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1 Motivation

The topic of first-order phase transitions (FOPTs) [1–7] — where the metastable (false,
unbroken) vacuum of the early Universe decays into its stable (true, broken) configuration
through the nucleation, expansion, and percolation of bubbles of true vacuum — has received
intense scrutiny in the community in recent years. Studied extensively in the context of
inflation [8, 9] several decades ago, this phenomenon has become the subject of renewed
interest due to its promise as a viable cosmological source of gravitational waves (GWs) [10–14]
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that can be detected with current and upcoming gravitational wave experiments. Although
the Standard Model (SM) of particle physics in its current form does not feature any FOPTs,
such transitions can be readily realized in many realistic beyond the Standard Model (BSM)
scenarios [15–30] and therefore are of great interest.

In this paper, we will be interested in FOPT processes that also address one of the most
glaring shortcomings of the SM of particle physics: the identity of dark matter (DM). We
will focus, in particular, on scenarios where the dynamics of the background field during the
FOPT process is also responsible for DM production. Several papers in the literature have
explored various qualitatively different realizations of this prospect. Refs. [31, 32] examined
configurations where a pre-existing thermal DM abundance in the unbroken phase can be
filtered into the broken phase by slow-moving bubble walls to realize the correct exponentially
suppressed relic abundance. Refs. [33–36] made use of the trapping of dark sector particles in
the false vacuum bubbles to realize the correct dark matter abundance. Ref. [37–39] studied
cases where particles crossing across relativistic bubble walls can upscatter into heavy states
that are, or can produce, DM. Ref. [40–42] studied frameworks where the dynamcis associated
with supercooled transitions in a confining sector produce the correct DM abundance. Ref. [43]
explored the prospects of producing heavy DM from bubble collisions in an electroweak
phase transition, finding that scalar DM cannot be produced with the desired abundance
but the production of heavy vector or fermion DM is possible; ref. [44] extended this idea
to DM in a dark sector. Ref. [45] considered DM production from the collisions of shells
of boosted particles around the bubble walls.

Note that all of the above ideas (except [43, 44]) rely on interactions between bubble
walls and particles in the ambient thermal bath. In this paper, we focus on DM production
from the spacetime dynamics of the background scalar field itself as it undergoes various
stages of the phase transition. This is a fundamental, unavoidable contribution that is
present in any FOPT (including all of the above cases), irrespective of the existence or nature
of a thermal bath of particles. Particle production from a changing background field is a
well-known physical phenomenon familiar from various contexts, such as gravitational particle
production [46–49] (for some specific applications to dark matter production, see e.g. [50, 51]),
Schwinger effect [52], and Hawking radiation from black holes [53, 54]. The calculation of
particle production from background field dynamics during various stages of a FOPT, in
particular from bubble collisions, is complicated due to the inhomogeneous nature of the
process, but can be calculated in a manner analogous to the production of gravitational waves.
The formalism to study this process was first developed in [55] in the context of reheating
after first-order inflation. This formalism was then explored by [56] for cold baryogenesis,
and further developed in [43] with semi-analytic results for some idealized bubble collision
cases and applications for nonthermal DM production. More recently, the results were refined
with numerical studies for more realistic bubble collisions in [57], and various aspects of the
underlying physics clarified in [58]. In this paper, we use the improved results from [57, 58] to
calculate the production of DM from the background field dynamics in a dark phase transition.

While the DM production mechanism we discuss here is very general, it is particularly
well-suited for the production of heavy DM with mass far above the scale of symmetry
breaking or the temperature of the plasma following the phase transition. Ultraheavy DM,
with mass ranging from O(100)TeV to the Planck scale, is of broad interest to the community
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for several theoretical as well as experimental reasons [59], but generally suffers from the
lack of viable production mechanisms that realize the correct relic density. Recall that if
the Universe reheats to temperatures comparable to the DM mass (in particular, above
the freezeout temperature of DM), DM will rethermalize with the bath, erasing the effects
of earlier cosmological events (such as bubble dynamics), and will undergo conventional
freezeout, which cannot produce the correct relic abundance for DM masses above the
unitarity bound of O(100)TeV. Hence nonthermal production mechanisms are required for
the production of ultraheavy DM. Nonthermal freeze-in requires extremely small (∼ 10−10)
couplings [60, 61], whereas production at temperatures lower than the DM mass suffers from
exponential (Boltzmann) suppression. In this context, FOPTs provide a unique configuration
not found in other cosmological setups that can nonthermally produce extremely heavy
particles with masses significantly larger than any other energy scale achieved in the early
Universe: since the bubble walls can accelerate to relativistic speeds in the absence of friction
from the plasma, they can reach energies far above the energy scale of the phase transition or
the temperature of the ambient plasma. The possibility of producing particles with masses far
greater than the scale of phase transition from the collisions of such bubbles was recognized
in [55], and subsequently employed for heavy DM production in [43, 44]; we will extend
these studies, clarifying and improving on several important aspects. We will discuss scalar,
fermion, and vector DM, highlighting qualitatively distinct features and novel developments
relative to the existing literature in each case. Furthermore, since FOPTs from dark sectors
can give rise to large gravitational wave signals, such configurations provide an opportunity to
detect this production mechanism for DM in dark sectors (otherwise inaccessible with other
experimental probes) with gravitational waves, providing added motivation for this study.

This paper also contains two important developments on the formalism to calculate
particle production. First, we demonstrate that the existing formalism is gauge-dependent
and leads to spurious results in certain cases if not treated carefully. While we are unable
to provide a complete resolution of this problem, we provide a practical prescription for
the computation that extracts physical contributions and can be reliably used for order-of-
magnitude estimates of this effect. Second, we point out that for the production of gauge
bosons and scalars, three-body decays of the background field excitations (rather than two-
body decays, which is the only contribution currently considered in the literature) provide the
dominant contribution for heavy DM. Both results are crucial and substantially change the
conclusions regarding the viability and parameter space for DM derived in previous works.

This paper is organized as follows. In section 2, we describe the framework for the study,
discussing the relevant phase transition configurations, parameters, and particle content.
The formalism for the calculation of particle production from various stages of a FOPT is
described in section 3. Section 4 discusses issues related to the gauge dependence of the
formalism, and provides a practical solution to the problem that enables the calculation of
scalar and gauge boson production, including the three-body configurations that provide the
dominant contributions. In section 5, we discuss dark matter production contributions from
other processes before, during, and after the phase transition, as well as subsequent evolution
of the DM population. The parameter space where DM can be produced with the correct
relic abundance from FOPTs is presented in section 6. Section 7 contains a summary of the
main results of this paper and a discussion of various related ideas.
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2 Framework

The dark matter production from FOPT background field dynamics that we calculate in
this paper is very generic: it occurs unavoidably at any FOPT if the DM particles couples
directly or indirectly to the background field undergoing the phase transition, independently
of the details of the FOPT or the thermal plasma. We therefore present our analysis and
results in a “model independent” manner, in terms of phenomenologically relevant parameters
characterizing the phase transition and for simplified minimal DM setups, so that the results
can be applied in a straightforward manner to specific dark sector and DM models.

2.1 Phase transition parameters

Here, we list the phenomenological parameters that are relevant for the calculation. Consider
a FOPT in a dark/hidden sector where a background field ϕ transitions from a metastable,
false vacuum, where it has a vanishing vacuum expectation value (vev) ⟨ϕ⟩ = 0, to a stable,
true vacuum configuration with non-vanishing vev ⟨ϕ⟩ = vϕ. The latent energy released in
the phase transition is given by the difference in the potential energies of the two vacua,
and we parameterize it as

∆V ≡ V⟨ϕ⟩=0 − V⟨ϕ⟩=vϕ
= cV v4

ϕ . (2.1)

The phase transition parameters relevant to our calculation of DM production and
abundance are:

• Tn: temperature of the thermal bath at which the FOPT is triggered, i.e. when bubbles
of true vacuum begin to nucleate at a rate greater than the Hubble scale.

• R0: critical radius of nucleated bubble that can grow. This is typically O(T−1
n ).

• α: strength of the phase transition, defined as α ≡ ρ(vacuum)
ρ(radiation) , where ρ(vacuum) = ∆V

and ρ(radiation) represents the energy density in the radiation bath (SM and dark
sectors combined) at Tn.

• β: (inverse) duration of phase transition. This is generally parametrized relative to the
Hubble scale as β/H, which is a dimensionless parameter.

• vw: velocity of the bubble wall. This quantity is time-dependent: as the bubbles expand,
vacuum energy gets transferred to the wall, accelerating it. Hence vw tends to grow,
but can asymptote to a constant value in the presence of significant frictional forces.

• γw: Lorentz boost factor of the bubble wall, determined from vw via the relation γw =
1/
√
1− v2

w. In this paper we are interested in the relativistic regime vw ≈ 1, γw ≫ 1.

• lw: thickness of the bubble wall. This quantity is also time dependent: while the
wall thickness at bubble nucleation is lw0 ∼ O(v−1

ϕ ), the apparent wall thickness in the
plasma frame gets Lorentz contracted as the bubble accelerates to greater velocities,
hence lw = lw0/γw tends to decrease with time.
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• R∗: typical size of vacuum bubbles at collision; this is determined from the timescale
over which the transition completes, R∗ ≈ vw (8π)1/3β−1.

• T∗: temperature of the thermal bath at which bubbles of true vacuum percolate and
the phase transition ends. Since phase transitions complete within a fraction of Hubble
time, T∗ ≈ Tn if the Universe remains radiation dominated throughout. If the Universe
instead becomes vacuum dominated, then T∗ is determined through energy conservation
conditions at the end of the transition.

In a specific model, these quantities can be calculated from the parameters in the
underlying theory, as described in detail in several extensive reviews of phase transitions (see
e.g. [10–14]). For our purposes, we will treat them as independent parameters (except for
the relations described above), so that it should be straightforward to map our results to
any given model by calculating the corresponding parameters in the model.

2.2 (Runaway) phase transition configurations

We now discuss the phase transition setups that are relevant for ultraheavy DM production.
As stated earlier, we are particularly interested in scenarios where the DM mass is higher
than the scale of the phase transition as well as the temperature of the thermal bath. This
requires the bubble walls to gain sufficient energy to produce the heavy DM particles. We
are thus interested in configurations where the bubble walls achieve so-called “runaway”
behavior, i.e. are not slowed down by friction effects but continue to accelerate as they
gain the latent energy in the false vacuum released in the transition. As we discuss here,
whether this occurs depends on the details of the contents of the thermal bath as well as
the nature of the transition.

If the dark sector is in thermal equilibrium with the SM bath at some point in the early
Universe, the two sectors share the same temperature, which remains true after the two sectors
decouple (up to small corrections). However, this is not necessary, and the dark sector may
be cold, i.e. has a temperature substantially smaller than that of the SM bath (this occurs,
for instance, if the inflaton or the lightest moduli fields preferentially reheat the visible (SM)
sector), or hotter (in the opposite scenario). Requiring the two sectors to remain decoupled
in this manner enforces an upper limit on possible portal couplings between the two sectors.
This condition can be approximately quantified as λportal ≲

√
T/MP l for any temperature T

higher than the mass of the corresponding dark sector particle. Here MP l is the Planck mass,
and the portal coupling could be e.g. a quartic coupling between the scalar ϕ and the SM
Higgs boson, or a kinetic mixing between a dark gauge boson and the SM hypercharge.

In general, a FOPT can occur either due to thermal effects (temperature dependent
corrections to the scalar potential causes the true vacuum to become energetically favoured)
or via quantum tunneling (the age of the Universe approaches the lifetime for the scalar field
to tunnel into the true vacuum even with the zero temperature potential) — see e.g. [27] for
detailed discussions. The former requires a thermal bath of hidden sector particles (which may
or may not be in equilibrium with the SM bath), and a large coupling between the scalar field
and some other particle in the bath; in this case, with O(1) couplings, the phase transition
generally occurs at a temperature T∗ ∼ vϕ (if the dark and visible sectors have different
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temperatures, then it is the dark sector temperature that is relevant here), and is completed
within a small fraction of Hubble time, β/H∗ ∼ 100− 1000 (where H∗ is the Hubble scale at
temperature T∗ when the phase transition completes), as the bubble nucleation rate becomes
extremely rapid once thermal corrections make the true vacuum energetically favorable.
Transitions via quantum tunneling, on the other hand, do not require a thermal bath of
hidden sector particles (i.e. the hidden sector can be extremely cold before the transition, and
the hidden sector energy density exists primarily in the form of vacuum energy), although it
might be present; the time of transition is determined by the shape of the potential. In such
instances, T∗ can be several orders of magnitude smaller than vϕ. Such transitions tend to
last longer, completing in an O(1) fraction of Hubble time, so that β/H∗ ∼ 10.

