposed
as the LUXqed formulation [51, 52], which are employed in the global PDF analysis [53–55].
The splitting functions are extended to the EW theory to involve the EW gauge bosons and
chiral states in refs. [24, 25], which are adopted to determine the proton EW PDFs [28, 29].

As discussed in section 1, for a leptonic beam, the DGLAP evolution equations in
eq. (2.1) run differently in three regions of the physical scales. The initial condition starts
from the lepton mass, and the QED PDFs (including the photon, charged leptons, and
quarks) run in terms of the QED gauge group. Starting at µQCD, the QCD interaction
begins to enter. The QCD and QED evolutions run simultaneously until µEW, where the
complete SM sector begins to evolve according to the unbroken SM gauge group. In such a
way, we need two matchings, at µQCD and µEW, respectively.1 As the QED and QCD gauge
groups conserve the charge and parity symmetry, the PDFs below µEW can be treated with
no polarization, as long as the initial lepton beams are unpolarized. As pointed out already
in refs. [23, 29], the polarization plays an important role in the EW PDFs above the EW
scale, even for the unpolarized initial beams. Consequently, the photon and gluon become
polarized due to the fermion chiral interactions.

2.1 PDF evolution in QED and QCD

For the sake of illustration, we take the electron beam as an example. The presentation
is similarly applicable to the muon beam by recognizing a different mass. In solving the
QED and QCD DGLAP equations, it is customary to define the fermion PDFs in a basis
of gauge singlets and non-singlets. The singlet PDFs can be defined as

fL =
∑

i=e,µ,τ
(f`i + f¯̀

i
), fU =

∑
i=u,c

(fui + fūi), fD =
∑

i=d,s,b
(fdi + fd̄i), (2.3)

1In a realistic situation, one should perform a matching whenever crossing a heavy-flavor threshold, such
as at mτ ,mc,mb,mt. In practice, the multiple scales make the DGLAP evolution complicated, which is
beyond the scope of this work. We defer the related aspects to a future dedicated study [56]. As long
as the observables under consideration are not heavy-flavor sensitive and the physical scale is well above
their mass thresholds, the heavy flavors just behave similarly to the light sea flavors that are all generated
dynamically. Therefore, we treat them on the equal footing classified by the matching scales µQCD and
µEW, just for simplicity.
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where the subscripts refer to the fermion flavors and we have excluded the top quark below
the EW scale. The DGLAP equations in eq. (2.1), involving the photon and gluon, can be
written as

d
d logQ2



fL

fU

fD

fγ

fg


=



P`` 0 0 2N`P`γ 0
0 Puu 0 2NuPuγ 2NuPug

0 0 Pdd 2NdPdγ 2NdPdg

Pγ` Pγu Pγd Pγγ 0
0 Pgu Pgd 0 Pgg


⊗



fL

fU

fD

fγ

fg


, (2.4)

where the active flavors below the EW scale are

N` = 3, Nu = 2, Nd = 3. (2.5)

We remind that the splitting functions Pqγ and Pqg (q = u, d) contain color factor implicitly.
In this work, we only consider the leading order splittings. The Pij defined here include the
gauge couplings α and αs in eq. (2.1), which evolve with scale as well. The initial condition
for an electron beam at the leading order is

fe/e(x,m2
e) = fL(x,m2

e) = δ(1− x), (2.6)

while all the other PDFs are zero at the initial scale Q2 = m2
e.

The non-singlet PDFs can be defined as

fNS
`i = f`i − f¯̀

i
, f`,12 = fē − fµ̄, f`,13 = fē − fτ̄ , (2.7)

fNS
ui = fui − fūi , fu,12 = fu − fc, (2.8)
fNS
di = fdi − fd̄i , fd,12 = fd − fs, fd,13 = fd − fb. (2.9)

The DGLAP equations for the non-singlet PDFs are written as
d

d logQ2 f
NS = Pff ⊗ fNS. (2.10)

where f = `, u, d. At the starting scale Q2 = m2
e, the only non-trivial non-singlet PDF is

fNS
e = fe − fē = δ(1− x), (2.11)

while all the other non-singlet PDFs are trivially zero and remain to be zero at high scales
due to the zero initial conditions.

We can now construct the PDFs for each flavor in terms of the singlet and non-singlet
PDFs. The valence flavor PDF is

fe = fL + (2N` − 1)fNS
e

2N`
, (2.12)

and the sea fermion PDFs are

fē = fµ = fµ̄ = fτ = fτ̄ = fL − fNS
e

2N`
, (2.13)

fu = fū = fc = fc̄ = fU
2Nu

, (2.14)

fd = fd̄ = fs = fs̄ = fb = fb̄ = fD
2Nd

. (2.15)
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A few remarks are in order.

• We would like to remind the reader that the relations of the sea flavor PDFs in
eqs. (2.13)–(2.15) are valid only when we ignore the fermion masses in accordance with
the rigorous collinear factorization. The PDFs for heavy flavors will receive threshold
corrections when their masses are taken into account, as already commented on with
multiple scales. This would lead to finite corrections of the order (α/2π) log

(
m2
f/m

2
`

)
to the heavy-flavor PDFs [56]. More detailed studies for the threshold matching are
beyond the scope of our current interests.

• Below µQCD, the QCD confinement sets in. As such, the picture of “vector-meson-
dominance”, e.g. γ−ρ mixing, gives the leading contribution to the photonic interac-
tions, as already included in most of the photon-PDFs. It is expected to be bounded
by α2 log2(µ2

QCD/m
2
` ). In our practical treatment, we only run the QED gauge group

in the DGLAP evolution. The γ → qq̄ splitting serves as a source of the initial con-
ditions of the QCD PDFs at the matching scale µQCD, similar to the quark-parton
model Ansätze adopted in ref. [31].

• Above µEW, the unbroken SM gauge interactions come into play and the PDFs receive
EW corrections. The EW gauge boson W/Z and top-quark parton become active,2
and the complete EW PDFs become polarized due to the chiral couplings, as outlined
in a previous publication [23]. We will properly include the EW effects in the rest of
our calculations.

2.2 PDFs and partonic luminosities at a lepton collider

With the formalism in the last section, we can compute the parton distribution functions
of quarks and the gluon in a high-energy lepton, along with leptons and the photon. Be-
cause of the complexity of the coupled integrodifferential equations, one encounters highly
technically challenging calculations, with example of non-singlet PDF of the valence lepton
demonstrated in appendix A. The comprehensive details are left for a future work [57].