In either case, bubbles of true vacuum nucleate with critical radii R0 and expand,
accelerating as the latent energy released from the false vacuum is converted to kinetic and
gradient energies in the bubble walls. Expanding bubbles encounter friction due to particles
in the thermal bath crossing the wall and becoming massive in the broken phase. A full
thermal distribution of a particle species crossing into the bubble is known to produces a
pressure [62] (see also [63–65]):

PLO ≈ 1
24m2T 2 , (2.2)

where m is the mass of the particle in the broken phase and T is the temperature of the bath.
If the sum of such effects from all particles exceeds the energy available from the transition,
∆V , the walls achieve a terminal velocity corresponding to some steady state configuration;1 if
not, the walls continue to accelerate. As the walls become relativistic, friction due to splitting
or transition radiation, corresponding to radiation of gauge bosons from particles crossing
into the bubbles, becomes increasingly important [66–68], producing pressure that scales as

PNLO ∼ g2 γw mV T 3 , (2.3)

where g is the gauge coupling and mV is now the mass of the gauge boson, and we have
dropped some O(1) factors. This implies that the bubble walls reach a terminal velocity
corresponding to γw ∼ ∆V/(g3T 3vϕ) (where we have used mV = gvϕ) if they have not
collided with other bubbles before this value is reached.

If the frictional energy loss remains subdominant to ∆V , energy conservation dictates
that the boost factor of the wall grows with the growing bubble radius R as γ ≈ 2R

3R0
[69]. In

such configurations, the boost factor can reach extremely large values; parametrically,

γmax ∼ 1
β/H

MP l

vϕ
, (2.4)

where we have used the relations in section 2.1 and assumed T ∼ vϕ. The energy density
in the bubble wall at collision is then Ewall = γmax/lw0 ∼ MP l/(β/H), making it possible to
produce heavy particles up to this scale. Remarkably, note that Ewall is independent of vϕ: a
transition at a lower scale vϕ, where the bubble walls have lower energy, is compensated by a

1For a thick-walled bubble, ∆V should represent the difference in potential energies between the false
vacuum and the field value to which the scalar field tunnels, rather than the true vacuum.
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lower Hubble scale, which allows the bubbles to expand for longer before collisions occur,
and thus the bubble walls can get boosted for a longer period.

Viable scenarios that can realize such γ ≫ 1 runaway behavior needed for producing
ultraheavy DM can broadly be classified into four distinct categories:

Scenario I: thermal transition without a gauge boson. This corresponds to scenarios where
the FOPT is thermally triggered, i.e. a thermal bath that interacts with the bubble walls
is present, but ∆V > PLO, so that the friction from particles crossing into the bubbles and
becoming massive is not sufficient to slow the walls down, and in the absence of a gauge
boson there is no PNLO contribution.

Scenario II: thermal transition with a light gauge boson. Even if the broken symmetry
is gauged, runaway behavior can be realized if the corresponding gauge boson is light
(mV ≪ vϕ), i.e. the gauge coupling is small (g ≪ 1). Recall that friction due to splitting
radiation (eq. (2.3)), which grows linearly with γw, eventually saturates the released latent
energy, resulting in a terminal value γw ∼ ∆V/(g3T 3vϕ) for the wall boost factor. Assuming
T ∼ vϕ, we have γw ∼ cV /g3, hence γw ≫ 1 is possible if g ≪ 1. In such cases, the boost
factor at collision is

γw ∼ min
[

cV

g3 ,
2R∗
3R0

]
, (2.5)

i.e. either the terminal behavior described above is reached, or the bubble walls collide
before this occurs.

Scenario III: supercooled phase transition. Alternately, one could have a supercooled FOPT [15,
41, 70–80]. In such transitions, ∆V > ρradiation, leading to a period of vacuum domination
and inflation that causes significant dilution of the pre-existing thermal bath before the phase
transition completes. The bubble walls therefore effectively expand in vacuum, encountering
negligible friction, and can reach runaway behavior. In this case, note that reheating after
the completion of the phase transition creates a thermal bath with ρradiation ≈ ∆V .

Scenario IV: quantum tunneling in a cold dark sector. Even if a dark thermal bath is effectively
absent, the transition could occur via quantum tunneling; in this case, there are essentially
no particles that interact with the bubble walls, and the walls continue to accelerate as the
bubbles expand. The SM bath could be present or absent; if it is absent or its energy density
is lower than the latent energy ∆V in the false vacuum, this leads to a vacuum dominated
epoch, corresponding to the supercooled regime discussed above. For transitions that occur
via quantum tunneling, the bubbles generally cannot percolate in a vacuum dominated
inflating regime (this is essentially the graceful exit problem in first-order inflation models);
to avoid this, we can assume for simplicity that the SM bath is present with energy density
equal to or greater than the latent energy in the false vacuum, so that the Universe remains
radiation dominated throughout and does not enter an inflationary phase during the phase
transition. To draw the distinction with Scenario III above, by quantum tunneling we will
therefore mean a transition that occurs in the absence of a dark sector bath, but without a
supercooled (i.e. vacuum-dominated) phase due to the dominance of the SM bath.
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2.3 Particle content

As stated earlier, we will perform our analysis and calculations for DM production in simplified
frameworks. We will assume the FOPT is characterized by a complex scalar field ϕ with vevs
⟨ϕ⟩ = 0, vϕ and masses mϕ = mf , mt in the false (unbroken) and true (broken) vacua, with a
self-interaction term λϕ

4! |ϕ|
4. To minimize notation, we will also use ϕ to denote the physical

component of the field (the radial mode, or the Higgs boson) later in the paper. The broken
symmetry might be global or local; this implies the existence of either a massless Goldstone
or massive gauge boson, respectively, in the broken theory. In the latter case, the mass of
the gauge boson Z ′ is mZ′ = g vϕ, where g is the dark gauge coupling. We will assume that
all of these dark sector particles (with the exception of the DM particle) can decay into
the SM through small portal couplings, so that the energy in the dark sector eventually
gets transferred to the SM bath. Such decays could be necessary to avoid overclosing the
Universe or producing dark radiation that leads to excessively large contributions to the
effective number of relativistic degrees of freedom Neff in the late Universe if the energy
density in the dark sector is substantial. Such decays into the SM might not exist for the
Goldstone, which can obtain a small mass due to quantum-gravity effects but might not
have any SM decay channels kinematically accessible. In this case, one must ensure that
the Goldstone accounts for less than roughly one percent of the total energy density in the
Universe for consistency with Neff.

For the DM particle χ, we will examine scalar, fermion, as well as vector candidates,
which we denote as χs, χf , and χv, respectively. If the DM mass is at or below the scale of
symmetry breaking, mχ ≲ vϕ, DM could have obtained its mass during the FOPT from the
ϕ vev. For ultraheavy masses mχ ≫ vϕ, which is the primary regime of interest to us, DM
mass is generated at some heavy scale, and the dynamics of symmetry breaking associated
with the FOPT has negligible effect on the DM mass.

We will consider the following simplified interactions between the DM candidates and
the background field:

• Scalar DM χs, with mass mχs and interaction λs
4 |ϕ|2χ2

s.

Note that this is a renormalizable operator that can be valid to arbitrarily high scales.
Since the above interaction term produces a mass contribution

√
λs/2 vϕ once ϕ obtains

a nonzero vev, we will focus on the regime m2
χs

> 1
2λsv2

ϕ, and treat mχs and λs as
independent quantities for simplicity.

• Fermion DM χf , with mass mχf
and effective interaction yf ϕχf χ̄f (+h.c.).

Here the ϕχf χ̄f interaction implies that the χf χ̄f combination is charged under the
symmetry that is broken by the ϕ vev. Here χf could be a chiral fermion, obtaining
its mass from the ϕ vev after the symmetry is broken, analogous to the fermions
interacting with the Higgs field in the SM; however, in this case mχf

= yf vϕ ≲ vϕ.
Alternately, the effective yf ϕχf χ̄f interaction could have been derived from a higher
dimensional operator of the form y′

f

Λf
|ϕ|2χf χ̄f , where Λf is some ultraviolet (UV)-cutoff

scale. In this case, χf does not have to carry any charge associated with ϕ, and its mass
can be significantly larger than the symmetry breaking scale of interest, mχf

≫ vϕ,
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and the effective coupling is yf = 2y′f vϕ/Λf . A specific realization of this (see [43])
involves ϕ mixing with some singlet scalar S that couples to the fermion χf . Here
we remain agnostic about such underlying details and simply work with the effective
interaction term yf ϕχf χ̄f . As with the scalar case, we will focus on masses larger than
that obtained from the symmetry breaking, mχf

> yf vϕ, and consider mχf
and yf as

independent parameters.

• Vector DM χv, with mass mχv and an interaction of the form 1
2λV |ϕ|2(χv)µ(χv)µ.

Note that (χv)µ is not the field strength tensor, but a component of the gauge field χv,
where the subscript v is not a Lorentz index but simply denotes that this is a vector DM
candidate (analogous to the notation in the previous bullet points, χs for scalar DM
and χf for fermion DM). Thus the above interaction term is a dimension 4 coupling
between two scalar and two vector fields. Again, this interaction does not necessitate
that the gauge boson χv corresponds to the gauge symmetry broken by ϕ, as it could
arise from integrating out intermediate particles (e.g. a singlet mediator field, see [43]
for more detailed discussions). For a vector boson, additional subtleties arise from the
interplay between its transverse and longitudinal modes; these aspects will be discussed
in section 6.4. As in the previous two cases, we will treat the mass and coupling as
independent quantities.

In all scenarios, we will restrict ourselves to cases where DM is heavier than the scalar
and the gauge/Goldstone boson, i.e. mχ > mf , mt, mZ′ , mG, so that DM cannot be produced
from decays of other particles in the dark sector, otherwise it can be produced from the
oscillations of the scalar field long after the bubble collisions, effectively reaching a thermal
abundance, in which case it either re-establishes thermal equilibrium with the bath or tends
to be overproduced and overclose the Universe.

Note that the coupling of the scalar field ϕ to particles far heavier than its mass can
produce radiative contributions that can lift its mass to the heavy scale, hence the hierarchy
mϕ, vϕ ≪ mχ could involve significant fine-tuning. Likewise, the coupling between ϕ and DM
can produce corrections to the scalar potential that could modify the nature of the phase
transition; this is particularly concerning in scenarios where the coupling is large (O(1)), or
where the realization of the FOPT requires some amount of tuning. However, as we will
see below, heavy dark matter production from bubble collisions can also be realized with
extremely small couplings between ϕ and DM, as small as O(10−10), which do not alter the
scalar potential appreciably enough to affect the FOPT. In any case, such concerns are
best addressed in complete particle physics models, and we ignore such considerations in
our simplified framework treatment in this paper.

Finally, additional dark sector particles beyond the ones discussed above might exist,
but their existence is irrelevant as long as they do not couple more strongly to DM than
the scalar ϕ and do not produce significant effects on bubble wall dynamics; we will assume
this to be the case for the purposes of this paper.

3 Formalism: particle production calculation

In this section, we describe the formalism for calculating particle production from the dynamics
of the background field during a FOPT. The transition consists of three stages: bubble
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nucleation, expansion, and collision, all of which contribute to particle production, see [58] for
detailed discussions. Although the contributions from the former two stages are subdominant
for the production of heavy particles, we will discuss them here briefly for completion.

3.1 Bubble nucleation

In the thin-wall limit (where the thickness of bubble walls separating the true and false
vacua is significantly smaller than the size of the nucleated bubble, lw0 ≪ R0), the dynamics
of the background field within the bubble can be assumed to be homogeneous, and the
number density of a particle species Y produced within the bubble during the nucleation
process can be estimated as [58]

nY ≈ gY

4π5 l−3
w

(
R0
R∗

)3
I (lw0 mY )e−mY /(λY vϕ) , (3.1)

where gY is the number of degrees of freedom in field Y , λY is the coupling between the
background field and Y , and the dimensionless integral factor I(a) is

I(a) ≡
∫ ∞

0
dx x2 ×

sinh2
[

1
4

(√
a2 + x2 − x

)]
sinh

(
1
2
√

a2 + x2
)
sinh

(
1
2x
) (bosons)

I(a) ≡
∫ ∞

0
dx x2 ×

cosh
(

1
2a
)
− cosh

[
1
2

(√
a2 + x2 − x

)]
2 sinh

(
1
2
√

a2 + x2
)
sinh

(
1
2x
) (fermions) (3.2)

The dilution factor
(

R0
R∗

)3
in eq. (3.1) accounts for the fact that the particles produced

within the nucleated bubbles eventually diffuse out over the entire volume of the expanded
bubble. Since R0 ≫ R∗ (recall that R0 ∼ v−1

ϕ whereas R∗ ∼ H−1), this contribution from
bubble nucleation is generally negligible compared to the contribution from subsequent bubble
evolution calculated below. Furthermore, note the exponential suppression factor e−mY /(λY vϕ):
particle Y obtains a contribution to its mass ∆mY = λY vϕ from the phase transition; if
this is smaller than the bare mass mY , the field Y is effectively insensitive to the changing
background, hence particle production gets shut off exponentially. Thus, the production of
ultraheavy DM mχ ≫ λχvϕ during bubble nucleation will be exponentially suppressed.

For a thick-walled bubble, spatial inhomogeneities within the bubble are expected to
further suppress particle production compared to the thin-wall case.

3.2 Bubble expansion

A bubble wall propagating at constant velocity does not produce any particles (for a rigorous
derivation, see [58]): one can simply boost to its rest frame, where the configuration is static,
hence no particle production can take place. However, in the configurations of interest to
us for ultraheavy DM production, bubble walls achieve runaway behavior: they gain the
latent energy released from the phase transition and accelerate to larger boost factors as
they propagate outwards. Particle production from such accelerating bubble walls can be
estimated by making use of the equivalence principle: a nonuniformly accelerating bubble wall
is equivalent to a wall at rest in a changing gravitational field, and the familiar calculation of
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gravitational particle production yields a number density of produced particles ∼ y2
χ R−3

∗ [58].
This will also be subdominant to the contribution from bubble collisions discussed in the
next subsection.

For thick-wall bubbles, the scalar field might not be at its true minimum anywhere
in the bubble when the bubble nucleates, and instead evolves towards the true minimum
and performs oscillations around it as the bubble expands. This can also be responsible
for some particle production (for related discussions, see [69, 81]). Since we are focusing
on DM particles that are more massive than the background scalar field, such oscillations
cannot produce any DM particles.

3.3 Bubble collision

Particle production from the collision of bubble walls and the subsequent evolution of the
background field is a complicated phenomenon due to the highly inhomogeneous nature of
the process. The collision of bubbles was first considered in [82], and particle production from
such collisions was first studied in detail in [55]. Based on the formalism in [55], analytic
results were derived in simplified ideal limits in [43], and recently refined with numerical
studies of more realistic setups in [57] and analytic treatment in [58]. Here we provide a brief
outline of the formalism; the interested reader is referred to [43, 55, 57, 58] for greater details.

The probability of particle production from the dynamics of the field ϕ is given by the
imaginary part of its effective action,

P = 2 Im ( Γ[ϕ ] ), (3.3)

where Γ[ϕ ], the effective action, is the generating functional of one-particle irreducible (1PI)
Green functions

Γ[ϕ ] =
∞∑

n=2

1
n!

∫
d4x1 . . . d4xnΓ(n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn). (3.4)

The leading (n = 2) term suffices for our purposes (we will briefly discuss higher order
terms in the next section)

Im (Γ[ϕ]) = 1
2

∫
d4x1d4x2ϕ(x1)ϕ(x2)

∫
d4p

(2π)4 eip(x1−x2)Im(Γ̃(2)(p2)) , (3.5)

where Γ̃(2) is the Fourier transform of Γ(2).
The Fourier transform of the background field is ϕ̃(p) =

∫
d4xϕ(x)eipx. We assume

that the bubble walls are planar and collisions occur in the z-direction, so that ϕ̃(p) =
(2π)2δ(px)δ(py)ϕ̃(pz, ω). Using these and the above expressions, the number of particles
produced per unit area of colliding bubble walls can be written as [43, 55]

N

A
= 2

∫
dpz dω

(2π)2 |ϕ̃(pz, ω)|2 Im[Γ̃(2)(ω2 − p2
z)] . (3.6)

This formula invites the following interpretation. The classical background field configura-
tion can be decomposed via a Fourier transform into its momentum modes. Modes of definite
four-momentum p2 = ω2 − p2

z > 0 are to be interpreted as (off-shell) propagating field quanta
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of the background field with mass m2 = p2 — we will henceforth denote these as ϕ∗
p — and the

probability for each such mode to decay is given by the imaginary part of its Green function.
Following a change of variables, the above formula can be simplified and expressed in

terms of the four-momentum of the background field excitations as [43]

N

A
= 1

2π2

∫ p2
max

p2
min

dp2 f(p2) Im[Γ̃(2)(p2)]. (3.7)

Here f(p2) encapsulates the details and nature of the collisions as contained in the Fourier
decomposition of the background field configuration, representing the efficiency factor for
particle production at a given energy scale p. The integral has a lower limit pmin = 2m (for
pair production), set by the mass of the particle species being produced, or the inverse size of
the bubble, (2R∗)−1 (at lower momenta, the existence of multiple bubbles needs to be taken
into account), whichever is greater. The upper cutoff is provided by pmax = 2/lw = 2γw/lw0,
the energy in the two colliding bubble walls, which represents the maximum energy available
in the process. The particles produced on the bubble wall collision surface (eq. (3.7)) will
diffuse out over the volume occupied by the bubble, so that the final number density of
particles per unit volume is

n = 3
4π2R∗

∫ p2
max

p2
min

dp2 f(p2) Im[Γ̃(2)(p2)]. (3.8)

Similarly, the energy density in particles per unit area is

E

A
= 1

2π2

∫ p2
max

p2
min

dp2 p f(p2) Im[Γ̃(2)(p2)]. (3.9)

The wall collisions can be broadly classified as elastic (where the bubble walls bounce
back after collision, restoring the false vacuum in between) or inelastic (where the walls
completely dissipate their energy into scalar oscillations, and the true vacuum is established
everywhere immediately following the collision). From numerical studies of realistic bubble
collision processes, the efficiency factor in the two cases can be parametrized as [57]

felastic(p2)=fPE(p2)+
v2

ϕL2
p

15m2
t
exp

(
−(p2−m2

t+12mt/Lp)2

440m2
t /L2

p

)
(elastic collisions) (3.10)

finelastic(p2)=fPE(p2)+
v2

ϕL2
p

4m2
f
exp

(
−(p2−m2

f +31mf/Lp)2

650m2
f /L2

p

)
(inelastic collisions) (3.11)

Here mt, mf are the scalar masses in the true and false vacua respectively. Lp = min(R∗,Γ−1
ϕ ),

where Γϕ is the decay rate of the scalar as it performs oscillations around its true or false
minimum and R∗ is the typical bubble size at collision, provides a measure of the extent
to which scalar oscillations propagate in spacetime. Finally, fPE is the efficiency factor for
a perfectly elastic collision, derived analytically in [43]

fPE(p2) =
16v2

ϕ

p4 Log
[
2(1/lw)2 − p2 + 2(1/lw)

√
(1/lw)2 − p2

p2

]
. (3.12)

Recall that lw = lw0/γw is the Lorentz-contracted bubble wall thickness.
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Note that eq. (3.10) and (3.11) contain two distinct contributions: an approximately
power law component fPE ∼ p−4, originating from the nontrivial dynamics of the background
field when the bubbles collide, and an approximately Gaussian peak centered around the
mass of the scalar in the relevant vacuum, coming from the oscillation of the scalar field
around its relevant minimum after the collision. Since we assume that the DM particle is
heavier than the scalar, mχ > mt, mf , the oscillations do not contribute to DM production,
and we can ignore the latter component. DM is thus produced solely via f(p2) = fPE for
both elastic and inelastic collisions.

3.4 Particle physics aspects

In the formalism above, in eqs. (3.8), (3.9), the efficiency factor f(p2) encodes information
about the spacetime dynamics of the background field. The particle physics information is
encoded in the 2-point 1PI Green function Γ(2), to which we now turn our attention.

Using the Optical Theorem, the imaginary part of the 2-point 1PI Green function is
given by the sum [43, 55]

Im[Γ̃(2)(p2)] = 1
2
∑

k

∫
dΠk|M̄(ϕ∗

p → k)|2 (3.13)

Here the sum runs over all possible final states k that can be produced from the background
field excitations ϕ∗

p, |M̄(ϕ∗
p → k)|2 is the spin-averaged squared amplitude for the decay

of ϕ∗
p into the given final state k, and dΠk denotes the relativistically invariant n-body

phase space element.
Note that the imaginary part of the 2PI Green function is an inclusive quantity that

necessitates summing over all possible states k that can contribute. To calculate the overall
decay probability of the background field, we therefore need to calculate |M̄(ϕ∗

p → k)|2 for
all particle combinations that are allowed in the setup. However, to calculate the decay
probability into a given final state (such as the DM particle), it is sufficient to perform the
calculation solely for this channel, and the full sum is not required provided the full decay
probability remains smaller than 1, i.e. that there are no channels that are so strong that
particle production backreacts on the system.

The scalar ϕ particles themselves can be produced through the background field excita-
tions, via the quartic term λϕ

4! |ϕ|
4 in the scalar potential; this gives rise to ϕ∗

p → ϕϕ (with a
single vev insertion) and ϕ∗

p → 3ϕ decay processes. These lead to

Im[Γ̃(2)(p2)]ϕ∗
p→ϕϕ =

λ2
ϕ v2

ϕ

8π
(1− 4m2

ϕ/p2)Θ(p − 2mϕ) (3.14)

and

Im[Γ̃(2)(p2)]ϕ∗
p→3ϕ =

λ2
ϕ p2

3072π3 (1− 9m2
ϕ/p2)Θ(p − 3mϕ) (3.15)

Note that the three-body process is suppressed relative to the two-body process by a loop
factor due to an additional particle in the final state, but is proportional to p2 rather than
v2

ϕ, hence can become more important at higher p2 as it can be realized even in the vϕ → 0
limit where the symmetry is unbroken.
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For scalar DM, which couples as λs
4 ϕ2χ2

s, the formulae for two- and three-body decays
ϕ∗

p → χsχs and ϕ∗
p → ϕχsχs are analogous to eqs. (3.14), (3.15), with λϕ → λs, 3072 → 1024

due to modified symmetry factors, and appropriate modifications of the final state masses
in the phase space factors and step functions.

For fermion DM, the relevant expression is

Im[Γ̃(2)(p2)]ϕ∗
p→χf χ̄f

=
y2

f

8π
p2(1− 4m2

χf
/p2)3/2 Θ(p2 − 4m2

χf
) . (3.16)

Note that this quantity is proportional to p2 and can occur in the vϕ → 0 limit of unbroken
symmetry, similar to the three-body scalar decay channel above.

The calculation for vector DM, and final states involving gauge bosons in general, is
more subtle and requires a discussion of the gauge dependence of the formalism. This will
be the subject of the next section.

4 Gauge dependence and production of gauge bosons

Here, we consider the case where the scalar vev breaks a local symmetry, and discuss the
production of the massive gauge boson V associated with the broken symmetry. The results
can be extended in a straightforward manner to other vector bosons, in particular the vector
DM candidate we are interested in.

4.1 Gauge dependence

To understand the subtleties regarding the gauge dependence of the formalism, let us consider
the decay of a background field excitation into two gauge bosons, ϕ∗

p → V V , which occurs
via the interaction term gvϕϕVµV µ. The calculation of the squared amplitude of this process
requires a sum over the gauge boson polarizations. Its general form, in Rξ gauge, is

∑
ϵµϵν → −gµν + (1− ξ) pµpν

p2 − ξm2
V

. (4.1)

Recall that in Rξ gauge, one must also add the contributions from the Goldstone and ghost
fields, which have mass m2 = ξm2

V . For a physical process, the choice of ξ and the separation
of the degrees of freedom into gauge, Goldstone, and ghost fields is simply a matter of
bookkeeping, and the final result should be gauge-invariant, i.e. ξ−independent. As we will
see below, this will not be the case for the above configuration and formalism describing
bubble collisions, hence greater care is needed to avoid spurious results.