At the low energy below µEW, the massive gauge bosons, neutrinos, and the top quark
are inactive. We only have the PDFs for the flavors specified in eq. (2.5) plus the photon
and gluon. We show the PDFs for an electron beam (e±) in figure 1(a) and a muon beam
(µ±) in figure 1(b) for the factorization scales Q = 30 (50)GeV.

The initial condition for a valence lepton PDF is set as in eq. (2.6). Including the
leading soft radiation near x→ 1, it behaves as 1/(1− x). In the low-x limit (x→ 0), the
valence PDF deviates from the leading 1/(1 − x) behavior, and receives 1/x (and log x)
enhancement from higher order splitting γ → `+`−. It coincides with sea flavor f`val ∼ f¯̀val

shown explicitly in figure 1, because γ → `+`− splitting gives the same amount of `+ and `−.
The photon is generated dynamically through the splitting of charged particles, `(q)→

`(q)γ. The leading order splitting gives the traditional Equivalent Photon Approximation
2Here, we ignore the threshold correction, log

(
M2
t /µ

2
EW
)
, to the top-quark PDFs, which is valid as long

as the physical energy scale is far above the EW scale, i.e., Q2 � µ2
EW.

– 5 –
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Figure 1. PDFs in a high-energy lepton for (a) an electron and (b) a muon below the EW scale at
Q = 30 (50) GeV; and for (c) an electron and (d) an muon above the EW scale at Q = 3 (5) TeV.

(EPA) [58, 59]

fγ/`,EPA(xγ , Q2) = α

2π
1 + (1− xγ)2

xγ
log Q

2

m2
`

, (2.16)

with a suitably chosen scale Q associated with the physical process.3 All the sea fermions,
including leptons and quarks, are generated through γ → `+`−, qq̄, while gluon comes
from q → qg splitting. In the low-x limit, the generated PDFs behave as 1/x plus logp x
corrections.

Including higher orders, the valence PDF receives threshold corrections of the form
1/(1−x) and logp(1−x). The precise determination of the PDFs in the x→ 1 limit requires
all orders of resummation. It can be only achieved for the valence non-singlet PDF under
the fixed coupling assumption when x asymptotically approaches 1, as demonstrated in
appendix A.1. Determination of the PDFs at other nontrivial x value (0 < x < 1) or with
a running coupling requires fully solving the DGLAP equations numerically. We outline
the techniques we develop and take the non-singlet PDF of valence lepton as an example
for demonstration in appendix A, while leave the comprehensive details of singlet, photon
and gluon PDFs for a future work [57]. A smooth transition to the x→ 1 asymptotic form
requires a consistent matching [61]. In our practical treatment, we take the valence lepton

3For consistency of the evolution and simplicity, we have only kept the leading-log term for the photon
splitting. The non-log term corrections [20, 60] may be sizable and become relatively more relevant for a
muon collider.

– 6 –



J
H
E
P
0
2
(
2
0
2
2
)
1
5
4

PDF as a functional form as

f`/`(x,Q2) =

fresum(x,Q2), x < 1− ε,
L(Q2)δ(1− x), x ≥ 1− ε,

(2.17)

where ε serves as a regulator.4 Within x < 1 − ε, the fresum(x,Q2) is obtained through
the DGLAP resummation, which will converge to the all-order resummation form with a
sufficient higher order of iterations, demonstrated in appendix A. Beyond the cutoff, the
dynamically generated PDFs are negligible, while the valence PDF is taken as the form of
a local form, L(Q2)δ(1− x). The coefficient L(Q2) is determined through the momentum
conservation [28, 29], ∑

i

〈xi〉 = 1, where 〈xi〉 =
∫
xfi(x,Q2)dx. (2.18)

The index i runs through all the flavors, including the leptons, photon, light quarks, and
gluon below µEW, as well as neutrinos, weak gauge bosons W±/Z and top quark above
µEW. The momentum conservation in eq. (2.18) ensures a cancellation of the regulator ε
between the local term L(Q2) and the integration over x < 1 − ε in a physical observable
computation.

As discussed in section 2.1, degeneracies exist for the sea leptons, up-type and down-
type quarks as in eqs. (2.13)–(2.15). The leading splittings γ → `+`−, qq̄ result in the
approximate ratio for one flavor in the moderate x region

f¯̀val
: fu : fd ∼ 1 : Nce

2
u : Nce

2
d = 1 : 4

3 : 1
3 , (2.19)

where Nc = 3. At small x, the light-quark (u- and d-type) PDFs merge due to the resum-
mation of large and universal QCD logarithmic terms (αs log x). In the relatively large
x region (x & 0.5), the energetic quarks tend to radiate more than leptons and fu even
becomes slightly smaller than fē, as a result of the additional QCD splitting q → qg. For
a muon beam (µ±), log

(
Q2/m2

e

)
/ log

(
Q2/m2

µ

)
∼ 2 at Q ∼ 30 (50)GeV. The QCD partons

(quark and gluon) in the electron beam are significantly larger than those in the muon
beam, because of the accumulation of the large QCD log terms. We also note that the
PDF uncertainties due to the scale choices of 30GeV and 50GeV are moderate, about 10%
for fg/e and 20% for fg/µ. Besides, we have also estimated the QCD threshold uncertainty
by varying the matching scale as µQCD = 0.7GeV [31], which is less than 20% (10%) for
an electron (muon) beam [62].

It is informative to consider the PDF evolution above the EW scale. We thus also
show the full EW PDFs at high scales of 3 (5) TeV in figures 1(c) and (d). In these plots,
we have summed over the non-valence fermions as

f`sea = f¯̀val
+

N∑̀
i 6=`val

(f`i+f¯̀
i
), fν =

N∑̀
i

(fνi+fν̄i), fq =
Nu∑
i

(fui+fūi)+
Nd∑
i

(fdi+fd̄i). (2.20)

4Below the EW scale, we take ε = 10−6. For EW PDFs above µEW, we apply a more severe truncation
ε = MZ/Q to assure the correct double-log behavior in the f → fZ(f ′W ) splitting [23, 28].
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Q(e±) eval γ `sea q g

30GeV 96.6 3.20 0.069 0.080 0.023
50GeV 96.5 3.34 0.077 0.087 0.026
MZ 96.3 3.51 0.085 0.097 0.028

Q(µ±) µval γ `sea q g

30GeV 98.2 1.72 0.019 0.024 0.0043
50GeV 98.0 1.87 0.023 0.029 0.0051
MZ 97.9 2.06 0.028 0.035 0.0062

Table 1. The averaged momentum fractions [%] carried by each parton species for (a) an electron
beam and (b) a muon beam with a few representative values of the factorization scale Q.