Generally, a convenient choice is unitary gauge (ξ → ∞), where the Goldstone and ghost
fields decouple, and one simply needs to consider the gauge degrees of freedom, for which the
above sum over polarization reduces to the familiar expression ∑ ϵµϵν → −gµν + pµpν

m2
V

. Using
this, the squared amplitude for the ϕ∗

p → V V process can be calculated to be

|M̄(ϕ∗
p → V V )|2 = g2m2

V

(
3− p2

m2
V

+ p4

4m4
V

)
(Unitary gauge). (4.2)

One can, instead, perform this calculation in Feynman-’t Hooft gauge (ξ = 1). With this
choice, the polarization sum yields ∑ ϵµϵν → −gµν , and one has to add the Goldstone and
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ghost contributions separately. Adding these contributions together results in the following
expression for the squared amplitude

|M̄(ϕ∗
p → V V )|2 = g2m2

V

(
3− p2

m2
V

+
λ2

ϕ

g4

)
(Feynman-’t Hooft gauge). (4.3)

For a physical process, both results should match and give the correct (physical) result.
When the decaying mode corresponds to an on-shell ϕ particle, i.e. p2 = m2

ϕ, this is indeed
seen to be true: in this case p4/(4m4

V ) = m4
ϕ/(4m4

V ) = λ2
ϕ/g4, hence the final expressions in

the parentheses in the two equations are identical. The problem arises when the excitation
ϕ∗

p is taken off-shell, i.e. p2 ̸= m2
ϕ. In this case, the two expressions clearly disagree: in

particular, at large p2 ≫ m2
ϕ, m2

V , the unitary gauge result scales as ∼ g2 p4/m2
V , whereas

the Feynman-’t Hooft gauge result scales as ∼ −g2 p2. Clearly, this discrepancy persists
even after the sum over modes (eq. (3.7)) is performed; hence the final result for the number
density of gauge bosons produced from a bubble collision appears to be gauge-dependent.

Both results above, eq. (4.2) and eq. (4.3), are however unphysical. The Feynman-’t
Hooft gauge result gives a negative decay probability at large p2, which is clearly unphysical.
The problem with the unitary gauge result can be seen most clearly by considering the
analogous contribution from the higher multiplicity process ϕ∗

p → 4V . Compared to the
ϕ∗

p → 2V process, the 4V process has an additional scalar propagator, whose contribution
to the amplitude squared scales approximately as ∼ 1

p4 ; two additional vector bosons in
the final state, which give additional phase space factors ( d3k

(2π)32p
)2 ∼ ( p2

4π2 )2; and a sum
over the two additional gauge boson polarization vectors, which yields another factor of(
3− p2

m2
V
+ p4

4m4
V

)
. Thus, we can estimate the leading order contributions at large p from

the ϕ∗
p → 4V and ϕ∗

p → 2V processes to the imaginary part of the two point 1PI Green
function in unitary gauge to be

Im[Γ̃(2)(p2)]ϕ∗
p→4V ∼ g6m2

V

8π(4π2)2

(
p4

4m4
V

)2

, Im[Γ̃(2)(p2)]ϕ∗
p→2V ∼ g2m2

V

8π

(
p4

4m4
V

)
. (4.4)

Therefore, the ϕ∗
p → 4V contribution appears to grow faster than the ϕ∗

p → 2V contribution
at large p2. By similar arguments, processes with higher vector boson multiplicity in the
final state should grow even faster with p2. If true, this would preclude the calculation of
eq. (3.13), which is an inclusive quantity that requires the addition of all of these higher order
processes. More worryingly, this unabated growth suggests a breakdown of perturbativity
despite the absence of any strong coupling in the theory. This is a clear indication that the
growth of the squared amplitude with energy in eq. (4.2) is spurious.

A general form worth noting is

Im[Γ̃(2)(p2)]ϕ∗
p→2V = g2m2

V

(
2 + (p2 − 2m2

V )2

4m4
V

)√
1− 4m2

V

p2 + g2

4m2
V

(m4
ϕ − p4)

√
1− 4ξm2

V

p2 .

(4.5)
Since the gauge, Goldstone, and ghost fields have unequal masses in general Rξ gauge, this

leads to unequal phase space weights for any finite p, so that the sum of their contributions
cannot be expressed as a single squared matrix element as in eqs. (4.2) and (4.3). Note
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that the above two cases are the only exceptions to this: in Feynman-’t Hooft gauge these
masses are equal, so that the phase space factor is the same for all contributions a nd can
be factored out, whereas in unitary gauge the Goldstone and ghost fields decouple, and
only the gauge component contributes to the amplitude. One can also write down the
following asymptotic expansion:

|M̄(ϕ∗
p → V V )|2 = g2m2

V ×


(ξ−3)p2

2m2
V

+ λ2
ϕ

g4 + 3 for p2

m2
V
≫ ξ, 1

p4

4m4
V
− p2

m2
V
+ 3 for ξ ≫ p2

m2
V

, 1
(Rξ gauge). (4.6)

This further illustrates that the high-energy behavior of the off-shell ϕ∗
p decay squared

amplitude is gauge-dependent and can become O(g2p4/m2
V ), O(g2p2), or O(g2m2

V ), depending
on the value of ξ. In particular, in the Fried-Yennie gauge (ξ = 3), both the p4 and p2

terms are absent in the large-p2 expansion.
In any gauge-specific calculation, the problem arises due to the inclusion of unphysical

contributions that do not get cancelled. For the unitary gauge result, note that the problematic
final term in eq. (4.2) comes from the prescription of taking ϵL → pi/mV for the production
of two longitudinal modes. However, in the large pi limit, we know that the emission of
the longitudinal component of the gauge boson should be equivalent to the emission of the
corresponding Goldstone boson “eaten” by the gauge boson, as prescribed by the Goldstone
Equivalence Theorem (GET). Since the Goldstone is a component of the scalar field, this
contribution to the matrix element should therefore scale as ∼ λ2

ϕv2
ϕ at high energies, and this

∼ p4/m2
V growth is unphysical. The Feynman-’t Hooft gauge result rectifies this problem:

in eq. (4.3), the final term, which comes from adding the emission of two Goldstone bosons,
indeed scales as ∼ λ2

ϕv2
ϕ rather than ∼ p4/m2

V , hence the spurious growth with energy
encountered in the unitarty gauge calculation is eliminated and the behavior anticipated
from the GET is recovered.2 However, the polarization sum ∑

ϵµϵν → −gµν , which includes
physical as well as unphysical contributions, now gives rise to the negative (second) term
in eq. (4.3), resulting in unphysical (negative) probabilities, suggesting that unphysical
contributions to the polarization sum have not been cancelled in the final result.

Fully restoring the gauge independence of the calculation requires choosing an initial
configuration that is physical, which should result in the cancellation of all unphysical
contributions and guarantee gauge independence of the final result. The gauge dependence
of the formalism we are considering here can be traced to the assumption that the Fourier
transform of the classical field configuration can be interpreted as a collection of off-shell field
quanta of different effective masses corresponding to different four-momenta (see eq. (3.6) and
the paragraph below it). Since an ensemble of off-shell quanta is not a physical configuration,
there is no guarantee that the ensuing calculation is gauge invariant.

The issue at hand can be understood in analogy with the familiar example of gauge
boson scattering, V V → V V , at center of mass energy E. If one only considers the process
V V → ϕ∗ → V V mediated by an s-channel scalar particle, the leading contribution grows
as ∼ E4. As is well known, this term is cancelled when adding all other diagrams that

2For a related discussion of an equivalent gauge that makes the Goldstone equivalence manifest at high
energies, see [83, 84].
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contribute to V V → V V scattering; however, to obtain this physical result, it is necessary
to sum over all contributions that are relevant. Similarly, the spurious pieces in eq. (4.2)
and eq. (4.3) should also be similarly cancelled if all contributions relevant to the physical
process at hand are appropriately included. However, our starting point for the calculation is
not a physical process (as in V V scattering) but a collection of off-shell massive excitations
ϕ∗

p (akin to only picking out the V V → ϕ∗ → V V contribution for vector boson scattering,
which is incomplete), which cannot ensure gauge invariance.3

This suggests that the decomposition of the classical scalar field configuration at bubble
collision into a collection of Fourier modes of off-shell field quanta in the above formalism,
and considering only the leading order (n = 2) terms in eq. (3.4), misses contributions that
are relevant. It is not clear what these missing ingredients are, but there are likely several
things that might be relevant. Including the higher order terms in the expansion in eq. (3.4)
is certainly necessary. Other known techniques, such as gradient expansion or dimensional
reduction, might also provide some insight towards a resolution of the problem. Depending on
the gauge of choice, other fields might develop profiles and contribute to the bubble walls in
addition to the scalar field. Likewise, in the above discussions we have used matrix elements
corresponding to the theory in the true vacuum, but the rigorous construction of an S-matrix
element for the decay of a transient excitation across two stable points of a theory likely
involves more subtleties that would need to be addressed.

Without knowing all of the relevant contributions, a fully gauge invariant calculation
cannot be performed. Nevertheless, as we will see below, it is still possible to extract
meaningful physical, gauge independent results from the known contributions by making
use of the Goldstone Equivalence Theorem, which provides a practical path to performing
the necessary calculation.

4.2 High energy behavior

Practically speaking, the spurious results above arise from unphysical terms in the sum over
gauge boson polarizations. In unitary gauge (ξ → ∞) (eq. (4.2)), the third term contributes
the p4/m2

V term that is unphysical and should have been cancelled by contributions from other
relevant diagrams. On the other hand, in Feynman-’t Hooft gauge, ∑ ϵµϵν → −gµν sums over
all polarizations, including unphysical ones; these, again, should be cancelled by contributions
from other relevant diagrams, but remain in their absence and contribute the unphysical
−p2 piece in eq. (4.3). Therefore, a practical solution would be to only pick out physical
contributions from physically allowed polarization states explicitly when performing the sum.

Instead of using eq. (4.1) to perform the sum over polarizations, we can instead explicitly
pick the polarization states. For a gauge boson moving in the z-direction, the transverse (T)
polarization states are ϵµ

T = (0, 1, 0, 0), (0, 0, 1, 0), whereas the longitudinal (L) polarization
vector is ϵµ

L = (p/mV , 0, 0, EV /mV ). The latter has the problematic p/mV growth at large p;
however, this can be tamed with the Goldstone Equivalence Theorem (GET), which states
that at high energies the amplitude for the emission of a longitudinally polarized massive

3It should be noted that there exist various techniques to address similar gauge invariance issues in other
contexts, see e.g. [85–87]; while they might lead to some simplifications in our calculations, they will not
completely solve the problem since we are considering decays of unphysical off-shell field excitations.
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gauge boson becomes equal to the amplitude for emission of the Goldstone mode ϕG “eaten”
by the gauge boson, up to corrections of order O(m2

V /p2). Thus, even in the absence of all
contributing diagrams, the GET provides a prescription for extracting the physical behavior
of the longitudinal mode at high energies that is free of unphysical contributions and does
not require choosing a specific gauge for the calculation.

We can apply this strategy to the ϕ∗
p → V V process discussed above to extract its high

energy behavior. Three polarization combinations contribute to the calculation of |M|2:

• TT: the emission of transverse modes is well behaved, and gives 2m2
V .

• LL: using the GET, this is equivalent to the emission of two Goldstones ϕ∗
p → ϕGϕG,

and gives λ2
ϕv2

ϕ, or equivalently (λ2
ϕ/g2)m2

V .

• TL: invoking the GET, we need to calculate ϕ∗
p → VT (p1)ϕG(p2) to obtain the high

energy behavior of this contribution. This diagram comes from the kinetic term of
the scalar, and has a vertex factor ig(pµ + pµ

2 ) that contracts with the gauge boson
polarization ϵµ

T . In the rest frame of ϕ∗
p, the two emitted particles are back to back,

these vectors are othogonal, and this contraction vanishes, hence this combination does
not contribute at high energies.4

Adding these contributions, we obtain the following form of the squared amplitude at
high energies:

|M̄(ϕ∗
p→V V )|2

p2>m2
V−−−−−→
(
2g2+

λ2
ϕ

g2

)
m2

V (1+O(m2
V /p2)) (Goldstone Equivalence Theorem).

(4.7)
Note that this result is well-behaved and contains neither the spurious ∝ p4 growing term
from the unitary gauge calculation nor the −p2 term from the calculation in Feynman-’t
Hooft gauge; the above prescription has eliminated all unphysical ingredients and picked
out the relevant physical contributions from the process at hand, without requiring any
explicit computation in a specific gauge. This will continue to be the case for all other
relevant diagrams, as we discuss below. Therefore, we can interpolate between the low energy
behavior (eq. (4.2)) and the high energy behavior (eq. (4.7)) to obtain an approximate result
for the production of gauge bosons; this method introduces inaccuracies in the intermediate
regime (p2 ∼ mV ∼ vϕ), but the final result for the total number of particles is expected
to be correct within an O(1) factor.

4.3 Other processes

In addition to ϕ∗
p → V V , there also exists the three-body decay process ϕ∗

p → ϕV V . Naive
gauge-specific calculations also give unphysical results for this decay channel for the reasons

4Strictly speaking, the collection of background field excitation modes has a distribution of pz, and there is
no frame where they are all collectively at rest. Nevertheless, we have assumed that for the decay of each
excitation, the calculation can be performed in its rest frame, as is conventionally done for a collection of
particles with a distribution of momenta, otherwise the result is not Lorentz invariant.
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described above, but one can similarly use the prescription above to estimate its high energy
behavior:

ϕ∗
p → ϕV V : |M̄|2p < vϕ

∼ g4
(
3− p2

m2
V

+ p4

4m4
V

)
, |M̄|2p > vϕ

∼ λ2
ϕ + 2g4 . (4.8)

Note that this three-body decay will be phase-space suppressed relative to the two-body decay
by a factor ∼ (16π2)−1 due to an additional particle in the final state but can nevertheless
dominate at large p, analogously to the two and three-body scalar decay processes in
eqs. (3.14), (3.15).

Similarly, particles can also be produced due to interactions between multiple Fourier
modes, e.g. ϕ∗

p1ϕ∗
p2 → ϕϕ, V V, χχ. These correspond to higher order terms in the expansion in

eq. (3.4). The Fourier transform of the additional ϕ∗
pi

excitation in the initial state scales as
∼ (vϕ/p2)2, hence the higher order ϕ∗

p1ϕ∗
p2 → ϕϕ, V V, χχ processes are subdominant for very

heavy DM but can introduce O(1) corrections for DM whose mass arises from its coupling to ϕ.
However, further higher order terms corresponding to additional ϕ∗ in the initial configu-

ration, or additional vev insertions, can be important in processes involving particles with
mass lighter than the scale of symmetry breaking. For concreteness, consider the scalar DM
candidate with χs with mass mχs that couples to ϕ via the interaction λs

4 ϕ2χ2
s. A double

ϕ∗ insertion on the DM state introduces a factor ∼
(

vϕ

p2

)4
from the Fourier transform of the

additional ϕ excitations, vertex factor λ2
s, an additional DM propagator, which gives a 1

p4

contribution, and phase space factors that scale with some appropriate power of p, resulting in
an overall contribution that is a factor ∼ λ2

s

(
vϕ

p

)4
larger than the original diagram. Therefore,

one cannot truncate the expansion in eq. (3.4) at the leading term if p2 ≲ λs v2
ϕ. However,

as mentioned in section 2.3, we restrict ourselves to m2
χs

> 1
2λsv2

ϕ, hence it is consistent to
ignore such higher order corrections in this region of parameter space.

4.4 Backreaction effects

In the previous subsections, we have highlighted two important aspects of particle production
from bubble dynamics: (i) the calculation for gauge boson production is gauge dependent,
and the correct scaling at high energies can be obtained by making use of the Goldstone
equivalence theorem; (ii) at high energies, the emission of three (scalar or gauge) bosons is
enhanced compared to the emission of two bosons despite the phase space suppression, as
the squared matrix element scales as ∼ p2 in the former case and as ∼ v2

ϕ in the latter. Here
we briefly discuss the relevance of these results for backreaction effects on bubble dynamics
and DM abundance; for more detailed discussions on backreaction effects, see [58].

If the energy density in the produced particles is a significant fraction of the latent energy
released in the phase transition, this creates a backreaction effect on the bubble dynamics,
which should be appropriately taken into account for phenomenological applications such
as the calculation of gravitational waves from the scalar field at and after bubble collision,
and for calculating the relic abundance of DM. From the formula for the energy density in
the produced particles (eq. (3.9)), we see that the energy density depends critically on the
form of Im[Γ̃(2)], or equivalently the matrix element |M|2. Since f(p2) ∼ p−4 (eq. (3.12)),
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if Im[Γ̃(2)] ∼ px with x > 1, the energy density in particles grows as a positive power of p2,
hence backreaction can become significant for large values of p.

Previous works [43, 55] concluded that the production of scalars (for which the matrix
element for pair production scales as |M|2 ∝ p0) is not strong enough, but pair production
of fermions (|M|2 ∝ p2) and gauge bosons (|M|2 ∝ p4) can be efficient enough to backreact
on bubble dynamics; in particular, the production of gauge bosons is so efficient at high
energies (as can be seen from inserting |M|2 ∝ p4 in eq. (3.9)) that it significantly reduces
the energy available for other states, so that it precludes the possibility for scalar DM in a
first-order electroweak phase transition (and other gauged transitions in general), whereas
fermion DM remains marginally possible, and vector DM can be realized across a large
range of masses from ∼ 1 − 108 TeV.

Our results disagree with these conclusions. As discussed in section 4.1 above, the
|M|2 ∝ p4 scaling for gauge boson pair production at large p2 is a spurious gauge artifact,
and the correct scaling at energies above the scale of symmetry breaking is in fact |M|2 ∝ p0

(eq. (4.7)). However, we noted that the three-body decay processes involving scalars and
gauge bosons ϕ∗

p → 3ϕ, ϕV V , eq. (3.15), (4.8) (which were not considered in [43, 55], but
discussed in [58]), do scale as Im[Γ̃(2)] ∝ p2 (albeit with additional phase space suppression).
As a result, there is no process with Im[Γ̃(2)] ∝ p4 that can backreact severely on the bubble
dynamics, but the processes with Im[Γ̃(2)] ∝ p2 can backreact if the associated coupling is
sufficiently large; see [58] for a more detailed and qualitative treatment. As we will see below,
these modified results open up significant parameter space for scalar, fermion, and vector DM.

5 Dark matter production

Before exploring the parameter space where the above mechanism yields the correct dark
matter relic abundance, we first discuss other DM production mechanisms that might be
active at various stages of the phase transition in different cases. Here we will use the general
interaction form 1

4λχϕ2χ2, using the general notation χ for DM and λχ for its coupling to
the background field, as the discussion is broadly applicable to DM of arbitrary spin. We
will revert to spin-specific notations as introduced in section 2.3 where this is not the case.
Here we are simply interested in obtaining order-of-magnitude estimates, hence we will make
use of several approximations without worrying about O(1) factors.

The relic abundance of DM can be written as

Ωχh2 = 6.3× 108 mχ

GeV
nχ

g∗(T∗)T 3
∗

, (5.1)

where nχ is the DM number density at the time of production (in our case, given by eq. (3.8)),
when the temperature of the thermal bath after the FOPT is T∗, and g∗ is the number of
degrees of freedom in the bath at this time. Recall that the observed abundance of DM
corresponds to ΩDMh2 = 0.12.

5.1 Pre-transition contributions

The early Universe before the phase transition could already contain some DM abundance. If
DM is in thermal equilibrium with the bath, it obtains an equilibrium number density nχ ∼ T 3
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before undergoing thermal freezeout, during which its abundance can drop exponentially
for T < mχ. For DM masses beyond the unitarity bound O(100)TeV, the frozen-out relic
abundance is too large and not viable; in this case, the abundance can be suppressed below
ΩDMh2 = 0.12 if there is a large amount of entropy injection that dilutes the DM yield by
several orders of magnitude. This can occur if the transition is supercooled, or through
late decays of some heavy particles, or if the dark sector is decoupled from the visible (SM)
sector and colder.
Freeze-in:

Another viable possibility for masses beyond the unitarity bound involves DM never
reaching equilibrium with the dark or SM bath, but only realizing smaller, nonthermal
abundances via the freeze-in mechanism [60, 61]. This can occur if the reheat temperature of
the Universe TR, defined as the maximum temperature of the thermal bath after the onset
of radiation domination following inflation, is below the freezeout temperature for DM.5
Alternately, non-equilibrium is maintained at higher temperatures above the DM mass if the
associated coupling is sufficiently small; this is achieved for λχ ≲

√
vϕ/MP l. In both cases,

DM is produced gradually via freeze-in processes such as ϕϕ → χχ.
If ϕ is in thermal equilibrium with the SM bath and the ϕϕ → χχ process originates

from a renormalizable coupling λχ

4 ϕ2χ2, as would be the case if DM is a scalar or a vector,
the DM relic abundance from this contribution is [61]

Ωχh2 ∼ 1020 λ2
χe−2mχ/TR

(
Tn

T∗

)3
, (5.2)

where the exponential factor has been added to account for the Boltzmann suppression
that exists if mχ > TR, and the

(
Tn
T∗

)3
factor accounts for entropy dilution from the energy

injection from the FOPT. Recall that we have assumed that none of the dark sector particles
can decay into DM, so that there is no contribution from ϕ → χχ or other dark sector decays.

If, instead, this annihilation occurs through a higher dimensional operator of the form
1
Λϕϕχχ, as could be the case for fermion DM, or for DM in the presence of a heavy mediator
(in this case additional considerations might be relevant, see [90]), the abundance is UV-
dominated [91, 92], i.e. receives dominant contributions at the largest temperatures. If ϕ

is in equilibrium with the SM bath, the UV freeze-in abundance of fermion DM produced
from this operator is [92]

Ωχh2 ∼ 0.1
(

mχ

GeV

)(1000TR MP l

Λ2

)
e−2mχ/TR

(
Tn

T∗

)3
. (5.3)

If ϕ is out of equilibrium with the SM bath, then ϕ itself gets produced via freeze-in processes,
and its subsequent annihilations produce DM. The DM abundance in this case can be
calculated analogously using appropriately modified versions of the above formulae.

Note that the above contributions only exist in the presence of a dark sector bath
(Scenarios I, II in section 2.2), but are irrelevant in scenarios where a dark sector bath is
essentially absent (Scenarios III, IV).

5The Universe could have reached temperatures higher than TR during the thermalization phase between
the end of inflation and the onset of radiation domination [88], which can also enable the production of massive
particles [89].
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5.2 Other contributions during the transition

Wall-plasma interactions. In the presence of a dark sector bath, additional DM production
can occur when ϕ particles present in the bath interact with relativistic bubble walls as
they cross into true vacuum bubbles6 [37, 38, 94, 95]. For a renormalizable interaction of
the form λχ

4 ϕ2χ2, the probability for a ϕ particle to up-scatter into χχ as it transitions
across a bubble wall is [37]

P (ϕ → χχ) =
λ2

χ v2
ϕ

96π2m2
χ

. (5.4)

Here, λ2
χv2

ϕ/m2
χ can be thought of as an effective mixing angle between ϕ and the χχ state.

This transition requires the crossing of the ϕ particle across the bubble wall to be non-
adiabatic, i.e. the evolution occurs sufficiently rapidly that the ϕ particle cannot adiabatically
track the massive ϕ eigenstate across the wall but instead upscatters into the χχ combination.
This non-adiabaticity condition is given by [37, 38, 94]

γw >
lw0 m2

χ

T∗
∼

m2
χ

v2
ϕ

, (5.5)

where in the second step we have assumed l−1
w0 ∼ T∗ ∼ vϕ. Thus we see that merely being above

the kinematic threshold for DM production, γwT∗ > mχ, is not sufficient; the non-adiabaticity
condition requires γw to be larger than this by an additional factor of mχ/vϕ. Provided eq. (5.5)
is satisfied, the DM contribution from the above particle-bubble interaction process is [37]

Ωχh2 ≈
1.35× 105λ2

χ

g∗

v2
ϕ

m2
χ

mχ

GeV

(
Tn

T∗

)3
. (5.6)

Bubbletron. Particle-bubble interactions can also produce DM via another mechanism. Parti-
cles gaining mass from bubble crossing can produce shells of accelerated particles with large
boost factors that get dragged along with the bubble walls, and when the bubble walls collide,
these particle shells also collide with high energies, an event dubbed a “bubbletron” [45, 96].
The realization of this configuration requires the particles to retain their energies over the
course of the expansion phase (i.e. not interact with other particles in their vicinity). In
this case, since the accelerated particles gain boost factors comparable to the boost factor
of the wall ∼ γw, their collisions can also produce very heavy DM. The modeling of such
particles shells and their phase space distributions and collisions is complicated and the
subject of ongoing work in the literature (see [45]). Here, using the simple estimates from [45]
(see also [96] for more recent detailed calculations), we approximate the DM contribution
from this process to be

Ωχh2 ∼ 10−15 λ2
χ

β

H

(
Tn

T∗

)4 mχ vϕ

GeV2 . (5.7)

We have checked that this is consistent with the DM abundance estimated by (optimistically)
assuming that a collection of particles with a thermal abundance ∼ T 3

n undergoes collisions
with energy ∼ γw/lw0 for a duration ∼ R−1

∗ .
6It is also worth noting here that for properly calculating the effects of particles transitioning across the

bubble wall in a gauged theory, the fields need to be appropriately quantized across the bubble wall, and the
quantization of the longitudinal mode of the gauge boson in particular is subtle [93].
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5.3 Post-transition contributions

The phase transition completes when the bubbles of true vacuum collide, and the energy
carried by the bubble walls dissipates into dark sector particles and scalar waves. Recall that
the bubble collisions produce particles with very high energies, up to ∼ 1/lw = γw/lw0 ∼ γwvϕ.
Therefore, these particles are energetic enough to produce DM through their collisions even
when the DM mass is significantly higher than the temperature of the bath T∗ or the scale of
symmetry breaking vϕ (or even the reheat temperature TR). Note that this post-transition
contribution exists for all FOPTs (Scenarios I-IV in section 2.2), including the ones that
are devoid of a dark sector bath before the phase transition, since the bubble collisions
populate dark sector particles in all cases.