Here, Nu = 3 as the top quark becomes active as well. The neutral-current EW PDFs
include γ, Z, and γZ-mixing. The longitudinal PDFs (WL, ZL) were known at the leading
order as the Effective W Approximation [63–65], which do not run with the scale Q, as
an explicit realization of the Bjorken-scaling restoration. We find that the EW corrections
from W/Z to the light particle PDFs at a high scale above TeV can be as large as 50%
(100%) for fd/e (fd/µ), due to the relatively large SU(2)L gauge coupling compared with
the electromagnetic one. The scale choices of 3TeV and 5TeV give uncertainty about
15% (20%) in the electron (muon) beam. The detailed comparison and potential physical
impacts are left for a future publication [57].

It is interesting to ask how much momentum each parton species carries along the
longitudinal beam direction. We explicitly show the average momentum fractions 〈xi〉
carried by a parton i in table 1. Our results are shown for both an electron beam in (a)
and a muon beam in (b). Naively, the momentum ratio for the sea leptons and quarks may
be estimated by eq. (2.19) as

〈xq〉
〈x`sea〉

.
Nc

[∑
i(e2

ui + e2
ūi) +∑

i(e2
di

+ e2
d̄i

)
]

e2
¯̀val

+∑
i 6=`val

(e2
`i

+ e2
¯̀
i
) = 22/3

5 . (2.21)

The actual numbers in table 1 are smaller than this estimation, as pointed out that gluon
takes part of the quark momentum fractions. After adding the gluon contribution, we
obtain an improved estimation

〈xq〉+ 〈xg〉
〈x`sea〉

' 22/3
5 . (2.22)

Table 1 gives us the relative size of each parton species and the variation at a few repre-
sentative scales. In addition, we see that there is less radiation and thus less sea quark
contribution for a muon beam than an electron beam.

To make the connection with the physical scattering processes, we next compute the
partonic luminosities for the initial states

`+`−, γ`, γγ, qq, γq, γg, gq and gg, (2.23)

for
√
s = 3TeV and 10TeV, as shown in figure 2 versus

√
τ =

√
ŝ/s, the ratio of the

partonic c.m. energy and the collider energy, where the sea fermion species are summed as
in eq. (2.20). We see that a high-energy lepton collider can offer a broad spectrum of initial
state particles. Of our particular interests, the QCD parton luminosities involving quarks

– 8 –
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Figure 2. Parton luminosities dLij/dτ for (a) an e+e− collider at
√
s = 3TeV, (b) a µ+µ− collider

at
√
s = 3TeV, (c) an e+e− collider at

√
s = 10TeV, and (d) a µ+µ− collider at

√
s = 10TeV. The

factorization scale is chosen as Q =
√
ŝ/2 (solid curves) and

√
ŝ (dashed curves).

and gluons increase significantly at low
√
τ . The parton luminosities of γg + γq are about

50% (20%) of that of γγ for an e+e− (µ+µ−) collider. The QCD parton luminosities of qq, gq
and gg are about 2% (0.5%) of that of γγ for an e+e− (µ+µ−) collider. Correspondingly,
given the stronger coupling over QED, we may expect sizable QCD cross sections at low√
τ . Our standard choice for the factorization scale is

Q =
√
ŝ/2. (2.24)

Varying the scale from this default choice (solid curves) to Q =
√
ŝ may result in a lumi-

nosity uncertainty of 20% (50%) for a photon-initiated (gluon initiated) process.

3 The standard processes and jet production

3.1 EW processes

In high-energy e+e− collisions, one would expect that the leading reactions are of the QED
and electroweak nature, including Bhabha scattering e+e− → e+e−, Compton scattering
γe → γe, and the s-channel annihilation processes for pair production e+e− → µ+µ−, qq̄

and W+W− once above the threshold. While the cross sections for the annihilation pro-
cesses fall with the c.m. energy as σ ∼ α2/s, the t-channel processes receive the collinear
enhancement. Nevertheless, with a detector angular acceptance θmin, the cross sections for

– 9 –
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Figure 3. Cross sections for the annihilation processes versus the collider c.m. energy for an e+e−

collider (left panels) and a µ+µ− collider (right panels) with basic acceptance cuts in eq. (3.3).
The downward dashed (dotted for τ+τ−) curves indicate the corresponding Bhabha scattering and
`+`− annihilation processes with (without) ISR.

the 2 → 2 t-channel processes still fall as σ ∼ α2/(s θ2
min). Going beyond the fixed-order

calculations, the potentially large collinear logarithms (log θ2) need to be resummed, lead-
ing to the appropriate description of the parton distribution functions (PDFs), as presented
in the previous section. As such, there will be substantial contributions coming from par-
tonic scattering processes initiated by those in eq. (2.23), far below the collider c.m. energy.
Throughout this work, the partonic cross sections are calculated at the leading order with
the general purpose event generator MadGraph5 v2.6.7 [66]. The annihilation processes
with the initial-state radiation (ISR) are calculated with Whizard v2.8.5 [67].