We can make some simple qualitative observations to estimate the importance of this
effect. From the previous sections, we know that the leading order diagram for the production
of a particle of any spin scales as |M|2 ∝ p2 at high energies through either two- or three-body
decays; therefore, the abundances of dark sector particles at a given energy are approximately
proportional to their couplings to the background field. From this, it is straightforward to
deduce that any dark sector particle with a coupling to the background field smaller than
that of the DM particle is produced with lower abundance than DM (beyond the kinematic
threshold where DM can be produced), and cannot affect its abundance. It is only possible
to substantially alter the DM abundance in the presence of a dark sector particle that has
a larger coupling to the background field than the DM particle.

Scalar Annihilation. The existence of such particles is a model-dependent question; never-
theless, in the minimal model we can consider the contribution from the production and
subsequent annihilations of the scalar field ϕ itself. In the presence of a large self coupling
(λϕ > λχ), ϕ particles are produced at high energies with a greater abundance than χ particles
through the ϕ∗

p → 3ϕ process (eq. (3.15)). These high energy ϕ particles decay with a finite
lifetime into the SM bath, but before they decay, they can self-scatter and thermalize through
the quartic coupling, approaching a thermal distribution. During this thermalization process,
they can also (with a lower probability) annihilate into DM states. Since we are interested in
mϕ ≪ mχ, we can only consider the fraction of the ϕ population with energies greater than
the DM mass. For this population, a simple estimate for the number density of DM particles
from ϕ annihilation in a Hubble time after the completion of the phase transition is

nχ (ϕϕ→χχ) ≈ nϕ (Eϕ>2mχ)nϕ σϕϕ→χχ/H ≈
λ2

χ

32π
√

g∗

nϕ (Eϕ>2mχ)nϕ MP l

m2
χ T 2

∗
, (5.8)

where nϕ, the abundance of scalar particles produced from bubble collisions, can be calculated
using the formalism described in the previous sections. We will calculate this contribution
numerically in the next section, but it is possible to provide some qualitative arguments that
the above can at most be an O(1) correction to DM abundance, as follows: the ratio of the
abundances is given approximately by the ratio of the squares of the corresponding couplings,
nχ/nϕ (Eϕ>2mχ) ∼ y2

χ/λ2
ϕ. The fraction of high energy ϕ states that annihilate into DM states

rather than losing their energy through scattering can be roughly estimated to be ∼ y2
χ/λ2

ϕ.
Therefore, the ϕ particles with sufficient energy to produce DM through annihilations are
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∼ λ2
ϕ/y2

χ times as abundant as DM, but only a ∼ y2
χ/λ2

ϕ fraction annihilate into DM, hence
this contribution to the DM relic abundance is expected to be an O(1) effect. Once the
ϕ particles attain a thermal distribution, or decay into a thermal SM bath, this thermal
population does not contain sufficient energy to produce DM. The above estimates hold if all
ϕ particles participate in annihilations or scatterings; in practice, the number density nϕ can
be sufficiently low that these interactions do not occur frequently as the Universe expands,
in which case the DM contribution is correspondingly smaller.

In addition to the scalar ϕ, there exists at least one other dark sector particle in the
physical spectrum: either a (pseudo) Goldstone boson (if the broken symmetry is global) or a
gauge boson (if the broken symmetry is gauged). Goldstone annihilations are expected to give
a contribution comparable to that from the scalar, since annihilations that produce heavy
DM occur at energies above the scale of symmetry breaking, where Goldstone interactions
are expected to be similar to scalar interactions. Gauge bosons can only annihilate directly
to DM provided the DM particle is charged under the symmetry that the gauge boson
corresponds to; in this case, the contribution from this process can be calculated in the
same way. In the absence of a direct (gauge) coupling, gauge boson annihilation to DM
can occur through diagrams mediated by the scalar, but this contribution is expected to be
subdominant compared to the abundance produced directly from scalar annihilations.

In a specific model, the DM abundance from such ϕ as well as other dark sector particle
annihilations can be obtained by numerically solving the Boltzmann equations with the
appropriate injection of the dark sector particle spectra from bubble collisions; however, this
is beyond the scope of the present work.

5.4 Subsequent evolution

At production, the DM particles are localized around sites of bubble collisions, but since
they are highly boosted, with energies Eχ ∼ γwvϕ, they quickly propagate over all space and
reach a homogeneous distribution. For consistency with observations, the DM population is
required to become cold (i.e. nonrelativistic) by the time of matter-radiation equality, which
should occur when the temperature of the radiation bath drops down to the keV scale. If
Eχ/mχ > T∗/keV, the redshift of momenta due to the expansion of the Universe is not
sufficient to achieve this, and DM particles need to scatter multiple times with other dark
sector particles to become sufficiently cold. To this end, one can check if a DM particle scatters
with a ϕ particle within a Hubble time after the completion of the phase transition, weighed
by the fractional momentum loss from each collision; the condition for this to occur is [38]

nϕ σϕχ→ϕχv
δpDM
pDM

> H ⇒ nϕ

λ2
χ

64m2
χ

Tn

T∗
> 1.66√g∗

T 2
∗

MP l
, (5.9)

where in the second step we have used various relations given in [38]. It can be challenging
to satisfy the above condition if DM only has a small coupling λχ to the scalar field, or if
the ϕ number density nϕ is significantly smaller than a thermal abundance ∼ T 3. In such
cases, DM cannot dissipate its energy and might be too hot at late times to be consistent
with observations.

If DM does cool sufficiently through a combination of redshift due to the expansion of the
Universe and scattering with other dark sector particles, such DM particles can nevertheless
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feature long free-streaming lengths that can leave observable imprints. Ref. [38] explored
various observational effects of heavy DM produced with large boosts, and found that such
long free-streaming lengths for DM can result in a suppressed matter power spectrum that
could provide measurable effects for future cosmological observations; see ref. [38] for further
details. It is also interesting to note that a small fraction of DM, if sufficiently boosted,
might also contribute to dark radiation at Big Bang Nucleosynthesis (BBN) (see e.g. [97]).
Finally, it is worth noting that ultraheavy DM close to the Planck scale could potentially
also be detected purely through its gravitational interactions with experimental efforts such
as the Windchime project [98].

6 Dark matter parameter space

In this section, we explore the parameter space where dark matter can be produced with the
desired abundance using the formalism described in the previous sections. We will provide
an extensive discussion for the case of scalar DM, and discuss fermion and vector DM, which
involve more subtleties (see discussion in section 2.3), more briefly.

First, it is useful to rewrite various relevant expressions and conditions discussed above
in terms of the phase transition parameters defined in section 2.1. We assume that the energy
released in the phase transition gets converted to a thermal bath of SM and dark sector
particles. Eventually all dark sector particles (other than DM) decay into the SM. Using
energy conservation, the temperature T∗ of this SM bath can be calculated via

π2

30g∗T
4
∗ = ρradiation +∆V = ∆V

α
+∆V = 1 + α

α
cV v4

ϕ , (6.1)

where ρradiation is the energy density in the radiation bath prior to the phase transition, T∗
is the temperature of the thermalized bath, g∗ is the number of degrees of freedom (d.o.f.)
in the final thermal bath (for which we will use g∗ = 100, which approximates the SM
d.o.f. above the QCD phase transition), and we have used various definitions and relations
provided in section 2.1. Thus we have

T∗ =
(30(1 + α)

g∗π2α
cV

)1/4
vϕ . (6.2)

For the temperature Tn at which the phase transition commences, we can similarly use

π2

30g∗iT
4
n = ∆V

α
⇒ Tn =

( 30
g∗iπ2α

cV

)1/4
vϕ , (6.3)

where g∗i is now the number of degrees of freedom in the plasma when the phase transition
occurs. For simplicity, we will assume that the initial bath is made up of both SM and dark
sector particles, and use g∗i ≈ g∗ = 100; if the bath only contains the SM or dark sector, this
only introduces O(1) corrections to our final results. Thus we have Tn/T∗ = (1 + α)−1/4.

We can also rewrite the formula for the DM abundance, eq. (5.1), in terms of the phase
transition parameters from section 2.1 and the formula for the number density produced
from background field dynamics, eq. (3.8), as

Ωχh2 ≈ 5× 10−12 β

H

(
α

(1 + α)g∗cV

)1/4 mχ

vϕ

1
GeV2

∫ p2
max

p2
min

dp2 f(p2) Im[Γ̃(2)(p2)] . (6.4)
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As stated earlier, we can use the functional form f(p2) = fPE(p2) from eq. (3.12) for both elas-
tic and inelastic collisions, as we assume that DM is heavier than the scalar field ϕ, hence the
second terms in eqs. (3.10), (3.11), corresponding to scalar field oscillations after wall collision,
cannot produce DM particles and can be neglected. The logarithmic factor in the expression
for fPE(p2) requires a numerical evaluation of the integral in eq. (6.4), which is cumbersome
and time-consuming; a simplification can be made by observing that this logarithmic factor
evaluates to a number between 6 and 60 across the range of parameter values of interest to
us, hence we can reasonably approximate Log

[
2(γw/lw)2−p2+2(γw/lw)

√
(γw/lw)2−p2

p2

]
≈ 20 for all

cases to simplify our calculations. This enables us to further simplify the above formula as

Ωχh2 ≈ 0.1
(

β/H

10

)(
α

(1 + α)g∗cV

)1/4 mχ vϕ

(2.5 TeV)2

∫ p2
max

p2
min

dp2

p4 Im[Γ̃(2)(p2)] . (6.5)

For a given form of the function Im[Γ̃(2)(p2)], it is then possible to solve this integral
analytically, thereby obtaining a fully analytic expression for the DM relic abundance. We
will do this for various cases in the following subsections.

6.1 Gravitational waves

Before delving into the details of DM production, it is worth discussing the connection with
gravitational waves. One of the main attractive features of FOPTs in contemporary research
is that they can give rise to stochastic GW signals that can be observed with a variety of
existing and upcoming GW detectors. It is therefore judicious to examine whether the FOPTs
that can produce the correct DM relic abundance can also give sizable GW signals, which
would provide a unique observational probe of this DM production mechanism.

FOPTs can produce gravitational waves in several ways: through the scalar field energy
densities in the bubble walls after collision [4–7, 62, 81, 99–105], the production of sound
waves [106–111] and turbulence [7, 109, 112–116] in the surrounding plasma, or through
energy transfer to nontrivial spatial configurations of feebly-interacting particles [30]. In this
paper, we are primarily interested in runaway bubble configurations, where the bubble walls
carry most of the energy released in the transition, hence the GWs are primarily sourced by
bubble wall collisions, i.e. the scalar field. For such GWs, we use the peak frequency of the
signal today as obtained from the results of [81], which can be expressed as [38]

fpeak(GW) =15 µHz β

H
g

1/6
∗

(
T∗

103 GeV

)
=20 µHz β/H

g
1/12
∗

((1+α)
α

cV

)1/4( vϕ

103 GeV

)
. (6.6)

Using this relation, we can map the scale of the phase transition vϕ to the optimal frequencies
of various gravitational wave detectors, as shown in table 1. The table shows the corresponding
scales of FOPTs that provide GW signals that peak at the optimal frequencies of various
detectors as determined by the above formula for some reasonable choices of parameters
(β/H = 10, g∗ = 100, α = 1, cV = 0.1). For these parameter choices, we also list the viable
window of DM masses that can be produced from bubble collisions for reasonable couplings
between DM and the background field (in the range 10−4 to 1) in each case, as derived from
our calculations below (see section 6.2, figure 2 ; these numbers correspond to the case of
scalar DM, but the numbers for fermion or vector DM should be comparable).
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Experiment foptimal/Hz vϕ/GeV mDM/GeV
Pulsar Timing Arrays (PTAs) [117, 118] 10−8 0.1 1013 − 1016

LISA [119] 0.001 104 106 − 1015

BBO [120], DECIGO [121] 0.1 106 105 − 1013

Einstein Telescope (ET) [122], Cosmic Explorer (CE) [123] 10 108 106 − 1010

Table 1. Peak gravitational wave frequencies, corresponding scales of phase transition, and ranges of
viable (scalar) dark matter masses (with couplings in the range 10−4 to 1) for various existing and
planned gravitational wave experiments.