We first present some leading order production cross sections of typical electroweak
processes in figure 3 versus the collider c.m. energy for both an e+e− collider (left panels)
and a µ+µ− collider (right panels), including the effects of ISR [68]. In figure 3, the dashed
(falling) curves represent the Bhabha scattering and annihilation processes

`+`− → `+`−, τ+τ−, qq̄ and W+W−. (3.1)

The cross sections scale as 1/s, with the characteristic kinematics of the final-state pair
invariant mass close to the collider energy mij ≈

√
s. At high energies, the ISR effects

reduce the effective partonic collision energy ŝ and thus increase the cross sections ∼ 1/ŝ.
For illustration, we compare the result without ISR for `+`− → τ+τ− by the dotted curves
in the panels. Typically, the effective reduction is about a factor of 20%−80% (10%−40%)

– 10 –
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for an electron (muon) collider. The radiative returns to the Z resonant production also
enhance the light-particle cross sections significantly. The ISR effects for light-particle
production (τ+τ−, qq̄) are thus larger than the massive one (W+W−), because of the
lower threshold, i.e., ŝ > m2

ij versus ŝ > (2MW )2.
In considering the QED fusion processes, the initial state partons present an infrared

enhancement at low mij and the two-parton cross section scales as

σ ∼ α2

m2
ij

(
α

2π log Q
2

m2
`

)2

. (3.2)

To separate the hadronic activities with the low-momentum transfer from the hard pro-
cesses of our current interests, we impose the following basic acceptance cuts on the outgo-
ing particles in the transverse momentum (pjT ), the di-jet invariant mass and the pseudo-
rapidity (ηj) in the lab frame

pjT >

(
4 +

√
s

3 TeV

)
GeV, mij > 20GeV, |ηj | < 3.13 (2.44). (3.3)

The energy-dependent cut on the final state pjT is to uniformly control the collinear logs of
the form (αs/π) log

(
pjT /
√
s
)
, numerically motivated by a CLIC study [69]. The pseudo-

rapidity cut corresponds to an angle with respect to the beam in the lab frame θj ∼ 5◦ (10◦),
in accordance with the detector coverage. For an equal footing comparison, the same
acceptance cuts have been applied to the Bhabha scattering and annihilation processes in
figure 3 as well.

In figure 3, the solid lines show the Compton scattering and the fusion processes

γ`→ γ`; γγ → `+`−, qq̄ (u, d, c, s, b), and W+W−, (3.4)

by exploiting the EPA in eq. (2.16). The upper panels and lower panels are with a different
rapidity (angle) cut as in eq. (3.3). The cross section for the Compton scattering (γ`) also
falls as α2/(s θ2), as evidenced from the figures. The cross sections for the other fusion
processes increase with energy logarithmically and decreases with pT (ormij) as in eq. (3.2).
The angular dependence is much weaker than 1/θ2 and becomes roughly like η2 due to the
boost factor. We see that the fermion pair production can be larger than that of the WW

channel, which is known to be one of the leading channels for high-energy leptonic collisions.
For the sake of illustration, we have only included the leading contributions from γγ fusion
in figure 3. We remind the reader that for the W+W− production at these energies, the
sub-leading channel γZ → W+W− contributes to about 20% (40%), and ZZ,W+W− →
W+W− about 10% (30%) concerning the γγ contribution at an e+e− (µ+µ−) collider. They
are neglected in our comparison for simplicity, which does not change the conclusion [57].

3.2 Jet production

Before predicting the jet production rate, it is important to remind the reader that at the
low-momentum transfer, the majority of the events come from the hadronic production
of the photon-induced processes, constituting the substantial backgrounds at the detector.

– 11 –
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Figure 4. The photonic (a) and leptonic (b) cross sections for photon-induced hadronic production
at high-energy lepton colliders. We adopted the models by Pythia [76, 77] or SLAC [72] parame-
terizations as stated in the text.

This was pointed out in refs. [70, 71] for e+e− collisions in the context of beamstrahlung,
and have been since extensively studied [72, 73]. Similar to the behavior of the total
cross sections in hadronic collisions [74, 75], the photon-induced hadronic cross section
moderately increases with energy. Due to the non-perturbative nature of the low-energy
reactions, one would have to model the scattering. We estimate the total cross sections by
adopting the two well-studied parameterizations for γγ → hadrons in Pythia [76, 77],

σ̂γγ(ŝ) ≈ (211 nb) ŝ0.0808 + (215 nb) ŝ−0.4525, (3.5)

and by a SLAC group [72],

σ̂γγ(ŝ) ≈

490 nb (0.3 GeV <
√
ŝ < 1.5 GeV),

200 nb [1 + 0.0063(ln ŝ)2.1 + 1.96 ŝ−0.37] (
√
ŝ ≥ 1.5 GeV),

(3.6)

where ŝ is the c.m. energy squared for the γγ collisions in units of GeV2. We show the
results for the photon-induced cross sections in figure 4. We see that the γγ cross section
may reach the order of micro-barns (µb) at the TeV c.m. energies. Folding in the γγ
luminosity in electron/muon collisions,5 this brings the cross section down to the level of
one hundred or a few tens of nano-barns at high-energy electron or muon colliders. The
axis on the right indicates the event rate in kHz, assuming an instantaneous luminosity
of 1035/cm2/s. Those hadronic final states dominate the event shape in this low energy
regime. However, those events are typically populated at very small scattering angles and
low transverse momenta below a few GeV [69]. While they should be taken into account
for the detector design and the experimentation, they would not have much impact on the
high-pT physics of our current consideration.

Particularly important channels of our current interests are the jet production via the
fusion mechanism, which would be the dominant phenomena at low

√
ŝ. The production

5Here we have neglected the effects of beamstrahlung. This is justifiable for the large muon mass and
for the circular collider designs.
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Figure 5. Cross sections for di-jet (orW+W−) production (j = q, g) versus the collider c.m. energy
for an e+e− collider (left panels) and a µ+µ− collider (right panels) with basic acceptance cuts in
eq. (3.3).

channels include
γγ → qq̄, γg → qq̄, γq → gq,

qq → qq (gg), gq → gq and gg → gg (qq̄),
(3.7)

where q includes d, u, s, c, b and the possible anti-quarks as well. The PDFs and the corre-
sponding partonic luminosities are already shown in figures 1 and 2 with the full DGLAP
evolution at a double-log accuracy. We present the cross sections for di-jet production from
initial states of photons, quarks, and gluons versus the collider c.m. energy

√
s = 3−15TeV

at an e+e− collider (left panels) and a µ+µ− collider (right panels) in figure 5, subject to
the acceptance cuts in eq. (3.3) shown by the upper and lower panels. The patonic QCD
jet cross sections are calculated at the leading order with MadGraph5 v2.6.7 [66] and
cross-checked with MCFM v9.1 [78] and Sherpa v2.2.10 [79].