Here, it is worth mentioning that if particle production (including DM production) from
bubble collisions is a strong effect, it can affect the subsequent production of GWs, modifying
the amplitude as well as shape of the GW signal.

6.2 Scalar dark matter

Consider scalar DM χs that couples to the background field ϕ via 1
4λsϕ2χ2

s, and can be
produced via ϕ∗

p → χ2
s, ϕχ2

s. Substituting the expressions from eqs. (3.14), (3.15) into
eq. (6.5), and dropping the phase space factors in these equations to enable the integral to be
performed analytically, we derive the following expression for the scalar DM relic abundance

Ωχh2 ≈ 0.1 β/H

10

(
α

(1+α)g∗cV

)1/4 λ2
s mχs vϕ

(24 TeV)2

[
v2

ϕ

m2
χs

+ 1
16π2 ln

(
2γw/lw0

(2mχs+mϕ)

)]
. (6.7)

The two terms in the square parenthesis correspond to contributions from the two- and three-
body decays, respectively. We can see that the latter contribution dominates for mχs ≳ 4π vϕ,
clearly demonstrating the importance of the three-body decay channel for heavy scalar DM.
We have numerically checked that the above analytic result matches the full numerical result
(obtained from evaluating eqs. (3.12), (3.14), (3.15) numerically without dropping any factors)
up to an O(1) factor over the parameter space we are interested in.

As discussed in the previous sections, several processes contribute to DM production in
FOPTs in addition to the background field dynamics at bubble collision: bubble nucleation,
bubble expansion (bubble wall acceleration), and annihilations of dark sector particles
produced from bubble collisions in all cases (with or without a thermal bath), as well as
freeze-in from the thermal bath, wall-plasma interactions, and collisions of accelerated particle
shells in the presence of a thermal bath of particles. In figure 1, we plot the relative weights
of these contributions in the final DM relic density as a function of DM mass for various
parameters choices in the absence (left column) or presence (right column) of a thermal bath
of particles. We have chosen vϕ = 104 GeV in the top panel (the relevant scale for a GW
signal observable by LISA) and vϕ = 108 GeV in the bottom panel (the appropriate scale for
Einstein Telescope / Cosmic Explorer). In all cases, the coupling λs has been chosen such
that the sum of all contributions produces the correct DM relic density. For these plots, we
have chosen the following values for the various parameters:

cV = 0.1, β/H = 10, α = 1, R0 = 10/vϕ, lw0 = 1/vϕ . (6.8)
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Figure 1. Relative contributions to scalar dark matter relic abundance from various processes as a
function of dark matter mass, for vϕ = 104 GeV (top row) and vϕ = 108 GeV (bottom row), in the
absence (left panels) or presence (right panels) of a thermal bath. The bubble collision contributions
on the right column panels represent the sum of the 2- and 3-body decay contributions from the
corresponding left column panels. See text for further details.

We have assumed that the bubble walls are in the runaway regime throughout the bubble
expansion phase, and with the parameters of eq. (6.8) the wall boost factor at the time
of collision is

γw = 2R∗
3R0

≈ 0.15
β/H

MP l

vϕ
, (6.9)

where we have used the relations and parameters listed above. Recall that in the presence
of a light gauge boson, the boost factor can reach a terminal value smaller than the above
expression (see eq. (2.5)); however, we do not consider this possibility in this paper.

In the left panels, we plot the two- and three-body decay contributions from ϕ∗ → χ2, ϕχ2

separately, in blue and green respectively. It can be seen that the former dominates for
mχ ≲ 4πvϕ, whereas the latter takes prominence for higher DM masses, as anticipated from
earlier discussions. The contribution from the annihilation of ϕ particles produced from
bubble collisions into DM (assuming the scalar quartic coupling λϕ = 1), corresponding to
eq. (5.8), is shown in red; this contribution is always found to be a few orders of magnitude
smaller than the two-body contribution, and therefore subdominant. Likewise, we also plot
the contributions from the bubble nucleation and bubble wall acceleration phases (section 3),
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in purple and gold respectively. These contributions are seen to be several orders of magnitude
smaller than that from bubble collision due to the reasons discussed in section 3 and therefore
completely negligible. These patterns continue to hold as vϕ is increased from 104 to 108 GeV
(top to bottom left panel). The wall acceleration contribution increases by a few orders of
magnitude since it scales as R−3

∗ ∼ H3 and the Hubble scale is higher for higher vϕ, but
remains negligible. Meanwhile, the bubble nucleation contribution gets further suppressed as
it does not rise as rapidly as the other contributions with vϕ. Therefore, in the absence of a
thermal bath, we find that bubble collisions are the dominant DM production mechanism
for any choice of parameters.

In the right panels, we show the relative contributions from various processes in the
presence of a thermal bath. We now combine the two- and three-body decays into a single
contribution, denoted by the blue curves labelled “bubble collision”. As discussed in the
previous section, the presence of a thermal bath introduces several new DM production
mechanisms: freeze-in from the annihilation of the scalar particles present in the thermal
bath ϕϕ → χsχs (eq. (5.2)), denoted by the green curves labelled “freeze-in”; non-adiabatic
transition of ϕ to χsχs when ϕ particles from the plasma interact with the bubble walls
(eq. (5.6)), denoted by the gold curves labelled “wall-plasma”; and the collisions of boosted
ϕ particle shells (Eq, (5.7)), denoted by the red curves labelled “bubbletron”. We see
that the freeze-in contribution from annihilations of ϕ particles in the thermal bath can
dominate for mχs ≲ vϕ, but rapidly becomes ineffective for mχs ≳ vϕ as the exponential
suppression in (eq. (5.2)) becomes significant (here we chose TR ≈ vϕ; for larger TR, the
freeze-in contribution is expected to dominate for mχs ≲ TR). The non-adiabatic wall-plasma
interaction contribution dominates in the intermediate DM mass regime, as long as

1
β/H

(
mχs/vϕ

105

)2 vϕ

104 GeV ≲ 1 . (6.10)

Raising mχs/vϕ results in the suppression of the effective mixing angle between ϕ and χsχs

(see discussion surrounding eq. (5.5)), which eventually makes this contribution subdominant
to the abundance produced from three-body decays of the background field excitations. For
higher mχs values, bubble collision therefore becomes the dominant DM production process.
The bubbletron contribution is seen to grow in importance with increasing mχs but does
not dominate in any part of the parameter space, only contributing at percent level at best;
however, annihilation cross-sections at high energies scale as ∼ E−2 ∼ (γwvϕ)−2 (using γw

from eq. (6.9)), so it is possible that a configuration with smaller γw could enhance the
bubbletron contribution and make it relevant in some parts of parameter space. Note that the
above contributions exist in the presence of a plasma, but can be suppressed in a supercooled
phase transition, where a brief inflationary phase due to vacuum domination can lead to
significant dilution of the pre-existing thermal bath, thereby suppressing these contributions.

Here it is worth emphasizing that previous studies only considered the two-body decay
channel ϕ∗

p → χsχs and hence underestimated particle production from bubble collisions,
finding it to be subdominant to the wall-plasma or bubbletron contribtutions. When the
three-body decay process ϕ∗

p → ϕχsχs is taken into account, we find that this can constitute
the dominant contribution for heavy DM even in the presence of a thermal bath and the
above processes.
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Figure 2. Contours of the value of the coupling λs for which the correct scalar dark matter relic
density is achieved, as a function of the dark matter mass and the scale of symmetry breaking.
The vertical dashed blue lines denote the transition scales that produce gravitational waves at peak
sensitivity frequencies for various GW detectors (see section 6.1). The shaded regions represent various
constraints, see text for detailed discussions. Note that the blue (“freeze-in dominates”) and purple
(“wall-plasma dominates”) regions are only applicable if a thermal dark sector bath is present before
the phase transition, whereas the other regions are applicable for all FOPTs, with or without a bath.

Having examined the relative importance of various processes, we next plot, in figure 2,
contours of the magnitude of the coupling λs required to produce the correct DM relic
abundance from bubble collisions as a function of vϕ and mχs , together with various constraints.
This figure shows that bubble collisions can account for the correct DM relic density across a
vast range of scales spanning several orders of magnitude. In this plot, we have restricted
vϕ to values above 100 MeV (below this, an FOPT is likely to disrupt BBN) and mχs to
values above 100 GeV (lower values are possible, but there are no qualitatively new features
beyond what is already seen in the figure). On both axes, we implement an upper cutoff
of 1016 GeV; beyond this, the value approaches the UV-cutoff of the system (given by the
bubble wall thickness at collision γw/lw0), and details of the bubble wall profile, which we
have not taken into account, become important. The dashed vertical lines denote the FOPT
symmetry breaking scales corresponding to the peak sensitivities of various gravitational
wave experiments, as described in section 6.1 (see table 1). We see that ultraheavy DM
several orders of magnitude heavier than the symmetry breaking scale vϕ can be produced for
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reasonable values of the coupling λs across a large range of FOPT scales of interest for various
current and planned GW experiments. It should be emphasized that the DM mass could also
be significantly larger than the highest temperature ever reached in our cosmic history.

In the figure, we see that all the contours feature sharp kinks at mχs ∼ 4πvϕ. This
corresponds to the transition between regions of parameter space where two- or three-
body decays of the background field excitations dominate the DM production process. For
mχs ≲ 4πvϕ, the two-body process dominates; from eq. (6.7), Ωχh2 ∝ 1/mχs when the
first term in the parenthesis dominates, hence as mχs is increased for fixed vϕ, the required
coupling increases. In the opposite regime mχs ≳ 4πvϕ, the three-body process dominates,
and the relic density scaling from eq. (6.7) when the second term in the parenthesis dominates
is instead Ωχh2 ∝ mχs , and now the required coupling decreases as mχs is increased for fixed
vϕ. This explains the reversal of the contour shapes across the two regions in the plot.

The shaded regions denote various constraints, as follows:

• The red region in the bottom left denotes parameter space where the backreaction from
particle production becomes important, given approximately by the condition λs > 10;
note that this also corresponds to a regime where the coupling becomes nonperturbative.

• The green triangular region denotes parameter space where DM is too hot to account for
the structures observed today. The constraint disappears for higher mχs because heavier
DM is not as boosted and can redshift to become cold by the time of matter-radiation
equality. Similarly, the constraint also disappears below mχs ≈ 108.5 GeV because the
value of λs required to produce the correct relic density increases, enabling more efficient
χs − ϕ scattering, which disperses the energy carried by DM particles, allowing them
to cool.

• The orange region in the bottom left represents parameter space where the produced
DM population re-enters chemical equilibrium with the dark sector bath (i.e. the rate
for χsχs → ϕϕ scattering is faster than Hubble), in which case imprints of the bubble
collision process are washed out and DM subsequently undergoes thermal freezeout.
Note that this region disappears to the right even though mχs ≪ vϕ since the associated
coupling λs also becomes very small.

• The brown region in the bottom right corresponds to configurations where mχs < R−1
∗ ,

i.e. the formalism used to calculate particle production from bubble collisions falls below
its IR cutoff and is no longer valid, since the existence of multiple bubbles should be
taken into account in the Fourier transform of the background field.

• The blue region corresponds to parameter space where freeze-in from the annihilation of
the scalar particles ϕϕ → χsχs (eq. (5.2)) from the pre-existing thermal bath, if present,
dominates over production from bubble collision. Note that its upper boundary occurs
at roughly mχs ∼ vϕ; for heavier DM masses, the exponential suppression in eq. (5.2)
rapidly suppresses this contribution (recall that we chose TR ∼ vϕ; for larger TR this
region is expected to get bigger). Likewise, the lower boundary of this region coincides
approximately with the λs ∼ 10−10 contour; as we can see from eq. (5.2), even in the
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absence of the exponential, freeze-in cannot provide the correct relic density for smaller
values of λs.

• The purple region represents parameter space where the non-adiabatic transition of ϕ

to χsχs due to ϕ particles from the plasma (if it exists) interacting with the bubble
walls (eq. (5.6)) dominates over the bubble collision contribution. Beyond the upper
boundary and to the right of this region, the non-adiabaticity condition from eq. (5.5)
continues to hold, but production becomes less efficient than that from bubble collisions.
Where blue and purple regions overlap, the blue (freeze-in) contribution generally tends
to be larger (see figure 1).