The standard factorization scale is chosen to be Q =
√
ŝ/2, while varying the scale to

Q =
√
ŝ gives a 6∼15% (30∼40%) enhancement of the cross sections for an e+e− (µ+µ−)

collider, which characterizes the scale uncertainty. The rather large difference resulting
from the scale choice is owing to the large αs log

(
Q2) resummation. It is important to note

that, even originated from the photon splitting to quarks and then subsequently to gluons,
the gluon and quark initiated processes exceed the photon fusion in the di-jet production
rates by two (one) orders of magnitude for the electron (muon) collider. This is the result
of large QCD resummation and the g/q multiplicity. Depending on the acceptance cuts,
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Figure 6. Invariant mass (mij , upper panels) and rapidity (yij , lower panels) distributions for
the di-jet (or W+W−) system from various sub-processes for an e+e− collider at

√
s = 3TeV (left

panels), and a µ+µ− collider at
√
s = 10TeV (right panels), respectively.

the crossover of the gg fusion to the gq scattering happens around 3−4TeV for the electron
collider and 8 − 12TeV for the muon collider. For the same reason, the γg → jj process
grows faster over the energy than the γγ → jj fusion and takes over for the electron collider.
Compared with the photon-initiated processes, the angular dependence of the QCD jet cross
sections is much stronger, due to the large QCD collinear logarithms αs log θ2 effectively
resummed by the DGLAP equations.

There are a number of improvements for the results shown here with respect to the QED
calculations by EPA as in figure 3. First, the higher-order cascade splittings γ → `+`−, qq̄

have been included, which will carry away a part of the momentum fraction from the initial
photon and is roughly 5% for an electron beam, and 3% for a muon beam, estimated from
table 1. Second, in our treatment of the full DGLAP evolution, the running effect of the
QED coupling α(Q) is properly taken into account, with the boundary condition at the
lepton mass set to be α(m2

e) = 1/137 (α(m2
µ) = 1/136) and proper matching cross the mass

thresholds. As expected, both effects tend to reduce the rate for photon-initiated processes
with respect to the naive EPA calculations. As such, the cross section for γγ → qq̄ receives
about 16% (8%) reduction over the EPA results for electron (muon) colliders evaluated
with the fixed value α = 1/132.5. Finally, we note that the other EW VBF contributions
such as γZ,W+W−,W±Z → qq̄′ are sub-leading and contribute less than 1%, due to the
suppression of the EW threshold above MZ or 2MW .
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One of the most striking aspects for a high-energy lepton collider is the combination of
two characteristically different production mechanisms: the direct e+e−/µ+µ− annihilation
channels and the fusion processes. The former carries the full collider energy to reach a high
threshold and the latter starts from the low energy to scan over the full spectrum. These
distinctive kinematic features can be best shown by the invariant mass (mij) of the final
state di-jet system as in the upper panels of figure 6 at

√
s = 3TeV for e+e− and 10TeV

for µ+µ−, respectively. We see the clear separation of events from these two classes of reac-
tions, peaked around the low threshold in mij for the partonic fusion processes, and sharply
peaked at the beam collision energy

√
s for the annihilation process (a factor of 100 is mul-

tiplied here because of the smaller production rate). The long tail in low mij for the annihi-
lation process is due to the ISR, followed by another peek around the Z resonance from the
radiative return `+`− → Z → jj. In the 10TeV µ+µ− collider case, themij distribution has
a threshold kink around mij ∼

√
se−η ≈ 870GeV, which is from the effect of the angular

cut. This is not notable in the e+e− collider case with the cut |η| < 3.13, because the loca-
tion mij ∼

√
se−η = 130GeV is diluted by the falling from the resonant Z peak. We also

include a leading production channel γγ → W+W− in high-energy leptonic collisions for
comparison. We see that the jet production is overwhelmingly larger until the kinematical
region with a high invariant mass mij & 200GeV. The second distinctive kinematic feature
manifests itself in the rapidity distributions of the di-jet system shown in the lower panels of
figure 6 for e+e− and µ+µ−, where the annihilation process is very central with back-to-back
di-jets peaked at yij ∼ log(x1/x2) ≈ 0, spreading out by the ISR. In comparison, the fusion
process spread out, especially for the processes involving a photon due to the large imbal-
ance between x1 and x2. The distribution for γγ →W+W− is also relatively more central.

Finally, we present some kinematic distributions of the inclusive jets in figure 7, the
transverse momentum (pjT , upper panels), the jet energy (Ej , middle panels), and the
pseudo-rapidity (ηj , lower panels), at a 3TeV e+e− (left panels) and a 10TeV µ+µ− (right
panels) collider, respectively.6 The pjT distributions in figure 7 resemble very similar fea-
tures as those of mij in figure 6, with the Jacobian peaks around the pjT ∼ mij/2 for the
fusion processes, and peaked sharply at

√
s/2 and MZ/2 for the annihilation processes.

We once again see the dominant QCD jet production over the W+W− channel until the
kinematical region with a high transverse momentum pjT > 60GeV. We note that there
is a peculiar peak structure in the pjT distribution for the annihilation processes. After
the peak at

√
s/2, it falls and rises again around pjT ∼

√
se−η = 130 (870)GeV, the same

location as the mij kink. The dip around 300GeV for the 10TeV µ+µ− collider case is
just the cross point between the falling from the Jacobi peak MZ/2 and rising to the cut
point

√
se−η. Furthermore, we see from the energy distributions that the W+W− channel

takes over after its energy above 400GeV (200GeV) for the e+e− collider (µ+µ− collider).
The inclusive pseudo-rapidity distributions in figure 7 demonstrate that the QCD partonic
contributions are mostly forward-backward, while those of γγ and γq(g) are more isotropic,
and the 2-body annihilation process via an s-channel vector boson exchange presents the
typical (1 + cos2 θ) distribution.

6We remind the reader that inclusive jets include any jets in an event. That is to say, each di-jet event
is counted twice.
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Figure 7. Inclusive jet (or W ) distributions for transverse momentum (pjT , upper panels), jet
energy (Ej , middle panels) and the normalized pseudo-rapidity (ηj , lower panels) in various sub-
processes for an e+e− collider at

√
s = 3TeV (left panels), and a µ+µ− collider at

√
s = 10TeV

(right panels), respectively.

4 Summary and conclusions

In high-energy leptonic collisions, such as at a multi-TeV muon collider, the collinear split-
tings of electroweak gauge bosons and leptons are the dominant phenomena, and thus the
scattering processes should be formulated in terms of the EW parton distribution func-
tions (EW PDFs). We complete this formalism in the Standard Model to include the QCD
sector and evaluate the quark and gluon PDFs inside a lepton by solving the fully-coupled
DGLAP equations at the double-log accuracy, as presented in section 2. We see that, dom-
inantly from the photon splitting, there are significant gluon and quark contents in high
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e+e− [
√
s] σ [pb] jj e+e− τ+τ− W+W− tt̄

3TeV 800(470) 33(15) 16(11) 1.9(1.2) 0.035(0.032)
6TeV 1200(730) 19(11) 15(10) 2.3(1.3) 0.023(0.019)
10TeV 1400(880) 15(9.5) 13(9.1) 2.5(1.4) 0.023(0.017)
14TeV 1400(910) 12(8.2) 11(8.0) 2.7(1.5) 0.024(0.017)

µ+µ− [
√
s] σ [pb] jj µ+µ− τ+τ− W+W− tt̄

3TeV 34(19) 21(6.9) 4.1(2.7) 0.82(0.52) 0.027(0.025)
6TeV 43(25) 8.3(3.7) 3.9(2.6) 0.89(0.51) 0.012(0.011)
10TeV 46(28) 5.1(2.7) 3.5(2.4) 0.97(0.54) 0.010(0.0078)
14TeV 45(28) 3.8(2.3) 3.0(2.1) 1.0(0.56) 0.010(0.0073)

Table 2. Some representative cross sections in e+e− and µ+µ− collisions including both annihila-
tion and fusion for a variety of energies. We have included the ISR for the annihilation processes.
The fusion to W+W−, tt̄ cross sections only include the dominated γγ initialized processes with
the resummed γ PDF. The acceptance cuts in eq. (3.3) are applied to the final-state particles,
including the W+W− and tt̄ as well. The numbers outside (inside) of the parentheses correspond
cross sections with the acceptance cut |ηj | < 3.13 (|ηj | < 2.44).

energy lepton beams as shown in figures 1 and 2. In comparison, while the photon PDF
in an electron is larger than that in a muon by about a factor of two below the EW scale,
the quark/gluon PDFs are substantially larger in an electron than that in a muon due to
the large log resummation from QCD splittings. The subsequent splittings also make a
notable effect as ISR on the lepton beam profile. The initial state of quarks and gluons
will lead to QCD processes with large cross sections and will dominate the overall event
shape in high-energy leptonic collisions with low and moderate transverse momenta. They
may also induce the production of new colored particles [30].

In section 3, we studied the production cross sections in our PDF framework. We com-
pared the standard QED processes in leptonic collisions at multi-TeV energies and showed
the dominance of the fusion mechanism in figure 3. We then gave the prediction for jet
production of quarks and gluons in figure 5. We found that, as expected, the QCD jet
production initiated by q/g yields the dominant processes, about two orders (one order)
of magnitude larger than the EW fermion pair production at an e+e− (µ+µ−) collider,
reaching a large production rate of about 1 nb (50 pb), with a moderate acceptance cut.
We summarize some representative cross sections in e+e− (µ+µ−) collisions for a variety of
energies in table 2. The total cross sections include both annihilation and fusion processes.
The fusions to W+W− and tt̄ only include the dominated γγ initialized processes [23].
The kinematic cuts in eq. (3.3) are employed to the W boson and top quarks, as well. To
have a more complete picture with respect to the hadronic production at low scattering
energies, we also calculated the total cross section for the photon-induced hadronic pro-
duction adopting two models: Pythia and “SLAC”, as shown in figure 4. We see that the
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cross sections can reach the level of one hundred (a few tens) of nano-barns at high-energy
electron (muon) colliders. Although the rate for the hadronic production is high, the events
populate in the low pT region typically below a few GeV.

Of particular interests are the differential distributions for di-jet system in figure 6,
and for jet-inclusive in figure 7. The general features emerge again that the e+e− (µ+µ−)
annihilation is mostly central with ŝ ≈ s, the fusion processes populate at

√
ŝ ≈ mij , and

QCD jet production dominates up to pjT ≈ 60GeV. Since the events tend to populate near
the threshold, the photon splitting governs the fate, especially below the EW scale, while
the heavy EW gauge bosons do lead to substantial contribution at high scales.

As a final remark, our approach to the quark/gluon PDFs induced by the EW interac-
tions is equally applicable to hadronic collisions with quarks as the radiation source. Since
the simulations for photon-induced high-pT jet events from perturbative QCD calculations
do not exist in the current event-generator packages, our formalism should be adopted by
the event generators to simulate SM processes and the leading QCD backgrounds at lepton
colliders.
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A Solving the DGLAP equations: the valence non-singlet PDF as an
example

In this appendix, we take the non-singlet PDF of valence lepton as an example to show the
approach we developed to solve the DGLAP equations numerically. The more comprehen-
sive details related to the singlet, photon, gluon PDFs, and high-energy EW ones above
µEW are beyond the content of this paper, which are left for a future publication [57]. We
will start with an approximate analytical solution and address its drawbacks. Afterward,
we will move to the technicalities to tackle them numerically.

A.1 An approximate analytical solution

As discussed in the section 2.1, the DGLAP equation for the non-singlet PDFs are given as
eq. (2.10). The only non-trivial initial condition is for the valence flavor PDF, as eq. (2.11).
The corresponding splitting function is

P``(x,Q2) = a

[
1 + x2

(1− x)+
+ 3

2δ(1− x)
]
, (A.1)

where a = α/(2π) and the plus (+) prescription is defined as∫ 1

x
dzf(z)[g(z)]+ =

∫ 1

x
dzf(z)g(z)− f(1)

∫ 1

0
dzg(z). (A.2)
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With the Mellin transform,

f̃(N) =M[f ] =
∫ 1

0
dxxN−1f(x), (A.3)

the convolution of eq. (2.2) becomes a multiplication

M[f ⊗ g] = f̃(N)g̃(N), (A.4)

where the symbol with a tilde specifies the same variable in the Mellin-N space. The
DGLAP equation for the non-singlet in eq. (2.11) turns into

df̃`(N,Q2)
dL = P̃``(N,Q2)f̃`(N,Q2), (A.5)

where L = logQ2. For simplification, we leave out the “NS” label and only refer to the
valence flavor in this section. The specific expression for initial condition and splitting
function in the Mellin-N space are

f̃`(N,m2
` ) = 1, P̃``(N,Q2) = a

[3
2 − S1(N − 1)− S1(N + 1)