• As discussed earlier, we grey out the region m2
χs

< 1
2λsv2

ϕ, where the mass contribution
expected from the phase transition exceeds the DM mass. In this part of the parameter
space, higher order insertions beyond the leading contribution considered in this paper
can also become important, as discussed in section 4.3. Furthermore, in this region
DM is likely lighter than ϕ as well as other dark sector states, hence the assumption
that decays of dark sector particles do not produce DM also possibly breaks down. In
addition, it should be kept in mind that we have used f(p2) = fPE for our calculations,
which assumes mχ > mϕ; in regions of parameter space where this is not the case,
additional contributions from the scalar oscillations after bubble collisions would likely
dominate and overproduce DM.

Note that eq. (6.7) can be further simplified by approximating the second parenthesis as 1
when α ≥ 1 and the log factor as 10 over the region of parameter space shown in figure 2. In
the regime where three-body decays dominate (generally the case for mχs ≳ 4πvϕ), this yields
the following simple relation among the parameters to achieve the correct DM relic density

λ2
s β/H

10
mχs vϕ

(100 TeV)2 ≈ 1. (6.11)

This is found to be in excellent agreement with the results shown in figure 2.
Finally, we provide an intuitive discussion of the number density of heavy DM par-

ticles produced from bubble collisions, based on the results derived above (in particular
eqs. (3.8), (5.1), (6.4), (6.7)). Parametrically, we see that the number of particles produced per
unit area of colliding bubble walls scales as ∼ λ2

s v2
ϕ (times a logarithmic factor), with no other

parametric suppression. This diffuses over the size of the bubble to yield a number density
n ∼ λ2

s v2
ϕ/R∗; since lw0 ∼ v−1

ϕ and T∗ ∼ vϕ, this can be rewritten as n ∼ λ2
s T 3

∗ (lw0/R∗). This
invites the interpretation that for O(1) couplings, bubble collisions are efficient at producing
essentially a thermal abundance ∼ T 3

∗ of particles within the extent of the bubble wall lw0
(as seen in its rest frame), which then diffuses out throughout the bubble. One can also
understand the above parametric scaling through a different argument: the energy released
in the phase transition is ∆V ∼ v4

ϕ, whereas bubble collisions produce particles with typical
energy γwvϕ. Hence efficient particle production from bubble collisions should lead to a
number density n ∼ v3

ϕ/γw. Recalling that γw ∼ R∗/R0 ∼ R∗/lw0, this is the same number
density as above for O(1) couplings.
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Figure 3. Contours of the value of the coupling yf for which the correct fermion DM relic density is
achieved, as a function of the scale of symmetry breaking and the DM mass. The vertical dashed blue
lines denote the transition scales that produce gravitational waves at peak sensitivity frequencies for
various detectors (see section 6.1). Details of the constraints in the various regions are discussed in
the text.

6.3 Fermion dark matter

We now consider the case of fermion DM. Many of the qualitative details and discussions
are similar to the case of scalar DM, and we will not repeat them here but instead focus
on the differences.

The fermion DM relic abundance from ϕ∗
p → χf χ̄f decays arising from the interaction

term yf ϕχf χ̄f can be expressed as

Ωχh2 ≈ 0.1 β/H

10

(
α

(1 + α)g∗cV

)1/4 mχf
vϕ

(8.6 TeV)2 y2
f ln

(
γw/lw0
mχf

)
. (6.12)

In figure 3, we plot contours of the magnitude of the coupling yf required to produce the
correct fermion DM relic abundance as a function of vϕ and mχf

, analogous to the scalar
DM case in figure 2. We choose the same parameters as for scalar DM (eq. (6.8)), with
the boost factor given by eq. (6.9). As in figure 2, we denote the exclusion region (shaded
golden) where the DM mass falls beyond the IR cutoff and the Fourier transform of a single
bubble collision is no longer sufficient, and the region (shaded blue) where backreaction
from particle production becomes important, i.e. the energy density in the DM particles
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(calculated using eq. (3.9)) exceeds the latent energy released in the phase transition, ∆V .
The latter region is found to correspond to yf > 1.5. Note that this backreaction region
for fermion DM is larger than the corresponding region for the scalar DM case in figure 2
(corresponding approximately to λs > 10) since the fermion is produced via the two-body
decay channel ϕ∗

p → χf χ̄f , whereas the leading contribution for scalar DM at high energies
is the phase-space suppressed three-body decay ϕ∗

p → ϕχ2
s. Also note that the contours of

constant yf in figure 3 are straight lines, as two-body decay is the only relevant process for
fermion DM, and do not feature the kinks observed in figure 2 due to two- and three- body
decays being important in different parts of parameter space for scalar DM. Similarly, we
show the boundary mχf

= yf vϕ below which higher order corrections become important and
need to be included to get the correct result (see section 4.3). As with the scalar DM case,
we emphasize that we have used f(p2) = fPE for our calculations, which assumes mχ > mϕ;
in regions of parameter space with mχ < mϕ, production from oscillations of the scalar field,
not considered in the above calculations, will dominate the DM abundance.

Unlike figure 2, here we do not plot any constraints arising from interactions, such as hot
DM, rethermalization, or freeze-in constraints, since these involve 2 → 2 interactions, whose
nature depends on the UV-completion of the yf ϕχf χ̄f term. As discussed in section 2.3, if
χf is not charged under the symmetry broken by ϕ, the above interaction is an effective
field theory (EFT) interaction derived from some higher dimensional operator of the form
1

Λf
ϕ2χf χ̄f , obtained by integrating out some UV physics at the scale Λf to give the low

energy effective coupling yf = vϕ/Λf . In the plot, we denote the region (labelled “EFT
insufficient”) where Λf < min(mχf

, vϕ), which corresponds to the breakdown of this EFT,
where the new degrees of freedom are no longer heavy and cannot be integrated out. This
does not mean that fermion DM with such masses cannot be produced with FOPTs at these
scales, but simply that additional physics beyond the minimal EFT interaction considered
above would be relevant and could provide the leading effect, hence the EFT calculation
can no longer be trusted to give the correct result. Note that these new d.o.f. at the scale
Λf also affect the result in the remainder of parameter space where Λf > mχf

, vϕ: the
particle production calculation involves evaluating the integral in eq. (6.5), which runs up to
pmax ≈ Ew. Since the EFT interaction term is only valid up to p = Λf , the new d.o.f. would
modify the integrand at larger p values; however, since the integral evaluates to a logarithm
(see eq. (6.12)), we expect this to modify the result only by an O(1) factor.

Finally, we can also obtain a very simple approximate relation among the parameters
that achieves the correct fermion DM relic density, analogous to eq. (6.11) and obtained
by making the same approximations:

y2
f β/H

10
mχf

vϕ

(2.7 TeV)2 ≈ 1. (6.13)

6.4 Vector dark matter

Next, we briefly discuss the case of a vector DM particle χv, which gets produced via the
effective operator 1

2λV ϕ2χµ
v χv µ introduced in section 2.3. The production of vector DM is

similar to the case of scalar DM discussed in section 6.2 and figure 2 (since it gets produced
through two- and three-body decays ϕ∗

p → χvχv, ϕχvχv similar to the scalar case), with the
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same UV-completion caveats as for fermion DM (section 6.3). We therefore do not make a
separate plot for vector DM or repeat similar discussions, but simply mention the additional
aspects relevant for the vector case.

If χv is the gauge boson corresponding to the symmetry broken by the ϕ vev (in which
case mχv = g vϕ ≲ vϕ„ where g is the gauge coupling), the details of production of transverse
and longitudinal modes map directly to the discussion in section 4, with λV → g2. In this case,
for the two-body decay ϕ∗

p → χvχv one can interpolate between the low energy (p2 < m2
χv

)
behavior given by eq. (4.2) and the high energy (p2 > m2

χv
) behavior obtained from the

Goldstone Equivalence Theorem, eq. (4.7), to construct an approximate solution valid across
all energy scales. For the three-body decay ϕ∗

p → ϕχvχv, one can similarly interpolate between
the two expressions in eq. (4.8) to construct an approximate solution across all energies.
Note that the production rate now depends not only on the gauge coupling g but also the
scalar quartic coupling λϕ, as the longitudinal component of the gauge boson behaves as the
Goldstone field at high energies, as anticipated from the GET.

For mχv ≫ gvϕ, χv cannot be the gauge boson of the broken symmetry and hence does
not couple directly to ϕ, and the effective operator 1

2λV ϕ2χµ
v χv µ must arise from integrating

out some mediator fields at some scale Λv. As discussed for the case of fermion DM, the new
d.o.f. can modify the results obtained from the EFT operator, and even invalidate the EFT
approach in some regions of parameter space. For vector DM, this also introduces an additional
consideration: as discussed in section 4, a practical approach to obtain physical, pathology-
free results for the production of vectors, which might otherwise be gauge-dependent, is to
use the Goldstone Equivalence Theorem to obtain the high energy behavior of longitudinal
mode production. This requires appropriately replacing the longitudinal mode with the
corresponding Goldstone mode at high energies in the UV theory.

Overall, we expect the production of vector DM to be as general and efficient as the
production of scalar DM (from figure 2), but any model-specific study of vector DM production
from bubble collisions must properly address the various aspects discussed above.

7 Summary and discussions

Here, we summarize the main points of our paper:

• We have studied nonthermal production of ultraheavy dark matter (DM) from back-
ground field dynamics during a first-order phase transition (FOPT), dominated by
bubble collisions, where the bubble walls achieve runaway behavior. This constitutes
an unavoidable contribution to DM abundance that exists in any FOPT, irrespective of
the nature of the transition or the plasma, when DM couples directly or indirectly to
the background field undergoing the transition. The contribution studied in this paper
can constitute the dominant production mechanism for heavy DM even in the presence
of a thermal plasma and the existence of other well-known DM production mechanisms.

• This mechanism is very general and can produce the correct relic density of scalar,
fermion, or vector DM across a large range of masses, from O(10)TeV to a few orders
of magnitude below the Planck scale. This broad regime of validity is the result of the
DM number density from bubble collisions being only logarithmically sensitive to the
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DM mass, resulting in a milder DM mass dependence for the DM relic density (see
e.g. eq. (6.7), eq. (6.12)) compared to other traditional production mechanisms.

• Such setups provide a natural configuration to produce ultraheavy DM with masses
many orders of magnitude greater than the scale of the phase transition as well as the
temperature of the thermal bath at any point in cosmological history — for instance,
a phase transition at the GeV scale can produce DM as heavy as ∼ 1016 GeV (see
e.g. figure 2).

• We have demonstrated that the existing formalism for the calculation of particle
production in a gauge theory is not gauge invariant, and can lead to spurious results
if not treated carefully (see section 4). We offer a practical prescription to avoid
these complications that makes use of explicit polarization vectors and the Goldstone
Equivalence Theorem to extricate physically relevant contributions while avoiding
spurious unphysical components.

• We have pointed out the importance of three-body decays of the background field
excitations, generally ignored in the literature, for the production of scalar and vector
particles, which dominate over two-body decays at large energies and provide the
dominant contributions for heavy scalar and vector DM. Such three-body decays can
also be relevant for fermion DM if the interaction between the background field and
fermion DM is mediated by scalar or vector states.

• Although DM from bubble collisions does not require any significant couplings to
Standard Model particles, which hampers the detection prospects from traditional
direct and indirect DM searches, three phenomenological aspects are noteworthy. (i)
FOPTs that produce the correct DM relic abundance can also produce observable
gravitational wave signals across a large range of frequencies relevant for current and
planned gravitational wave experiments (see figure 2, figure 3). (ii) DM produced from
bubble collisions is highly boosted, which gives rise to a modified matter power spectrum
that could be detectable with future cosmological observations. (iii) Ultraheavy DM
with mass close to the Planck scale, which can readily be produced via the mechanism
discussed in this paper, could be detectable purely through its gravitational couplings.

We conclude by discussing the broader implications of our work and highlighting several
specific directions that could benefit from further study. We have provided model-independent
results for heavy DM production from a FOPT with runaway bubbles, which was found to
be viable over a large region of parameter space spanning several orders of magnitude. These
results have broad applicability and can be implemented in a straightforward manner in
specific models of FOPTs, hence it will be interesting to check whether various well-motivated
BSM scenarios that give rise to FOPTs with runaway bubbles can be extended to include
heavy DM candidates. At the same time, the gauge dependence of the formalism suggests that
it is not on rigorous footing, and awaits additional theoretical developments towards a proper
completion. It would also be interesting to study the effects of particle production from bubble
collisions on the subsequent generation of gravitational wave signals. Various cosmological
and astrophysical aspects of ultraheavy boosted DM from bubble collisions, in particular
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the observational aspects of a modified matter power spectrum, are also worth exploring
in greater detail. Beyond DM, the formalism for particle production from bubble collisions
developed here could also find applications in other open questions in particle physics, such
as baryogenesis or leptogenesis [124]. We leave the pursuit of such questions for future work.
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