]
, (A.6)

where γE is the Euler constant. The Sm is the harmonic series defined as

Sm(N) =
N∑
i=1

1
im
. (A.7)

The S1(N) can be analytically continued as

S1(N) = γE + ψ(N + 1), ψ(z) = d
dz ln Γ(z). (A.8)

With neglecting the running of the coupling, i.e., a fixed a value, the splitting function is
independent on Q2, i.e., P̃``(N,Q2) = P̃``(N). Eq. (A.5) can be solved analytically as

f̃`(N,Q2) = exp
{
P̃``(N)L

}
. (A.9)

In the large-N limit (N → ∞), which corresponds to a large x (x → 1), we have an
approximation S1(N) ≈ γE + logN . Therefore, the splitting function becomes

P̃``(N) ≈ a
[3

2 − 2(γE + logN)
]

(A.10)

The solution in eq. (A.9) can be simplified as

f̃`(N,Q2) ≈ exp
{
aL

(3
2 − 2γE

)
− 2aL logN

}
= eβλN−β , (A.11)

where
β = 2aL, λ = 3

4 − γE . (A.12)
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With the known Mellin transform

M
[
(1− x)−1+κ

]
= Γ(κ)Γ(N)

Γ(κ+N)
N→∞−−−−→ Γ(κ)N−κ, (A.13)

we can convert the large-N solution analytically back to the x space as

f`(x,Q2) ≈ eβλ

Γ(β)(1− x)−1+β . (A.14)

Up to this stage, we have obtained the all-order resummation of the non-singlet PDF of
valence lepton in the large-x limit, as in refs. [33, 61].

Nevertheless, we want to remind the reader that two assumptions are critical to this
solution: the large N limit and a fixed coupling a. The large-N limit means that the
solution eq. (A.14) is only reliable in the large-x limit, which will be violated at a non-trivial
x value (x < 1). In addition, the fixed coupling assumption also restricts its applicability.
In QED, it is not a big problem, as the fine-structure coupling α runs slowly with energy.
However, this is not the case anymore in QCD, where the strong coupling αs is much larger
and runs drastically, especially in the low-energy region around Q & µQCD. Moreover,
obtaining a simple solution form as eq. (A.9) is not possible for the coupled equation,
eq. (2.4), of the singlet, photon, and gluon PDFs. These three reasons drive us to an
alternative numerical approach, which will be described in the next subsection.

A.2 A numerical solution

In this subsection, we will still constrain us within the non-singlet valence PDF. However,
the techniques we developed are equally applicable to the singlet, photon, and gluon as
well. Just because of the complexity of the coupled matrix equation, we leave the details
to a future work [57].

Running couplings. As we mentioned above, the couplings α, αs run as well with the
energy, similarly to the α1, α2 above µEW. We take the leading order running couplings as

α(Q2) = α(m2
` )

1 + βe
α(m2

`
)

2π log
(
Q2/m2

`

) , αs(Q2) = 4π
βs log

(
Q2/Λ2

QCD

) , (A.15)

where
βe = −2

3(N` +NcNue
2
u +NcNde

2
d), βs = 11− 2

3(Nu +Nd). (A.16)

which match to the leading splitting functions. The corresponding numerical inputs are
taken as

α(m2
e) = 1

137 or α(m2
µ) = 1

136 , ΛQCD = 89.9 MeV, (A.17)

which ensure α(M2
Z) = 1/128.8 and αs(M2

Z) = 0.118. We have performed the complete
matchings whenever crossing a heavy-flavor threshold in the αe running, while αs in the
low-Q2 region is taken as an extrapolation.
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Iterations. In the Mellin-N space, the non-singlet valence PDF satisfies the evolution in
eq. (A.5), with a running with scale as well. This equation can be numerically solved in
terms of the Euler method. Suppose we want to obtain the f̃` at a given scale Q with an
initial condition at Q0 = m`. We can divide the running parameter L = log

(
Q2/m2

`

)
into

K steps, with step length h = L/K and the Lk grid as

Lk = kh, k = 0, · · · ,K. (A.18)

Other quantities at the kth grid can be determined correspondingly as

Q2
k = m2

` exp(Lk), ak = a(Q2
k), P̃k = P̃``(N,Q2

k). (A.19)

Then, the differential equation, eq. (A.5), can be approximated as

∆f̃`
∆L = f̃k − f̃k−1

h
= P̃k−1f̃k−1 +O(h), k = 1, · · · ,K, (A.20)

where f̃k = f̃`(N,Q2
k) and O(h) is the local truncation error (LTE). In such a way, we get

an iteration equation,
f̃k = f̃k−1 + P̃k−1f̃k−1h+O(h2). (A.21)

Therefore, the final numerical solution can be obtained through K steps of iterations as

f̃`(N,Q2) = f̃K = f̃0

k=K∏
k=1

(1 + P̃k−1h) +O(h). (A.22)

When the step number K is large enough, the global truncation error (GTE), O(h), can
be negligible, and the solution f̃K will converge to its true value f̃`(N,Q2). If we ignore
the running of the coupling, the splitting function is a constant, P̃k = P̃``(N), which does
not depend on the grid Q2

k. The solution in eq. (A.22) becomes

f̃K =
[
1 + P̃``(N)h

]K
=
[
1 + P̃``(N) L

K

]K
K→∞−−−−→ exp

{
P̃``(N)L

}
, (A.23)

in which we have substituted the initial condition f̃0 = f̃`(N,m2
` ) = 1 already. We see the

iteration in the large K limit reproduces the analytical solution in eq. (A.9).
The Euler method in eq. (A.21) corresponds to the 1st order of Runge-Kutta (RK)

algorithm. The convergence can be improved with higher-order corrections. In practice,
we employ the 4th order of RK approach in our real implementation:

f̃k = f̃k−1 + 1
6h (k1 + 2k2 + 2k3 + k4) +O

(
h5) , (A.24)

with
k1 = P̃k−1f̃k−1, k2 = P̃k−1/2

(
f̃k−1 + hk1/2

)
k3 = P̃k−1/2

(
f̃k−1 + hk2/2

)
, k4 = P̃k

(
f̃k−1 + hk3

) (A.25)

where P̃k−1/2 is evaluated at Lk−1/2 = (k − 1/2)h. The corresponding GTE is O(h4).
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We notice that in ref. [61], Frixione et al. took a perturbative expansion of the QED
PDFs, which gives an equivalent solution. In this framework, we expand f̃` in term of a
series of L as

f̃` =
∞∑
k=0

f̃
(k)
` Lk. (A.26)

Similarly with a fixed coupling assumption, eq. (A.5) becomes

∞∑
k=0

f̃
(k)
` kLk−1 = P̃``(N)

∞∑
k=0

f̃
(k)
` Lk. (A.27)

By matching the coefficient of Lk order by order, we get the a recursive relation of coeffi-
cients,

f̃
(k)
` = 1

k
P̃``(N)f̃ (k−1)

` . (A.28)

Therefore, we can obtain a expansion solution as

f̃` =
∞∑
k=0

1
k!
[
P̃``(N)L

]k
= exp

{
P̃``(N)L

}
, (A.29)

which also returns to eq. (A.9).
Similar to our iteration approach, the perturbative expansion can also deal with the

running coupling α, already demonstrated in ref. [61]. We also realize that this expansion
converges faster than our iteration in the QED evolution. However, this approach only
works efficiently when the DGLAP equation only involves one coupling, so that we can
effectively replace the running parameter L orQ2 with the running coupling or an equivalent
variable. In the case of the QED and QCD mixed DGLAP equation, the expansion method
loses its efficiency, mostly because the QED and QCD couplings run differently. The QED
coupling α increases with scale, while the QCD one αs decreases. If we naively take L as the
expansion parameter, the strong coupling αs oscillates with the expansion order increasing,
which will significantly hamper the efficiency of convergence. For this reason, we will stick
with our iteration approach, which applies to the QCD-involved singlet, photon, and gluon
PDFs, as well as EW PDFs above µEW [57].

Mellin inversion — Talbot algorithm. Up to now, we have obtained the solution of
DGLAP solution in the Mellin N space, based on the iteration approach, as outlined above.
The next target is to invert the Mellin-N solution back to the x space. In appendix A.1, we
demonstrated an example to invert the large-N solution analytically. However, this method
is only applicable in a few limited cases when we know the analytical Mellin inversion form.
In general, the analytical Mellin inversion is not possible, and we have to rely on a numerical
evaluation. The inversion of the Mellin transform of eq. (A.3) reads

f(x) =M−1[f̃ ] = 1
2πi

∫ c+i∞

c−i∞
dNx−N f̃(N), (A.30)
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Figure 8. The contour chosen in the Talbot algorithm.

where the real number c is arbitrary as long as it meets certain conditions.7 This integration
can be performed in terms of the Talbot algorithm [80]. We can choose a contour as

N = N(θ) = rθ(cot θ + i), (A.31)

which is shown in the complex-N plane as figure 8. The inverse Mellin integration becomes

f(x) = 1
2πi

∫ π

−π
dθdN

dθ x
−N(θ)f̃(N(θ)). (A.32)

With the analytic condition, f̃(N∗) = f̃∗(N), we can simplify it as

f(x) = r

π

∫ π

0
dθRe

{
x−N(θ)f̃(N(θ))[1 + iσ(θ)]

}
, (A.33)

where
dN/dθ = ir[1 + iσ(θ)], σ(θ) = θ + (θ cot θ − 1) cot θ. (A.34)

This integration can be computed with the a trapezoidal rule:

f(x) ' r

K

[
1
2x
−rf̃(r) +

K∑
k=1

Re
{
x−N(θk)f̃(N(θk))[1 + iσ(θk)]

}]
, (A.35)

where θk = kπ/K. With an optional choice suggested by ref. [80],

r = 2K
5 log(1/x) , (A.36)

the relative precision can approximately reach 10−0.6K .
We have validated the Talbot algorithm with the approach of straight line contours

developed in ref. [81].

7In terms of the Mellin inversion theorem, these conditions include: (1) f̃(N) is analytic in the strip
ReN ∈ (a, b); (2) f̃(N)|ImN→±∞ → 0 uniformly for any real value c ∈ (a, b); (3) the integral in eq. (A.30)
is converging absolutely.
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Figure 9. The non-singlet PDF fNS
e (x) at Q = 50GeV. The LO and NLO denote perturbative

solutions to DGLAP equation at the leading and next-to-leading orders. The “Large-N” refers
to the large Mellin-N approximation in eq. (A.14). The “Talbot” corresponds to the numerical
solution with our iteration and Talbot inversion techniques, while “Run α” extends this approach
to incorporate the running coupling α as well. The right plot is the same quantity normalized to
the LO solution, with respect to δ = 1− x.

Demonstration. With the numerical techniques we develop above, we explicitly demon-
strate the solution to non-singlet PDF fNS

e (x) at Q = 50 GeV in figure 9. As a first step,
we fix the QED coupling as α = 1/137. With the perturbative expansion, we can obtain
the leading and next-to-leading order solutions as

fNS,LO
e (x,Q2) = δ(1− x) + LP``,

fNS,NLO
e (x,Q2) = fNS,LO

e (x,Q) + 1
2L

2P`` ⊗ P``,
(A.37)

which are shown as the red and green lines in figure 9. With normalized to the LO result
shown as the inset, we see the NLO receives positive (negative) correction in the small
(large) x region. We show the large-N approximation of eq. (A.14) as the blue line and the
one with our iteration and Talbot inversion (denoted as “Talbot”) as the orange line. On
the right plot, we show the ratio of the LO solution in terms of δ = 1− x to highlight the
large x region. We see the Talbot result approaches to the large-N solution when x → 1.
At a moderate x, such as x < 0.9, we see the obvious deviation of the large-N solution
from the Talbot one, indicating the limitation of the large-N approximation. Instead, in
the small x limit, we see the Talbot coincides with the NLO solution, with a very small
correction, shown as the difference between green and orange lines. It implies the fast
convergence of the expansion approach, as mentioned in the last subsection.

Finally, we also extend the iteration and Talbot inversion approach with a running
QED coupling in eq. (A.15) and show the results as the purple lines in figure 9. Due to
the increase of α with scale, we obtain an enhancement at a few percent level for fNS

e (x) at
Q = 50 GeV. The ability to deal with the running coupling is very critical and will make
a significant difference when we solve the matrix equation of singlet, photon, and gluon
PDFs, which involves the running QCD coupling. The details are left for a future work [57].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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